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Abstract— This paper deals with a new type of privacy threat,
called “corruption”, in anonymized data publication. Specifically,
an adversary is said to have corrupted some individuals, if s/he
has already obtained their sensitive values before consulting the
released information. Conventional generalization may lead to
severe privacy disclosure in the presence of corruption. Motivated
by this, we advocate an alternative anonymization technique
that integrates generalization with perturbation and stratified
sampling. The integration provides strong privacy guarantees,
even if an adversary has corrupted any number of individuals.
We verify the effectiveness of the proposed technique through
experiments with real data.

I. INTRODUCTION

Anonymized publication has received considerable attention
in recent years, due to the awareness of privacy disclosure
in data sharing applications. Assume, for example, that a
hospital wants to release Table Ia, referred to as the microdata.
Attribute Disease is sensitive, which has two implications.
First, the publication must prevent an adversary from inferring
accurately the disease of any individual patient. Second, the
released content should permit a researcher to understand the
correlations between Disease and the other attributes, which
are statistically significant in a large number of patients.

Obviously, the column Owner must not be published. Sim-
ply removing that attribute, however, is insufficient, due to the
possibility of “linking attacks”. For instance, if an adversary
has the voter registration list in Table Ib, s/he can easily
obtain the name of any patient, through an equi-join between
Tables Ia and Ib. The joining columns Age, Gender, and
Zipcode are therefore called the quasi-identifier (QI) attributes.

Generalization [1], [2], [3], [4], [5] is a popular methodol-
ogy for preventing linking attacks. The objective is to replace
each QI value with a less specific form, so that each tuple
is indistinguishable from several others by their QI-values.
Table Ic demonstrates a generalized version of Table Ia. The
generalization results in four QI-groups, each involving a set of
tuples with equivalent QI-values. Consider an adversary who
aims at inferring the disease of Debbie, knowing her exact QI
values {45, F, 20000}. Since the 3rd and 4th rows of Table Ic
match Debbie’s QI details, the adversary is not sure whether
she contracted pneumonia or breast-cancer.

A. Motivation

Generalization provides weak privacy protection when an
adversary may corrupt data owners. Consider an adversary
who has the QI-values {30, M, 27000} of Calvin. Given
Table Ic, s/he sees that the tuple of Calvin is in the first QI-
group (consisting of the first two rows). Hence, s/he can only
infer that Calvin may have contracted bronchitis or pneumonia.
However, suppose that the adversary has corrupted Bob before,
e.g., s/he contacted Bob, and learned that Bob contracted
bronchitis. As a result, the adversary becomes sure that Calvin
must have pneumonia (according to Table Ib, only Bob can
be in the same QI-group as Calvin). Note that what Bob did
is completely conscientious — he is merely giving away his
own information.

In the above example, corruption is caused by collusion
between a data owner (Bob) and an adversary, whereas, in
general, it may happen in many other ways. For instance, an
adversary may acquire the diagnostic results of some patients
via a friend working in the hospital. As another example, an
adversary may be the boss of Bob, who has Bob’s sick-leave
application that states explicitly his disease.

B. Contributions

This paper provides the first study towards eliminating
the threat of corruption. First, we formalize anti-corruption
anonymization. Following the information-theoretic approach
in [6], our formalization aims at achieving background-
sensitive guarantees (a well-known example is “ρ1-to-ρ2 pro-
tection” [6]). Such a guarantee models the degree of pri-
vacy preservation as a function of an adversary’s background
knowledge, and serves as an effective metric for gauging the
quality of anonymization.

Second, we elaborate several defects of generalization that
have not been revealed in the literature. Our results show that,
generalization provides poor background-sensitive guarantees,
even in the conventional corruption-free scenarios. Namely,
they may allow an adversary to glean considerable new
knowledge, even though s/he has almost no knowledge before
examining the published data. When corruption is possible,
generalization completely fails in guarding privacy.

Third, we overcome the drawbacks of generalization, by
integrating it with perturbation [7], [6] and stratified sampling



Age Gender Zipcode
25 M 25000
30 M 27000
45 F 20000
50 F 15000

55 F 45000
58 F 32000
65 M 65000
80 M 55000

Bob
Calvin
Debbie

Emily
Fiona
Gloria
Henry
Isaac

Name

Ellie
52 F 28000

Age Gender Zipcode Disease
25 M 25000 bronchitis
30 M 27000 pneumonia

45 F 20000 pneumonia

50 F 15000 breast cancer
55 F 45000 ovarian cancer

58 F 32000 hypertension
65 M 65000 Alzheimer
80 M 55000 dementia

Bob
Calvin
Debbie

Ellie
Fiona
Gloria
Henry
Isaac

Owner Age Gender Zipcode Disease
[21, 40] M [11***, 30***] bronchitis
[21, 40] M pneumonia
[41, 60] F pneumonia
[41, 60] F breast cancer
[41, 60] F ovarian cancer

[41, 60] F hypertension
[61, 80] M Alzheimer
[61, 80] M dementia

[11***, 30***]
[11***, 30***]
[11***, 30***]
[31***, 50***]
[31***, 50***]
[51***, 70***]
[51***, 70***]

 (a) Microdata (b) A voter registration list (c) A generalized table

TABLE I

PRIVACY PRESERVING PUBLICATION BASED ON GENERALIZATION

[8]. The resulting technique, termed perturbed generalization,
provides strong background-sensitive guarantees, even if an
adversary has corrupted an arbitrary number of individuals.

The rest of the paper is organized as follows. Section II
clarifies the objectives of anti-corruption publication. Then,
Section III explains why generalization fails to protect privacy
in our settings. Section IV presents the proposed anonymiza-
tion framework. Section V elaborates how an adversary may
perform a privacy attack, and Section VI establishes our
privacy guarantees. Section VII experimentally evaluates the
effectiveness of our solutions. Section VIII briefly reviews the
previous work related to ours. Finally, Section IX concludes
the paper with directions for future work.

II. PROBLEM SETTINGS

We consider a microdata table D, with d quasi-identifier
(QI) attributes Aq

1, ..., Aq
d, and a sensitive attribute As. Each

Aq
i (1 ≤ i ≤ d) can be either discrete or continuous, but As

must be discrete. The domain of a column A is the projection
of D on A. Let U q be the d-dimensional QI space, which is
the cartesian product of the domains of Aq

1, ..., Aq
d. Use Us

to denote the domain of As.
For each tuple t ∈ D, define its QI-vector t.vq , as a d-

dimensional vector containing its QI-values t.Aq
1, ..., t.Aq

d.
Equivalently, t.vq can be regarded as a point in U q. Each
tuple t ∈ D describes the information of an individual, i.e., the
owner of t. All tuples have distinct owners (this is a common
assumption in the literature [3], [9]).

Our goal is to publish an anonymized version D∗, which
satisfies the following requirements:

1. [Cardinality] D∗ has at most |D| · s rows, where s is a
real value in (0, 1], and a publication parameter.

2. [Privacy] Publication of D∗ ensures strong privacy guar-
antees, even if an adversary corrupts any individuals in
D.

3. [Utility] D∗ is useful for mining data patterns in D.

Next, we discuss each requirement in detail.

A. Cardinality

This feature is reasonable for several reasons. First, the
microdata may be simply too voluminous. For example, a

database in a hospital may be in giga or even tera bytes,
rendering transfer in its entirety intractable. Second, given an
adequately large subset (of the original dataset), most mining
algorithms already return reliable results. Third, the ability of
controling how much percent of a dataset is revealed is an
appealing feature for commercial organizations.

B. Privacy

We aim at preventing linking attacks as exemplified in
Section I. Formally, in such an attack, an adversary knows
(i) the existence of a victim individual o in D, and (ii) the
exact QI values of o, compactly represented with a QI-vector
o.vq . The goal of the attack is to infer whether the sensitive
value o.As of o satisfies a predicate Q, which may be any
arbitrarily complex condition. For instance, if As is Disease,
Q can be “o.As is a respiratory disease”.

The adversary has access to an external database E . Given
a QI vector vq , E returns the identities (e.g., SSNs) of all the
people whose QI vectors are equivalent to vq . Some of these
people may not appear in the microdata, in which case we
say that they are extraneous, and their sensitive values are ∅.
In the example of Section I, E is the voter registration list in
Table Ib, where Emily is extraneous.

A unique feature of our privacy goal is protection against
“corruption”:

Definition 1 (Corruption): An adversary is said to have
corrupted an individual, if s/he learns the exact sensitive value
of that individual via resources different from D∗.

Let C be the set of individuals that an adversary is able to
corrupt. We model C as a subset of E (instead of D) to capture
the fact that an adversary may be aware of which individuals
are extraneous. We allow the size of C to be any value from 0
to |E| − 1. Obviously, when |C| = 0, our scenario degenerates
into the traditional assumption that no corruption is possible.
The worst case occurs when |C| = |E|−1; that is, the adversary
has the sensitive values of all the people, except o.

From her/his own understanding of o.As and the results
of corruption, an adversary has developed a certain amount
of confidence about how likely o.As would satisfy Q, even
though s/he has not examined D∗ yet. This is her/his prior
confidence, denoted as Pprior(Q). Such confidence results



from the ultimate “background knowledge” of D that an
adversary can possibly accumulate without D∗. It depends on
factors that cannot be controlled by the publisher, such as how
familiar the adversary is with the victim, her/his expertise on
the correlation between the QI and sensitive attributes, her/his
corruption power, and so on.

We tackle the challenge that the adversary is an information-
theory expert, who is able to combine background knowledge
and D∗ to boost her/his confidence about whether o.As

qualifies Q. We use the term posterior confidence to refer
to the adversary’s confidence at the end of the whole linking
attack, and represent it as Ppost(Q).

The objective of the publisher is to limit the posterior
confidence. In particular, we focus on achieving background-
sensitive guarantees. If one views privacy protection-versus-
inference as a game played by the publisher and adversary,
a background-sensitive guarantee constrains the adversary’s
chance of winning the game, subject to how well s/he can
play. The first type of guarantees offered by our technique is:

Definition 2: [ρ1-to-ρ2 Guarantee/Breach [6]] Let ρ1 and ρ2

be values satisfying 0 ≤ ρ1 < ρ2 ≤ 1. A ρ1-to-ρ2 guarantee
requires that

if Pprior(Q) ≤ ρ1, then Ppost(Q) ≤ ρ2.

A ρ1-to-ρ2 breach occurs, if the guarantee is violated.

For instance, it is a 0.3-to-0.5 breach, if an adversary’s pos-
terior confidence exceeds 0.5, when her/his prior confidence is
bounded by 0.3. However, once the prior confidence is higher
than 0.3, it does not constitute a 0.3-to-0.5 breach, no matter
how large the posterior confidence is. Intuitively, in this case
the adversary is too powerful, so we cannot constrain her/his
chance of winning the game1.

We also study another important type of background-
sensitive guarantees that have not been analyzed previously.

Definition 3 (∆-growth): Let ∆ be a value in (0, 1]. A ∆-
growth guarantee requires

Ppost(Q) − Pprior(Q) ≤ ∆.

A ∆-growth breach occurs, if the guarantee is violated.

The ∆-growth guarantee is a natural way to control an
adversary’s increased knowledge after s/he inspects D∗. By
setting ∆ to ρ2−ρ1, ensuring no ∆-growth breach immediately
guarantees no ρ1-to-ρ2 breach, but the reverse is not true. In
fact, ∆-growth guarantees remedy the deficiency of ρ1-to-ρ2

guarantees. Notice that, no 0.3-to-0.5 breach happens, even
if an adversary’s prior confidence is (almost) 0, and her/his
posterior confidence reaches 0.5. Intuitively, in this case, the
deployed privacy preserving approach is not effective, since
it allows an adversary to gain considerable new knowledge.

1Our formulation is the upward breach defined in [6], which also proposes
a downward counterpart. Specifically, a downward ρ1-to-ρ2 occurs if the
posterior confidence is below ρ2, given that the prior confidence is above
ρ1. We focus on upward breaches, because the absence of ρ1-to-ρ2 upward
breaches ensures no (1 − ρ1)-to-(1 − ρ2) downward breach.

If a publisher intends to constraint the amount of increased
confidence within 0.2, it should enforce a 0.2-growth guarantee
instead.

C. Utility

The utility of an anonymized dataset is typically evaluated
by its effectiveness in performing a certain data mining task.
Following the previous work [10], [11], we use decision-
tree mining as the representative task. In fact, D∗ can be
directly fed into the algorithm in [12] for constructing decision
trees, which accurately summarize the data patterns in D. The
algorithm is ad-hoc, since it permits a data analyst to build
trees according to her/his own preferences, such as the set of
attributes considered, the classification granularity, and so on.
Such preferences do not need to be specified at the time of
preparing D∗. Hence, publication of D∗ offers significantly
more flexibility than releasing only a few trees selected by the
publisher.

III. DEFECTS OF GENERALIZATION

Crucial to generalization is its underlying generalization
principle, which is a constraint satisfied by every QI-group
of D∗. The most popular principles involve k-anonymity [4],
[5] and l-diversity [9]. We will focus on l-diversity, since k-
anonymity (due to its pioneering role in the literature) has
severe vulnerabilities to privacy attacks [9].

l-diversity is most effective when (i) an adversary’s back-
ground knowledge about the victim individual o conforms
to a specific type, and (ii) the adversary performs no cor-
ruption. In the sequel, we first prove that, even when both
conditions are satisfied, l-diversity can guarantee only weak
background-sensitive guarantees. Then, we will show that the
guarantees are much worse, when the conditions are violated.
Unfortunately, this is true not only for l-diversity, but for the
generalization methodology in general.

A. Defects of l-diversity When Its Assumptions Are Satisfied

Machanavajjhala et al. [9] give several versions of l-
diversity. Table Ic demonstrates the simplest version, which
demands each QI-group to have at least l = 2 different
sensitive values. The most powerful and well-adopted version
is “(c, l)-diversity”, where c is a positive value, and l an
integer. Intuitively, this principle requires that, in every QI
group QI of D∗, the most frequent sensitive value should not
be too frequent.

Formally, assume that QI has l′ distinct sensitive values,
where l′ can be any integer at least l. Let n1, n2, ..., nl′ be
the numbers of tuples in QI carrying the most, second most,
..., least frequent sensitive values, respectively (i.e., n1 ≥ n2 ≥
... ≥ nl′). Then, (c, l)-diversity requires

n1 ≤ c · (nl + nl+1 + ... + nl′). (1)

Figure 1 illustrates an example QI group with size 11 which
obeys (1

2 , 3)-diversity. Here, the group has l′ = 6 distinct
sensitive values, with n1 = 3, n2 = n3 = n4 = 2, and n5 =



QI Attributes Disease

pneumonia

HIV

HIV

bronchitis

bronchitis

lung cancer

o1

o2

o3

o4

o5

o6

o7

o8

owner

lung cancer

SARS

tuberculosis

o9

o10

o11

same

pneumonia

pneumonia

Fig. 1. A (1/2, 3)-diverse QI-group

n6 = 1. In this case, Inequality 1 becomes 3 ≤ 1
2 (2+2+1+1),

setting c to 1
2 and l to 3.

Let r be the real value of o.As in D. (c, l)-diversity
aims at preventing an adversary from performing an exact
reconstruction of o.As. Equivalently, by the terminology of
Section II, the predicate Q has a special form (denoted as Qr)

Qr : o.As = r.

Furthermore, the principle is proposed to tackle adversaries
that can identify, without looking at D∗, at most l − 2 values
in Us (the domain of As) which cannot be the real o.As. In
other words, before examining Us, the adversary thinks that
o.As can be any of the other |Us| − (l− 2) values in Us with
an equal probability, that is, s/he has prior confidence

Pprior(Qr) = 1/(|Us| − l + 2). (2)

In this case, (c, l)-diversity ensures that, after investigating D∗,
an adversary can figure out o.As = r with probability at most

c
c+1 [9]. Namely, her/his posterior confidence

Ppost(Qr) ≤ c/(c + 1). (3)

To explain the above derivation with a concrete example,
assume that an adversary targets individual o = o1, knowing
in advance that o1 does not have HIV. Suppose that the Disease
attribute has a domain size of 100. Thus, before seeing D∗,
the adversary can guess the real disease pneumonia of o.As

only with a probability 1 / 99, as given by Equation 2 (l = 3).
Now, the adversary studies D∗, and finds out that the record
of o1 must be in the QI group in Figure 1. As the adversary
can exclude only HIV from being the real disease of o1, s/he
cannot tell which of the 9 tuples not carrying HIV belongs
to o1. Given that the group has 3 pneumonia tuples, with a
random guess, the adversary infers o.As = pneumonia with a
probability 3/9 = 1/3, conforming to Inequality 3 (c = 1

2 ).
Combining Equation 2 and Inequality 3, when Q is re-

stricted to Qr (i.e., exact reconstruction) and an adver-
sary’s background knowledge fulfills the requirement of (c, l)-
diversity, the publisher can ensure a 1

|Us|−l+2 -to- c
c+1 guaran-

tee, and a ( c
c+1 − 1

|Us|−l+2 )-growth guarantee.
However, recall that our objective is to guard against in-

ference of any predicate Q, as opposed to merely Qr. In
other words, the privacy preservation technique should be
effective even in the worst case, namely, it must provide good

background-sensitive guarantees which hold for any (even the
most adversely-designed) Q. Unfortunately, (c, l)-diversity is
not worst-case effective, as established in the following lemma.

Lemma 1: Let u be the smallest number of distinct sensitive
values in any QI-group of a (c, l)-diverse D∗ under the global-
recoding scheme [13]. Even if an adversary’s background
knowledge satisfies the requirement of (c, l)-diversity and no
corruption is performed, (c, l)-diversity fails to ensure any

u−l+2
|Us|−l+2 -to-x or (x − u−l+2

|Us|−l+2 )-growth guarantee,
unless x = 1.

Proof: Let QI be a QI-group in D∗ with u distinct sensitive
values. There exist at least u − l + 2 sensitive values in
QI that the adversary cannot eliminate from being the real
sensitive value of the victim o. Denote them as x1, x2, ...,
xu−l+2. Consider Q = “o.As is any of {x1, ..., xu−l+2}”.
The adversary’s prior confidence equals u−l+2

|Us|−l+2 . After the
attack, s/he will be affirmative that Q is true, and hence, has
posterior confidence 1.

In practice, u � |Us|, rendering u−l+2
|Us|−l+2 to be a value by

far smaller than 1. Therefore, Lemma 1 indicates that, even if
an adversary’s prior confidence about Q is very small, after
inspecting a (c, l)-diverse D∗, the adversary may assert that
o.As definitely satisfies Q.

Again, we provide the intuition using Figure 1. Suppose
that the QI-group in the figure has the smallest number u = 6
of distinct sensitive values, among all the QI-groups in D∗.
Note that, except HIV, the other 5 diseases in the QI-group
are respiratory problems. Further assume that they are the only
5 respiratory diseases in the whole domain Us of As, which
has a size |Us| = 100. An adversary intends to pry into the
privacy of o = o1. However, this time, the goal of privacy
attack is the predicate

Q: o.As is a respiratory disease.

Conforming to the background knowledge requirement of
(1
2 , 3)-diversity, the adversary knows that o1 does not have

HIV. Before checking D∗, s/he conjectures that o.As is a
respiratory disease with probability 5/99, which is her/his
prior confidence Pprior(Q). From D∗, the adversary realizes
that the record of o1 must be in the QI-group of Figure 1.
After eliminating HIV, s/he sees that all the remaining values
of the QI-group are respiratory diseases. Hence, s/he becomes
affirmative that o1 definitely has a respiratory problem, that
is, her/his posterior confidence Ppost(Q) = 1. Therefore, no
5
99 -to-x or (x− 5

99 )-growth guarantee can be claimed for any
x < 1, as stated in Lemma 1.

B. Failure of Generalization

The above discussion actually “favors” l-diversity, because
it assumes that an adversary’s background knowledge follows
exactly the requirement of that principle, and the adversary
carries out no corruption. As expected, even weaker privacy
guarantees can be proved, when these assumptions are invalid.
The following lemma holds for any generalized table, no



matter which generalization principle (including those recently
developed in [14], [15]) is deployed.

Lemma 2: When an adversary can have any background
knowledge, and can corrupt any individuals, publication of
any generalized D∗ fails to ensure any

y-to-x or (x − y)-growth guarantee,
unless x = 1 and y = 0.

Proof: Consider the unfortunate case C = E − {o}, namely,
the adversary knows the sensitive value of every individual in
D except o. Since D∗ contains all the precise sensitive values,
after inspecting it, the adversary will find out the real sensitive
value of o. This means that, no matter how small her/his prior
confidence is, her/his posterior confidence is always 1.

Lemma 2 theoretically confirms our motivation that gener-
alization provides poor protection against corruption. Specif-
ically, the only provable background-sensitive guarantees of
generalization are the useless 0-to-1 and 1-growth guarantees.

The above discussion assumes |D∗| = |D|, namely, the
parameter s of the Cardinality constraint equals 1. To modify
generalization to support an s < 1, a trivial solution is to first
obtain D∗ in the same way as s = 1, and then, publish a
random sample set of D∗ with sampling rate s. However, the
solution does not fulfill our Privacy requirement. In particular,
Lemma 2 still applies to the random sample set.

IV. PERTURBED GENERALIZATION

This section illustrates an alternative anonymization ap-
proach that combines generalization with perturbation [7],
[6] and stratified sampling [8]. The framework consists of 3
phases, as detailed in the sequel.

Phase 1 (Perturbation): Given a retention probability p ∈
[0, 1], we create Dp, by independently transforming each tuple
t ∈ D to a perturbed tuple t′ ∈ Dp as follows.

P1. t′.vq = t.vq (perturbation does not affect QI attributes).
P2. t′.As is decided by tossing a coin with head probability

p: (i) if the coin heads, t′.As = t.As; (ii) otherwise, t′.As

is randomly generated in Us following the uniform dis-
tribution. In either case, we say that t′.As is a perturbed
value.

In the next phase, we will perform generalization on Dp.
Before explaining the details, we must clarify the meanings of
value-, vector-, and tuple-generalization. Let x be a value of a
QI-attribute Aq

i (1 ≤ i ≤ d), and x′ a set of values of Aq
i . We

say that x′ generalizes x, if x ∈ x′. For example, x′ = [21, 40]
generalizes x = 25; x′ = {M, F} generalizes x = M. Given
d-dimensional vectors v and v′, v′ generalizes v, if the i-th
component of v′ generalizes the corresponding component of
v, for all i ∈ [1, d]. Finally, a tuple t′ generalizes another tuple
t, if they share the same sensitive value, and t′.vq generalizes
t.vq .

Phase 2 (Generalization): Given Dp and an integer k ≥ 1,
we obtain Dg with these properties:

G1. Each tuple in Dg generalizes a distinct tuple in Dp.

G2. The QI-vector t.vq of each tuple t ∈ Dg is identical to
the QI-vectors of at least k − 1 other tuples in Dg .

G3. For any two tuples t1, t2 ∈ Dg , if t1.v
q �= t2.v

q , then
there does not exist any vector vq ∈ U q such that t1.v

q

and t2.v
q both generalize vq .

Property G3 implies that generalization conforms to the
global recoding scheme [13]. There exist many algorithms
[11], [13], [16] that can be used to obtain a Dg with all the
above properties.

Phase 3 (Sampling): Given Dg , we produce D∗ by follow-
ing these steps:
S1. Group the tuples of Dg by their QI attributes. Each

resulting group is called a QI-group.
S2. From each group QI , randomly sample a tuple t. We say

that QI is the source QI-group of t.
S3. Augment t with an attribute t.G storing the size of QI .
S4. Add t to D∗, and discard the other tuples in QI .

D∗ is a stratified sample set [8] of Dg . Here, a “stratum”
is a QI-group, and a sample is taken from each stratum.

The computation of D∗ through Phases 1-3 is based on two
values p and k. We set k to �1/s�, where s is the parameter
of our Cardinality constraint. This ensures |D∗| to be at most
|D|·s. The formulation of p, on the other hand, depends on the
degree of privacy control, and will be discussed in Section VI.

We illustrate perturbed generalization by using it to
anonymize the microdata D in Table Ia, assuming p = 0.25 and
s = 0.5 (hence, k = 2). Table IIa shows the Dp after Phase 1,
where all the sensitive values have been altered, except those
of Calvin and Gloria. Table IIb illustrates Dg at the end of
Phase 2. The final D∗ from Phase 3 is given in Table IIc.
D∗ is augmented with a column G. All the G-values are 2,
because every QI-group in Dg has size 2.
D∗ may involve absurd tuples, which contradict common

sense, and can never exist in any microdata. For instance, the
last tuple in Table IIc is absurd because it associates ovarian-
cancer with a male. Releasing such tuples is necessary, be-
cause they must be present to enable data mining (see [12]).
Finally, note that it is not meaningful to judge whether D∗

captures sufficient information in D, when the cardinality of D
is excessively low. Perturbation-based approaches work well
only if |D| is large. For instance, some sensitive values in
Table IIa disappear in Table IIc; such phenomenon is rather
unlikely when D is sizable. In Section VII, we will test the
utility of D∗ when D is a real dataset.

V. MODELING PRIVACY ATTACKS

In the sequel, we provide the mathematical foundation for
studying the privacy guarantees offered by perturbed general-
ization. Since the table D∗ we release is not a conventional
generalized relation, a linking attack is different from that
in previous work. Therefore, Section V-A first clarifies the
procedural details of an attack. Currently our formulation of an
adversary’s knowledge (before and after an attack) has stayed
at the conceptual level. In Section V-B, we will make the
formulation theoretically specific.



ovarian cancer

Bob
Calvin
Debbie

Ellie
Fiona
Gloria
Henry
Isaac

Owner Age Gender
25 M
30 M
45 F
50 F
55 F
58 F
65 M
80 M

Zipcode
25000
27000
20000
15000
45000
32000
65000
55000

Disease
hypertension
pneumonia

breast cancer
bronchits

bronchitis
hypertension

dementia
ovarian cancer

Gender
M
M
F
F
F
F
M
M

Age
[21, 40]
[21, 40]
[41, 60]
[41, 60]
[41, 60]
[41, 60]
[61, 80]
[61, 80]

***]

***]
***]
***]
***]
***]
***]

Zipcode
[11*** , 30
[11*** , 30
[11*** , 30
[11*** , 30
[31*** , 50
[31*** , 50
[51*** , 70
[51*** , 70 ***]

Disease

pneumonia
breast cancer

bronchits
bronchitis

hypertension
dementia

hypertension
Age Gender

[21, 40] M
[41, 60] F
[41, 60] F
[61, 80] M

Zipcode
[11*** , 30***]
[11*** , 30***]
[31*** , 50***]
[51*** , 70***]

Disease
hypertension
breast cancer

bronchitis
ovarian cancer

G
2
2
2
2

 (a) Dp after perturbation (b) Dg after generalization (c) D∗ after sampling

TABLE II

ILLUSTRATION OF OUR PUBLICATION FRAMEWORK (p = 0.25, k = 2)

A. Corruption-Aided Linking Attacks

Let us briefly review the basic notations in Section II. We
have an adversary who knows the QI-vector o.vq of a victim
individual o, and that o exists in the microdata D. S/he aims
at inferring how likely the sensitive value o.As of o satisfies a
predicate Q. Towards this purpose, the adversary may utilize
an external database E and the precise sensitive values of a
set C of individuals that s/he has corrupted.

Given a D∗ released by our solution, the adversary carries
out her/his attack in three steps A1, A2, A3.
A1. S/he retrieves the unique tuple t ∈ D∗ such that t.vq

generalizes o.vq .
The uniqueness of t is guaranteed by Property G2 and Step
S2, as explained in Section IV. We say that t is the crucial
tuple of the attack.
A2. S/he collects the set O of individuals o1, ..., oe from E

that are different from o, and their QI-vectors o1.v
q , ...,

oe.v
q can be generalized to t.vq .

These e persons, together with o, are the only candidates, who
can be the owner of t. Note that e + 1 is at least t.G, because
{o, o1, ..., oe} must capture the owners of all the tuples in the
source QI-group of t. Since each QI-group has a size at least
k, we have e + 1 ≥ k.
A3. S/he calculates her/his posteriori confidence Ppost(Q), by

combining D∗, O, C with her/his own expertise.

Example 1: Assume that an adversary attempts to derive
the probability of Ellie having a respiratory problem, namely,
the property Q of the attack is “o.As is a respiratory disease”,
where o equals Ellie. S/he consults the D∗ in Table IIc and the
voter registration list E in Table Ib. Furthermore, C = {Debbie,
Emily}. That is, the adversary knows that Debbie contracted
pneumonia, and Emily is extraneous.

At Step A1, the adversary identifies the crucial tuple t as the
second row of D∗. At Step A2, s/he retrieves, from E , e = 2
individuals: o1 = Debbie and o2 = Emily, whose QI-vectors can
be generalized to t.vq . Namely, O = {Debbie, Emily}. At Step
A3, the adversary analyzes the probability of Ellie’s disease
satisfying Q, from all the information that s/he has acquired.
Obviously, as Emily is extraneous, the adversary removes her
from further consideration, which leaves only two candidate
owners of t: Debbie and Ellie.

Although the observed Disease-value (breast-cancer) of
t differs from the real disease pneumonia of Debbie, it is
wrong to conclude that Debbie does not own t, because
every sensitive value in D∗ may have been altered in random
perturbation. The adversary needs to infer the sensitive value
of Ellie through a probabilistic analysis, as detailed in the next
subsection.

B. Posterior Confidence Derivation

Before a linking attack, the adversary may already have
certain background knowledge about the victim’s sensitive
value o.As. We observe that any knowledge essentially permits
an adversary to evaluate the probabilities of o.As taking
specific values. Thus, we model the background knowledge
through a probability density function (pdf):

Definition 4 (Background Knowledge): Let X be a random
variable modeling the distribution of o.As. An adversary’s
background knowledge is a pdf of X :

P [X = x], (4)

where x can be any value in Us. If

max
x∈Us

P [X = x] ≤ λ,

the background knowledge is λ-skewed.

The above definition trivially captures the background
knowledge targeted by (c, l)-diversity (see Section III). Specif-
ically, if an adversary knows that o.As cannot be a value x,
then P [X = x] = 0.

λ limits an adversary’s maximum confidence about the most
likely value for o.As. The lower bound of λ equals 1/|Us|.
When λ takes this value, the adversary does not have non-
trivial expertise about o.As, and hence, assumes that o.As

can be any value in Us with the same likelihood. In general,
privacy protection is more difficult when λ is higher. In
particular, for λ = 1, the adversary is affirmative about the
exact o.As; thus, no protection for o is possible.

We call the pdf in Definition 4 the prior pdf of X . Let
Q(X) be the set of sensitive values qualifying property Q.
The adversary’s prior confidence can be represented as

Pprior(Q) =
∑

x∈Q(X)

P [X = x]. (5)



Now we proceed to derive the adversary’s posterior confi-
dence. Consider, again, the crucial tuple t obtained at Step A1
(see Section V-A). This is the only tuple in D∗ relevant to o,
since the other tuples’ (generalized) QI values are inconsistent
with o.vq . Let y be the observed sensitive value of t; remember
that y may have been perturbed. Our objective is to control
the adversary’s confidence about Q, after s/he has observed y.
Therefore, we define her/his posterior confidence as

Ppost(Q) = P [Q|y]. (6)

Ppost(Q) may differ from Pprior(Q) because, after seeing
y, the adversary can derive a posterior pdf of X , which is not
necessarily equivalent to the pdf describing her/his background
knowledge (Definition 4). Analogous to Formula 4, the new
pdf can be represented as:

P [X = x|y], (7)

where x is any value in Us. Formula 7 can be solved in two
steps. First, the adversary figures out the probability h that the
crucial tuple t indeed belongs to the victim o, namely:

h = P [o owns t|y]. (8)

Then, the adversary distinguishes two disjoint events:

• Event 1 (probability 1 − h): o is not the owner of t. In
this case, D∗ contains no hint about o at all. Therefore,
the adversary’s knowledge of o.As remains the same as
her/his background knowledge.

• Event 2 (probability h): o is the owner of t. As a result,
the adversary obtains a piece of information helpful for
calculating Formula 7: the sensitive value of o has been
modified from x to y in perturbation. In this case, we use
a random variable Y to capture the perturbed sensitive
value of o.

Combining both events, we have

P [X = x|y] = h · P [X = x|Y = y] + (1 − h)P [X = x]. (9)

It follows that the adversary’s posterior confidence (Equa-
tion 6) can be calculated as

Ppost(Q) =
∑

x∈Q(X)

P [X = x|y]. (10)

VI. FORMAL RESULTS

Following [6], let P [a → b] denote the probability that a
sensitive value a is perturbed to b. It holds that

P [a → b] =
{

p + (1 − p)/|Us| if a = b
(1 − p)/|Us| otherwise

(11)

Let us make several observations about Equation 9. First, the
expression P [X = x|Y = y] can be re-written as:

P [X = x, Y = y]
P [Y = y]

=
P [X = x] · P [x → y]

p · P [X = y] + (1 − p)/|Us| . (12)

Next, we study the value of h. Without loss of generality,
assume that C ∩ O has α individuals, among whom β are
not extraneous. Let the β people be o1, ..., oβ , whose real

sensitive values are x1, ..., xβ , respectively. Let oβ+1, ..., oα

be the extraneous persons in C.
Since the adversary has confirmed β + 1 people (i.e., o, o1,

..., oβ) in the source QI-group of t, s/he assumes that each
person in O − C = {oα+1, ..., oe} appears in that group with
probability

g = (t.G − 1 − β)/(e − α). (13)

Equation 8 has an equivalent form

h = P [o owns t, y]/P [y]. (14)

The numerator P [o owns t, y] is essentially the probability of
two independent events happening simultaneously: (i) the tuple
of o was sampled in Step S2 of Phase 3, and (ii) its sensitive
value was perturbed to y. Hence,

P [o owns t, y] =
1

t.G

∑
x∈Us

(P [X = x] · P [x → y])

=
1

t.G

(
p · P [X = y] +

1 − p

|Us|
)

. (15)

When the adversary’s knowledge is λ-skewed,

P [o owns t, y] ≤ 1
t.G

(
p · λ +

1 − p

|Us|
)

. (16)

The denominator P [y] of Equation 14 equals P [o owns t, y]+

β∑
i=1

P [oi owns t, y] +
e∑

j=α+1

P [oj owns t, y]. (17)

For i ∈ [1, β],

P [oi owns t, y] = P [xi → y]/t.G

≥ (1 − p)/(t.G · |Us|). (18)

Given any j ∈ [α + 1, e], we model the sensitive value of oj

with a random variable Xj . The derivation of P [oj owns t, y]
is similar to solving P [o owns t, y] into Equation 15, except
that we must take into account the fact that oj appears in D
with probability g, as given in Equation 13. Therefore,

P [oj owns t, y] =
g

t.G

(
p · P [Xj = y] +

1 − p

|Us|
)

≥ g · (1 − p)/(t.G · |Us|). (19)

It follows from Equations 17-19 that

P [y] ≥ P [o owns t, y] +
(t.G − 1)(1 − p)

t.G · |Us|
Combining the above formula with Equation 14 and Inequality
16, we have

h ≤ p · λ + (1 − p)/|Us|
p · λ + t.G · (1 − p)/|Us|

≤ p · λ + (1 − p)/|Us|
p · λ + k · (1 − p)/|Us| . (20)

In the sequel, we use h� to denote the right hand side of the
above inequality.



Theorem 1: If y does not satisfy property Q, no ρ1-to-ρ2

and ∆-growth breaches can occur, for any ρ1, ρ2, and ∆.

Proof: When x �= y, Equation 12

≤ P [X = x] · (1 − p)/|Us|
(1 − p)/|Us| = P [X = x]. (21)

From Equations 9 and 10, we know Ppost(Q) =
∑

x∈Q(X)

(h · P [X = x|Y = y] + (1 − h) · P [X = x]) . (22)

If y /∈ Q(X), by Inequality 21, the previous equation

≤
∑

x∈Q(X)

(h · P [X = x] + (1 − h) · P [X = x])

= Pprior(Q).

Therefore, no privacy breach can occur.

For instance, the attack in Example 1 will not incur any
breach, because y = breast-cancer does not qualify Q = “a
respiratory disease”. In the subsequent discussion, we focus
on a linking attack whose Q is qualified by y.

Theorem 2: No ρ1-to-ρ2 breach can happen if:

ρ′2(1 − ρ1)
ρ1(1 − ρ′2)

≥ 1 +
p

(1 − p)/|Us| (23)

where ρ′2 =
(
ρ2 − ρ1(1 − h�)

)
/h�.

Proof: Let us rewrite Equation 10 as

Ppost(Q) = h · P [Q|Y = y] + (1 − h) · Pprior[Q].

Using the same mathematical derivation as in the proof of
Statement 1 in [6], we can show that, when Inequality 23
holds, P [Q|Y = y] ≤ ρ′2. Hence

Ppost(Q) ≤ h · ρ′2 + (1 − h) · ρ1

≤ h� · ρ′2 + (1 − h�) · ρ1 = ρ2

which completes the proof.

Theorem 3: Let F (w) = (−p · w2 + p · w)/(p · w + u),
where u = (1− p)/|Us|. Let wm = (

√
u2 + p · u− u)/p. No

∆-growth breach occurs if either of the following holds:

• λ ≤ wm and ∆ ≥ h� · F (λ);
• λ > wm and ∆ ≥ h� · F (wm).

Proof: Assume that Q is qualified by y; otherwise, no privacy
breach can happen according to Theorem 1. By Equations 5,
9, and 10, Ppost(Q) − Pprior(Q) =

h
∑

x∈Q(X)

(P [X = x|Y = y] − P [X = x])

According to Inequality 21, the above

≤ h� (P [X = y|Y = y] − P [X = y])

Let w = P [X = y] ≤ λ. By Equation 12, the above formula
equals

h�
(w · (p + (1 − p)/|Us|)

w · p + (1 − p)/|Us| − w
)

= h� · F (w).

Next, we calculate the upper bound of F (w), as w distributes
in [0, λ]. We note that dF (w)/dw = 0, when w = wm =
(
√

u2 + p · u − u)/p. Furthermore, F (w) is monotonically
increasing (or decreasing), if w < wm (or w > wm). Hence,
in case λ ≤ (

√
u2 + p · u−u)/p, F (w) reaches its maximum

at w = λ. Otherwise, the maximum is obtained at w = wm.

Recall that our publication framework has two parameters
p and k. As explained in Section II, we always fix k to �1/s�
to meet the Cardinality requirement. The value of p, on the
other hand, is determined so that an objective level of privacy
breaches is prevented. Specifically, for ρ1-to-ρ2 breaches, a
level is specified by a pair of ρ1 and ρ2. Likewise, a level of ∆-
growth breaches is described by ∆. In any case, once the level
is fixed, p is set to the minimum value that guarantees absence
of the corresponding breaches, according to Theorems 2 and
3.

VII. EXPERIMENTS

This section experimentally evaluates the effectiveness of
the proposed technique, referred to as perturbed generaliza-
tion (PG) in the sequel. We adapt the algorithm in [11] to
implement Phase 2 of PG, and explore its utility in mining
decision trees with the algorithm in [12].

A. Data

We deploy a real database SAL that is widely used in the
literature, and downloadable at http://ipums.org. SAL contains
700k tuples, each of which describes the personal data of
an American. There are 9 discrete attributes: Age, Gender,
Education, Birthplace, Occupation, Race, Work-class, Marital-
status, Income. We treat Income as the sensitive attribute and
the other columns as QI-attributes.

The Income domain consists of values 0, 1, 2, ..., 49, where
each number i represents the range (in US dollars) of [i ·
2000, (i+1) · 2000). For the purpose of decision tree mining,
we divide the domain into m categories, varying m between
2 and 3. For m = 2, the first and second categories cover
the ranges [0, 24] and [25, 49], respectively. For m = 3, the
category ranges become [0, 24], [25, 36], [37, 49]. Notice that,
by setting m to 3, we are refining the “wealthier” category of
m = 2.

B. Competitors

Currently no existing solution can provide privacy guaran-
tees matching those offered by PG. Therefore, we compare the
utility of PG against those of two yardstick methods: optimistic
and pessimistic. Specifically, both optimistic and pessimistic
build a decision tree from a random subset (of the microdata
D) with size |D|/k (recall that this is the upper bound of the
number of tuples released by PG). For optimistic, each tuple



k 2 4 6 8 10
ρ2 ≥0.69 ≥0.53 ≥0.45 ≥0.40 ≥0.36
∆ ≥0.47 ≥0.31 ≥0.24 ≥0.19 ≥0.16

(a) p = 0.3
p 0.15 0.2 0.25 0.3 0.35 0.4 0.45
ρ2 ≥0.34 ≥0.38 ≥0.41 ≥0.45 ≥0.49 ≥0.52 ≥0.56
∆ ≥0.12 ≥0.16 ≥0.20 ≥0.24 ≥0.28 ≥0.32 ≥0.36

(b) k = 6

TABLE III

PRIVACY GUARANTEES OF PG
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Fig. 2. Utility vs. k (p = 0.3)

in the subset is taken directly from D, i.e., no perturbation
performed. For pessimistic, however, all tuples in the subset
have their sensitive values randomized, i.e., perturbation with
retention probability 0. We employ the tree growing algorithm
in [17] to implement optimistic and pessimistic. We note that
pessimistic creates a useless decision tree from a randomized
dataset that loses all the sensitive information in D.

We measure the utility of a method by the classification
accuracy of its decision tree. Specifically, we use the tree
to classify all the tuples in the microdata, and calculate the
accuracy as the percentage of the correctly classified tuples.
Ideally, the accuracy of PG should be as good as that of
optimistic, yet significantly better than that of pessimistic.

C. Privacy Guarantees

We aim at privacy protection against 0.1-skewed back-
ground knowledge. Furthermore, in preventing ρ1-to-ρ2

breaches, we guard against adversaries with prior confidence
at most 0.2. Thus, λ and ρ1 are set to 0.1 and 0.2 respectively
in the following experiments.
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Fig. 3. Utility vs. p (k = 6)

For PG, the degree of privacy protection is determined by
both parameters p and k. We will vary p from 0.15 to 0.45, and
k from 2 to 10. Table III demonstrates the privacy guarantees
(derived from Theorems 2 and 3) determined by all pairs of
p and k to be used together in the subsequent experiments.
For example, the second (third) row of Table IIIa indicates
that, given p = 0.3, PG provides a 0.2-to-0.69 (0.47-growth)
guarantee for k = 2, a 0.2-to-0.53 (0.31-growth) guarantee for
k = 4, and so on. As expected, stronger protection is achieved
with a lower p or higher k.

D. Utility

The next set of experiments inspects the influence of k and
p on the utility of PG. In Figure 2a (2b), we use m = 2 (=3),
p = 0.3, and measure the classification errors of PG, as k
changes from 2 to 10. We also include the errors of optimistic
and pessimistic, which are not affected by k, because the two
methods do not involve generalization.

The utility of PG stays close to optimistic, and degrades
very slowly as k grows. This observation indicates that gen-
eralization (Phase 2 of PG) has limited impacts on the utility
of the published dataset. In fact, when the microdata D has a
large cardinality, the QI-vectors of the underlying tuples are
dense in U q. For k ≤ 10, a generalized QI value is an interval
covering a tiny fraction of the QI attribute. This explains
why generalization does not affect the quality of data analysis
significantly.

In Figure 3, we present the classification errors of alternative
methods, by fixing k to the median value 6, and varying p from
0.15 to 0.45. The performance of optimistic and pessimistic



does not change with p, because the former involves no
perturbation, while the latter carries out total perturbation (with
p = 0). As expected, the utility of PG improves as p becomes
larger. This is a standard characteristic of all the perturbation-
based approaches.

VIII. RELATED WORK

Privacy preserving data publication is first introduced by
Sweeney and Samarati [4], [5], who also propose the concept
of generalization and k-anonymity. Since then, numerous
generalization principles have been developed. These include
l-diversity [9] (which is discussed in Section IV), t-closeness
[14], personalization [15], (k, e)-anonymity [18], δ-presence
[19], (c, k)-safety [20], privacy skyline [21], and m-invariance
[22], and so on. Generalization conforming to these principles
can be computed by numerous algorithms [23], [1], [11], [24],
[2], [25], [3], [13], [16], [26], [27], [28], [29], [30], [31].
Various principles guard anonymity against different types of
background knowledge. However, as explained in Section IV,
all the above principles succumb to adversaries that have the
corruption ability.

Perturbation shapes its original form from a classical sur-
veying technique called randomized responses [32]. It is ren-
ovated for privacy preserving data mining in recent years [7],
[6]. Parallel to our work, Rastogi et al. [33] adapt perturbation
to data publication. Different from their method, we propose a
concrete model for capturing corruption-based privacy attacks,
and derive solid privacy guarantees under this model.

IX. CONCLUSIONS

This paper tackles a new threat of privacy disclosure, called
corruption, which has not been considered in the literature of
privacy preserving publication. The conventional methods may
incur severe privacy breaches, when challenged by corruption.
Motivated by this, we present a new anonymization tech-
nique that integrates generalization, perturbation, and stratified
sampling. The integration ensures strong privacy guarantees,
even if an adversary has successfully corrupted any number of
data owners. Furthermore, the data released by our technique
permits a researcher to perform effective data mining about
the microdata. Our theoretical findings are confirmed with
experimentation.

This work lays down a foundation for further studies of
anonymized publication. An exciting topic is re-publication
of an anonymized version of the microdata, after it has
been updated [34]. This is a difficult problem because we
must prevent an adversary from inferring sensitive data by
leveraging the correlation among subsequent releases. Another
promising direction is to extend the proposed technique to non-
relational objects such as spatial data [35]. Privacy guarantees
in those scenarios need to be re-derived, since different forms
of privacy breaches must be prevented.
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