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Abstract

In the theory of holographic algorithms proposed by Valiant, computation is expressed and pro-
cessed in terms of signatures. We substantially develop the signature theory in holographic algo-
rithms. This theory is developed in terms of d-realizability and d-admissibility. For the class of
2-realizable signatures we prove a Birkhoff-type theorem which determines this class. It gives a com-
plete structural understanding of the relationship between 2-realizability and 2-admissibility. This
is followed by characterization theorems for 1-realizability and 1-admissibility. Finally, using this
theory of general (i.e., unsymmetric) signatures we give additional counting problems solvable in
polynomial time by holographic algorithms.

1 Introduction

It is generally conjectured that many combinatorial problems in the class NP or #P are not computable
in polynomial time. The prevailing opinion is that these problems seem to require the accounting or
processing of exponentially many potential solution fragments to the problem. However it is rather
natural, and it should not cause any surprise, that the answer to such a problem can in general be
expressed as a suitable exponential sum.

Take for instance the canonical Boolean Satisfiability problem SAT. It is NP-complete, and its
counting version is #P-complete. Moreover the problem remains complete for many restricted classes.
If we define #Pl-Rtw-Mon-3CNF to be the counting problem which counts the number of satisfying
assignments to a planar read-twice monotone 3CNF formula Φ, it remains #P-complete. The number
of satisfying assignments to Φ can be expressed as an exponential sum as follows. For each clause C in
Φ with 3 variables we define a vector RC = (0, 1, 1, 1, 1, 1, 1, 1), where the entries are indexed by 3 bits
b1b2b3 ∈ {0, 1}3. Here b1b2b3 corresponds to a truth assignment to the 3 variables, and RC corresponds
to a Boolean OR gate. Suppose in the formula Φ a Boolean variable x appears in two clauses C and
C ′. Then we use Gx = (1, 0, 0, 1)T , indexed by b1b2 ∈ {0, 1}2, to indicate that the fan-out value from x
to C and C ′ must be consistent. In the language of holographic algorithms these RC and Gx are called
signatures. Now we can form the tensor product R =

⊗

C RC and G =
⊗

x Gx. Suppose in the planar
formula Φ there are exactly e edges connecting various x’s to various C’s, then both R and G have e
indices, each taking values in {0, 1}, and both tensors have 2e entries. The indices of R = (Ri1i2...ie)
and G = (Gi1i2...ie) match up one-to-one according to which x appears in which C. Then a moment
reflection shows that the exponential sum 〈R,G〉 =

∑

i1,i2,...,ie∈{0,1} Ri1i2...ieG
i1i2...ie counts exactly the
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number of satisfying assignments to Φ. Basically, each tuple (i1, i2, . . . , ie) ∈ {0, 1}e assigns a value 0
or 1 to each connecting edge. The product Ri1i2...ieG

i1i2...ie is 1 when this is a consistent assignment
of truth values to each variable as it fans out to its two connecting clauses, and the truth assignment
satisfies each clause; the product value is 0 otherwise.

Of course, this is not a big deal, as we just expressed something that can be computed in exponential
time as an expression involving exponentially many terms. The power of holographic algorithms is to
evaluate such an exponential sum in polynomial time, for a variety of combinatorial problems. This
happens when suitable signatures are realizable. In particular, for #Pl-Rtw-Mon-3CNF this theory can
evaluate the sum over the field Z7. This counts the number of satisfying assignments mod 7 for Φ. (It
is known that counting mod 2 for #Pl-Rtw-Mon-3CNF is NP-hard.) Exactly which sum is computable
in polynomial time by holographic algorithms brings us to the subject of signature theory.

This paper develops the signature theory of holographic algorithms for general signatures.
The theory of holographic algorithms was initiated by Valiant [25]. It produces surprising algorithms

by evaluating certain exponential sums in polynomial time [25, 1, 28, 5]. Somewhat analogous to quan-
tum computing, information in these algorithms is represented and processed through a choice of linear
basis vectors in an exponential “holographic” mix. The algorithm is designed to create huge cancellations
on these exponential sums. Ultimately the computation is reduced to the Fisher-Kasteleyn-Temperley
(FKT) method on planar perfect matchings [15, 16, 22] via the Holant Theorem. Unlike quantum
algorithms, these give classical polynomial time algorithms. We give a brief review of definitions and
background on holographic algorithms in Section 2. More details can be found in [23, 25, 24, 3, 2, 1].

The success of finding a holographic algorithm for a particular combinatorial problem typically boils
down to the existence of suitable signatures in a suitable tensor space. This is the realizability problem.
The requirements are specified by families of algebraic equations. These families of equations are non-
linear, exponential in size, and difficult to handle. But whenever we find a suitable solution, we get an
exotic polynomial time algorithm. 1 Of course the big question is whether such “freak objects” exist
for any of the NP-hard problems. If not, is there a coherent explanation? “Any proof of P 6= NP may
need to explain, and not only to imply, the unsolvability” [25] of NP-hard problems using this approach.
Thus, the primary motivation for us is complexity theory.

In [5] we have developed an algebraic framework which gave a satisfactory theory of symmetric
signatures. In this framework, we defined a basis manifold M, and the signature theory is expressed
in terms of d-admissibility and d-realizability, where d is the dimension of the algebraic variety of M
corresponding to a desired signature. While a priori the tensor space can have basis vectors of arbitrary
dimension, in [7] we have proved a general basis collapse theorem which effectively restricted the theory
to the basis manifold M corresponding to GL2. Thus to Valiant’s challenge what remains is the general
(i.e., not necessarily symmetric) signature theory on M.

We first prove a Birkhoff-type theorem which gives a complete and explicit characterization of the
class of 2-realizable signatures (over char. 0). This turns out to be the vertices of a simplex, of which
the linear span is precisely the class of 2-admissible signatures, whose dimension is the Catalan number.
The 2-realizable signatures also have an explicit combinatorial interpretation in terms of planar tensor
product of perfect matchings. In general the realizability of signatures is controlled by an exponential
sized set of algebraic equations called Matchgate Identities (MGI), a.k.a. useful Grassmann-Plücker
Identities [24, 1, 3]. The proof here uses MGI implicitly, in the form of explicit Pfaffian representa-
tions. Next we give characterization theorems concerning 1-realizability and 1-admissibility. The proof
techniques are mainly algebraic. Finally we present some new algorithms using this general theory of

1From [28]: “The objects enumerated are sets of polynomial systems such that the solvability of any one member would
give a polynomial time algorithm for a specific problem. . . . the situation with the P = NP question is not dissimilar to
that of other unresolved enumerative conjectures in mathematics. The possibility that accidental or freak objects in the
enumeration exist cannot be discounted, if the objects in the enumeration have not been systematically studied previously.”
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signatures. The structural theory for general signatures developed here substantially move forward our
understanding of the ultimate capabilities of holographic algorithms.

2 Some Background

In this section, for the convenience of readers, we review some definitions and results. More details can
be found in [23, 25, 24, 3, 2, 1].

Let G = (V,E,W ), G′ = (V ′, E′,W ′) be weighted undirected planar graphs. A generator matchgate
Γ is a tuple (G,X) where X ⊂ V is a set of external output nodes. A recognizer matchgate Γ′ is a tuple
(G′, Y ) where Y ⊂ V ′ is a set of external input nodes. The external nodes are ordered counter-clock
wise on the external face. Γ is called an odd (resp. even) matchgate if it has an odd (resp. even)
number of nodes.

Each matchgate is assigned a signature tensor. A generator Γ with n output nodes is assigned a
contravariant tensor G ∈ V n

0 of type
(

n
0

)

. This tensor under the standard basis b has the form

∑

Gi1i2...inbi1 ⊗ bi2 ⊗ · · · ⊗ bin ,

where
Gi1i2...in = PerfMatch(G − Z),

where PerfMatch(G − Z) =
∑

M

∏

(i,j)∈M wij , is a sum over all perfect matchings M in G − Z, and
where Z is the subset of the output nodes having the characteristic sequence χZ = i1i2 . . . in. Similarly
a recognizer Γ′ with n input nodes is assigned a covariant tensor R ∈ V 0

n of type
(0
n

)

. This tensor under
the standard (dual) basis b∗ has the form

∑

Ri1i2...inb
i1 ⊗ bi2 ⊗ · · · ⊗ bin ,

where
Ri1i2...in = PerfMatch(G′ − Z),

where Z is the subset of the input nodes having χZ = i1i2 . . . in. These values (Gi1i2...in) and (Ri1i2...in)
form the standard signatures.

According to general principle [10], G transforms contravariantly under a basis transformation
βj =

∑

i bit
i
j ,

(G′)i
′
1i′2...i′n =

∑

Gi1i2...in t̃
i′
1

i1
t̃
i′
2

i2
. . . t̃

i′n
in

,

where (t̃ji ) is the inverse matrix of (tij). Similarly, R transforms as a covariant tensor, namely

(R′)i′
1
i′
2
...i′n

=
∑

Ri1i2...inti1
i′
1

ti2
i′
2

. . . tini′n
.

A signature is called symmetric if its values only depend on the Hamming weight of its indices. This
notion is invariant under a basis transformation.

A matchgrid Ω = (A,B,C) is a weighted planar graph consisting of a disjoint union of: a set of g
generators A = (A1, . . . , Ag), a set of r recognizers B = (B1, . . . , Br), and a set of f connecting edges
C = (C1, . . . , Cf ), where each Ci edge has weight 1 and joins an output node of a generator with an
input node of a recognizer, so that every input and output node in every constituent matchgate has
exactly one such incident connecting edge.

Let G =
⊗g

i=1 G(Ai) be the tensor product of all the generator signatures, and let R =
⊗r

j=1 R(Bj)
be the tensor product of all the recognizer signatures. Then Holant(Ω) is defined to be the contraction
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of the two product tensors, under some basis β, where the corresponding indices match up according
to the f connecting edges Ck.

The remarkable Holant Theorem is

Theorem 2.1 (Valiant). For any matchgrid Ω over any basis β, let G be its underlying weighted graph,
then

Holant(Ω) = PerfMatch(G).

The FKT algorithm can compute the perfect matching polynomial PerfMatch(G) for a planar graph
in polynomial time.

We illustrate these concepts by the following example. The problem can be solved by a holographic
algorithm in polynomial time [25].

#PL-3-NAE-ICE

Input: A planar regular graph G = (V,E) of degree 3.
Output: The number of orientations such that no node has all the edges directed towards it or all the
edges directed away from it.

To solve this problem by a holographic algorithm, we design a matchgrid as follows: We represent
each node of degree 3 in V by a recognizer matchgate with signature (Gb1b2b3) = (0, 1, 1, 1, 1, 1, 1, 0).
This represents a NOT-ALL-EQUAL or NAE gate on 3 bits. For each edge in E we use a generator
matchgate with signature (0, 1, 1, 0)T , which stands for an orientation from either one of the two nodes
to the other one. Note that (Gb1b2b3) = (0, 1, 1, 1, 1, 1, 1, 0) has non-zero entries G001 as well as G011,
where the index bit patterns 001 and 011 are odd and even respectively. This implies that there is no
matchgate that has this G as its standard signature. This is a property implied by perfect matching.

However, under the basis transformation by

[(

1
1

)

,

(

1
−1

)]

, both generator and recognizer signatures

can be transformed to standard signatures realizable by suitable planar matchgates.
To complete the construction of the matchgrid, we connect the external nodes of these matchgates

by an edge of weight 1, in a one-to-one fashion according to the given planar graph G.
Now consider the exponential sum evaluated in the definition of Holant under this basis. Each term

in the sum is a product of 0’s and 1’s which are appropriate entries of the signatures of the matchgates
in the matchgrid. Each term is indexed by a 0-1 assignment on all connecting edges between external
nodes of these matchgates. Then it is not hard to see, when this exponential sum is evaluated, each term
is 0 or 1, and it is 1 iff it corresponds to an orientation of every edge such that at each vertex the local
NOT-ALL-EQUAL constraint is satisfied. Thus, the value of Holant is precisely the number of valid
orientations required by #PL-3-NAE-ICE. While Holant expresses the solution for #PL-3-NAE-ICE,
by the Holant Theorem, we compute this sum by the FKT algorithm in polynomial time.

The following simple Proposition 4.3 of [25] is due to Valiant.

Proposition 2.1 (Valiant). [25] If there is a generator (recognizer) with certain signature for size one
basis {(n0, n1), (p0, p1)} then there is a generator (recognizer) with the same signature for size one basis
{(xn0, yn1), (xp0, yp1)} or {(xn1, yn0), (xp1, yp0)} for any x, y ∈ F and xy 6= 0.

This leads to the following definition of an equivalence relation:

Definition 2.1. Two bases β = [n, p] =

[(

n0

n1

)

,

(

p0

p1

)]

and β′ = [n′, p′] =

[(

n′
0

n′
1

)

,

(

p′0
p′1

)]

are equiva-

lent, denoted by β ∼ β′, iff there exist x, y ∈ F∗ such that n′
0 = xn0, p

′
0 = xp0, n

′
1 = yn1, p

′
1 = yp1 or

n′
0 = xn1, p

′
0 = xp1, n

′
1 = yn0, p

′
1 = yp0.
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Theorem 2.2. GL2(F)/ ∼ is a two dimensional manifold (for F = C or R).

We call this the basis manifold M. For F = R, it can be shown that topologically M is a Möbius
strip. From now on we identify a basis β with its equivalence class containing it. When it is permissible,

we use the dehomogenized coordinates

(

1 x
1 y

)

to represent a point (i.e., a basis class) in M.

Under a basis transformation G′ =

(

1 x
1 y

)⊗n

G, the entry indexed by T

G′T =

〈

n
⊗

σ=1

[1, x[σ∈T ]], G

〉

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyj
∑

A ⊂ Tc, |A| = i
B ⊂ T, |B| = j

GA∪B , (1)

where T is a subset of [n], and used as an index in G′T , i.e., T is identified with a 0-1 bit pattern of
length n, and where we write x0 = x and x1 = y.

In this paper we will assume the field F = C and develop the theory exclusively on the complex
numbers.

Standard signatures (of either generators or recognizers) are characterized by the following two sets
of conditions. (1) The parity requirements: either all even weight entries are 0 or all odd weight entries
are 0. This is due to perfect matchings. (2) A set of Matchgate Identities (MGI) [24, 1, 3]: Let G be
a standard signature of arity n (we use G here, it is the same for R). A pattern α is an n-bit string,
i.e., α ∈ {0, 1}n. A position vector P = {pi}, i ∈ [l], is a subsequence of {1, 2, . . . , n}, i.e., pi ∈ [n] and
p1 < p2 < · · · < pl. We also use p to denote the pattern, whose (p1, p2, . . . , pl)-th bits are 1 and others
are 0. Let ei ∈ {0, 1}n be the pattern with 1 in the i-th bit and 0 elsewhere. Let α + β be the pattern
obtained from bitwise XOR of the patterns α and β. Then for any pattern α ∈ {0, 1}n and any position
vector P = {pi}, i ∈ [l], we have the following identity:

l
∑

i=1

(−1)iGα+epi Gα+p+epi = 0. (2)

More symmetrically, let α, β ∈ {0, 1}m be any patterns, and let P = {pi} = α + β, i ∈ [l], be their
bitwise XOR as a position vector. Then

l
∑

i=1

(−1)iGα+epi Gβ+epi = 0. (3)

We note that for each MGI, the sum of the weights of indices for every term in Gα+epi Gβ+epi is the
same.

By the FKT algorithm, perfect matchings for a planar graph (and its subgraphs with some external
nodes removed) can be expressed as the Pfaffian (and sub-Pfaffians) of a skew symmetric matrix. The
MGI being necessary conditions for the standard signatures is due to the algebraic identities called
Grassmann-Plücker Identities that the sub-Pfaffians of any skew symmetric matrix must satisfy. The
fact that together with the parity requirements they are also sufficient is derived from a non-trivial
sequence of steps and constructions. See [24, 1, 3] for more details.

In view of these conditions, we have the following definitions:

Definition 2.2. A tensor G is admissible as a generator on a basis β iff G′ = β⊗nG satisfies the
parity requirements. It is called realizable as a generator on a basis β iff G′ = β⊗nG satisfies both
the parity requirements and all the MGI. This is equivalent to G′ being the standard signature of some
planar matchgate (See [1, 3] for this equivalence).
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Definition 2.3. Let Bgen(G) (resp. Bp
gen(G)) be the set of all possible bases in M for which a generator

G is realizable (resp. admissible).

Definition 2.4. A generator G is called d-realizable (resp. d-admissible) for an integer d ≥ 0 iff
Bgen(G) ⊂ M (resp. Bp

gen(G) ⊂ M) is a (non-empty) algebraic subset of dimension at least d.

To be d-admissible is to have a d-dimensional solution subvariety in M, satisfying all the parity
requirements. This is a part of the requirements in order to be realizable. To be d-realizable is to have
a d-dimensional solution subvariety in M for all realizability requirements, which include the parity
requirements as well as the requirements of MGI. To have 0-realizability is a necessary condition. But to
get holographic algorithms one needs simultaneous realizability of both generators and recognizers. This
is accomplished by having a non-empty intersection of the respective subvarieties for the realizability of
generators and recognizers. And this tends to be accomplished by having d-realizability (which implies
d-admissibility), for d ≥ 1, on at least one side. Therefore it is important to investigate d-realizability
and d-admissibility for d ≥ 1.

3 Preliminary Results on Realizability

We recall and state some preliminary results on realizability and admissibility. In our STOC07 paper [5],
only Theorem 3.1 was proved in the proceedings. Some other results were briefly stated without proof.
Here we include some other proofs.

The first theorem is a complete characterization of 2-admissibility.

Theorem 3.1. G is 2-admissible iff (1) n = 2k is even; (2) all GS = 0 except for |S| = k; and (3) for
all T ⊂ [n] with |T | = k + 1,

∑

S⊂T,|S|=k

GS = 0. (4)

The solution space is a linear subspace of dimension 1
k+1

(2k
k

)

.

The theorem still holds when we replace the condition (3) with the following condition:
(3)′ for all T ⊂ [n] with |T | = k − 1,

∑

S⊃T,|S|=k

GS = 0. (5)

We will use both versions in this paper.
We have some more results on 2-admissibility. Most of the proofs and some theorem statements

were not included in [5] due to space limit. So we include both theorems and proofs here.
The next theorem shows that any basis transformation on a 2-admissible G is just a scaling.

Theorem 3.2. If G is 2-admissible with arity 2k, then ∀β =

(

n0 p0

n1 p1

)

∈ M, β⊗2kG = (n0p1−n1p0)
kG.

In order to prove this theorem, we first prove the following lemma:

Lemma 3.1. Let G be 2-admissible with arity 2k, S ⊂ [2k] with |S| = k, and A ⊂ Sc. Then

∑

B⊂S and |B|=k−|A|

GA∪B = (−1)|A|GS
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Proof: We prove it by induction on |A| ≥ 0.
The case |A| = 0 is obvious.
Inductively we assume the lemma has been proved for all |A| ≤ i−1, for some i ≥ 1. Let |A| = i > 0.

Since G is 2-admissible, we have
∑

C⊂A∪S and |C|=k

GC = 0.

Then

0 =
∑

C⊂A∪S and |C|=k

GC

=
∑

B⊂S and |B|=k−|A|

GA∪B +

|A|−1
∑

t=0

∑

A1⊂A,|A1|=t

∑

B⊂S,|B|=k−|A1|

GA1∪B,

according to t = |A ∩ C| = 0, 1, . . . , |A|. Since |A1| = t ≤ |A| − 1, by induction we have:

∑

B⊂S,|B|=k−|A1|

GA1∪B = (−1)|A1|GS = (−1)tGS .

So

0 =
∑

B⊂S and |B|=k−|A|

GA∪B + GS

|A|−1
∑

t=0

(−1)t
(|A|

t

)

=
∑

B⊂S and |B|=k−|A|

GA∪B − (−1)|A|GS .

From the last equation, we have

∑

B⊂S and |B|=k−|A|

GA∪B = (−1)|A|GS

This completes the proof.
From this lemma, we have the following corollary which is also useful.

Corollary 3.1. If G is any 2-admissible signature, then ∀S ⊂ [2k], GS = (−1)kGSc
.

Now we can prove Theorem 3.2.

Proof: To simplify notations, we use the dehomogenized coordinates β =

(

1 x
1 y

)

=

(

1 x0

1 x1

)

. Some

exceptional cases can be proved directly.
First it is obvious that β⊗2kG is also 2-admissible. So for any S ⊂ [2k] and |S| 6= k,

〈

n
⊗

σ=1

[1, x[σ∈S]], G

〉

≡ 0.

Now let S ⊂ [2k] and |S| = k,

〈

n
⊗

σ=1

[1, x[σ∈S]], G

〉

=
∑

0≤i≤k

xiyk−i
∑

A⊂Sc,|A|=i

∑

B⊂S,|B|=k−i

GA∪B .
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By Lemma 3.1 and for A ⊂ Sc, |A| = i, we have

∑

B⊂S,|B|=k−i

GA∪B = (−1)iGS .

So
〈

n
⊗

σ=1

[1, x[σ∈S]], G

〉

=
∑

0≤i≤k

xiyk−i
∑

A⊂Sc,|A|=i

(−1)iGS = GS
∑

0≤i≤k

xiyk−i(−1)i
(

k

i

)

= (y − x)kGS .

This completes the proof.
Since a scaling preserves realizability, the theorem gives:

Corollary 3.2. If a 2-admissible G is realizable on some basis (e.g., on the standard basis), then it is
realizable on any basis, which means it is 2-realizable.

We also have the following operator, which is a useful language in the characterization of 2-
realizability.

Definition 3.1. Let Rotr(G) be the tensor obtained by circularly rotating clockwise the coordinates of
G by r bit positions, i.e., [Rotr(G)]i1,i2,...,in = Gir+1,ir+2,...,in,i1,...,ir , where n is the arity of G. Let G⊗G′

be the tensor product with all indices of G before all indices of G′. A planar tensor product is a finite
sequence of operations of Rotr(G) and G ⊗ G′.

This operator has the following nice property.

Theorem 3.3. Bgen(Rotr(G)) = Bgen(G) and, for G1 and G2 not identically zero, Bgen(G1 ⊗ G2) =
Bgen(G1) ∩ Bgen(G2). Thus a planar tensor product preserves Bgen. In particular, any planar tensor
product of 2-realizable signatures is also 2-realizable.

Proof: We first prove Bgen(Rotr(G)) = Bgen(G). Let G be a signature of arity n and let T ∈ Bgen(G),
then G = T⊗nG is realized as the standard signature of a matchgate Γ. Rotr(G) is realized by the
same matchgate, but with the labels of its external nodes circularly rotated by r bit positions from
Γ. By definition, T⊗nRotr(G) = Rotr(T

⊗nG), since cyclically rotating the n copies of T in the tensor
product T⊗n keeps it invariant. Hence Bgen(G) ⊆ Bgen(Rotr(G)). The reverse direction also follows
since Rotr(·) has an inverse Rot−r(·).

Next we prove Bgen(G1 ⊗G2) = Bgen(G1)∩Bgen(G2). Suppose T ∈ Bgen(G1)∩Bgen(G2), where G1

and G2 have arities n1 and n2 respectively. Then both T⊗n1G1 and T⊗n2G2 are realizable by matchgates
Γ1 and Γ2 respectively. It follows that T⊗(n1+n2)(G1 ⊗ G2) = T⊗n1G1 ⊗ T⊗n2G2 is realizable by a
matchgate which is just putting Γ1 and Γ2 together as a disjoint union. Therefore T ∈ Bgen(G1 ⊗ G2).

For the other direction, let T ∈ Bgen(G1 ⊗ G2). Then T⊗(n1+n2)(G1 ⊗ G2) = T⊗n1G1 ⊗ T⊗n2G2 is
realizable by some matchgate Γ of arity n1 + n2. Since G2 is not identically zero, and T is invertible,
there exists a bit pattern i1i2 . . . in2

such that c = (T⊗n2G2)
i1i2...in2 6= 0. Now we modify Γ to Γ′ as

follows: We view the first n1 external nodes of Γ as external nodes in Γ′. All other nodes of Γ are now
considered internal nodes of Γ′. For any 1 ≤ j ≤ n2, if ij = 1 in the bit pattern, then append an extra
new edge to the (n1 + j)-th external node of Γ. This new edge has weight 1 and the newly added vertex
is also considered an internal node of Γ′. Finally add an isolated extra new edge with weight 1/c. Then
clearly the standard signature of Γ′ is Γ′j1j2...jn1 = 1

c Γj1j2...jn1
i1i2...in2 = (T⊗n1G1)

j1j2...jn1 . Therefore
T ∈ Bgen(G1). Similarly we can prove T ∈ Bgen(G2) as well. So T ∈ Bgen(G1) ∩ Bgen(G2).
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4 Characterization of 2-Realizability

In [5] we have developed an algebraic framework for the signature theory. In Section 3 we give a
summary of these results. The theory is developed in terms of d-admissibility and d-realizability. The
key to the success of a holographic algorithm is to find generators and recognizers whose signatures we
desire and whose realizability varieties intersect. This typically happens with at least one side having
a d-realizability for d ≥ 1. Of course 2-realizability is the most desirable. The central results from [5]
in this regard are characterizations of 2-admissible signatures. The arity of any 2-admissible signature
must be an even number n = 2k. The 2-admissible signatures are the solutions to a homogeneous linear
equation system. The dimension of the solution space is 1

k+1

(2k
k

)

, the Catalan number. In this section,
n = 2k will always refer to the arity.

It turns out that there is a particular set of solutions with a clear combinatorial meaning. These are
signatures of planar matchgates with k pairs of points on the circumference of a unit disk D, constructed
by planar tensor product.

Let P be the basic matchgate consisting of a path of length 2, where we place the two end points
on the circumference of D, and the two edges are weighted +1 and −1 respectively. This gives a planar
matchgate of arity 2 with the (standard) signature (0,+1,−1, 0). It is easy to verify that this signature
is indeed 2-realizable. Now we can form planar tensor product recursively using disjoint copies of P as
the basic building block. Theorem 3.3 tells us that the planar matchgate formed is also 2-realizable.
Combinatorially this process is very simple: We end up with 2k vertices on the circumference of D,
which are pair-wise matched up by k disjoint paths each with weights +1 and −1 on its two edges,
respectively. The union of these k disjoint paths form a planar graph with a total of 3k vertices (planar
tensor product preserves planarity, and these k paths do not cross each other). This family of matchgates
with 2k external nodes is denoted by D2k. See Figure 1.

1


1


1


1


1


1


1


1


Figure 1: A 2-realizable signature

Let G ∈ D2k, and let (GS)S⊂[2k] be its signature. We show that (GS) satisfies Theorem 3.1 to be

2-admissible. First note that each entry GS is 0, except when S contains exactly one end point from
each P . This follows from the definition of perfect matching. In particular GS 6= 0 only for |S| = k.
Now we show that

∑

S⊂T GS = 0, for any subset T ⊂ [2k] of cardinality k + 1. Since |T | = k + 1, there
must be at least one pair {i, j} ⊂ T , where i and j are connected by some P of length 3 in G. Then
the only possible non-zero terms in

∑

S⊂T GS come from S = T − {i} and S = T − {j}. In order to be
actually non-zero, the set T − {i, j} must contain exactly one vertex from each pair of the other k − 1
pairs of external nodes connected by length-3 paths. Thus either every term in

∑

S⊂T GS is zero, or
there are exactly two non-zero terms of opposite values ±1. Thus,

∑

S⊂T GS = 0 for all |T | = k + 1.

9



This proof gives an explicit set of solutions to the system in Theorem 3.1. The cardinality of this
set is the Catalan number 1

k+1

(2k
k

)

, which is the dimension of the solution subspace, a fact we know
separately from the exact knowledge of the rank of the system (rank estimates related to the Kneser
Graph KG2k+1,k [17, 19, 20, 8, 9, 11, 12].) If we order the entries of the signature GS lexicographically
by its index S ⊂ [2k], the first non-zero entry (with value +1) occurs at the location where for each
matched pair i < j by a path P we assign 0 to the i-th bit and 1 to the j-th bit. This corresponds
to a balanced parenthesized expression (BPE), i.e., a sequence of length 2k consisting of k 0’s and k
1’s, and any prefix has at least as many 0’s as 1’s (write 0 for “(” and 1 for “)”). This mapping from
D2k to BPE of length 2k is also reversible. By considering the submatrix whose rows are these 1

k+1

(2k
k

)

signatures from D2k and whose columns are indexed by BPE, it follows that these signatures are linearly
independent. At this point the class of 2-admissible signatures is completely understood. They form
the linear span of the signatures from D2k.

Theorem 4.1. The set of 1
k+1

(

2k
k

)

signatures from D2k are 2-realizable, and forms a basis of the solution
space of the set of all 2-admissible signatures of arity 2k.

Our main theorem in this section is to prove that the signatures from D2k are precisely the class of
2-realizable signatures of arity 2k (over char. 0), after a scaling factor.

Theorem 4.2. Up to a scalar factor, every 2-realizable signature is obtainable as a planar tensor product
from (0, 1,−1, 0). For arity 2k, this is precisely the set of 1

k+1

(2k
k

)

signatures from D2k.

Proof Outline: Since the proof of Theorem 4.2 is quite involved, we first give an outline. At the
top level, the theorem is proved by an induction on the arity. Given a 2-realizable signature, we show
that in a certain planar matchgate of this signature, there exist two contiguous nodes (i, i + 1), which
are isolated from the rest. The part on (i, i + 1) makes one copy of (0, 1,−1, 0). Then we can apply
induction on the remaining part.

However the proof for the existence of such two contiguous nodes is complicated. We first prove
this under the condition that G0101···01 6= 0. If this is true, by flipping all odd bits, we can define a new
signature GA which has the property that G1111···11

A 6= 0. Then, from the general theory [1, 3], we know
that GA can be realized by Pfaffians of a (weighted, but not necessarily planar) graph Γ without internal
nodes. This transformation is a key idea of this proof and through which we bypass the difficulty of
having to deal with exponentially many MGI explicitly. After that we deal with edge weights of the
graph Γ rather than the entries of G. This reduces the number of variables from 2n to

(n
2

)

, and the
explicit form of Pfaffian satisfies all MGI implicitly. We translate the conditions of G being 2-admissible
to conditions on GA. Then we apply these conditions on the edge weights in Γ and prove that there is
one isolated edge connecting two contiguous nodes. These are proved in Lemma 4.4 and 4.5.

Then all we need to prove is that G0101···01 6= 0 (Lemma 4.3). This turns out to be at least as
difficult as Lemma 4.4 and 4.5. We prove Lemma 4.3 by an induction (a nested induction on k and then
on i). First we introduce derivative operators ∂j which construct 2-realizable signatures of arity n − 2
from a 2-realizable signature of arity n. After a normalization, we use the operator and the inductive
hypothesis (of the outer induction on k) to prove that at least one of the two values G0101···01, G1001···01

is non-zero. Then we prove (by the inner induction on i) that the case G0101···01 = 0, G1001···01 6= 0 leads
to a contradiction. This proof also uses the method of explicit Pfaffian representation.

Now we proceed to the proof, which is presented in the reverse order of the above outline.

Lemma 4.1. Let G be a 2-realizable signature with arity n = 2k and j ∈ [n]. We define a tensor ∂jG
with arity n − 2 as follows:

(∂jG)i1i2···in−2 = Gi1i2···ij−101ij ij+1···in−2 − Gi1i2···ij−110ij ij+1···in−2 . (6)

Then ∂jG is also 2-realizable.

10



The above expression technically assumes 1 ≤ j ≤ n − 1. For j = n, the two bits with 01 and 10
should occur at bit positions n and 1 respectively. In general realizable signatures should be viewed as
having been realized by a planar matchgate whose indices are viewed cyclically.
Proof: If G is 2-realizable, then it is realizable as a standard signature. By Figure 2, it is clear that
∂jG is also realizable as a standard signature, for all j ∈ [n]. Then, according to Corollary 3.2, we only
need to prove that ∂jG is 2-admissible.

1


1
 1


2
 n


j

1
j
 +


G


Figure 2: This is a proof by picture: ∂jG is realizable. The new node is an internal node.

For notational convenience, we assume j = n−1. If wt(i1i2 · · · in−2) 6= k−1, then wt(i1i2 · · · in−201) =
wt(i1i2 · · · in−210) 6= k. So by (6), we have (∂n−1G)i1i2···in−2 = 0. Now for any T ⊂ [n − 2] and |T | = k,
we have

∑

S⊂T,|S|=k−1

(∂n−1G)S =
∑

S⊂T,|S|=k−1

(

GS∪{n} − GS∪{n−1}
)

= (GT +
∑

S⊂T,|S|=k−1

GS∪{n}) − (GT +
∑

S⊂T,|S|=k−1

GS∪{n−1})

=
∑

S′⊂T∪{n},|S′|=k

GS′ −
∑

S′⊂T∪{n−1},|S′|=k

GS′

= 0 − 0 = 0.

Therefore we know that ∂n−1G is 2-admissible by Theorem 3.1. The same proof works for all ∂jG.

Let G be a non-trivial 2-realizable signature. Consider any A ⊂ [n] where |A| = n/2. We can define
a new signature GA by GS

A = GA⊕S , for all S ⊂ [n], where A⊕S denotes the symmetric difference. The
conditions in Theorem 3.1 for G to be 2-admissible translate to the following conditions for GA:

Lemma 4.2. G is 2-admissible if and only if the following conditions are satisfied: (1) All GS
A = 0

except for those S which satisfy |S ∩ A| = |S ∩ Ac|. (2) For all T1 ⊂ Ac, T2 ⊂ A with |T1| = |T2| + 1,
∑

S⊂T1,|S|=|T1|−1

GS∪T2

A +
∑

T2⊂S⊂A,|S|=|T2|+1

GT1∪S
A = 0. (7)

The second condition, as stated in (7), but for all T1 ⊂ A,T2 ⊂ Ac with |T1| = |T2| + 1, together with
the first condition, also remain necessary and sufficient for G being 2-admissible.

11



This equation (7) should be remembered as follows: Start with any two sets T1 ⊂ Ac and T2 ⊂ A,
(or respectively any two sets T1 ⊂ A and T2 ⊂ Ac) where the cardinality differs by exactly one,
|T1| = |T2| + 1. Then the sum of GX

A in (7) is over all subsets X, where X is obtained from T1 ∪ T2 by
either “shrinking” from T1 or “growing” from T2 within A (or respectively within Ac) by one point.

To see that Theorem 3.1 and Lemma 4.2 are equivalent, we observe the following: as |A| = n/2 and
|A| = |A ∩ S| + |A ∩ Sc|, it follows that |A ⊕ S| = |Ac ∩ S| + |A ∩ Sc| = n/2 iff |A ∩ S| = |Ac ∩ S|.
For (7), write a general T of cardinality |T | = k + 1 as T = (T ∩ Ac) ∪ (T ∩ A), and let T1 = T ∩ Ac,
T2 = T c∩A = A− (T ∩A). Then |T1| = |T2|+1. So the sum

∑

S⊂T,|S|=k GS in Theorem 3.1 is precisely

over those S obtained from T by taking one point off from T1 or from T ∩ A. In terms of
∑

S GS
A, this

is precisely over those obtained from T by taking one point off from T1 or adding one point of A to T2.
The statement when A is exchanged with Ac, i.e., T1 ⊂ A and T2 ⊂ Ac, |T1| = |T2| + 1, is proved

equivalent to 2-admissibility of G by invoking Theorem 3.1 with equation (5) in its condition (3)′.
Now suppose we have some A, where |A| = n/2, and G11···1

A = 1. From (a) the equivalence theorem
between planar matchgate signatures and general matchgate characters and (b) the realizability theorem
of general matchgate characters [1, 3], a planar matchgate signature can be realized by the Pfaffians of
various submatrices of the skew-symmetric matrix of a weighted graph Γ. This graph Γ is not necessarily
planar, but under the condition that G11···1

A = 1, the graph Γ can be chosen to contain no internal nodes,
and for every S ⊂ [n], the entry GS

A is equal to the Pfaffian of the skew-symmetric matrix of Γ after
removing all rows and columns corresponding to S. In our case, Γ has 2k nodes {1, 2, . . . , 2k}, and we
use xi,j to denote the weight of the edge {i, j} for all i, j ∈ [2k]. We also write xj,i = xi,j. (In the
skew-symmetric matrix, for i < j, the entry at (i, j) is xi,j and at (j, i) is −xi,j.)

Assuming G11···1
A = 1, from Lemma 4.2 we have xi,j = 0 when i, j are both in A or both in Ac. Now

we use (7) to obtain more conditions on xi,j’s.
For any i ∈ A, using T1 = Ac and T2 = A − {i} in Lemma 4.2 we get,

∑

j∈Ac

xi,j = −1. (8)

Here the term −1 comes from −G11···1
A , obtained from “growing” T2 at i, and the term xi,j = G

[n]−{i,j}
A

is obtained from “shrinking” T1 at j.
Similarly, by taking T1 = A and T2 = Ac − {i}, we have for any i ∈ Ac,

∑

j∈A

xi,j = −1. (9)

Lemma 4.3. Let G be a non-trivial 2-realizable signature. Then G0101···01 6= 0.

Proof: Let n = 2k be the arity of a non-trivial 2-realizable signature. We will prove this lemma by a
double induction. The outer induction is on k.

The case k = 1 is easy: we have G01 + G10 =
∑

S⊂{1,2},|S|=1 GS = 0. Being non-trivial, and the only

non-zero entries are at half weight, we must have both G01, G10 6= 0.
Inductively we assume the lemma has been proved for all n′ ≤ 2(k − 1), for some k ≥ 2. Let G be a

2-realizable signature with arity 2k. From Lemma 4.1, we know that for all i ∈ [n], ∂iG is a 2-realizable
signature with arity 2(k − 1). If all ∂iG are trivial, for i ∈ [n], then G is symmetric. It follows that for
any |S| = k, if we pick any t 6∈ S, and let T = S ∪ {t}, then GS = 1

k+1

∑

S′⊂T,|S′|=k GS′
= 0. Thus G is

trivial as well. Since we assumed G is non-trivial, we have some j ∈ [n], such that ∂jG is non-trivial.
For notational simplicity we assume j = 1, after a cyclic permutation of the indices. By induction, we
have (∂1G)0101···01 6= 0. By definition, we have (∂1G)0101···01 = G0101···01 − G1001···01. We assume for a
contradiction that G0101···01 = 0, then G1001···01 = −(∂1G)0101···01 6= 0.
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Let A = {2, 3, 5, . . . , 2k − 1}, we have G1111···1
A = G1001···01 6= 0. By a scaling we can assume

G1111···1
A = 1. Then we can define xi,j to give a Pfaffian representation to GS

A as above. Note that

G
[n]−{i,j}
A = xi,j. The assumption G0101···01 = 0 means that x1,2 = G0011···11

A = 0. Now we inductively
prove (the inner induction on i):
Claim: (Assume G0101···01 = 0 and G1001···01 = 1.) For all i ≥ 3, x1,i = x2,i = 0.

The base case is i = 3. The case x2,3 = 0 is obvious, since both 2, 3 ∈ A. Using T1 = Ac − {1} and
T2 = A − {2, 3} in Lemma 4.2, we have

0 = x1,2 + x1,3 +
∑

t∈Ac,t6=1

(x1,2xt,3 − x1,3xt,2 + x1,tx2,3) (10)

= x1,3 −
∑

t∈Ac,t6=1

x1,3x2,t (11)

= x1,3 − x1,3(−1 − x1,2) (12)

= 2x1,3. (13)

Here in (10) the first two terms stem from “growing” T2 with 3 and 2 respectively, and the t-th term in
the summation stems from “shrinking” t from T1. This term is a 4× 4 Pfaffian, where the signs record
the parity of crossovers. In (11) we make use of x1,2 = 0 and x2,3 = 0. In (12) we use (8). It follows
that x1,3 = 0.

Inductively (on i) we assume the Claim has been proved for all [3, i − 1] for some i ≥ 4. There are
two cases: i is even or odd.

If i is even, then x1,i = 0 is obvious, since both 1, i ∈ Ac. We assume for a contradiction that
x2,i 6= 0. Let B = {3, 5, . . . , i − 1} and C = {4, 6, . . . , i − 2} (note that |B| = |C| + 1). For any j ∈ B,
using T1 = Ac − {i} and T2 = A − {2, j} in Lemma 4.2, we have

0 = x2,i + xi,j +
∑

t∈C

(+x2,ixj,t) +
∑

t∈Ac−(C∪{1,i})

(−x2,ixj,t) +
∑

t∈Ac−(C∪{1,i})

(+x2,txj,i) (14)

= x2,i + xi,j + x2,i(1 + xi,j + 2
∑

t∈C

xj,t) + xi,j(−1 − x2,i) (15)

= 2x2,i

(

1 +
∑

t∈C

xj,t

)

. (16)

Here in line (14) the first two terms come from growing T2 with j and 2 respectively. The first sum
comes from shrinking T1 at t ∈ C; here we made use of xt,i = 0 (since both t, i ∈ Ac), and inductively
x2,t = 0. The second and third sums in (14) come from shrinking T1 at t ∈ Ac where t > i. The signs
take into account of crossovers. Note also that in (14) the Pfaffian term corresponding to shrinking T1

at 1 does not appear, because all product terms in this Pfaffian are 0 by inductive hypothesis. From
(14) to (15) we combine the first two sums using (8), and also x1,j = 0 for this j ∈ B by induction. The
third sum of (14) is also handled by (8), and also x2,t = 0 for all t ∈ C ∪ {1}, by induction.

As x2,i 6= 0 by our assumption, we have for any j ∈ B,
∑

t∈C xj,t = −1. Sum over all j ∈ B, we have

∑

j∈B

∑

t∈C

xj,t = −|B|. (17)

Now we fix any j ∈ C. Using T1 = A − {2} and T2 = Ac − {i, j} in Lemma 4.2, we have (with
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similar justifications, such as x2,j = 0 by induction)

0 = x2,i + x2,j +
∑

t∈B

x2,ixt,j −
∑

t∈A−(B∪{2})

x2,ixt,j

= x2,i + x2,i(1 + xj,2 + 2
∑

t∈B

xj,t)

= 2x2,i

(

1 +
∑

t∈B

xj,t

)

.

Since x2,i 6= 0 by assumption, we have for any j ∈ C,
∑

t∈B xj,t = −1. Sum over all j ∈ C, we have

∑

j∈C

∑

t∈B

xj,t = −|C|. (18)

Together with (17) and (18), we have |B| = |C|. This is a contradiction. As a result, x2,i = 0, completing
the inner induction on i for i even.

If i is odd, then x2,i = 0 is obvious, since both 2, i ∈ A. Using T1 = Ac −{1} and T2 = A−{2, i} in
Lemma 4.2, we have

0 = x1,i +
∑

t∈[4,i−1]∩Ac

x1,ix2,t −
∑

t∈Ac−[1,i−1]

x1,ix2,t (19)

= x1,i + 0 − x1,i(−1) (20)

= 2x1,i. (21)

Here the term 0 in (20) refers to the first summation in (19), since x2,t = 0 for all t ∈ [4, i − 1] ∩ Ac by
induction. This fact together with x2,1 = 0 are also used to “complete” the second sum in (19), and
then we use (8) to get to (20).

So it follows that x1,i = 0. This completes the induction on i and proves the Claim.
However, then the Claim gives −1 =

∑

j∈A x1,j = 0. This contradiction completes the proof of the
induction on k, except the remark about the cyclic permutation on the index.

To address the cyclic permutation on the index (when we assumed ∂1G is non-trivial), we use
Corollary 3.1 in the Appendix. Note that a cyclic permutation on the bit pattern 0101 . . . 01 is either
itself or 1010 . . . 10. Thus we have either G0101...01 6= 0 or G1010...10 6= 0. Corollary 3.1 says G0101...01 =
(−1)kG1010...10. This completes the proof of Lemma 4.3.

From Lemma 4.3, we know G0101···01 6= 0. Now for the remainder of this section we define A =
{1, 3, 5, . . . , 2k − 1}, we have G11···1

A 6= 0. By a scaling factor we can assume G11···1
A = 1. Similarly based

on this A we can define a set of weights xi,j in a graph Γ, the Pfaffian minors of its skew-symmetric
matrix define GA, as explained earlier.

From Lemma 4.2, we have xi,j = G
[n]−{i,j}
A = 0 when i, j have the same parity. Now we use (7) to

obtain more information on xi,j.
For any odd i ∈ [2k], we can take T1 = Ac and T2 = A − {i} in Lemma 4.2 and get,

∑

j∈Ac

xi,j = −1. (22)

Similarly we have for any even i ∈ [2k],

∑

j∈A

xi,j = −1. (23)
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Lemma 4.4. If G is non-trivial, then there exists i ∈ [n − 1] such that xi,i+1 6= 0.

Proof: We assume for a contradiction that for all i ∈ [n − 1], xi,i+1 = 0. Under this assumption we
prove that for all i, j ∈ [n], i 6= j, xi,j = 0. (This would imply that GA, and therefore G, is trivial,
arriving at a contradiction.) If i, j have the same parity, we already know that this is true. Now we
prove xi,j = 0 by induction on |i − j| and |i − j| is odd.

The case |i − j| = 1 is the assumption.
Inductively we assume xi,j = 0 has been proved for all |i − j| ≤ 2h − 1, for some h ≥ 1. Now

|i − j| = 2h + 1. We assume i < j, i is odd and j is even, (so in fact j ≥ i + 3). Other cases can be
proved similarly. Using T1 = A − {i} and T2 = Ac − {i + 1, j} in Lemma 4.2, we have

0 = xi,i+1 + xi,j +
∑

t∈A,t6=i

xi,i+1xt,j +
∑

t∈[i+2,j−1]∩A

xi,jxt,i+1 −
∑

t∈A−[i,j−1]

xi,jxt,i+1. (24)

In this expression, the first two terms come from growing Ac at j and i+1. The other three sums account
for the Pfaffian term by shrinking t from A. The signs take into account of the parity of crossovers.

By assumption xi,i+1 = 0, the first sum is zero.
When t ∈ [i + 2, j − 1], we have |t − (i + 1)| ≤ j − 1 − (i + 1) = 2h − 1. So by induction the second

sum is also zero.
We can use these two observations to “complete” the third sum, and then from (23) we get

∑

t∈A−[i,j−1]

xi,jxi+1,t = xi,j

∑

t∈A−[i,j−1]

xi+1,t = xi,j

∑

t∈A

xi+1,t = −xi,j.

Back to (24), we have
0 = xi,j − (−xi,j) = 2xi,j.

This completes the induction and also completes the proof.
By this Lemma 4.4, after a cyclic permutation, we may assume x1,2 6= 0, for notational simplicity.

Under this notation, we have the statements lemma 4.5.

Lemma 4.5. After a cyclic permutation, we may assume x1,2 6= 0. Then, for all i ≥ 3, x1,i = x2,i = 0.

Proof: We prove this by induction on i. For the case i = 3, x1,3 = 0 is obvious since they both belong
to A. Using T1 = Ac − {2} and T2 = A − {1, 3} in Lemma 4.2, we have

0 = x1,2 + x2,3 +
∑

t∈Ac,t6=2

x1,2x3,t +
∑

t∈Ac,t6=2

x1,tx3,2

= x1,2 + x2,3 + x1,2(−1 − x3,2) + x3,2(−1 − x1,2)

= −2x1,2x3,2.

Since x1,2 6= 0, we have x2,3 = 0.
Inductively we assume the lemma has been proved for all j ∈ [3, i − 1] for some i ≥ 4, i.e., x1,j =

x2,j = 0. There are two cases: i is even or odd.
If i is even, then x2,i = 0 is obvious. Using T1 = A − {1} and T2 = Ac − {2, i} in Lemma 4.2, we

have

0 = x1,2 + x1,i +
∑

t∈A,t6=1

x1,2xt,i +
∑

t∈[3,i−1]∩A

x1,ixt,2 −
∑

t∈A−[1,i−1]

x1,ixt,2

= x1,2 + x1,i + x1,2(−1 − x1,i) + 0 − x1,i(−1 − x1,2)

= 2x1,i,
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where we used inductive hypothesis x2,t = 0 for all t ∈ [3, i− 1]∩A to handle both the second and third
sum. It follows that x1,i = 0.

If i is odd, then x1,i = 0 is obvious. Using T1 = Ac − {2} and T2 = A − {1, i} in Lemma 4.2, by a
similar argument we have

0 = x1,2 + x2,i +
∑

t∈Ac,t6=2

x1,2xi,t −
∑

t∈[4,i−1]∩Ac

x2,ix1,t +
∑

t∈Ac−[2,i−1]

x2,ix1,t

= x1,2 + x2,i + x1,2(−1 − x2,i) − 0 + x2,i(−1 − x1,2)

= −2x1,2x2,i.

Since x1,2 6= 0, we have x2,i = 0.
This completes the proof.

Proof of Theorem 4.2: We prove this theorem by induction on k.
The case k = 1 is obvious.
Inductively we assume the theorem has been proved for signatures with arity 2k− 2 for some k ≥ 2.

Now G is a non-trivial 2-realizable signature with arity 2k; by Lemma 4.3 we can define GA as above,
where A = {1, 3, . . . , 2k − 1}. After a cyclic permutation we may assume the statement of Lemma 4.5
holds. Then by (22), we know x1,2 = −1. The edge (1, 2) has no crossover with any other edge. We may
apply the general method to transform characters (Pfaffians) to signatures of planar matchgates [1, 3];
but in this case, the two vertices 1 and 2 are isolated from the rest. We can then extend every odd
node by a new edge of weight 1 to come from GA back to G. The part of the two vertices 1 and 2,
now consists of a path P of length three, remains isolated. P has three nodes 1′, 1, 2, and two edges
(1′, 1), (1, 2), with weights +1 and −1 respectively. This part is exactly one copy of (0, 1,−1, 0), and
has no crossovers with the rest. It follows that G is a tensor product of (0, 1,−1, 0) with some G′ of
arity n − 2 which is also 2-realizable. Induction now completes the proof.

5 1-Realizability

Section 4 gives a complete characterization of 2-realizable signatures. In this section, we study 1-
realizable signatures. As discussed in Section 2, d-realizability for d > 0 is key to finding interesting
holographic algorithms, since they result from a non-empty intersection of the signature varieties of both
recognizers and generators. We present a structural characterization theorem for 1-realizable signatures.
They are also restrictive, but they are much richer than 2-realizable signatures, and we will use them
in the Section 7 to give polynomial time algorithms for some interesting new problems.

First we prove the following key lemma. This lemma plays an important role in the proof of
Theorem 5.1. Moreover, this lemma reveals a key property of the set Bp

gen(G), which is useful not only
for the study of 1-realizable signatures, but also for the study of signatures in general.

Lemma 5.1. For any G, if T1 =

(

1 α
1 y1

)

∈ Bp
gen(G) and T2 =

(

1 α
1 y2

)

∈ Bp
gen(G) (for y1 6= y2), then

for all y ∈ C − {α},
(

1 α
1 y

)

∈ Bp
gen(G).

Proof: If G is trivial, then the lemma is obvious. Now we assume G is non-trivial.
Let Bp

gen(G) = V0 ∪ V1 ⊂ M, and V0 (resp. V1) be the set defined by all the parity requirements
for being an odd (resp. even) matchgate. Since G is non-trivial, we have V0 ∩ V1 = ∅. Then there are
four cases, depending on whether T1 and T2 are in V0 or V1. Here we will present the proof for the case
where both T1, T2 ∈ V0 and the case for T1 ∈ V0 and T2 ∈ V1. The other two cases are similar to these
two cases.
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Let T1, T2 ∈ V0. We recall the parity polynomial equation (1) for V0 (for |T | even):

〈

n
⊗

σ=1

[1, x[σ∈T ]], G

〉

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyj
∑

A ⊂ Tc, |A| = i
B ⊂ T, |B| = j

GA∪B = 0. (25)

For any T ⊂ [n] and |T | even, let

fT (y) =
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

αiyj
∑

A ⊂ Tc, |A| = i
B ⊂ T, |B| = j

GA∪B .

Then for all even T , deg(fT ) ≤ |T | and fT (y1) = fT (y2) = 0. We note that y1 6= α and y2 6= α. We
want to prove that fT is identically 0 for all even T .

We prove this by induction on |T | ≥ 0 and |T | is even. The case |T | = 0 is obvious.
Inductively we assume this has been proved for all |T | ≤ 2(k − 1), for some k ≥ 1. Now |T | = 2k.

First we prove that α is a root of fT (y) with multiplicity at least 2k− 1. We prove this by showing that

f
[r]
T (α) = 0 for 0 ≤ r ≤ 2(k − 1), where f [0] = fT and f

[r]
T = d

dy (f
[r−1]
T ) is the r-th derivative. We have

f
[r]
T (α) =

∑

0≤i≤n−|T |
r ≤ j ≤ |T |

r!

(

j

r

)

αiαj−r
∑

A ⊂ Tc, |A| = i
B ⊂ T, |B| = j

GA∪B = r!
n−r
∑

ℓ=0

αℓ
∑

|S|=ℓ+r

(|T ∩ S|
r

)

GS . (26)

Note that the second equality follows from considering each GS , where |S ∩T | = j ≥ r and |S ∩T c| = i.
If r is even, we consider any T ′ where |T ′| = r. Since r ≤ 2(k − 1), by induction, we have fT ′ ≡ 0.

Then f
[r]
T ′ ≡ 0 and f

[r]
T ′ (α) = 0. On the other hand, just as in (26), we have

f
[r]
T ′ (α) = r!

n−r
∑

i=0

αi
∑

|S|=i+r

(|T ′ ∩ S|
r

)

GS = r!
n−r
∑

i=0

αi
∑

|S|=i+r,S⊃T ′

GS ,

where the second equality is due to |T ′| = r, which implies that in the inner sum over S, the only
non-zero terms are those S ⊃ T ′.

Summing over all T ′ ⊂ T where |T ′| = r, we get:

0 =
∑

T ′⊂T,|T ′|=r

f
[r]
T ′ (α)

= r!

n−r
∑

i=0

αi
∑

T ′⊂T,|T ′|=r

∑

|S|=i+r,S⊃T ′

GS

= r!

n−r
∑

i=0

αi
∑

|S|=i+r

(|T ∩ S|
r

)

GS = f
[r]
T (α).

The third equality is by considering how many times each GS appears, where |S∩T | ≥ r and |S| = i+r.
If r is odd, we consider any T ′ where |T ′| = r + 1. Since r + 1 ≤ 2(k − 1), by induction, we have

fT ′ ≡ 0. Then f
[r]
T ′ (α) = 0. On the other hand, similarly with (26), we have

f
[r]
T ′ (α) = r!

n−r
∑

i=0

αi
∑

|S|=i+r

(|T ′ ∩ S|
r

)

GS = r!

n−r
∑

i=0

αi





∑

|S|=i+r,T ′⊂S

(r + 1)GS +
∑

t∈T ′

∑

|S|=i+r,T ′\S={t}

GS



 .
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Summing over all T ′ ⊂ T where |T ′| = r + 1, we can show that the following quadruple sum, which

is 0 to start with, finally simplifies to (|T | − r)f
[r]
T (α).

0 =
∑

T ′⊂T,|T ′|=r+1

f
[r]
T ′ (α)

= r!
∑

T ′⊂T,|T ′|=r+1

n−r
∑

i=0

αi(
∑

|S|=i+r,T ′⊂S

(r + 1)GS +
∑

t∈T ′

∑

|S|=i+r,T ′\S={t}

GS)

= r!

n−r
∑

i=0

αi
∑

T ′⊂T,|T ′|=r+1

(
∑

|S|=i+r,T ′⊂S

(r + 1)GS +
∑

t∈T ′

∑

|S|=i+r,T ′\S={t}

GS)

= r!
n−r
∑

i=0

αi
∑

|S|=i+r

GS(

(|T ∩ S|
r + 1

)

(r + 1) +

(|T ∩ S|
r

)(|T \ S|
1

)

)

= r!
n−r
∑

i=0

αi
∑

|S|=i+r

GS

(|T ∩ S|
r

)

(|T ∩ S| − r + |T \ S|)

= (|T | − r)f
[r]
T (α).

Since |T | − r > 0, we have f
[r]
T (α) = 0.

To sum up, we proved that f
[r]
T (α) = 0 for r = 0, 1, . . . , 2(k − 1). So α is a root of multiplicity at

least 2k − 1. The degree of fT is at most 2k, and we know fT has at least two more roots y1 and y2.
Therefore fT must be identically 0. This completes the proof of case 1.

For case 2, we can extend our definition of fT (y) for odd T . Then fT (y1) = 0 for even T ; fT (y2) = 0
for odd T . Similarly we prove all the fT (y) are trivial. We also prove this by induction on |T | but for
all |T |. The case |T | = 0 is obvious. Inductively we assume this has been proved for all |T | ≤ k − 1,
for some k ≥ 1. Now |T | = k. First we prove that α is at least a k-th order multiple root of fT (y).

We prove this by showing that f
[r]
T (α) = 0 for r = 0, 1, · · · , k − 1. The proof is similar with the above

proof when r is even. On the other hand, deg(fT (y)) = k, so fT (y) can not have any other root if it
is non-trivial. But we know fT (y) has at least one more root y1 or y2 depending on the parity of |T |.
This contradiction completes the proof.

This lemma says that, for any fixed x ∈ C, either for all y or for at most one y ∈ C− {x}, we have
(

1 x
1 y

)

∈ Bp
gen(G).

In the following we give some characterization theorems for 1-admissibility and 1-realizability of
signatures. It turns out that, for a general 1-admissible signature, after omitting isolated points in
Bp

gen(G), one can show that Bp
gen(G) is the solution for a single polynomial F (x, y) on M. Using

Lemma 5.1, we can show that this F (x, y) must be multilinear. More precisely we have the following
characterization theorem of 1-admissibility. (Since we are talking about 1-admissibility or 1-realizability,
in this section we will omit isolated points for both Bp

gen(G) or Bgen(G).)

Theorem 5.1. If G is 1-admissible, then there exist three constants a, b, c such that

Bp
gen(G) =

{[(

n0

n1

)

,

(

p0

p1

)]

∈ M
∣

∣

∣

∣

an0n1 + b(n0p1 + n1p0) + cp0p1 = 0

}

.

Also for any three constants a, b, c, there exists a signature G such that the above equation holds.
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Proof: We first note that for any given a, b, c, the existence of G can be fulfilled by the symmetric
signature (G00, G01, G10, G11)T = (a, b, b, c)T of arity 2. This is called a symmetric signature since the
entries only depend on the Hamming weight of the index. In symmetric signature notation the signature
is written as [a, b, c], which is the form they are stated in [5].

If a = b = c = 0, then clearly the signature [a, b, c] is 2-admissible, and Bp
gen(G) = M. Suppose the

given a, b, c are not all 0. In the paper [5] the following lemma was proved

Lemma

Bgen([x0, x1, x2]) =

{[(

n0

n1

)

,

(

p0

p1

)]

∈ M
∣

∣

∣

∣

x0n
2

0
+ 2x1n0p0 + x2p

2

0
= 0, x0n

2

1
+ 2x1n1p1 + x2p

2

1
= 0

or x0n0n1 + x1(n0p1 + n1p0) + x2p0p1 = 0

}

.

The equations simply express the following: After the basis transformation the signature is the
standard signature Γb1b2 of a planar matchgate, and thus either its even-indexed entries Γ00 = Γ11 = 0,
or its odd-indexed entries Γ01 = Γ10 = 0. This is exactly the parity requirement; for standard signatures
of arity 2, the matchgate identities are trivially satisfied. Note that the equation x0n0n1 + x1(n0p1 +
n1p0) + x2p0p1 = 0 is exactly the one given here for [a, b, c]. The other alternative is a pair of non-
trivial equations on (n0, p0) and on (n1, p1) separately. They are non-trivial because a, b, c are not all 0.
Considering the equivalence relation defining M this alternative gives only isolated points, and thus can
be omitted. The displayed equation for Bgen([x0, x1, x2]) indicates that the signature is 1-admissible.

Now assume we are given a 1-admissible signature G. If G is in fact 2-admissible, we take a = b =
c = 0, then there is no constraint on the bases. Now we assume G is not 2-admissible. In the following

proof, we use the dehomogenized coordinates

(

1 x
1 y

)

∈ M. The exceptional cases are similar. If there

are two bases

(

1 α
1 y1

)

∈ Bp
gen(G) and

(

1 α
1 y2

)

∈ Bp
gen(G) (y1 6= y2), by Lemma 5.1, we have

{(

1 α
1 y

)

∈ M
∣

∣

∣

∣

y ∈ C − {α}
}

⊂ Bp
gen(G). (27)

Now we prove that

Bp
gen(G) =

{(

1 α
1 y

)

∈ M
∣

∣

∣

∣

y ∈ C− {α}
}

.

If not, we assume for a contradiction that

(

1 u
1 v

)

∈ Bp
gen(G) and u, v 6= α (recall the equivalence relation

on M). Under this assumption, we prove that G is 2-admissible. For any basis T =

(

1 x0

1 y0

)

∈ M, if

x0 = α or y0 = α then we know T ∈ Bp
gen(G). Now we assume x0, y0 6= α. Since

(

1 u
1 v

)

∈ Bp
gen(G)

and

(

1 u
1 α

)

∈ Bp
gen(G) by (27), it follows from Lemma 5.1 that for any t 6= u, we have

(

1 u
1 t

)

∈ Bp
gen(G) (28)

So if x0 = u or y0 = u, we have T ∈ Bp
gen(G). Similarly if x0 = v or y0 = v, we also have

T ∈ Bp
gen(G). Now we further assume x0, y0 6∈ {u, v}. Then we have

(

1 u
1 y0

)

∈ Bp
gen(G) by (28) and

(

1 α
1 y0

)

∈ Bp
gen(G) by (27). By Lemma 5.1, we have

(

1 x0

1 y0

)

∈ Bp
gen(G). Since this is true for any
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T =

(

1 x0

1 y0

)

∈ M, we conclude that G is 2-admissible, which we assumed not to be. Therefore if G is

not 2-admissible and if

(

1 α
1 y1

)

∈ Bp
gen(G) and

(

1 α
1 y2

)

∈ Bp
gen(G) (for y1 6= y2), then

Bp
gen(G) =

{(

1 α
1 y

)

∈ M
∣

∣

∣

∣

y ∈ C− {α}
}

.

We can set a = α2, b = −α, c = 1 in the theorem.
Now we can assume Bp

gen(G) does not contain two bases of the above form. More precisely, for a

basis

(

1 x
1 y

)

∈ M, whenever we fix an x, there exists at most one y, such that

(

1 x
1 y

)

∈ Bp
gen(G).

This is also true for any fixed y. On the other hand, if we disregard at most finitely many points, it can
be shown that, to be 1-admissible, there exists a single polynomial F (x, y) ∈ C[x, y] such that

Bp
gen =

{(

1 x
1 y

)

∈ M
∣

∣

∣

∣

F (x, y) = 0

}

.

Furthermore we will assume F (x, y) is of minimal degree. In particular, we may assume F (x, y) is
square-free.

W.o.l.o.g., assume d = degy F ≥ degx F . Clearly d ≥ 1. Otherwise, F (x, y) is a constant, which is
absurd. Write

F (x, y) = fd(x)yd + fd−1(x)yd−1 + · · · + f0(x), (29)

where fi(x) ∈ C[x], deg fi ≤ d, for all 0 ≤ i ≤ d, and fd is not identically zero.
For any x0 such that fd(x0) 6= 0, we can write

F (x0, y) = fd(x0)

(

yd +
fd−1(x0)

fd(x0)
yd−1 + · · · + f0(x0)

fd(x0)

)

. (30)

This polynomial in y has d roots in C counting multiplicity, but does not have two distinct roots.
Therefore, there exists α ∈ C such that

F (x0, y) = fd(x0)(y + α)d. (31)

If we compare the expressions in (30) and (31), we get for all 1 ≤ k ≤ d,

(

d

k

)

αk =
fd−k(x0)

fd(x0)
.

It follows that
(

d

k

)

(

fd−1(x0)
(d
1

)

fd(x0)

)k

=
fd−k(x0)

fd(x0)
,

for 1 ≤ k ≤ d.
Writing in terms of polynomials, for all 1 ≤ k ≤ d,

(

d

k

)

fk
d−1(x)

dk
= fd−k(x)fk−1

d (x), (32)

holds for infinitely many x ∈ C, and therefore holds identically, as polynomials in C[x].
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It follows that

fd−1
d (x) · F (x, y) =

(

fd(x)y +
fd−1(x)

d

)d

, (33)

in C[x, y].
Assume for a contradiction that d ≥ 2. Take k = 2 in (32), we get fd(x)|fd−1(x) in C[x]. Also

for all k ≥ 1, fd−k(x) =
(d

k)
dk fd−1(x)

(

fd−1(x)
fd(x)

)k−1
, and therefore fd−1(x)|fd−k(x) in C[x]. In particular

fd(x)|fd−k(x) for all k ≥ 1, which implies that fd(x)|F (x, y) in C[x, y]. If deg fd(x) ≥ 1, then for a root
x of fd, there would have been infinitely many zero of F (x, y). Since this is not the case, we must have
deg fd(x) = 0, i.e., fd(x) is a non-zero constant c ∈ C.

It follows that

F (x, y) = c

(

y +
fd−1(x)

cd

)d

.

But F (x, y) is square-free in C[x, y], it follows that d = 1 after all.
So back to (33) we obtain

F (x, y) = f1(x)y + f0(x),

and deg f1,deg f0 ≤ 1. Therefore F (x, y) is of the form a + bx + b′y + cxy. By symmetry on x and y in
M, we get b = b′.

Now we can prove the characterization theorem for 1-realizability.

Theorem 5.2. If G is 1-realizable, then there exist three constants a, b, c such that

Bgen(G) =

{[(

n0

n1

)

,

(

p0

p1

)]

∈ M
∣

∣

∣

∣

an0n1 + b(n0p1 + n1p0) + cp0p1 = 0

}

.

Also for any three constants a, b, c, there exists a signature G such that the above equation holds.

Proof: Again, we first remark that for a given a, b, c, the existence of G can be fulfilled by symmetric
signatures, by the same proof in Theorem 5.1.

Since G is 1-realizable, G is also 1-admissible. There are two cases: if G is in fact 2-admissible, then
as a 1-realizable signature, G is at least realizable on some bases. It follows from Corollary 3.2, G is
indeed a 2-realizable signature. In this case we take a = b = c = 0.

If G is 1-admissible but not 2-admissible, then in Theorem 5.1 we must have a non-zero triple
(a, b, c), defining Bp

gen(G) as a 1-dimensional variety. We claim that, for any T ∈ Bp
gen(G), all the MGI

of T⊗nG must vanish. Otherwise Bgen(G) cannot have dimension 1. Since all MGI are satisfied for any
T ∈ Bp

gen(G), we get Bgen(G) = Bp
gen(G). Theorem 5.2 now follows from Theorem 5.1.

6 Some Families of 1-Realizable Signatures

We have now developed the theory sufficiently to the point where we can say the main problem of
1-realizability is that given a, b, c, find all the signatures G such that

Bgen(G) =

{[(

n0

n1

)

,

(

p0

p1

)]

∈ M
∣

∣

∣

∣

an0n1 + b(n0p1 + n1p0) + cp0p1 = 0

}

.

For convenience, we introduce a new notation:

Definition 6.1. For a set of bases B ⊂ M, we define Gen(B) (resp. Genp(B)) as the set of generators,
which are realizable (resp. admissible) on the set of bases in B.
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If a = b = c = 0, then this is Gen(M), which means that G is 2-realizable. In Section 4, we have
given a complete characterization in this case.

In this section, we study this problem for some other families of a, b and c. We define sets of bases
B2 and B1 corresponding to the basis b2 and b1 in Valiant’s paper [25]. It’s not only because b2 ∈ B2
and b1 ∈ B1(0), but they are also similar in spirit.

6.1 The Bases Set B2

First we consider the case a = c = 0 and b 6= 0. In terms of homogenized coordinates, we consider

B2 =

{[(

n0

n1

)

,

(

p0

p1

)]

∈ M
∣

∣

∣

∣

n0p1 + n1p0 = 0

}

,

and try to characterize the set Gen(B2). For an arbitrary basis in B2, we will use dehomogenized

coordinates

(

1 x
1 −x

)

for notational simplicity. (If there are exceptional cases (“at infinity”), they can

be verified directly; or one can invoke general theorems in algebraic geometry.)
The plan is to first give a characterization of Genp(B2). Then we apply the set of all MGI to them

to get Gen(B2). The proof will be quite involved.

Consider an arbitrary

(

1 x
1 −x

)

∈ B2, where non-singularity implies that x 6= 0. When we replace y

with −x in (1), all the polynomials should be identically zero. This is the iff condition for G ∈ Genp(B2).
The coefficient of xi is

∑

|S|=i

(−1)|S∩T |GS = 0. (34)

When T ranges over all even subsets or all odd subsets according to the parity of matchgate, we have
a linear system for GS . (The even (resp. odd) sets correspond to admissibility as odd (resp. even)
matchgate signatures.) Thus we get n+1 linear equation systems according to the weight of S; the i-th
linear system, 0 ≤ i ≤ n, is over the set of variables GS with |S| = i, where the equations are indexed
by subsets T with even cardinality. (The alternative case with all odd subsets is similar.) We define
the coefficient matrix of the system as M , which is indexed by T and S. Then we have the following
calculation of MTM :

(MTM)S1,S2
=

∑

|T | is even

(−1)|S1∩T |(−1)|S2∩T | =
∑

|T | is even

(−1)|(S1⊕S2)∩T |.

There are three cases: If S1 ⊕ S2 = ∅, we have
∑

|T | is even

(−1)|(S1⊕S2)∩T | = 2n−1. (35)

If S1 ⊕ S2 = [n], we have also
∑

|T | is even

(−1)|(S1⊕S2)∩T | = 2n−1. (36)

If S1 ⊕ S2 6= ∅ and S1 ⊕ S2 6= [n], we can take two elements a, b such that a ∈ S1 ⊕ S2 and b 6∈ S1 ⊕ S2.
Then we can give a perfect matching of all the even subsets T by matching T and T ⊕ {a, b} together.
For each pair of T and T ⊕ {a, b}, one contributes a +1 and the other contributes a −1. They cancel
out by each other, so overall we have

∑

|T | is even

(−1)|(S1⊕S2)∩T | = 0. (37)
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Now for the i-th system, for i = |S| 6= n/2, the case S1 ⊕ S2 = [n] does not occur. So the matrix
MTM is 2n−1I, which means that GS = 0, for all |S| 6= n/2.

If |S| = n/2, the n/2-th linear system gives GS = −GSc
. For the even matchgate case (|T | is odd),

it gives GS = GSc
. This is also sufficient. So we have the following theorem, which completely solves

the problem of 1-admissibility for B2:

Theorem 6.1. For a signature G with arity n, G ∈ Genp(B2) iff there exists ǫ = ±1 such that GS = 0
for all |S| 6= n/2 and GS = ǫGSc

for all |S| = n/2.

Now we move on to the more difficult question of realizability. Realizability is more difficult than
admissibility because it is controlled by the set of Matchgate Identities (MGI). These MGI are not only
exponential in size, but also non-linear. We will apply all the MGI to Genp(B2) to get a characterization
for Gen(B2).

For a β =

(

1 x
1 −x

)

∈ Bp
gen(G), let G = β⊗nG. The problem is to characterize when G is realizable

by an even matchgate as a standard signature. (The case for odd matchgate is similar.) From Theo-
rem 6.1, we know that GS = 0 for all |S| 6= n/2, and GS = GSc

for all |S| = n/2. (For odd matchgates
it would be GS = −GSc

; we omit it here.) By the basis transformation G = β⊗nG, we have (T is even):

GT = xn/2
∑

|S|=n/2

(−1)|T∩S|GS .

In the above equation, when substituted in any MGI, xn/2 is just a global scaling factor. So we can just
let x = 1, without changing its realizability. This gives us

GT =
∑

|S|=n/2

(−1)|T∩S|GS . (38)

(Note that this is just Valiant’s basis b2; however the results we derive here hold for 1-realizability.)
We consider an arbitrary MGI of G: for a pattern set A (|A| is odd), position set P (|P | is even),

we have

0 =

|P |
∑

i=1

(−1)iGA⊕{pi}GA⊕P⊕{pi}

=

|P |
∑

i=1

(−1)i
∑

|S1|=n/2

(−1)|(A⊕{pi})∩S1|GS1

∑

|S2|=n/2

(−1)(|A⊕P⊕{pi})∩S2|GS2

=
∑

|S1|=|S2|=n/2

GS1GS2

|P |
∑

i=1

(−1)i(−1)|(A⊕{pi})∩S1|(−1)(|A⊕P⊕{pi})∩S2|.

Over all odd A and even P these are also sufficient conditions. Note that for even matchgates, both A
and A ⊕ P must be odd (so that the single bit flips A ⊕ {pi} and A ⊕ P ⊕ {pi} are even).

Because the sets A⊕{pi} and A⊕P ⊕{pi} are both even, the coefficients of the four terms GS1GS2 ,
GS1GSc

2 , GSc
1GS2 and GSc

1GSc
2 are all equal. Therefore we can combine these four terms (and divide by
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4) and have

0 =
∑

|S1|=|S2|=n/2,1∈S1∩S2

GS1GS2

|P |
∑

i=1

(−1)i(−1)|(A⊕{pi})∩S1|(−1)(|A⊕P⊕{pi})∩S2|

=
∑

|S1|=|S2|=n/2,1∈S1∩S2

GS1GS2(−1)|A∩(S1⊕S2)|(−1)|P∩S2|

|P |
∑

i=1

(−1)i(−1)|{pi}∩(S1⊕S2)|.

Here we identify a set X ⊂ [n] with its characteristic vector in our notation. We call an X a single
run iff it is empty or it consists of a contiguous segment of 0’s and then 1’s, in a circular fashion. We
have the following theorem.

Theorem 6.2. For a signature G with arity n, G ∈ Gen(B2) iff there exists ǫ = ±1 such that

1. GS = 0 for all |S| 6= n/2;

2. GS = ǫGSc
for all |S| = n/2; and

3. for any pair (S1, S2), if GS1GS2 6= 0, then S1 ⊕ S2 is a single run.

Proof: First we denote X = S1 ⊕ S2 and use S instead of S2 in the above MGI (we note that X is an
even set and 1 6∈ X):

∑

|X| is even ,16∈X

(−1)|A∩X|
∑

|S|=|S⊕X|=n/2,1∈S

GSGS⊕X(−1)|P∩S|

|P |
∑

i=1

(−1)i(−1)|{pi}∩X| = 0. (39)

The above equation is valid for all odd sets A and even sets P . We define a set of valuables Y (X,P ) as

Y (X,P ) =
∑

|S|=|S⊕X|=n/2,1∈S

GSGS⊕X(−1)|P∩S|

|P |
∑

i=1

(−1)i(−1)|{pi}∩X|.

We fix an arbitrary even P . Then let A go through all the odd sets, we have a linear system for the
valuables Y (X,P ) from (39), where the variables are indexed by even X not containing 1, and the
equations are indexed by odd A. The coefficient matrix of this system is ((−1)|A∩X|). This matrix has
full rank, which can be proved similarly as in (35) and (37). Note that for two X1 and X2, we have
X1 ⊕ X2 6= [n], because 1 6∈ X1 ⊕ X2.

Therefore we have for any even P and any even X with 1 6∈ X,

∑

|S|=|S⊕X|=n/2,1∈S

GSGS⊕X(−1)|P∩S|

|P |
∑

i=1

(−1)i(−1)|{pi}∩X| = 0. (40)

Now we will fix an X with 1 6∈ X, and view (40) as a linear system on the variables GSGS⊕X , where
the equations are indexed by all even P .

First we show that if X is a single run, then (40) always holds. If P ∩ X is even, X being a single
run and is even, it follows that there are an even number of elements in both P ∩ X and P ∩ Xc. A
moment reflection shows that

|P |
∑

i=1

(−1)i(−1)|{pi}∩X| = 0.
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If P ∩X is odd, then by symmetry of S to S ⊕ X , the combined coefficient of GSGS⊕X = GS⊕XGS

is (−1)|P∩S| + (−1)|P∩(S⊕X)| = (−1)|P∩S|[1 + (−1)|P∩X|]. When P ∩ X is odd, this is 0. So we proved
“if” part of this theorem.

Now we prove that the conditions in Theorem 6.2 are also necessary. We will show that in order to
satisfy all the MGI, for any even X with 1 6∈ X, if X is not a single run, then for all S, GSGS⊕X = 0.
This is more difficult. In the end we will show that a certain exponential sized matrix has mutually
orthogonal columns, a matrix which we can’t even give an explicit formula for its dimension.

Fix an even X with 1 6∈ X. We assume X is not a single run. Then we can pick a particular P with
4 elements, such that p1 < p2 < p3 < p4, and p2, p4 ∈ X and p1, p3 6∈ X. This can be done greedily,
e.g., pick p1 = 1 (we know that 1 6∈ X). Then run from 1, 2, 3, . . . till the first i ∈ X. That is our p2.
Since X is not a single run, by our definition X 6= ∅ in particular. So p2 exists. Then the first one after
that which is not in X is p3. Being not a single run, such a p3 must exist. Then there must be another
one after p3, which belongs to X, again by X being not a single run. This is our p4 ∈ X.

Now for this particular P , we can see that

|P |
∑

i=1

(−1)i(−1)|{pi}∩X| 6= 0.

For a fixed X, which is an even subset not containing 1, and is not a single run, consider the following
linear equation system:

For all even P such that
∑|P |

i=1(−1)i(−1)|{pi}∩X| 6= 0, and P ∩ X is also even,
∑

|S|=|S⊕X|=n/2,1∈S

(−1)|P∩S|GSGS⊕X = 0. (41)

Here the variables are all “GSGS⊕X”, where |S| = |S ⊕ X| = n/2, 1 ∈ S. Note that, as shown above,
if P ∩ X is odd, then the combined coefficients of GSGS⊕X = GS⊕XGS is zero. (That proof does not
depend on X being a single run or not.) For P∩X is even, the coefficients of GSGS⊕X = GS⊕XGS are the
same, which can be combined. Consequently in (41) we combine the coefficients of GSGS⊕X = GS⊕XGS ,
but only consider for P ∩ X even. After this identification, the equation system in (41) (for a fixed X
satisfying the conditions) has equations indexed by the P ’s satisfying its stated conditions, has variables
GSGS⊕X after the identification S with S ⊕ X. They range over unordered pairs {S, S ⊕ X} obtained

by taking 1, and exactly half the elements of X and exactly n
2 − |X|

2 − 1 elements of [n]− {1} −X. We
will not bother with a closed-form formula for the number of equations indexed by the P ’s; nevertheless,
we will show that columns of the matrix of the linear system (41) are mutually orthogonal!

In the following, when we say, consider two distinct S and S′ in this equation system, we have the
following property: S ⊕ S′ is not any of the four sets: ∅, [n],X,Xc. (Not equal to ∅ because they are
distinct; not equal to [n] because both contain 1; not equal to X because of the above identification;
and finally not equal to Xc because 1 6∈ S ⊕ S′ and yet 1 ∈ Xc.)

Now for the linear equation system (41), we want to show the columns of distinct S and S′ are
orthogonal.

Note: we will not use explicitly below the fact that X is not a single run to show orthogonality. Not
being a single run was used to show that the column coefficient vectors in (40) are non-zero (for these
vectors the entries are indexed by P as P runs through all the appropriate sets, the set of vectors are
indexed by various S). In going from (40) to (41), we have already taken that into account.

We had proved earlier that for X not a single run, there is some P which makes the sum

|P |
∑

i=1

(−1)i(−1)|{pi}∩X| 6= 0.
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For a fixed X, in the linear equation system (40) the above quantity does not depend on variables
GSGS⊕X indexed by S. We can collect those equations (a non-empty subset of equations indexed by
P ) in (40) where the above quantity is non-zero, and factor out this sum from each such equation.
This gives us (41). Of course in (40) those equations (indexed by P ) where the above sum is zero is
trivially satisfied. This means that the orthogonality of the coefficient vectors in (41) implies that all
GSGS⊕X = 0 in (41) and therefore in (40).

(For notational simplicity, we may consider the equality GSGS⊕X = 0 above really for all S, and
not worry about S being half weight or S ⊕ X being half weight. As otherwise they are obvious.)

Now we wish to prove any two “distinct” column vectors for S and S′ are orthogonal. Let’s consider

the condition
∑|P |

i=1(−1)i(−1)|{pi}∩X| 6= 0 more carefully. Lay out the elements 1, 2, 3, . . . , n, and lay
out the elements of X in that order from left to right. It breaks [n] into runs. Say 1, 2, . . . , a 6∈ X,
a+ 1, a+ 2, . . . , b ∈ X, b+ 1, b+ 2, . . . , c 6∈ X, etc. We call these “in” segments or “out” segments. Now
consider going through elements of P , also from 1 to n. Put down − and + alternately under each such
element of P , from p1 to the last P -element. These record the factor (−1)i in the sum. In each “in”
and “out” segment of X, P will have either an even or an odd number of elements. Since |P | is even,
there must be an even number of segments (“in” or “out”) which have an odd number of P -elements. A
moment reflection will convince us that whenever we have a segment which contains an even number of
P -elements, we can ignore that segment. It does not affect the subsequent ± labelling. And for either
an “in” segment or an “out” segment of X, the contribution of these even number of P -elements to the

sum
∑|P |

i=1(−1)i(−1)|{pi}∩X| is 0. So we can imagine a sequence of “even-segment removal” operations as
follows: Whenever we see an “even segment” (either an “in” or an “out” segment of X which contains
an even number of elements of P ), we can remove it, and then merge the neighboring segments. We
can continue this process until no more “even segment” is left. When this process ends, we have an
even number of “odd segments” left. Now the key observation is that: There is nothing left (that even

number = 0) iff that original sum
∑|P |

i=1(−1)i(−1)|{pi}∩X| = 0. This is because every “odd segment”
that is left at the end contributes exactly −1 to the sum.

Now consider two “distinct” S and S′, and consider the inner product of their column vectors.
Denote by D = S ⊕ S′. Then D 6= ∅, [n],X,Xc. The inner product is

∑

P

(−1)P∩S(−1)P∩S′
=
∑

P

(−1)P∩D,

where P runs over all even subsets of [n] with P ∩ X even, and satisfying
∑|P |

i=1(−1)i(−1)|{pi}∩X| 6= 0.
Now we design an involution (order 2 permutation) with no fixed point on the set of all such P ’s:

Since D 6= ∅, [n],X,Xc, as we examine all elements from 1 to n, there must be two elements next to each
other, both in X or both out of X, and one is in D and the other one is out of D. (This is because: as
D 6= ∅, [n], there must be “changes” in membership of D as we go from 1 to n. And if all such changes
coincide with boundaries of “segments” (these are the change boundaries) of X, then either D = X
or D = Xc, but both are ruled out.) Thus there are i and i + 1 which are in the same segment of X
(either “in” segment or “out” segment) such that |D ∩ {i, i + 1}| = 1. We use this {i, i + 1} to define
our involution on the set of P ’s: P 7→ P ′ = P ⊕ {i, i + 1}.

Note that P is even iff P ′ is even, and also, P ∩ X is even iff P ′ ∩ X is even. Moreover, in the
“eliminating the even segment” process described above both P and P ′ will yield the same answer as
to 0 or non-zero. Thus the involution is an involution on the set of even P , with P ∩ X even, and such

that
∑|P |

i=1(−1)i(−1)|{pi}∩X| 6= 0.
Finally in the sum

∑

P (−1)|P∩D|, the term (−1)|P∩D| and (−1)|P
′∩D| cancel, since

(−1)|P
′∩D| = (−1)|P∩D|(−1)|{i,i+1}∩D| = −(−1)|P∩D|.
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This completes the proof.

When n = 4, the theorem gives Corollary 6.1, which is used in Section 7.

Corollary 6.1. For any a, b ∈ C, the following generator

Gα =











a, α ∈ {0101, 1010},
b, α ∈ {0011, 1100},
0, otherwise.

is realizable on bases

(

1 x
1 −x

)

for all x 6= 0.

6.2 The Bases Set B1

This time we consider the case b2 = ac. In the dehomogenized coordinates, the equation

a +
√

ac(x + y) + cxy,

factors into (
√

a +
√

cx)(
√

a +
√

cy). After taking into account of symmetry of the equivalence relation
on M, we have the following set:

B1(α) =

{[(

1
n1

)

,

(

α
p1

)]

∈ M
∣

∣

∣

∣

n1, p1 ∈ F

}

.

We will try to characterize the set Gen(B1(α)).
The treatment here is different from that of B2. We do not go through Genp(B1(α)) but deal with

Gen(B1(α)) directly. Our presentation here will be sketchy; more results will be presented in the future.
The main purpose here is to present an alternative family from B2.

We take b1 =

(

1 α
1 α + 1

)

∈ B1(α). If G ∈ Gen(B1(α)), then by definition G = b1⊗nG is realizable

as a standard signature. Since b1 is invertible, this transformation is a bijection. Our characterization
theorem will be described by G rather than G.

Take any basis β =

(

1 α
n1 p1

)

∈ B1(α). By definition, β⊗nG is realizable. If we replace G by

(b1−1)⊗nG, then we have

β⊗nG =

(

1 α
n1 p1

)⊗n(
α + 1 −α
−1 1

)⊗n

G =

(

1 0
n1(1 + α) − p1 p1 − αn1

)⊗n

G.

Note that the pair (n1(1 + α) − p1, p1 − αn1) can be arbitrary. The above calculation shows that
G ∈ Gen(B1(α)) iff G ∈ Gen(B1(0)). As a result, we only need to study Gen(B1(0)), and to simplify
notations, we use G instead of G.

Now take an arbitrary basis β =

(

1 0
1 y

)

∈ B1(0). Substituting x by 0 in (1), we have

∑

S⊂T,|S|=j

GS = 0, (42)

where T ranges over all even sets or all odd sets depending on the parity of the matchgate. Similar to
the proof of 2-admissible signatures [5], this implies that GS = 0 for all |S| < n/2.

To sum up, we have the following theorem:
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Theorem 6.3. For a generator G with arity n, G ∈ Gen(B1(0)) iff the following three conditions are
satisfied:

1. G is realizable as a standard signature.

2. For all odd (or even) sets T ,
∑

S⊂T,|S|=j GS = 0.

3. GS = 0 for all |S| < n/2.

(Actually condition 3 is implied by condition 2. We list it here to be explicit.) In future work we
plan to present explicit constructions of generators of this family.

7 Some Holographic Algorithms

Problem 1

Input: Given a set S of n points on a plane, where no three points are colinear. Also given a set of
edges (straight line segments) between some pairs of points in S. We assume no 3 edges intersect at a
point (6∈ S). Every point is incident to either 2 or 3 edges.
Output: The number of 2-colorings for the edges which satisfy the following conditions: (1) for every
point, the incident edges are not monochromatic; (2) when two edges cross over each other, they have
different colors.
Solution: For every point with 2 incident edges, we use a generator for (0, 1, 1, 0)T (for Not-Equal);
for every point with 3 incident edges, we use a generator for (0, 1, 1, 1, 1, 1, 1, 0)T (for Not-All-Equal); for
every point (not from S) where two edges intersect, we use a generator with arity 4 and the following
signature

Gα =

{

1, α ∈ {0101, 1010},
0, otherwise;

and for every segment of an edge separated by points which are either the end points of the edge (i.e.,
from S) or the intersection points of edges, we use a recognizer for (1, 0, 0, 1)T (for Equality). Then it
can be seen that the Holant is exactly the number of valid colorings. The unsymmetric generator of
arity 4 makes sure that the color of the edge is transmitted at intersection points while only allowing
different colored edges to meet at these intersection points.

Because all the signatures involved are realizable (on b2 which belongs to B2 by setting x = 1 [25];
see Section 6 for details), we have a polynomial time algorithm for this problem. We give a formal
description of the holographic algorithm here.
Algorithm:

Step 1: Construct a bipartite graph G(V1, V2) from the input as follows:

• V1 contains all the points in S and all the points where two lines intersect;

• V2 contains every segment of a line segment separated by points which are either the end points
of the edge (i.e., from S) or the intersection points of line segments;

• there is an edge between a point in V1 (either points from S or intersection points of lines) and a
line segment in V2 iff this point is one of the ends of the line segment.

(Note that G is a planar bipartite graph.)

Step 2: Construct a graph G′ by replacing each vertex in G by a corresponding matchgate as follows:
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• each degree 2 vertex in V1 is replaced by a generator matchgate G2 with arity 2 (see Figure 5 );

• each degree 3 vertex in V1 is replaced by a generator matchgate G3 with arity 3 (see Figure 3 );

• each degree 4 vertex in V1 (intersection point) is replaced by a generator matchgate G4 with arity
4 (see Figure 4 );

• each vertex in V2 is replaced by a recognizer matchgate R with arity 2 (see Figure 6)

(Note that G′ is a still a planar graph.)
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Figure 3: Under basis b2, this generator matchgate has the signature (0, 1, 1, 1, 1, 1, 1, 0)T . It makes
sure that the three incident edges of every degree 3 point in S are not monochromatic.
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Figure 4: Under the basis b2, this generator matchgate has the signature G, where G0101 = G1010 = 1
and Gα = 0 for other α. It makes sure that the color of the edge is transmitted at intersection points
while only allowing different colored edges to meet at these intersection points.

Step 3: Use the FKT algorithm to compute PerfMatch(G′) and output the result.

29



2


2


1


1


2


Figure 5: Under the basis b2, this
generator matchgate has the signature
(0, 1, 1, 0)T . It makes sure that the two
incident edges of every degree 2 point in
S have different colors.
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Figure 6: Under the basis b2, this
recognizer matchgate has the signature
(1, 0, 0, 1). It makes sure that each seg-
ment has a consist coloring.

Problem 2

We extend Problem 1 by allowing curves (not necessarily line segments) between two points of S. We
assume that every such curve between two points of S does not go through additional points of S. Also
any two curves can share at most a polynomial number (in n) of points not in S, and no three curves
share such a point. Here “sharing a point” means that they may cross each other or be tangent at the
point.
Solution: We use the same signatures as in Problem 1. The additional situation is that two curves
may be tangent with each other rather than cross over at a point. (Note that just pulling the tangent
curves apart does not guarantee that they are of different colors.) At such a point, we use a generator
with arity 4 and the following signature

Gα =

{

1, α ∈ {0110, 1001},
0, otherwise.

Since this signature is also realizable on b2, we have a polynomial time algorithms for this problem.

Problem 3

Some graphs may not have any valid colorings satisfying all the requirements. Now we allow edges to
change colors on different segments. More precisely, for each curve, we have a orientation. And at any
point where two curves meet (either transversal or tangent to each other), we still require them to have
different colors, but now we allow them to either both keep their colors or both change their colors.
Other requirements are the same as above. However, we still want as few such changes as possible, and
the problem is to find the minimal number of changes such that at least one valid coloring exists.
Solution: Signatures for original points and segments of curves remain the same. For every cross
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point, we use a generator with arity 4 and the following signature

Gα =











1, α ∈ {0101, 1010},
x, α ∈ {0110, 1001},
0, otherwise.

And for every tangent point, we use a generator with arity 4 and the following signature

Gα =











x, α ∈ {0101, 1010},
1, α ∈ {0110, 1001},
0, otherwise.

Since they are all realizable on b2, we have a polynomial time algorithm to compute the Holant. The
Holant is a polynomial of x. The degree of this polynomial is bounded by nO(1), and the coefficients are
at most nO(1) bits. The coefficient of xk is the number of valid colorings with exactly k changes of color.
By the interpolation method, we can evaluate the Holant a polynomial number of times with different
values of x, and compute the polynomial, and therefore get the degree of the smallest non-zero term.

We note that these problems are not a priori about planar graphs due to intersecting edges. The
unsymmetric signatures (and their planar matchgates) created the necessary planarity.
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