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ABSTRACT 
In this new era of “big data”, traditional DBMSs are under attack 
from two sides. At one end of the spectrum, the use of document 
store NoSQL systems (e.g. MongoDB) threatens to move modern 
Web 2.0 applications away from traditional RDBMSs. At the 
other end of the spectrum, big data DSS analytics that used to be 
the domain of parallel RDBMSs is now under attack by another 
class of NoSQL data analytics systems, such as Hive on Hadoop. 
So, are the traditional RDBMSs, aka “big elephants”, doomed as 
they are challenged from both ends of this “big data” spectrum? In 
this paper, we compare one representative NoSQL system from 
each end of this spectrum with SQL Server, and analyze the 
performance and scalability aspects of each of these approaches 
(NoSQL vs. SQL) on two workloads (decision support analysis 
and interactive data-serving) that represent the two ends of the 
application spectrum. We present insights from this evaluation 
and speculate on potential trends for the future. 

1. INTRODUCTION 
The database community is currently at an unprecedented and 
exciting inflection point. On one hand, the need for data 
processing products has never been higher than the current level, 
and on the other hand, the number of new data management 
solutions that are available has exploded over the past decade. For 
over four decades, data management typically meant relational 
data processing, and relational database management systems 
(RDBMSs) became commonplace in any serious data processing 
environment. Over the past decade, as industry in nearly every 
sector of the economy has moved to a data-driven world, there has 
been an explosion in the volume of data, and the need for richer 
and more flexible data processing tools.  

RDBMSs are no longer the only viable alternative for data-driven 
applications. First, consider applications in interactive data-
serving environments, where consumer-facing artifacts must be 
computed on-the-fly from a database. Examples of applications in 
this class include social networks where a consumer-facing web 
page must be assembled on-the-fly, or a multi-player game in 
which the objects to be displayed in the next screen must be 

assembled on-the-fly. Just a few years ago, the standard way to 
run such applications was to use an RDBMS for the data 
management component. Now, in such environments, newer 
NoSQL document systems, such as MongoDB [7], CouchDB [1], 
Riak [11], etc., are popular alternatives to using an RDBMS. 
These new NoSQL systems are often designed to have a simpler 
key-value based data model (in contrast to the relational data 
model), and are designed to work seamlessly in cluster 
environments. Thus, many of these systems have in-built 
“sharding” or partitioning primitives that split large data sets 
across multiple nodes and keep the shards balanced as new 
records and/or nodes are added to the system.† 

This new interactive data-serving domain is largely characterized 
by queries that read or update a very small amount of the entire 
dataset. In some sense, one can think of this class of applications 
as the “new OLTP” domain, bearing resemblance to the 
traditional OLTP world in which the workload largely consists of 
short “bullet” queries.   

At the other end of the big data application spectrum are 
analytical decision support workloads that are characterized by 
complex queries on massive amounts of data. The need for these 
analytical data processing systems has also been growing rapidly. 
Once again, (parallel) RDBMSs were largely the only solution for 
these applications just a few years ago, but now they face 
competition from another new class of NoSQL systems – namely, 
systems based on the MapReduce paradigm such as Hive on 
Hadoop. These NoSQL systems are tailored for large-scale 
analytics, and are designed specifically to run on clusters of 
commodity hardware. They assume that hardware/software 
failures are common, and incorporate mechanisms to deal with 
such failures. These systems typically also scale easily when 
adding or removing nodes to an operational cluster.  

The question that we ask in this paper is: How does the 
performance of RDBMs solutions compare to the NoSQL systems 
for the two classes of workloads described above, namely 
interactive data-serving environments and decision support 
systems (DSS)? While [19] examined some aspect of this 
question, it focused only on a small number of simple DSS 
queries (selected join and aggregate queries). Furthermore, it only 
considered MapReduce (MR) as an alternative to RDBMSs, and 
did not consider a more sophisticated MR query processing 
system like Hive [20]. Furthermore, it has been several years since 
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that effort, and the NoSQL systems have evolved significantly 
since that time. So, it is interesting to ask how the performance of 
the NoSQL systems compares to that of parallel RDBMSs today.  

In this paper, we present results comparing SQL Server and 
MongoDB using the YCSB benchmark [14] to characterize how 
these two SQL and NoSQL systems compare on interactive data-
serving environments. We also present results comparing Hive 
and a parallel version of SQL Server, called PDW, using the TPC-
H DSS benchmark [13]. Our results show that the SQL systems 
currently still have significant performance advantages over both 
classes of NoSQL systems, but these NoSQL systems are fairly 
competitive in many cases. The SQL systems will need to 
continue to keep up their performance advantages and potentially 
also need to expand their functionality (for example, supporting 
automatic sharding and a more flexible data model such as JSON) 
to continue to be competitive. 

On a cautionary note, we acknowledge that the evaluation in this 
paper only considers one data point/system in each class that is 
considered in this paper, namely a) NoSQL interactive data-
serving systems (we use MongoDB), b) MapReduce-based DSS 
systems (Hive), and c) RDBMS systems (SQL Server and SQL 
Server PDW). We understand that using other systems in each of 
these classes may produce different comparative results, and we 
hope future studies will expand this work to include other 
systems. In this paper, we have (arguably) taken one 
representative and leading system in each class, and benchmarked 
these systems against each other to gather an initial understanding 
of the emerging big data landscape.  

Finally, we note that while we have used some common 
benchmarks in this paper, the results presented are not audited or 
official results, and, in fact, were not run in a way that meets all of 
the benchmark requirements. The results are shown for the sole 
purpose of providing relative comparisons for this paper, and 
should not be compared to official benchmark results. 

2. BACKGROUND 
In this section, we describe some background about the different 
data processing systems that we examine in this paper. 

2.1 Parallel Data Warehouse (PDW) 
SQL Server PDW [6] is a classic shared-nothing parallel database 
system from Microsoft that is built on top of SQL Server. PDW 
consists of multiple compute nodes, a single control node and 
other administrative service nodes. Each compute node is a 
separate server running SQL Server. The data is horizontally 
partitioned across the compute nodes. The control node is 
responsible for handling the user query and generating an 
optimized plan of parallel operations. The control node distributes 
the parallel operations to the compute nodes where the actual data 
resides. A special module running on each compute node called 
the Data Movement Service (DMS) is responsible for shuffling 
data between compute nodes as necessary to execute relational 
operations in parallel. When the compute nodes are finished, the 
control node handles post-processing and re-integration of results 
sets for delivery back to the users. 

2.2 Hive 
Hive [3] is an open-source data warehouse built on top of Hadoop 
[2]. It provides a structured data model for data that is stored in 
the Hadoop Distributed Filesystem (HDFS), and a SQL-like 
declarative query language called HiveQL. Hive converts HiveQL 

queries to a directed acyclic graph of MapReduce jobs, and thus 
saves the user from having to write the more complex MapReduce 
jobs directly.  

Data organization in Hive is similar to that found in relational 
databases. Starting from a coarser granularity, data is stored in 
databases, tables, partitions and buckets. More details about the 
data layout in Hive are provided in Section 3.3.2.  

Finally, Hive has support for multiple data storage formats 
including text files, sequence files, and RCFiles [17]. Users can 
also create custom storage formats as well as 
serializers/deserializers, and plug them into the system. 

2.3 MongoDB 
MongoDB [7] is a popular open-source NoSQL database. Some of 
its features are a document-oriented storage layer, indexing in the 
form of B-trees, auto-sharding and asynchronous replication of 
data between servers. 

In MongoDB data is stored in collections and each collection 
contains documents. Collections and documents are loosely 
analogous to tables and records, respectively, found in relational 
databases. Each document is serialized using BSON. MongoDB 
does not require a rigid schema for the documents. Specifically, 
documents in the same collection can have different structures.  

Another important feature of MongoDB is its support for auto-
sharding. With sharding, data is partitioned amongst multiple 
nodes in an order-preserving manner. Sharding is similar to the 
horizontal partitioning technique that is used in parallel database 
systems. This feature enables horizontal scaling across multiple 
nodes. When some nodes contain a disproportionate amount of 
data compared to the other nodes in the cluster, MongoDB 
redistributes the data automatically so that the load is equally 
distributed across the nodes/shards. 

Finally, MongoDB supports failover via replica sets, which is its 
mechanism for implementing asynchronous master/slave 
replication. A replica set consists of two or more nodes that are 
copies of each other. More information about the semantics of 
replica sets can be found in [8]. In the following sections, we use 
the name Mongo-AS (MongoDB with auto-sharding) when 
referring to the original MongoDB implementation. 

2.4 Client-side Sharded SQL Server and 
MongoDB 
For our experiments, we created a SQL Server implementation 
(SQL-CS) that uses client-side hashing to determine the home 
node/shard for each record by modifying the client-side 
application that runs the YCSB benchmark.  We implemented this 
client-side sharding so that we could compare MongoDB(-AS) 
with SQL Server in a cluster environment.  We also took the 
client-side sharding code and implemented it on top of MongoDB. 
This implementation of client-side sharding on MongoDB is 
denoted as MongoDB-CS, allowing us to compare MongoDB-AS 
with MongoDB-CS (and SQL-CS).  

We note that both SQL-CS and Mongo-CS do not support some 
of the features that are supported by Mongo-AS. First, whereas 
Mongo-AS uses a form of range partitioning to distribute the 
records across the shards, the Mongo-CS and SQL-CS 
implementations both use hash partitioning. Another difference is 
that the Mongo-CS implementation does not use any of the 
routing (mongos), configuration (config db), and balancer 



processes that are part of Mongo-AS. As a result, load balancing 
cannot happen automatically as in Mongo-AS, where the auto-
sharding mechanism aims to continually balance the load across 
all the nodes in the cluster. However, Mongo-CS makes use of the 
basic “mongod” process, which is responsible for processing the 
client’s requests. Finally, Mongo-CS and SQL-CS do not support 
automatic failover. We note that these features listed above were 
not the key subject of performance testing in the benchmark 
(YCSB) that we use in this paper.  

On the flip side, we also note that SQL Server has many features 
that are not supported in MongoDB. For example, MongoDB has 
a flexible data model that makes it far easier to deal with schema 
changes. MongoDB also supports read/write atomic operations on 
single data entities, whereas SQL Server provides full ACID 
semantics and multiple isolation levels. SQL Server also has 
better manageability and performance analysis tools (e.g. database 
tuning advisor).  

3. EVALUATION 
In this section, we present an experimental evaluation of a 
RDBMS and a NoSQL system on a DSS and a “modern” OLTP 
workload. More specifically, we use TPC-H [13] to evaluate 
Microsoft’s Parallel Data Warehouse and Hive. We also compare 
MongoDB (Mongo-AS) with both client-side sharded Microsoft 
SQL Server (SQL-CS) and MongoDB (Mongo-CS) 
implementations, using the YCSB benchmark. The following 
sections present details about the hardware and the software 
configuration that is used in our experiments. 

3.1 Hardware Configuration 
All experiments were run on a cluster of 16 nodes connected by 
1Gbit HP Procurve 2510G 48 (J9280A) Ethernet switch. Each 
node has dual Intel Xeon L5630 quad-core processors running at 
2.13 GHz, 32 GB of main memory, and 10 SAS 10K RPM 
300GB hard drives. One of the hard drives is always reserved for 
the operating system. 

When evaluating PDW and Hive, we used eight disks to store the 
data. These disks were organized as one RAID 0 volume when the 
system was running Hive, and configured as separate logical 
volumes when running PDW. The log data for each PDW node 
was stored on a separate hard disk. 

For Hive, we used one extra node to run the namenode and the 
jobtracker processes only. PDW needs two extra nodes, used as a 
control node and as a landing node respectively. The landing node 
is responsible for data loading and does not participate in query 
execution. All the extra nodes were connected to the same 
Ethernet switch that is used by the remaining 16 nodes in the 
cluster. The operating system was Windows Server 2008 R2 when 
running PDW, and Ubuntu 11.04 when running Hive. 

For the YCSB benchmark experiments, eight nodes were used as 
servers (running SQL or Mongo) and eight were used to run the 
client benchmark.  Similar to the DSS experimental setting, eight 
disks were used to store the data for the OLTP experiments. These 
disks were configured as RAID 0 when running MongoDB, and 
were treated as separate logical volumes when running SQL 
Server. The log data for SQL Server was stored on a separate hard 
disk. For the Mongo-AS experiments, we used one extra node as 
the “config” server. The “config” server keeps metadata about the 
cluster’s state. The operating system was, in both cases, Windows 
Server 2008 R2. 

3.2 Software Configuration 
In this section, we describe the software configuration for each 
system that we tested. 

3.2.1 Hive and Hadoop 
We used Hive version 0.7.1 running on Hadoop version 0.20.203. 
We configured Hadoop to run 8 map tasks and 8 reduce tasks per 
node (a total of 128 map slots and 128 reduce slots).  The 
maximum JVM heap size was set to 2GB per task. We used a 256 
MB HDFS block size, and the HDFS replication factor was set to 
3. The TPC-H Hive scripts are available online [12].  However, 
since Hive now supports features that were not available when 
these scripts were written, we modified the scripts in the 
following ways: 

1. Instead of using text files to store the data, we used the RCFile 
format [17]. The RCFile layout is considered to be faster than 
a row-store format (e.g. text file, sequence file) since it can 
eliminate some I/O operations [16], [17]. All the TPC-H base 
tables are stored in compressed (GZIP) RCFile format. Some 
TPC-H queries were split manually (by the Hive team) into 
smaller sub-queries, since HiveQL is not expressive enough to 
support the full SQL-92 specification; the output of these 
intermediate queries is also stored in the RCFile format. 

2. We enabled the map-side aggregation, map-side join and 
bucketed map-join features of Hive, which usually improves 
performance by avoiding executing the reduce phase of a 
MapReduce job. 

3. We set the number of reducers for each MapReduce job to the 
total number of reduce slots in the cluster (128 reducers). We 
found that this setting significantly improves the performance 
of Hive when running the TPC-H benchmark, since all the 
reducers can now complete in one reduce round.  

Finally, all the results produced by the map tasks are compressed 
using LZO, according to the suggestions of the Hive team [12] for 
appropriate setting of Hive when running TPC-H. 

3.2.2 PDW 
For our experiments we used a pre-release version (November 
2011) of PDW AU3. Each compute node runs SQL Server 2008 
configured to use a maximum of 24GB of memory for its buffer 
pool. Each compute node contains 8 horizontal data partitions (a 
total of 128 partitions across the cluster).  

SQL Server PDW is only sold as an appliance. In an appliance 
each node is configured much larger amounts of memory and 
storage and the nodes are interconnected using Infiniband, and not 
Ethernet. Hence, the results a customer would see would be much 
faster than what we report below for an appliance with a similar 
number of nodes.  Since, we wanted to avoid an apples-to-oranges 
comparison between PDW and Hive we used exactly the same 
hardware for both systems. 

3.2.3 MongoDB (Mongo-AS) 
We used MongoDB version 1.8.2. MongoDB supports auto-
sharding so that it can scale horizontally across multiple nodes. In 
our configuration, the data is spread across 128 shards. We ran 16 
“mongod” processes on each one of our 8 server machines. Each 
“mongod” process is responsible for one shard. 

In MongoDB (version 1.8.2) any number of concurrent read 
operations are allowed, but a write operation can block all other 
operations. That is because MongoDB uses a global lock for 



writes (there is one such lock per “mongod” process)‡. 
Consequently, we chose to run 16 processes per server node 
instead of one. In this way, we can exploit the fact that our nodes 
have 16 cores (hyper-threaded) and, at the same time, increase the 
concurrency when the workload contains inserts or updates. Our 
single node experiments have shown that running 16 processes 
per machine has better performance than running one or eight 
processes when using the YCSB benchmark. 

Except for the “config db” and “mongod” processes, we launched 
8 “mongos” processes, one at each server machine. The “mongos” 
process is responsible for routing client requests to the appropriate 
“mongod” instance. All the clients that run on the same client 
node connect to the same “mongos” process. Since we have 8 
client nodes, there is a “1-1” correspondence between the 
“mongos” processes and the client nodes.  

MongoDB supports failover by using a form of asynchronous 
master/slave replication, called replica sets. For our experiments, 
we did not create any replica sets. 

3.3 Traditional DSS Workload: Hive vs. PDW 
In this section we describe the DSS TPC-H workload and various 
parameters related to this workload for both PDW and Hive. 

3.3.1 Workload Description 
We used TPC-H at four scale factors (250 GB, 1000 GB, 4000 
GB,16000 GB) to evaluate the performance of PDW and Hive. 
These four scale factors represent cases where different portions 
of the TPC-H tables fit in main memory.  We noticed that the 
TPC-H generator does not produce correct results at the 16000 
scale factor (this scale factor cannot be reported in the official 
benchmark results). More specifically, the values generated for 
the partkey and custkey fields in the mk_order function are 
negative numbers. These numbers are produced using the 
                                                                    
‡ MongoDB (version 2.0) implements yield-on-page-fault and 
yield-on-long-operation features, which potentially will allow for 
more concurrency, but our testing found it unreliable. 
 

RANDOM function, which overflows at the 16TB scale. Hence, 
we modified the generator code to use a 64-bit random number 
generator (RANDOM64). For all the scale factors, we executed 
the 22 TPC-H queries that are included in the benchmark, 
sequentially. We didn’t execute the two TPC-H refresh functions, 
because the Hive version that we used, does not support deletes 
and inserts into existing tables or partitions (the newer Hive 
versions 0.8.0 and 0.8.1 do support INSERT INTO statements). 

3.3.2 Data layout 
A Hive table can contain partitions and/or buckets. In Hive, each 
partition corresponds to one HDFS directory and contains all the 
records of the table that have the same value on the partitioning 
attributes. Selection queries on the partitioning columns can 
benefit from this layout since only the necessary partitions are 
scanned instead of the whole table.  

A Hive table can also consist of a number of buckets. A bucket is 
stored in a file within the partition's or table's directory depending 
on whether the table is a partitioned table or not. The user 
provides a bucketing column as well as the number of buckets that 
should be created for the table. Hive determines the bucket 
number for each row of the table by hashing on the value of the 
bucketing column. Each bucket may contain rows with different 
values on the bucketing column. During a join, if the tables 
involved are bucketed on the join column, and the buckets are a 
multiple of each other, the buckets can be joined with each other 
in a map-side join only.  

As seen in Table 1, a Hive table can contain both partitions and 
buckets (e.g. Customer table in Table 1). In this case the table 
consists of a set of directories (one for each partition). Each 
directory contains a set of files, each one corresponding to one 
bucket. Hive tables can also be only partitioned or only bucketed 
(e.g. Lineitem table in Table 1). In the first case, selection queries 
on the partitioning columns can benefit from the layout. However, 
join queries cannot benefit unless there is a predicate on the 
partitioning columns on at least one of the tables. Bucketed tables 
can help improve the performance of joins but cannot improve 
selection queries even if there is a selection predicate on the 
bucketing column.  

In PDW, a table can be either horizontally partitioned or 
replicated across all the nodes. When partitioned, the records are 
distributed to the partitions using a hash function on a partition 
column. Table 1 summarizes the data layouts for Hive and PDW. 

As can be seen in Table 1, the bucket columns used in Hive are 
the same as those used to horizontally partition the PDW tables. 
Each bucket is also sorted on the corresponding bucket column. 
The PDW tables consist of 128 partitions (8 data “distributions” 
per node).  

Previous work [19] has shown that one of the major reasons why 
relational databases outperform Hadoop on some workloads is 
their inherent indexing support.  For our experiments we decided 
not to use any type of index for the PDW tables (including 
primary key indices). The reason behind this decision is that the 
Hive version we used does not support automatic generation of 
query plans that consider the available indices. Instead, the user 
has to rewrite the query so that it takes into account the 
appropriate indices. This process quickly becomes complicated 
with complex queries like those in the TPC-H benchmark since 
the user has to manually produce the “optimal” query plan. The 
newer versions of Hive, have improved their index support and 
there is an ongoing effort on seamlessly integrating indexing in 

Table 1. Data layout in Hive and PDW 

 HIVE PDW 

Table Partition 
Column Buckets Partition 

Column 
Repli- 
cation 

Customer c_nationkey 
8 buckets per 
partition on 
c_custkey 

c_custkey No 

Lineitem -- 512 buckets 
on l_orderkey l_orderkey No 

Nation -- -- -- Yes 

Orders -- 512 buckets 
on o_orderkey o_orderkey No 

Part -- 8 buckets on 
p_partkey p_partkey No 

Partsupp -- 8 buckets on 
ps_partkey ps_partkey No 

Region -- -- -- Yes 

Supplier s_nationkey 
8 buckets per 
partition on 
s_suppkey 

s_suppkey No 

 



Hive (e.g. [4],[5]). As part of future work, we plan on comparing 
the performance of PDW with Hive, once Hive’s optimizer starts 
considering indices. 

3.3.3 Data Preparation and Load Times 
 In this section, we describe the data preparation steps for each 
system. We also present the data loading time for each system. 

For Hive, we generated the TPC-H dataset in parallel across the 
16 nodes of our cluster using the TPC “dbgen” program. All the 
data is stored on a separate hard disk that is not used to store 
HDFS data files. Before starting the loading process, we created 
one Hive table for each TPC-H table. In the table definition, we 
provide the schema of the table, the partitioning and bucketing 
columns (if applicable) and the storage format (RCFile).  

Data is loaded into Hive using two phases. First, the TPC-H data 
files are loaded on each node in parallel, directly into HDFS, as 
plain text using the HDFS command-line utility that copies data 
from the local filesystem to HDFS. For each TPC-H table, an 
external Hive table is then created. The table points to a directory 
in HDFS that contains all the relevant data for this table. In the 
next phase, the data is converted from the text format into the 
compressed RCFile format. This conversion is done using a Hive 
query that selects all the tuples of each external table and inserts 
them into the corresponding Hive table.  

When loading into PDW, the TPC-H data is generated on the 
landing node. Before	
   loading the data, the necessary TPC-H 
tables are created by using the CREATE TABLE statement and 
specifying the schema and distribution of the tables (replicated or 
hash-distributed). The generated data is loaded using the 
“dwloader” utility of PDW, which splits the text files that are 
generated at the landing node, into	
  multiple chunks. These chunks 
are then loaded to the 16 compute nodes of the cluster in parallel. 

Table 2 presents the data loading times for both systems.  

3.3.4 Experimental Evaluation 
In this section we present an analysis of the performance and 
scalability aspects of Hive and PDW when running TPC-H.  

Table 3 presents the running time of the queries in PDW and Hive 
for each TPC-H query for each of the four scale factors. For each 
scale factor, the table contains the speedup of PDW over Hive. 
The last six columns, display a scaling factor for each TPC-H 
query. This factor shows the increase in the execution time of the 
query when the TPC-H scale factor is increased by a factor of 
four. The table also contains the arithmetic and geometric mean of 
the response times at all scale factors. The values of AM-9 and 
GM-9 correspond to the arithmetic and geometric mean of all the 
queries but Query 9, since Query 9 did not complete in Hive at the 
16TB scale factor due to lack of disk space. 

3.3.4.1 Performance Analysis 
Figure 1 presents an overview of the performance results for the 
TPC-H queries at the four tested scale factors for both Hive and 
PDW (the detailed numbers are in shown in Table 3). Figure 1 (a) 
shows the normalized arithmetic mean of the response times for 
the TPC-H queries, and Figure 1 (b) shows the normalized 
geometric mean of the response times; the numbers plotted in 
Figure 1 are normalized to the response times for PDW at scale 
factor 250. These numbers were computed based on the AM-9 and 
GM-9 values.  

As shown in the figure, PDW has a significantly lower 
(normalized) arithmetic and geometric mean. Moreover, PDW is 
always faster than Hive for all TPC-H queries and at all scale 
factors (see Table 3). The average speedup of PDW over Hive is 
greater for small datasets (34.1X for the 250 GB scale factor). 
This behavior can be attributed to two factors: a) PDW can better 
exploit the property that, for small scale factors, most of the data 
fits in memory, and b) As we will discuss below, Hive has high 
overheads for small datasets. 

In this section, we analyze two TPC-H queries in which PDW 
significantly outperformed Hive at all scale factors, to gather 
some insights into the performance differences. 

Query 5 
As shown in Table 3, Query 5 is approximately 19 times faster on 
PDW than Hive on the 16TB scale. This query joins six tables 

  
(a) Normalized Arithmetic mean (b) Normalized Geometric Mean  

Figure 1. TPC-H Performance on HIVE and PDW at different scale factors (normalized to PDW at Scale Factor = 250). See        
Table 3 for the detailed numbers. 

Table 2. Load times for Hive and PDW 

 Load Time (in minutes) 
250 GB 1 TB 4 TB 16 TB 

HIVE 38 125 519 2512 
PDW 79 313 1180 4712 
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(customer, orders, lineitem, supplier, nation and region) and then 
performs an aggregation.  

The plans produced by the PDW and the Hive query optimizers 
are as follows: 

PDW: PDW first shuffles the orders table on o_custkey. The 
shuffle is completed after approximately 258 seconds. Then, PDW 
performs a join between the customer, orders, nation and region 
tables. This join can be performed locally on each PDW node 
since the nation and region tables are replicated across all the 
nodes of the cluster and the customer table is hash partitioned on 
the c_custkey attribute. The output of the join is shuffled on the 
o_orderkey attribute. The join and shuffle phases run for 
approximately 86 seconds. The table produced by the previous 
operations is locally joined with the lineitem table, which is 
partitioned on the l_orderkey attribute and then shuffled on the 
l_suppkey attribute. This shuffle and join phase runs for 665 
seconds. Then, the resulting table is joined with the supplier table 
(locally). During this join, a partial aggregation on the n_name 
attribute is performed. Finally, all the local tables produced at 
each PDW node are globally aggregated on the n_name attribute 
to produce the final result. The join, the partial aggregation and 
the global aggregation operations complete after 40 seconds. 

Hive: Hive first performs a map-side join between the nation and 
the region tables. A hash table is created on the resulting table and 
then a map-side join is executed with the supplier table. Then, a 
common join is executed between the table produced and the 
lineitem table. The common join is a MapReduce job that scans 
the two tables in the map phase, repartitions them over the shuffle 
phase on the join attribute, and finally performs the join in the 
reduce phase. This join runs for about 14880 seconds at the 16TB 
scale dataset. The map and shuffle phases run for approximately 
12480 seconds. The output of this operation (TMP table) is then 
joined with the orders table using the common join mechanism. 
The running time of this join is 4140 seconds. Then, Hive 
performs a common join between the customer table and the 
output of the previous operation. During this operation the results 
are partially aggregated on the n_name attribute.  This join runs 
for about 720 seconds. Finally, Hive launches two map-reduce 
jobs to perform the global aggregation as well as the order-by part 
of the query. 

The reasons why Hive is slower than PDW when running Query 5 
are described below. 

First, the RCFile format is not a very efficient storage layout. We 
noticed that the read bandwidth when reading data from the 

Table 3. Performance of Hive and PDW on TPC-H at four scale factors 
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Q1 207 54 3.8 443 212 2.1 1376 864 1.6 5357 3607 1.5 3.9 4.1 4.2 2.1 3.1 3.9 
Q2 411 7 58.7 530 25 21.2 1081 115 9.4 3191 495 6.4 3.6 4.6 4.3 1.3 2.0 3.0 
Q3 508 32 15.9 1125 112 10.0 3789 606 6.3 11644 2572 4.5 3.5 5.4 4.2 2.2 3.4 3.1 
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Q7 1007 19 53.0 2447 80 30.6 7694 240 32.1 24887 955 26.1 4.2 3.0 4.0 2.4 3.1 3.2 
Q8 967 9 107.4 2003 89 22.5 6150 238 25.8 18112 814 22.3 9.9 2.7 3.4 2.1 3.1 2.9 
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Q10 489 14 35.0 1107 67 16.5 2958 265 11.2 13195 981 13.5 4.8 4.0 3.7 2.3 2.7 4.5 
Q11 242 3 80.8 258 18 14.3 695 99 7.0 1964 302 6.5 6.0 5.5 3.1 1.1 2.7 2.8 
Q12 253 5 50.6 490 44 11.1 1597 192 8.3 5123 631 8.1 8.8 4.4 3.3 1.9 3.3 3.2 
Q13 392 51 7.7 629 190 3.3 1428 772 1.8 4577 3061 1.5 3.7 4.1 4.0 1.6 2.3 3.2 
Q14 154 7 22.0 353 64 5.5 769 164 4.7 2556 640 4.0 9.1 2.6 3.9 2.3 2.2 3.3 
Q15 444 21 21.1 585 99 5.9 1145 377 3.0 2768 1397 2.0 4.7 3.8 3.7 1.3 2.0 2.4 
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Q19 376 16 23.5 1069 73 14.6 4005 272 14.7 17644 958 18.4 4.6 3.7 3.5 2.8 3.7 4.4 
Q20 606 20 30.3 1296 101 12.8 2461 425 5.8 11041 1611 6.9 5.1 4.2 3.8 2.1 1.9 4.5 
Q21 1431 31 46.1 3217 138 23.3 13071 927 14.1 40748 4736 8.6 4.5 6.7 5.1 2.2 4.1 3.1 
Q22 908 19 47.8 1145 71 16.1 1744 255 6.8 3402 1270 2.7 3.7 3.6 5.0 1.3 1.5 2.0 
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GM 474 19 25.2 971 89 10.9 2727 352 7.7 -- 1368 -- 4.7 3.9 3.9 2.0 2.8 -- 
AM-9 537 24 35.3 1144 102 13.6 3544 418 10.4 11999 1735 9.0 5.2 4.0 3.9 2.1 2.9 3.4 
GM-9 442 17 26.3 882 80 11.0 2443 314 7.8 8062 1219  6.6 4.8 3.9 3.9 2.0 2.8 3.3 

 



RCFile is very low. For example, during the join between the 
lineitem table and the second temporary table that is created, the 
read bandwidth during the map phase is approximately 70 MB/sec 
and the map tasks were CPU-bound (the 8 disks used to hold the 
database can deliver, in aggregate, almost 800 MB/sec of I/O 
when accessed sequentially. Tests using the testdfsio benchmark 
showed that in our setup, HDFS delivers approximately 400 
MB/sec of read sequential bandwidth).  

Another important reason for PDW’s improved performance over 
Hive is that PDW repartitions the intermediate tables so that the 
subsequent join operations in the query plan can be executed 
locally. This repartitioning step is generated because the PDW 
optimizer computes a query plan, and splits the query into sub-
queries using cost-based methods that minimize network transfers. 
As a result, large base tables, like lineitem, are not shuffled. Hive 
on the other hand, does not use any cost-based model to optimize 
query execution. The order of the joins is determined by the way 
the user (in this case the Hive developers) wrote the query. This 
approach results in missing opportunities to optimize joins. For 
example, since the join order is determined by the way the query 
is written, the table produced by joining the nation, region and 
supplier table has to be joined with the lineitem table. The 
lineitem table is not “bucketed” on an attribute related to the 
supplier table. As a result, the join is executed using the expensive 
common join mechanism that repartitions both tables and joins 
them in the reduce phase. The running time of this task is higher 
than the total running time of the PDW query at the 16TB scale 
factor. Another, example is the join between the TMP table and 
the orders table. Notice that the TMP table is produced by a join 
operation on the lineitem table, which is bucketed on the 
l_orderkey attribute. However, the TMP table is not bucketed at 
all. As a result the join between the TMP table and the orders 
table cannot proceed as a bucketed map join and the common join 
mechanism is used. 

Query 19 
Query 19 joins two tables (lineitem, part) and performs an 
aggregation on the output. This query contains a complex 
AND/OR selection predicate that involves both tables. This query 
was approximately 18 times faster in PDW at the 16TB scale 
factor. The plans produced by PDW and Hive are as follows: 

PDW: PDW first replicates the part table at all the nodes of the 
cluster. This process is completed after 51 seconds. Then, it joins 
the lineitem table with the part table at each node, applies the 
selection predicate and performs a local aggregation operation; 
these three operations run for approximately 906 seconds. Finally, 
it performs a global aggregation of all the results produced by the 
previous stage. 

Hive: Hive performs a common join between the lineitem and the 
part table. At the 16TB scale, this join operation runs for about 
17540 seconds. The map and shuffle phases run for 14220 
seconds. During the reduce phase, a partial aggregation is also 
performed. Then, Hive launches one more MapReduce job that 
performs the global aggregation. This job runs for about 25 
seconds at the 16 TB scale factor. 

As with query 5, PDW tries to avoid network transfers. For this 
reason, it replicates the small table (part), and then performs the 
join with the lineitem table locally. Hive, on the other hand, 
redistributes both the part and the lineitem tables and then 
performs the join in the reduce phase of the MapReduce job.  
Hive could have performed a map-side join instead of a common 

join, but it doesn’t make that choice, probably because a hash 
table on the part table wouldn’t fit in the memory assigned to each 
map task.  

Similar arguments hold for other queries where PDW significantly 
outperforms Hive (e.g. Q7, Q8). 

3.3.4.2 Scalability Analysis 
As shown in Table 3, Hive scales well as the dataset size 
increases. In this section we analyze some queries where Hive 
scales sub-linearly when the dataset size increases by a factor of 4. 

Query 1 
Query 1 scans the lineitem table and performs an aggregation 
followed by an order-by clause. The bulk of the time in this query 
is spent in the map phase of the MapReduce job that scans the 
lineitem table. The map tasks scan parts of the lineitem table and 
perform a map-side aggregation. Table 4 shows the total time 
spent in the map phase at each scale factor. 

As shown in Table 4, when the dataset’s size increases from 250 
GB to 1TB, the map phase time increases by 2.3X. When the 
dataset increases from 1TB to 4TB the map phase time grows by a 
factor of 3.7. This factor becomes 4 when the dataset increases 
from 4TB to 16TB. The reason for this behavior is as follows: 

The lineitem table contains 512 buckets based on the l_orderkey 
attribute, and it consists of 512 HDFS files (one file per bucket). 
We noticed that only 128 files out of the 512 contain data. The 
remaining 384 files are empty. According to the TPC-H 
specification, the l_orderkey attribute is sparsely populated (only 
the first 8 of every 32 keys are used). Hive uses hash partitioning 
to determine the bucket number that corresponds to each row. A 
hash function that assumes uniform distributions could have 
created this uneven distribution of data in buckets. 

For the 250 GB dataset, 512 map tasks are launched (one per file). 
The map tasks that process non-empty files finish in 
approximately 75 seconds. The map tasks that process the empty 
files finish in 6 seconds. The total number of map tasks that can 
be run simultaneously on the cluster is 128 (128 map slots). 
Ideally, the first 128 map tasks would process non-empty files and 
complete in 75 seconds, and then 3 rounds would be needed to 
process the remaining empty files for a total time of 93 seconds. 
However, the total time is 148 seconds. This behavior happens 
because in the first round of map task allocation, both empty and 
non-empty files are processed. As a result, there is at least one 
map slot that processes two non-empty files, which then increases 
the total running time of the map phase. 

For the larger dataset sizes, more than one map tasks process the 
non-empty files, and as a result, the ratio of the map tasks that do 
“useful” work over those that process empty files increases. For 
example, at the 1TB scale factor, 768 map tasks are launched (384 
for the empty files and 384 for the non-empty files). As the 
datasets get bigger, the overhead introduced by the empty files 
reduces. 

 

Table 4. Total time for the map phase for Query 1 
SF = 250 GB SF = 1 TB SF = 4 TB SF = 16 TB 

148 secs 339 secs 1258 secs 5220 secs 
 



Query 22 
Query 22 consists of four sub-queries in Hive. The average time 
spent in each sub-query for all scale factors is shown in Table 5. 

Sub-query 1 scans the customer table, applies a selection 
predicate, and finally stores the output in a temporary table. The 
query consists of two MapReduce jobs at the first three scale 
factors and of one MapReduce job at the 16TB scale factor. 

The first job executes the query (in a map-only phase), and 
outputs the result to a set of files (one per map task). The second 
job is a filesystem-related job that runs for 50 seconds at all the 
first three scale factors. This job stores the result of the previous 
query across fewer files.  In the first MapReduce job, 200 map 
tasks are launched at the first three scale factors (one per customer 
bucket) and 600 map tasks when SF = 16TB. This is because at 
the 16TB each customer bucket consists of 3 HDFS blocks. The 
job time is 34 seconds when SF = 250 GB, 47 seconds when SF = 
1TB, 102 seconds for the SF = 4TB and 263 sec when SF = 16TB. 
The job’s running time does not increase by a factor of 4 as the 
dataset size increases by 4X.  If we take a more careful look at the 
map phase of the job, we notice that each map task processes 
approximately 9.4 MB, 37 MB, 148 MB and 256 MB of 
compressed data at each scale factor. Each map task runs for 
about 9 seconds when SF = 250 GB, and 12 seconds when SF = 
1000 GB. Since each map task processes a small amount of data 
(in the order of a few MB), the map task time does not scale 
linearly with the dataset size as the overhead associated with 
starting a new map task dominates the map task’s running time. 

Sub-query 2 consists of one MapReduce job that scans the output 
of the previous query, performs an aggregation, and stores the 
result into another table. When SF = 250 GB, two map tasks are 
launched and they finish after 12 seconds. When SF = 1TB, three 
map tasks are launched to process a total of 735 MB of data, and 
each task finishes after 27 seconds. When SF = 4TB, twelve map 
tasks are launched to process a total of 3 GB of data, and each one 
finishes in 27 seconds. Finally, at the 16TB scale factor 600 map 
tasks are launched to process a total of approximately 12 GB 
(each map task processes up to 102 MB and runs for at most 15 
seconds). Observe that the running time of this query is the same 
at SF = 1000 and SF = 4000. The reasons for this behavior are:  

1. The map task time is the same at both scale factors since each 
map task processes one HDFS block (256 MB).  

2. Since the available number of map slots is 128, the map tasks 
launched at these two scale factors (3 and 12 map tasks 
respectively) can be executed in one round.  

Sub-query 3 scans the orders table, performs an aggregation and 
stores the output in a temporary table. The orders table consists of 
512 buckets on the orderkey attribute. Similar to the lineitem 
table, only 128 files actually contain data. The scaling behavior of 
this query is similar to that of Query 1 presented above. 

Sub-query 4 performs two joins. The first one is executed between 
the outputs of Sub-query 1 and Sub-query 3. Hive attempts to 
perform a map-side join at all scale factors. However, the join 

always fails after about 400 seconds due to Java heap errors (this 
time varies slightly across all scale factors). Then, a backup task is 
launched that executes the join using Hive’s common join 
mechanism. The join completes in 110 seconds, 150 seconds, 196 
seconds and 300 seconds at the 4 scale factors. The reason for this 
scaling behavior is the small amount of data processed per map 
task (similarly to Sub-query 1). Similar observations hold for the 
remaining MapReduce jobs of this query (the second join, the 
group-by part, and the order-by part). 

3.3.4.3 Discussion 
Based on our analysis above, we now summarize the reasons that 
result in PDW outperforming Hive. These reasons are:  

1. Although the RCFile format is an efficient storage format, it 
has a high CPU overhead. Previous work [16] has proposed a 
format that is more efficient than the RCFile storage layout 
and could potentially improve the performance of Hive. 

2. Cost-based optimization in PDW results in better join 
ordering. In Hive, hand-written sub-queries and absence of 
cost-based optimization results in missed opportunities for 
better join processing. 

3. Partitioning attributes in PDW are crucial inputs to the 
optimizer as it tries to produce plans with joins that can be 
done locally, and hence have low network transfer costs. In 
Hive although tables are divided into buckets, this information 
is not fully exploited by the optimizer. For example, the output 
of intermediate joins is not repartitioned (re-bucketed) so that 
the next join operator can be executed using a bucketed map 
join. 

4. PDW replicates small tables to force local joins. Hive supports 
the notion of map-side join, which is similar to the replication 
mechanism of PDW. In a map-side join, a hash table is built 
on the smaller table at the Hive master node. The hash table is 
distributed to all the nodes using Hadoop’s distributed cache 
mechanism. Then, all the map tasks load the hash table in-
memory, scan the large table and perform a map-side only 
join. One disadvantage of this approach is that the hash table 
must fit in the memory assigned to each map task.  As a result, 
there is a tradeoff between the number of map slots per node 
(which is determined by the user) and the memory available to 
each map task. This memory restriction is frequently the 
reason why this query plan fails. Another issue is that each 
new map task at a node has to load the hash table in memory 
from the local storage. (The hash table does not persist across 
map tasks on the same node). The authors in [18] present 
another alternative to map-side joins that avoids these issues. 

A related point is that although bucketing can improve 
performance by allowing bucketed map joins, the bucket 
should be small enough so that it can fit in the memory 
available to each map task. Having many small buckets at 
each table can help getting more bucketed map joins. 
However, when scanning tables that consist of many small 
buckets, the map task time can be dominated by the startup 
cost of the map task. Moreover, it’s possible that the number 
of map tasks launched is high so multiple map rounds of short 
map tasks are needed to complete the scan (e.g. Sub-query 1 
in Q22). 

5. Finally, although Hive does not exploit bucketing as 
efficiently as partitioning is exploited by PDW, it is worth 
noting that unlike PDW, the buckets of two tables that are 
bucketed on the same attribute, are not guaranteed to be co- 
located on the filesystem (HDFS). Even if Hive is able to 

Table 5. Time breakdown for Query 22 
 SF = 250 GB SF=1 TB SF=4 TB SF=16TB 

Sub-query 1 85 sec 104 sec 169 sec 263 sec 
Sub-query 2 38 sec 51 sec 51 sec 63 sec 
Sub-query 3 109 sec 236 sec 658 sec 2234 sec  
Sub-query 4 654 sec 735 sec 797 sec 813 sec 

 



exploit the bucketing information more efficiently, absence of 
co-location would translate to network I/O, which in turn can 
significantly deteriorate performance [15]. 

Regarding scalability, Hive scales better than PDW (i.e. the 
scaling factors in the six right-most columns of Table 3 are lower 
for Hive) for the following reasons: 

1. It has extra overheads for small datasets (e.g. overheads 
introduced by empty data files, startup cost of map tasks). 

2. For some queries, increasing the dataset size does not affect 
the query time, since there is enough available parallelism to 
process the data (e.g. enough available map slots). Sub-query 
2 of Q22 is such an example. 

3. Some tasks take the same amount of time at all scale factors 
(filesystem-related job, map-side join fails after the same 
amount of time). 

3.4 “Modern” OLTP Workload: MongoDB 
vs. SQL Server 
In this section, we compare the performance of MongoDB and 
SQL Server in a cluster environment, using the YCSB data-
serving benchmark [14]. 

3.4.1 Workload Description 
We used the YCSB benchmark, to evaluate our MongoDB 
implementation (Mongo-CS), the original MongoDB system 
(Mongo-AS), and our sharded SQL Server implementation (SQL-
CS) on the “modern” OLTP workloads that represent the new 
class of cloud data-serving systems. The YCSB benchmark 
consists of five workloads that are summarized in Table 6. The 
YCSB paper [14] contains more details about the request 
distributions used by each workload. We have extended YCSB in 
the following two ways: First, we added support for multiple 
instances on many database servers, so as to measure the 
performance of client-sharded SQL Server (SQL-CS) and client-

sharded MongoDB (Mongo-CS). Second, we added support for 
stored procedures in the YCSB JDBC driver. 

We ran the YCSB benchmark on a database that consists of 640 
million records (80M records per node). The dataset size per node 
is approximately 2.5 larger than the available main memory at 
each server machine. Each record in the database is 1024 bytes 
long and consists of one 24-byte key and 10 extra fields of 100 
bytes each. All the fields as well as the key are stored as strings. 
Each key is generated by an integer, by using the string 
representation of the integer prefixing it with a sequence of ‘0’, so 
that the total length of the key is 24 bytes. The data has an index 
on the record key, both in SQL Server and MongoDB. No other 
indexes were built in these systems. The record key is also used as 
the shard key for Mongo-AS.  

We ran Mongo-AS and Mongo-CS in “safe” mode. This means 
that, after each write request, the client waits for a response from 
the server. This message shows that the server received the 
request and applied the write. However, there is no guarantee that 
the data was actually written to disk. We decided to not enable the 
“fsync” parameter that MongoDB provides, and as a result we do 
not wait for the writes to be flushed to disk before the response 
message is sent back to the client (this choice was made to 
improve the write performance in MongoDB). 

While SQL Server supports ACID transaction semantics (at the 
default READ COMMITTED isolation level), the MongoDB 
experiments were run without durability support. The version of 
MongoDB that we used supports durability via write-ahead 
journaling. The journal is flushed to disk every 100 ms. This 100 
ms delay means that the redo log by itself does not fully support 
durability, unless a commit acknowledgement is provided. For our 

 

Figure 2. Workload C: 100% reads 

Table 6. YCSB benchmark workloads 
Workload Operations 
A – Update heavy Read: 50%, Update: 50% 
B – Read heavy Read: 95%, Update: 5% 
C – Read only Read: 100% 
D – Read latest Read: 95%, Append: 5% 
E – Short ranges Scan: 95%, Append: 5% 

 

  
Figure 3. Workload B: 95% reads, 5% updates 
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experiments, we elected to run MongoDB without logging so that 
it doesn’t pay any additional performance penalty. 

In our setting, each client node runs 100 client threads for a total 
of 800 client threads (recall we have 8 machines dedicated to the 
clients). The five YCSB workloads are run sequentially, and 
before every run the main memory is flushed. After executing 
workloads D and E, which contain insertions and alter the record 
keys, the database is dropped and reloaded. Each read request 
reads all the record fields, and each update request updates only 
one field. Each scan request reads at most 1,000 records from the 
database. Finally, each append request inserts a new record in the 
database whose key has the next greater value than that of the last 
inserted key.  

Each workload is run for 30 minutes. The values of latency and 
throughput reported are the average values over the last 10 
minutes of execution, measured every 10 second interval. In the 
figures below, we also report the standard error across these 60 
measurements.  

3.4.2 Data Preparation 
During the load phase, we used 8 client nodes, each running 16 
client threads (as there are 16 hyper-threaded cores on each node). 
These threads are responsible for generating the correct keys and 
loading the data across the 8 server nodes.  

Mongo-AS can automatically split and migrate data chunks across 
the shards by using a “balancer” process that takes care of load 
balancing. However, since the range and distribution of keys to be 
inserted are known in advance, we manually defined the 
boundaries for all of the initially empty chunks and spread them 
across the 128 shards of the cluster. Then, we started loading the 
data. In this way, the high cost of chunk migration across the 
shards is minimized. This technique is described in the MongoDB 
documentation [9]. This process resulted in an even distribution of 
the chunks across all the shards. The loading time with this 
strategy was 114 minutes.  

The loading time for SQL-CS and Mongo-CS was 146 and 45 
minutes respectively. The SQL-CS load time is higher than that of 
the Mongo-CS system because a bulk insert method was not used 
to load the data. Instead, every insertion was a separate transaction 
issued at the database.  

3.4.3  Experimental Evaluation 
The YCSB benchmark focuses on the latency of requests when 
the data-serving system is under load. However, as the load 

increases on a given system, the latency of requests typically 
increases since there is more contention for resources. In practice, 
the cloud service providers decide on an acceptable latency, and 
then provision enough servers to achieve the desired throughput. 
The YCSB benchmark aims to describe the tradeoffs between 
throughput and latency for each system by measuring latency as 
throughput is increased, until the point at which the system is 
saturated and throughput stops increasing. To run the benchmark, 
the (benchmark) user provides a target throughput as an input 
parameter, and the system returns the average latency as well as 
the actual throughput that is achieved. The user stops increasing 
the target throughput when the actual throughput that is achieved 
is lower than the target value.  

Figure 2 shows the latency vs. throughput curve for the “Read-
Only” workload (Workload C). The label on the x-axis shows the 
target throughput values provided by the user. Each data point 
corresponds to a pair of the actual throughput achieved and the 
average read latency for that throughput.  

As shown in Figure 2, SQL-CS is able to achieve the highest 
throughput (125,457 ops/sec) with an average read latency of 6.4 
ms. Mongo-AS and Mongo-CS were not able to reach the 80,000 
ops/sec of target throughput and peaked at 68,533 and 60,907 
ops/sec respectively. The average read latency values at the 
highest throughput achieved for Mongo-AS and Mongo-CS are 
11.8 ms and 13.2 ms respectively. Moreover, SQL-CS has lower 
latency than the other systems for all the target throughputs. This 
workload is disk-bound is all the systems at the highest achievable 
throughput. However, the latency of each read request is higher 
with the Mongo-AS and the Mongo-CS systems compared to 
SQL-CS. We noticed, that SQL Server reads 8KB from disk for 
each request that leads to a buffer pool miss, whereas Mongo-AS 
and Mongo-CS read on average 32 KB from disk for each read 
request. Since the I/O activity pattern in this workload is largely 
random access, Mongo-AS and Mongo-CS waste disk bandwidth 
by reading in data that is not needed. 

Figure 3 presents the latency vs. throughput curves for the “Read-
Heavy” workload (Workload B). The workload consists of 95% 
reads and 5% updates. The left-hand curve presents latency results 
for the update operation as the target throughput increases, and the 
right-hand curve presents latency results for the read operation. 
The Mongo-DB systems cannot achieve the 40,000 ops/sec 
throughput target. Moreover, the update and read latencies 
increase abruptly (up to 24 ms. for read requests and 37 ms. for 
update requests) when the throughput increases from 20,000 to 
40,000 ops/sec. However, SQL-CS is able to achieve 103,789 
ops/sec with an update latency of 12 ms, and a read latency of 8.4 

  
Figure 4. Workload A: 50% reads, 50% updates 
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ms. This workload is disk-bound in each of these three systems. 
We noticed that each system achieves the same number of 
operations/sec as in Workload C. However, during checkpointing 
in SQL-CS, or when the MongoDB systems are flushing data to 
disk, the throughput decreases. For example when checkpointing 
was not happening, SQL-CS is able to reach on average about 
15,000 ops/sec per server node (similar to workload C), but during 
the checkpointing interval the throughput decreases to 7,000-
8,000 ops/sec. This is the reason why the maximum throughput 
achieved is lower in Workload B than with Workload C. 

Figure 4 describes the “Update-Heavy” workload (Workload A). 
This workload is similar to Workload B, but it contains a 
significantly larger fraction of updates (50% updates compared to 
5% updates for Workload B).  

Using the mongostat tool [10], we observed that the percentage of 
time that was spent at the global lock ranges from 25%-45% at 
each one of the 128 “mongod” instances. This percentage ranges 
from 4%-12% when running Workload B, which contains a 
smaller fraction of updates. Similarly, the increased locking 
activity in SQL-CS is the reason why both the read and update 
latencies are higher than those in Workload B. To verify this 
hypothesis, we reran the same workload but now using the “read 
uncommitted” isolation level and measured the read and update 
latencies. When the target throughput was 40,000 ops/sec, the 
average update latency was 69 ms. and the average read latency 
was 15 ms. The read latency is significantly lower now, compared 
to that of the previous experiment where the “read committed” 
isolation level was used. This can be attributed to the fact that the 
read operations are not blocked by the write operations and thus 

the waiting time is reduced. 

Figure 5 shows the append latency and the read latency vs. 
throughput curves for Workload D. The read request distribution 
for Workload D is “Read Latest”. This means that there is a high 
probability that a read request will read the latest item that was 
just inserted into the database.  

We observed that in SQL-CS, 99.5% of the requests are to pages 
that are in the buffer pool. This means that the majority of the read 
requests do not hit the disk. Consequently, the read latencies for 
SQL-CS are in the order of a few microseconds. During the 
execution of this workload, SQL-CS is CPU-bound. SQL-CS has 
higher latencies for the low target throughput values (up to 80,000 
ops/sec) compared to the greater throughput values (160,000 
ops/sec and 320,000 ops/sec). This behavior happens because at 
the low throughput values, memory is not fully filled with useful 
data until after the 30-minute interval. For example, when the 
target throughput is 20,000 ops/sec, only 19.2 GB of the main 
memory is filled (of the 32 GB that is available) and as a result 
many read requests still incur a disk I/O. 

Mongo-CS has high read and append latencies when it hits the 
highest achievable throughput (224,271 ops/sec) compared to 
SQL-CS. Interestingly, this workload is neither CPU-bound nor 
disk-bound (in MongoDB). Mongo-AS has a very high append 
latency (320 ms) for this workload when the target throughput is 
at 20,000 ops/sec, which is why this point does not appear in the 
graph in Figure 5. Moreover, Mongo-AS crashes when running 
this workload when the target throughput is set to a value greater 
than 20,000 ops/sec. After running the system with the debugger 

 
 

Figure 6. Workload E: 95% scans, 5% appends 

  
Figure 5. Workload D: 95% reads, 5% appends 
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enabled, we observed that at some point the client machines wait 
for a response message from the server after an append request, 
but this message never arrives due to socket exceptions. For this 
reason, the clients stopped sending new requests to the servers and 
the throughput went down to 0 ops/sec. 

Finally, Figure 6 shows the performance of the three systems on 
the “Short Ranges” workload (Workload E). All three systems are 
disk-bound when the servers hit their maximum throughput. As 
shown in the figure, Mongo-AS achieves the highest throughput 
(6,337 ops/sec) and has the lowest scan latency (30.4 ms). This 
behavior can be attributed to the fact that Mongo-AS uses range 
partitioning to distribute the data chunks across the servers, 
whereas both SQL-CS and Mongo-CS use hash partitioning. That 
means that Mongo-AS can determine, based on the range 
requested, which partitions contain the data and scan only those 
(typically one partition for each short range query) whereas SQL-
CS and Mongo-CS need to scan as many partitions as needed until 
the appropriate records are found. However, Mongo-AS has a 
very high append latency (1832 ms) compared to SQL-CS (2 ms). 

3.5 Discussion 
In this section we compared a SQL system (PDW, SQL-CS) and a 
representative NoSQL system (Hive and MongoDB) on a DSS 
and an OLTP workload. 

Our evaluation has shown that although NoSQL systems have 
significantly evolved over the past years, their performance still 
lags behind that of the relational database systems.  On the one 
hand, the parallel database system (PDW) was approximately 9X 
faster than the MapReduce-based data warehouse (Hive) when 
running TPC-H at a 16TB scale, even when indexing was not used 
in PDW. The robust and mature cost-based optimization and 
sophisticated query evaluation techniques that are employed by 
the relational database system allow it to produce and run more 
efficient plans than the NoSQL system. The MapReduce-based 
systems could adopt these techniques to improve their 
performance. 

Furthermore, SQL-CS was able to achieve higher throughput than 
the MongoDB for the same number of clients, and it had lower 
latency across for almost every single test of the YCSB 
benchmark. Interestingly, this is the case even when the NoSQL 
system did not provide any form of durability. This finding comes 
in contrast with the widely held belief that relational databases 
might be too heavy weight for this type of workload, where the 
requests consist of a single simple operation and do not require 
the complex transactional semantics that RDBMSs can handle.  

4. CONCLUSIONS AND FUTURE WORK 
Today there are a number of popular alternatives to using 
relational data processing systems, for both DSS workloads and 
the Web 2.0 data-serving workloads. While there are many 
complex factors that go into the choice of the system that gets 
deployed for specific data processing tasks (such as integration of 
the data processing system with an overall solutions stack, 
manageability, open-source vs. closed-source, etc.), one crucial 
aspect that is often a factor in choosing a data processing system 
is the performance of the system. In this paper, we examined this 
performance aspect of NoSQL and SQL systems using two 
benchmarks – the TPC-H benchmark and the YCSB benchmark. 
Our results find that the relational systems continue to provide a 
significant performance advantage over their NoSQL 
counterparts, but the NoSQL alternatives are competitive in some 
cases. The NoSQL and SQL systems also have different focuses 

on non-performance related features, such as data models (the 
NoSQL systems tend to have more flexible data models), support 
for auto-sharding and automatic load balancing and different 
consistency models. It is likely that in the future these systems 
will start to converge on the functionality aspects. An interesting 
direction for future work is to expand this work to other SQL and 
NoSQL systems and revisit the performance differences in a few 
years.  
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