Where Replacement Algorithms Fail: a Thorough Analysis

Georgios Keramidas

Industrial Systems Institute
Patras, Greece

keramidas @isi.gr

ABSTRACT

Cache placement and eviction, especially at the last level of the
memory hierarchy, have received a flurry of research activity
recently. The common perception that LRU is a well-performing
algorithm has recently been discredited: many researchers have
turned their attention to more sophisticated algorithms that are able
to substantially improve cache performance. In this paper, we
thoroughly examine four recently proposed replacement policies:
the Dynamic Insertion Policy (DIP), the Shepherd Cache (SC), the
MLP-aware replacement, and the Instruction-based Reuse
Distance Prediction (IbRDP) replacement policy. Our
experimental studies show that there is a great inconsistency
between the number of misses saved by each mechanism and the
resulting improvement in IPC. This is particularly true for the DIP
and the SC approach and indeed attest to the fact that these
algorithms do not take into account the relative cost of each miss
(i.e., whether it is an isolated or parallel miss). Their aim is to
blindly lower the total number of misses. On the other hand, the
MLP-aware replacement, although miss-cost-aware, cannot handle
efficiently workloads which display LRU-hostile behavior and
thus fails to reduce execution time even when there are ample
opportunities to reduce cache misses. The IbRDP replacement
policy shows both the ability to deal with non-LRU access patterns
and MLP friendliness leading to greater consistency between the
reduction of misses and the corresponding increase in performance
thus the largest IPC improvement among the studied mechanisms.
So, what are the appropriate characteristics of a replacement
algorithm targeting the lower levels of the memory hierarchy? In
this paper we are shedding some light on this question.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles— Cache memories

General Terms
Algorithms, Management, Performance, Design.

Keywords
Replacement/placement Policies/Algorithms,
Caches, Memory System, Profiling.

Last-Level

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CF’10, May 17-19, 2010, Bertinoro, Italy.

Copyright 2010 ACM 978-1-4503-0044-5/10/05...$10.00.

Pavlos Petoumenos
Department of Electrical and
Computrer Engineering
University of Patras, Greece

ppetoumenos @ ece.upatras.gr

Stefanos Kaxiras

Department of Electrical and
Computrer Engineering
University of Patras, Greece

kaxiras @ ece.upatras.gr

1. INTRODUCTION

The rapidly increasing imbalance between the relative speeds of
processors and main memory is the predominant problem that
computer architects are trying to mitigate. Sophisticated
techniques like out-of-order execution, non-blocking caches, run-
ahead execution, and Kkiloprocessors have been extensively
explored, in order to hide to the extent possible the long latencies
of the slow DRAMs by increasing the off-chip Memory-Level
Parallelism (MLP) [4]. Compared to such schemes, classical
techniques like cache replacement/placement have received little
attention until recently, perhaps due to the implicit assumption that
LRU is a well performing algorithm and there is not much margin
of improvement for the replacement decisions. This may be the
case for the L1 caches, but not for the lower members of the
memory hierarchy (L2/L3 caches). LRU replacement algorithm
tries to accommodate temporal locality by keeping recently used
lines away from replacement, in hope that when they are reused,
they will still be in the cache. Two reasons work against LRU in
L2 caches.

L2 caches are usually highly associative, since they are not
latency sensitive. The high associativity dictates that when a new
item is placed into the cache, it has to travel all the way down the
LRU stack until it becomes the LRU candidate for replacement.
This means that lines with very large reuse distances (which are
probably misses) will still occupy useful space in the cache
without contributing to the hit rate. Ideally, these lines should be
quickly replaced by lines with short temporal reuse patterns, even
if such a decision requires a circumvention of the time ordering
introduced by the LRU algorithm. The second reason which
reveals that LRU is not ideal for L2 caches is the filtering effect of
L1 caches. L2 caches are hidden behind the primary level caches
and they are accessed only upon an L1 miss. This reality often
inverts the temporal reuse patterns of the addresses as they appear
in the L2. Consider for example a cache line which exhibits a burst
of temporal reuses due to spatial locality, especially with current
cache block sizes of 64 or 128 bytes. However, such a bursty
pattern typically manifests at the L1 cache only. To the L2 cache,
the cache line does not appear to have a temporal reuse. In other
words, L1 filters the apparent behavior of the cache line.

The reasons mentioned above pertain to the temporal locality or
the “recency” of the cache items and they actually represent just
one part of the story that a replacement algorithm should take into
account. The rest of the story has to do with the relative cost of the
misses. Misses may occur either in isolation or in parallel with
other misses. Isolated misses hurt performance the most because
the processor is stalled to service just a single miss. In the case of
parallel misses waiting to be serviced, the processor’s idle time is
divided among all those concurrent misses. The notion of servicing
multiple outstanding cache misses in parallel is called Memory

Level Parallelism [2,4,9] and should not be confused with the
notion of criticality [25] which actually is defined by how much
the instruction stream processing continues in the face of a read
miss.

In response to all those reasons, many recent approaches prove
that more sophisticated algorithms, compared to the monolithic
LRU, are able to substantially improve system performance. The
Dynamic Insertion Policy (DIP) [22], the Shepherd Cache (SC)
[24], the MLP-aware replacement [23], and the Instruction based
Reuse Distance Prediction (IbRDP) replacement policy [19] are
four recent approaches with very different characteristics and
different mentality, but with the same target: increase the real
estate of the L2 cache by optimizing its placement/replacement
functionality.

Despite the generally good results of all these approaches, an
obfuscation in the field still exists. First of all, there is a lack of a
tentative comparison of those algorithms using exactly the same
evaluation framework. Trace vs. cycle accurate simulations,
different processor and/or memory configurations, and different
benchmark’s configurations (number of skipping instructions
and/or different compilation parameters) does not allow someone
to extract safe conclusions about the actual strength of the
aforementioned policies. To deal with this issue, in this paper we
offer a thorough evaluation of the four algorithms under the same
framework (both system configuration and benchmark selection).

This experimental analysis enables us to deepen our
understanding of those algorithms as well as to discover their
pitfalls and their advantages. For example, both SC and DIP are
carefully designed to predict/adapt to the temporal characteristic of
the cache items (or the data reuse): SC attempts to emulate/mimic
the Belady’s optimal algorithm, while DIP works in a statistical
manner and tries to prevent thrashing for benchmarks whose
working set is greater than the cache size. But we observe that
while the SC and the DIP approach successfully manage to lower
the number of misses for many of the examined benchmarks, there
is also a significant inconsistency between the number of saved
misses and the resulting improvement in the benchmark’s speedup.
But, what is the source of this inconsistency? Studying these
algorithms in more detail, we identify the culprit: Memory Level
Parallelism (MLP) [9,23]. Indeed, SC and DIP are only optimized
to blindly lower the number of misses without taking into account
the cost of each miss (whether the miss is isolated or parallel).
Therefore, they can only tackle one side of the problem.

In response to this Qurechi et al. exploit the MLP property to
enhance the performance improvements resulting from the
replacement decisions [23]. The target of the MLP-aware
replacement policy is simple: data that do not exhibit MLP are
given preference for staying into the cache over data that do
exhibit MLP. This is because accessing the former type of data is
much more costly than accessing the latter. However, our
experience with this replacement algorithm reveals that its benefits
are pronounced only for benchmarks with regular temporal access
patterns. In workloads with non-regular access patterns, MLP-
aware replacement has a neutral or even a pathological behavior
even if there are ample opportunities to reduce the number of
misses. This inefficiency comes from the fact that the MLP-aware
replacement is not equipped with an explicit mechanism able to
orchestrate the replacement decisions according to the temporal
locality of the blocks that are inserted into the cache.

Having analyzed the pitfalls as well as the advantages of the
three aforementioned mechanisms, we are now able to formulate

two distinct characteristics that an ideal replacement/placement

algorithms should have. Those are:

« Ability to adapt its replacement/placement decisions based on
the temporal behavior of the memory references.

e Ability to assign finite costs to the replacement candidates
based on their MLP properties and adjust the
replacement/placement strategy accordingly.

Finally, in this work we study another replacement algorithm,
called Instruction based Reuse Distance Prediction or IbRDP
[12,19]. According to our experimental results IbDRDP achieves the
largest IPC improvement among the studied algorithms. IbRDP
provides an explicit mechanism to directly predict the temporal
locality (or the reuse distances) of the memory accesses. This
mechanism is triggered by the access pattern of the instructions
(PCs) which access the cache lines and it outputs with high
accuracy when a specific cache line is going to be reused in the
future. Further analyzing this algorithm, we discover that it shows
both ability to deal with non-LRU access patterns and a great
consistency between the reduction of misses and the corresponding
increase in performance (MLP-friendliness).

The main contributions of this work are the following:

e We thoroughly evaluate four recently proposed
replacement/placement policies (Shepherd Cache [24],
Dynamic Insertion Policy [22], MLP-aware replacement [23],
and the Instruction based Reuse Distance Prediction [19] for
all SPEC2000 benchmarks and for various L2 sizes. To the
best of our knowledge this is the first work that provides a
quantitative comparison of those recently proposed
replacement/placement algorithms.

e We provide a critical view on those replacement algorithms
and we further analyze their advantages and disadvantages.

. Based on the above observations, we formulate the exact
characteristics that an ideal replacement algorithm should
take into account. Those are the temporal patterns of the
memory references and the MLP-cost of the misses saved by
the examined algorithm.

e We provide analytical profile results for all the interesting
benchmarks of the SPEC2000 suite based on the above
criteria. More specifically, we compute the distribution of the
MLP-cost for all the benchmarks, while we use the notion of
the stack distance to quantify the temporal characteristics of
the benchmarks.

The remainder of this paper is organized as follows: In
Section 2, we briefly discuss related work and we delve more into
details about the four replacement algorithms that we examine in
our paper. Section 3 describes the simulation methodology and
Section 4 presents a thorough profiling analysis of the temporal
locality and the distribution of the MLP-cost for each benchmark.
Section 5 presents our experimental results in terms of IPC

1 Do not confuse the term of ideal replacement with the OPT
Belady’s algorithm [1] which dictates as the optimal candidate
for replacement, the one that is going to be accessed farthest in
the future. The OPT algorithm is only optimized for predicting
the temporal behavior of the memory blocks ignoring their MLP-
cost, and as it is proven in [23], it does not the provide the best
results in terms of IPC.

Table 1. Parameters for the four Policies

Policy Parameters
LRU 16-way L2 caches
DIP 64 leader sets (32+32), epsilon=1/32
Shepherd Cache SC-4, MC-12
MLP-aware SBAR implementation (1/32 leader sets), lamda=4
IbRDP (with and without Selective Caching) Predictor: 256 entries organized in 8 ways, 2-bits confidence
counters.

improvement and read misses reduction. Section 6 discusses some
special cases which are able to reveal the pros and cons of each
algorithm. Finally, Section 7 offers our conclusions.

2. BACKGROUND AND RELATED WORK

In this work, we provide a thorough comparison of four recently
proposed algorithms (SC, DIP, MLP-aware, and IbRDP) and we
claim that the success of a replacement/placement mechanism
depends on its ability to both shape its behavior according to the
workload’s temporal characteristics and victimize the cache items
associated with low MLP-cost. We will briefly overview related
work in each of these directions.

MLP aware schemes. One of the first works in the area was by
Chou et al. [2]. This paper formally defines MLP as “the number
of useful long latency off-chip accesses outstanding when there is
at least one such access outstanding.” The authors also analyze the
effectiveness of various techniques like out-of-order execution,
runahead execution and value prediction on increasing MLP. Their
results indicate that those techniques have a substantial impact on
improving MLP. The real impact of MLP was exposed by
Karkhanis and Smith [9] in their attempt to provide a first order
model of a superscalar core. Their work provides a fundamental
insight into how important is the parallelism of L2 misses in
shaping the performance of out-of-order execution. Eyerman and
Ecckhout [3] exploit MLP to optimize the fetch policies for
Simultaneous Multi-Threading (SMT) processors and they show
that there is a strong correlation between MLP and the instructions
(PC) that miss in the L2 cache. Petoumenos et al. [20] expoit this
correlation in order to drive a processor window resizing
mechanism, which lowers the power consumption of the processor
core with minimal impact in performance, by protecting MLP.
Cache Management. Early work studied the limits of cache
replacement algorithms using program traces. The first attempt
was by Belady [1] who formulated the area by comparing random
replacement algorithms, LRU and an optimal algorithm that looks
into the future. Since then, many researchers proposed schemes
aiming to reduce the cache miss rate by providing better
replacement decisions.

In the area of L1 cache management, many techniques
categorize, and handle accordingly, the memory references based
on their temporal and spatial characteristics [6,8,10,18]. Jeong and
Dubois introduce the idea of cost sensitive replacement algorithms
[6]. The authors proposed different variations of LRU by assigning
finite costs between load and store misses. Another class of
replacement techniques [13,26] typically involves the exploitation
of the generational behavior of a cache block from the moment that
a specific line is inserted into the cache, until the time that is
evicted —inspired by the cache decay methodology [11].

Most of the work in the context of the L2 caches focuses either
in the identification of dead lines (e.g. last touch prediction), or in
providing cache bypassing schemes [7,14,16,21,27,28]. However,
since in this paper our main target is to systematically compare
four recently proposed replacement/placement algorithms, we will
continue by offering a short description for each of them. The
configuration parameters of the four algorithms are shown in
Table 1.

Dynamic Insertion Policy (DIP) [22]. This approach presented
by Qurechi et al. tries to prevent cache blocks that are not expected
to exhibit temporal locality from staying in the cache for long. This
is done by dynamically adapting the position of the LRU stack at
which a cache block is inserted. In order to be able to adapt to
different applications/program phases, the DIP approach utilizes a
technique called Set Dueling. According to this technique, a small
portion of the cache sets, called leader sets, implements either the
traditional LRU or the Bimodal Insertion Policy (BIP). BIP
probabilistically inserts the incoming cache lines either in the
MRU or in the LRU stack position. The policy (LRU or BIP) that
has fewer misses in the leader sets is the one that determines which
replacement should be applied in the remaining (follower) sets of
the cache.
Shepherd Cache (SC) [24]. The SC is an interesting approach
that attempts to emulate the Belady’s optimal algorithm [1] for a
conventional cache. This technique proposes to replace the large,
highly associative cache with a cache with lower associativity,
Main Cache (MC) and use a secondary cache, Shepherd Cache
(SC), to approximate the Belady’s optimal algorithm in the MC.
The SC approach works in the following way: upon a cache miss,
the requested line is initially buffered in the SC, and while it
resides there, it gathers information about potential replacement
candidates. So when the line is transferred in the MC, it replaces
the line which is expected to be used farthest in the future. The
authors prove that this gathered information facilitates in making a
replacement decision that approximates the Belady’s OPT fairly
well [1].
MLP-aware Replacement Policy [23]. Minimizing the absolute
number of misses, as it is proposed by Belady [1], does not
necessarily have a proportionally positive impact on performance.
This is because not all the misses are equally costly. Some misses
occur in isolation, whereas some misses occur in parallel with
other misses. Isolated misses hurt performance the most because
the processor is stalled to service just a single miss. In case of
parallel misses that are waiting to be serviced, the processor idle
time is divided among all those concurrent misses.

In the MLP-aware replacement policy, the authors try to exploit
the MLP properties of the cache lines in order to enhance the
performance improvements resulting from the replacement

decisions. According to this scheme, every time a block is inserted
into the cache, the MLP-cost of this cache block is computed. The
authors show that for most of the benchmarks the currently
computed MLP-cost of a block can be used as a predictor of the
next MLP-cost of the same block. This cost metric (associated
with an coefficient factor called lamda) is used as an input to a cost
function which eventually drives the replacement policy of the
cache (called LIN policy). However, the authors show that a
hybrid replacement mechanism, able to revert back to LRU, is
greatly needed in order to deal with cases where LIN hurts
performance. Therefore, they use a sampling technique (called
SBAR similar to Set Dueling approach proposed in [22]), to
choose the best performing policy (between LIN and LRU). The
number of the required leader sets, as well as the lamda value used
in rest of this paper, is given in Table 1.

Instruction based Reuse Distance Prediction Replacement
Policy (IbRDP) [19]. In this work, the authors argue that it is
possible to fully quantify the temporal characteristics of the cache
blocks at run-time by predicting the cache block reuse distances
(measured in intervening cache accesses), based on the access
pattern of the instructions (PCs) that touch the cache block. They
carefully design the organization as well as the functionality of the
instruction based reuse distance predictors (similar to branch
predictors) in order to achieve a good trade-off between the
implementation cost and the performance improvement. They
show that dedicating a small amount of hardware to these
predictors affords high accuracy in predicting when a memory
reference is going to be accessed in the future. Having reuse-
distance information for each cache block in a set, allows to
approximate optimal replacement decision by looking into the
future (it is a way to “see” the future). However, lack of prediction
information (not all the cache accesses are predictable) requires to
look into the past too. As a result, a hybrid replacement algorithm
is proposed which automatically reverts to LRU when it is
required. Finally, the authors propose an extension of the IbRDP
algorithm in which it is possible to victimize the currently fetched
block by not caching it at all in the L2 (Selective Caching). This
happens when the currently fetched cache block has a prediction
for a reuse distance that exceeds the expected lifetime of the blocks
residing already in the set. We refer to the latter algorithm as
IbRDP+SC (Selective Caching).

3. EXPERIMENTAL METHODOLOGY

Our experiments were performed using a detailed cycle accurate
simulator that supports a dynamic superscalar processor model.
Our baseline processor is a 4-way out-of-order processor with an
80-entry instruction window. We simulate a 32K, 64 byte block, 4
way, dual-ported, 2 cycle L1 data cache and a 16-way, 13 cycle
unified L2 cache of various sizes. The main memory has a 500
cycles latency and is able to deliver 16 bytes every 8 cycles. We
use various L2 cache sizes in order to have a good understanding
about the L2 cache behavior.

We run all the applications of the SPEC2K benchmarks, but in
the interest of clarity we only show results for 15 benchmarks
which have more than 1 miss per kilo-instructions (MPKI).
Benchmarks with less than 1 MPKI have low cache requirements
and do not benefit much from advanced replacement algorithms.
The simulations were performed after skipping the initialization
phase for all benchmarks. We simulate 200M instructions after
skipping 3 billion instructions for ammp, 2B for mcf, twolf and vpr,

and 1B for the rest of the benchmarks. Finally, in order to take a
more representative picture of the actual strength of the
replacement algorithms, we warm up the caches for 100M
instructions before we start collecting statistics.

4. ANALYZING THE TEMPORAL AND
THE MLP CHARACTERISTICS

The premise of this work is to identify the appropriate
characteristics of a replacement algorithm targeting the lower
levels of the memory hierarchy (L2/L3 caches). Our experience
with the four recently proposed replacement/replacement policies
(DIP, SC, MLP-aware, and IbRDP) reveals that the success of a
policy depends both on its ability to shape its behavior according
to the workload temporal characteristics as well as on its ability to
victimize cache items with high MLP-cost. Hence, in order to be
able to analyze how the four replacement algorithms perform for a
specific benchmark (Section 5), we first need to uncover the
temporal and MLP characteristics of the benchmarks.

Figure 1 presents the profiles we produced for the baseline LRU
case and for the 15 benchmarks that we consider in this work. Due
to lack of space, for every benchmark we present only two graphs.
The first graph (shown at left) depicts the distribution of the MLP-
related cost measured in a 512K (left part of the graph) and 1M
cache (right part of the graph). The MLP-costs are measured
according to the methodology presented in [23]. The y-axis of this
graph corresponds to the measured number of misses (absolute
value), while the x-axis corresponds to the quantized MLP-cost,
which we produce in our work by dividing absolute costs by 64.
Thus, the leftmost bar (in each part of the graph) represents the
number of misses that had a MLP-cost between 0 and 64 (fully
parallel misses), while the rightmost bar depicts the number of the
isolated misses.

The second graph for each benchmark aims at capturing the
temporal behavior of the benchmarks and represents the stack
distance profiles [15,17] measured in a 512K cache (stack
distances profiles for the other cache sizes are just an
upscaled/downscaled version of the presented graph). Stack
distance analysis is a powerful basis to understand the temporal
characteristics of the applications [15,17]. Each stack distance
profile collects the histogram of accesses to different LRU stack
positions in the cache. For example, if there is an access to a line in

the nf" MRU position, the n counter (™ number shown in the x-
axis of the graph) is incremented. The stack distance profiles
presented in Figure 1 illustrate both the distances of the hits (light
blue bars) and misses (dark red bars). We should note that in all
graphs presented in Figure 1, we exclude the compulsory misses
which can not be avoided by improving the replacement decisions.
As we see in Figure 1, different benchmarks exhibit different
characteristics. This is particularly true for the MLP-costs in
contrast to the stack distance profiles which rather show a more
straightforward distribution over the benchmarks. Before
analyzing the graphs in more details, we should mention that rarely
two benchmarks display the same characteristics in both profiles
rendering the job of a replacement algorithm an uphill battle.
Considering the MLP-cost distributions, our results show that
there is clear non-uniformity in MLP-cost which signifies that this
characteristic can be exploited by a replacement algorithm
(replicating the work in [23]). In more detail, for 9 out of 15
benchmarks, the number of isolated misses is far less than 15% of

1200000
1000000
800000
600000
400000
200000
0

3500000
3000000
2500000
2000000
1500000
1000000

500000

0
0 1‘2‘3‘4‘5‘6‘7‘ 0 1‘2‘3‘4‘5‘6‘7
512KB 1MB

1000000
800000
600000
400000
200000

25000
20000
15000
10000

5000

14000000
12000000
10000000
8000000
6000000
4000000
2000000

160000
140000
120000
100000
80000
60000
40000
20008

5000000
4000000
3000000
2000000
1000000

600000
500000
400000
300000
200000
100000

30% ammp
25%
20%
15%
10%
5%
0%
OO © N © I O ©O «
Hmﬁ'LDCOCD::
70% apsi
60% -
50% -
40% -
30% -
20%
10% -
0%
© N 0o ¥ O ©O
HL’")VLD(BCD:
50% facerec
40% -
30% -
20% -
10% -
0% -
O © NN © ¢ O O
ﬁmvomm:
100% gcc
80%
60%
40%
20%
0%
O © N O ¥ O ©O «
Hmvwoocn:
25% mcf
20%
15%
10%
5%
0%
O © N O ¥ O O o
HL")#(DCOO?:
60% parser
50%
40%
30%
20%
10%
0%
O © NN O ¥ O ©O «
ﬁmwoooc»:

75%

50%

25%

0%

>128 >128 >128 >128 >128

>128

o
] w
z z
] 3

16
32
48
64
80
96

112

<
©
=

>128

>128

3500000
3000000
2500000
2000000
1500000
1000000

500000

25000000
20000000
15000000
10000000

5000000

0 -
JJJSMJGH dl&%h&M7
512KB iMB

3500000
3000000
2500000
2000000
1500000
1000000
500000
0

ofaloafalsll7| Joa 2lalalslsl

512KB

imMB

1200000
1000000
800000
600000
400000
200000
0

2000000 -
1500000 -

6886000 -

500000 -

250000 -

700000 -
600000 -
500000 -
400000 +
300000 +
200000 -
100000 -

O l

50% -
40%
30% A
20% -
10% A
0% -

50% -
40%
30% -
20% -
10% -
0% -

0

60%
50%
40%
30%
20%
10%

0%

0

100%
80%
60%
40%
20%

16

16

32

32

32

48

48

48

64

64

64

80

80

80

applu

96
112
>128

art

96
112
>128

galgel

96
112
>128

lucas

0% +rrrrr T

o ©o o
- ™

50%
40%
30%
20%
10%

0%

50%
40%
30%
20%
10%

0%

0

@
<

S © ©
© o O

N
—
—

>128

32

32

32

48

48

48

64]

64

64

80]

96 7
112
>128 1

sixtrack

80

80

96
112
>128

twolf

96
112
>128

Figure 1. MLP-cost and stack distances profiles for 15 SPEC2K benchmarks with more than one MPKI.

Norm. Exec. time

Norm. Read Misses

121

Norm. Exec. time

Norm. Read Misses

swim mgrid applu gcc galgel art facerec lucas

mgrid applu gcc galgel art facerec lucas

256KB

parser sixtrack apsi vpr twolf mcf ammp avg

512KB

parser sixtrack apsi vpr twolf mcf ammp avg

HEDIP BSC EMLP-Aware [JIbRDP [JIbRDP+SC

Figure 2. Normalized execution time and normalized reduction of misses results for the DIP, SC, MLP-aware, IbRDP, and
IbRDP+SC policies and for 256K (top) and 512K (bottom) L2 cache sizes.

the overall misses indicating a high memory level parallelism. A
clear exception is parser with 61% (512K) and 75% (1M) of its
misses being isolated misses. Other benchmarks with a noticeable
number of isolated misses are sixtrack (26% and 65% in the 512K
and 1M cache respectively), gcc (46% and 46%), vpr (38% and
55%), twolf (37% and 54%), and ammp (43% and 34%).
Incidentally, in these benchmarks (except gcc), there is a great
difference in the percentage of the isolated misses in the 512K and
the 1M cache. On the other end, benchmarks like applu, art,
galgel, mgrid, swim and aspi have a high percentage of parallel
misses. For these cases, a replacement algorithm targeting to lower
the MLP-cost of the misses is likely to fail, since there are not
many opportunities for improvement.

For the stack distance profiles, the distributions illustrated are
much more clear. There are two distinct categories in this case.
Benchmarks for which the stack distances of misses are distributed
right after the cache limit (stack distance 16), and benchmarks for
which the total number of misses is stacked at very large distances
(> 128). While there is little one can do to deal with the misses
belonging to the latter category, there is ample room for
improvement in the first category. Benchmarks like ammp, galgel,
and apsi can easily benefit by a better replacement algorithm since
a great number of misses will turn into hits. However, as it is
further explained in Section 6, for algorithms that work in a

statistical fashion, like DIP, the important issue is how uniformly
the number of misses is spread out across the stack distances.

Having described the MLP and locality characteristics of the
applications, let us now present our experimental results of the
quantitative comparison of the four replacement/placement
mechanisms considered in this paper.

5. COMPARING THE FOUR POLICIES

To the best of our knowledge this is the first work that provides
a tentative comparison of the four recently proposed best
performing replacement/placement mechanisms. One common
obstacle in implementing previously proposed mechanisms is how
one can validate the implementation. This was not a problem for
the DIP, since we just ported the code distributed by the authors
[22] in our simulation framework. For the rest of the mechanisms,
we carefully implemented the required structures by reverse
engineering the corresponding articles. In all cases, our results
match the results provided initially by the authors by a factor of
70-80%. We consider this as safe limit given that i) different
numbers of skipping instructions were used for many benchmarks
and ii) we chose a processor/memory configuration which will not
downscale —to the extent possible— the strength of any of the
four mechanisms. Details about the system configuration are given

1.23 1.25

swim mgrid applu gcc galgel art facerec lucas

[}
E
%)
(7]
X
n}
£
o
P4
1%
[}
12
2
=
k]
IS
Q
o4
=
o
Z -
swim mgrid applu gcc galgel art facerec lucas
124 1.23
[}
E
I3
(9]
X
nj
E
S
P4
%]
[0}
0
2
=
°
I
Q
o
E
o
z

1.24

1MB

parser sixtrack apsi vpr twolf mcf ammp avg

2MB

2MB

parser sixtrack apsi vpr twolf mcf ammp avg

EDIP EBSC EMLP-Aware [JIbRDP [JIbRDP+SC

Figure 3. Normalized execution time and normalized reduction of misses results for the DIP, SC, MLP-aware, IbRDP, and
IbRDP+SC policies and for 1M (top) and 2M (bottom) L2 cache sizes.

in Section 3, whereas the parameters used in the implementation of
the four algorithms can be found in Table 1.

In addition to the four aforementioned policies (DIP, SC, MLP-
aware, and IbRDP), we chose to implement a variation of IbRDP,
called IbRDP+SC (Selective Caching). This was done because
IbRDP is the only algorithm (among the four algorithms examined
in this work) which easily supports a selective caching mechanism.

The results of the comparison are presented in Figure 2 (256K
and 512K cache) and Figure 3 (1M and 2M cache). Studying the
impact of the five policies in either smaller or larger caches will
not be useful, since the working sets of the benchmarks either do
not “fit” at all in the cache or “fit” in their entirety. For every cache
size, we present two graphs. The first graph illustrates the
performance improvements —reduction in execution time
normalized to the LRU case— and the second graph depicts the
reduction in the performance-critical read misses over the LRU.
Finally, the first, second and third bar in each set of bars represent
the examined metric for DIP, SC, and the MLP-aware replacement
algorithm respectively, while the fourth and the fifth bar illustrate
the results for the IbRDP and the IbRDP+SC. As Figure 2 and
Figure 3 indicate, IbRDP+SC is clearly the best performing

mechanism? over all the cache sizes. IDRDP+SC outperforms DIP
on average by 6.4% (6.1%, 7.5%, 7.2%), SC by 2.4% (4.5%,

13.5%, 6.3%), MLP-aware by 6.6% (4.3%, 8.2%, 2.9%), and
IbRDP by 3.7% (1.8%, 2%, 1.3%) in the 256K cache (512K, 1M,
and 2M respectively). Trying to rank the algorithms using the
average values over all the cache sizes, the order goes as follows
(from the best to the worse): IbRDP+SC, IbRDP, MLP-aware, SC,
and DIP. However, IbRDP+SC is not always superior. For five
cases, the competitors perform better than IbRDP+SC (sixtract-
512K: SC and MLP-aware, vpr-1M: SC and MLP-aware, mcf-2M:
MLP-aware). One other issue is that IbDRDP+SC always performs
better than its predecessor (IbRDP) indicating that the ability to
victimize the currently fetched block by not caching it at all
(Selective Caching) is applied with great success on top of IbRDP.
We should note here that no one of the other mechanisms has the
potential to support such a “victimization” technique.

In general (further details will be given in Section 6), there are
two more issues (except the performance benefits) that make the
IbRDP+SC (and IbRDP) to look more concrete compared to other
algorithms. The first one is that it degrades performance only in

L In this work we do not take into account the hardware cost
associated with each algorithm, but we examine only the
performance benefits provided by each of them. However, we
should mention that in terms of hardware cost as well as
simplicity the clear winner is DIP [22].

40% (a)
30%
20%
10%

0% LI B O O B B B A A |

o (] N [ee] < o [(e] N [ee]

50% (b)
40%
30%
20% H misses
O% Trrrrrrrrr1r1rrr1rr1r1711
o [{e] N [e¢] < o O N
— [42] < (o] [e6] o ::

>128

Figure 4. Stack Distances profiles using DIP for (a) ammp (LMB) and (b) facerec (2MB).

one case (galgel-256K). In contrast, a large number of noticeable
increases in execution times are observed for the other algorithms.
DIP degrades performance in aspi-512K (6%), aspi-1M (15%),
art-2M (15%), facerec-2M (23%), and aspi-2M (6.4%). SC reports
performance degradations in aspi-512K (7.8%), galgel-1M (23%),
facerec-1M (25%), parser-1M (6.5%), apsi-1M (24%), ammp-1M
(6.6%), art-2M (24%), and facerec-2M (5.5%), while MLP-aware
replacement reduces the performance of gcc-512K (21%) and
facerec-1M (23%).

The second and more important issue that advocates the use of
the IbRDP mechanism is that it yields a great consistency between
the reduction of the misses (compared to the LRU) and the
corresponding performance gains. Indeed, for almost all cases the
number of the misses saved by the IbRDP algorithm translates into
a proportional increase in performance. This is an inherent
property of the IbDRDP approach and it does not appear for DIP and
SC (the other two algorithms that try to shape their decisions
according to the temporal characteristics of the workloads). As it
will be further explained in Section 6, this happens because IbRDP
works in a MLP-friendly fashion, in contrast to DIP and SC which
rather exhibit a MLP-hostile behavior.

6. INTERESTING CASES: WHERE THE
PERFORMANCE IS LOST?

In this Section, we provide an in depth analysis of the four

polices we consider in this paper and we discuss some special
cases in order to reveal some of their negative points.
Dynamic Insertion Policy. DIP while simple is far from being the
best replacement mechanism. Its best cases are when the
benchmark starts to fit in the cache. In this case it is both easy to
eliminate a miss by keeping a line a little bit longer in the cache
and the part of the working set that stays in the cache is likely to be
useful in the future. The experiments where DIP achieves
significant speedups, fit this profile, with ammp using an 1MB
cache as a characteristic example. As we see in Figure 4.a, ammp
almost fits in the 1M as most accesses have stack distances below
16 and the rest have stack distances between 16 and 23.
Additionally, there are no longer stack distances, so if DIP chooses
to keep a line in the cache (by inserting it in the MRU position),
future accesses to this cache line have an extremely high
probability to be hits.

A significant drawback of DIP, which is observed even in this
case, is that because of its statistical nature it treats every newly
allocated line as equal, without taking into account the difficulty of
keeping the line in the cache until it is accessed again. Lines with
short stack distances will be inserted in the LRU position for a
number of accesses resulting in misses, while some lines with

stack distances above 20 will be chosen for MRU insertion over
lines which fit in the cache. While this behavior improves
performance in comparison to LRU, it makes DIP behave worse
than policies which “remember” the past like SC and IbRDP.

Figure 4.b illustrates a case where DIP's behavior results not
only in sub-optimal management but also in significant
performance loss. Half the accesses of facerec (2M) have stack
distances below the cache associativity (cache hits), while most of
the other accesses are difficult to change into hits, since they are
characterized by medium length stack distances. A closer
inspection of the data access patterns also reveals that stack
distances do not correlate well with data: accesses to the same line
display both short and long stack distances intermingled. The end
result is to keep data in the cache which are not going to be used
soon (just shortly reused on their last access), while at the same
time inserting in the LRU position useful cache lines. Even though
Bimodal Insertion does not perform well, one would expect that
the hybrid nature of DIP and set duelling would at least bring the
results at the same level with LRU, as it happens for other
experiments. Unfortunately, the fact that the follower sets do not
use Bimodal Insertion always, as the leader sets do, cause them to
try to keep in the cache qualitatively different parts of the working
set than the leader sets. So, while the follower sets display 10%
more misses in comparison to LRU, the BIP leader sets decrease
their misses by 15% causing DIP to choose Bimodal Insertion
Policy as the preferable policy. This behavior is not specific to
facerec, as it was also encountered in the experiments for art in the
2MB cache and is not caused by the leader sets selection
algorithm, as nothing changed when the roles of the LRU leader
sets and BIP leader sets were reversed. While, this behavior could
be described as a “freak accident,” it does signify that the results
that DIP produces are very sensitive on the configuration of the
leader sets and the inherent randomness of DIP.

Shepherd Cache. The Shepherd Cache mechanism tries to get
advantage of the repeating nature of the access patterns (i.e. loops).
Hence, by gathering information about the relative order of the
accessed blocks, it is possible to approximate the Belady's optimal
algorithm [1]. The success of this approximation depends on the
regularity of the access patterns and on the ability to accommodate
the gathered information (size of the shepherd ways).

As we see in Figure 2, SC is the best performing policy for twolf
(256K). In this case, IbRDP fails to make a difference because
twolf's reuse distances do not show a good correlation with the
instructions which generate the accesses. DIP shows marginal
benefits due to the fact that the appeared access patterns are very
random and the observed stack distances do not follow a regular
ordering. Finally, MLP provide some benefits in terms of IPC

8000000 - (@
6000000 -
4000000 -

2000000 -

oL

0 1 2 3 4 5 6 7

50% - (b)

40% -

30% -

20% 1 Emisses

0 m hits
10% +
0% Bl rrrrrrrrrrrrrrrr ool
o © (3 [e¢] < o (o] N
— ™ < © [¢0)

(] -l
-l

>128

Figure 5. (a) MLP-cost distribution for gcc (256KB), (b) Stack distances for art (LMB) using IbRDP.

because it manages to replaces costly misses with “cheap” misses
although the absolute number of misses is increased.

In general, SC manages to decrease misses because it can
remember past behavior. A small subset of the frequently used
blocks can stay in the cache almost permanently despite their
occasional long stack distance. This happens because SC
frequently succeeds in calculating their relative order and these
blocks are placed near the top of the LRU stack. Less frequently
accessed lines will either don't get accessed while in the SC and
will be quickly evicted (LRU insertion in the Main Cache) or they
will quickly lose their ordering information and start traveling
down the LRU stack resembling a MRU insertion in DIP.

SC and DIP attempt to achieve the same target: keep a subset of
the working set in the cache. The difference is that using SC the
selected cache lines can stay more in the cache (SC associativity +
1 replacement) until it is decided whether they are worth keeping
compared to 1 replacement that LRU insertion offers (DIP case).
Therefore, SC is able to always produce hits for very small stack
distances, which makes it less random in choosing what eventually
will stay in the cache. In other words, it tends to keep more
aggressively useful data than DIP does.

On the other hand, SC has a major weak point: if frequently
used data are reused with stack distances greater than SC
associativity + 1, then SC will always treat them as not useful and
will evict them before they are reused. A clear example is facerec
(IM). For some parts of facerec's execution, the access pattern
seen in each set consists of exactly 8 blocks read sequentially for
many times. Since none of these block were previously present in
the cache, each one in turn is brought into the Shepherd Cache.
After 4 misses, each of these blocks is transferred in the LRU

position of the Main Cache and after the 5" miss the block is
evicted. This makes the cache to appear almost 3 times smaller and
less associative, resulting in an increase of the execution time by
25% and an increase in the number of misses by 40% compared to
LRU. Similar behavior is witnessed in all experiments where SC
performs much worse than LRU: apsi (512KB and 1MB), galgel
(IMB), and art (2MB).

MLP-aware Replacement Policy. MLP-aware replacement uses
a version of LRU, skewed in a way that victimizes the blocks
which are not expected to cause isolated misses. Its success
depends on the distribution of MLP-cost as well as the MLP-cost
predictability.

A case where this policy outperforms the other schemes is for
sixtrack (512K). As we see in Figure 1, most accesses of sixtrack
almost fit in the cache, so there are ample opportunities for
management (easily attainable by all mechanisms). But MLP-
aware goes one step further as it reduces execution time 10% more
than the second best policy. The reason for that is apparent in the

MLP-cost distribution graph: almost one third of sixtrack's misses
are isolated, so there is a great potential for a scheme which prefers
to eliminate costly misses. Additionally, MLP-cost is easily
predictable: 95% of the misses incur the same MLP-cost as the
previous miss which brought the same line into the cache.

Exactly the opposite happens for gcc (256K). In Figure 5.a, we

see the distribution of MLP-cost of gcc for this cache. Almost all
misses of gcc are parallel and have the same MLP-cost, so for most
replacement decisions MLP-aware replacement will behave
exactly like LRU. But even for the relatively few isolated misses
(less than 0.3% of the misses) MLP-aware replacement does not
help much: most of them are cold misses and as for the other
misses MLP-aware replacement manages to predict right and
eliminate only 40% of them. All these result in less than 1%
decrease of the execution time, whereas the second worst policy
achieves a 33% decrease.
Instruction-based Reuse Distance Prediction. Instruction-based
Reuse Distance Prediction takes replacement decisions based on
the assumption that the blocks accessed by the same instruction
will be accessed again after an almost equal number of accesses.
When this is the case, IbRDP is practically identical to Belady's
algorithm [1].

One such case is art, where our experiments show that the
correlation between instructions and reuse distances is correct for
85% of the accesses. Figure 5.b illustrates the stack distance
distribution of art (1M). IbRDP introduces almost no extra miss
below the associativity limit, while managing to turn most
accesses with stack distances up to 21 into hits. That translates into
71% less misses and 41% decrease of the execution time. When
the basic assumption of IbRDP is not correct, the replacement
policy produces results which vary from slightly worse to slightly
better than LRU, as already mentioned for twolf (256K). But
curiously IbRDP really fails only for galgel (256K), where it
correctly predicts the reuse distances for 78% of the accesses.
Virtually all of galgel's misses at this cache size are completely
parallel, so even though three of the four algorithms manage to
reduce the misses by more than 10% (up to 16% for IbRDP), no
significant benefit results from this reduction. At the same time,
IbRDP introduces a relatively small number of extra misses due to
mispredictions, but because many of these misses are isolated, they
have a disproportionate impact on execution time (10% increase).

7. CONCLUSIONS

In this paper, we systematically examine five recently proposed
replacement/placement policies. Our elaboration deals not only
with which is the best performing algorithm, but it also helps us to
deepen our understanding on how these algorithms work. We find
out that while Shepherd Cache and Dynamic Insertion Policy

manage to improve the performance of workloads with LRU
hostile behavior, they fail to handle efficiently workloads whose
misses exhibit a great variation in their MLP-properties. In
contrast, MLP-aware replacement, although able to exploit MLP
with great success, it cannot recognize opportunities to improve
performance when they involve eliminating parallel misses.
Finally, Instruction based Reuse Distance Prediction replacement
policy (with and without Selective Caching) shows both ability to
deal with non-LRU access patterns as well as to perform in an
MLP-friendly fashion and as a result outperforms the studied
policies. Overall, the results presented in this paper stress the fact
that both paths to improving cache behavior are equally important
as targets of a truly efficient replacement policy.

8. ACKNOWLEDGEMENTS

This work is supported by the EU-FP6 Integrated Project,
Scalable computer ARChitecture (SARC), Contract No. 27648 and
the EU-FP7 ICT Projects, “A highly efficient adaptive multi-
processor framework (HEAP),” Contract No. 247615, and
“Embedded Reconfigurable Architecture (ERA),” Contract No.
249059.

9. REFERENCES

[1] L. A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 1966.

[2] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture
optimizations for exploring memory-level parallelism. Proc.
of the International Symposium on Computer Architecture,
2004.

[3] S.Eyermanand L. Ecckhout. A MLP-Aware Fetch Policy for
SMT Processors. Proc. of the International Symposium on
High Performance Computer Architecture, 2007.

[4] A. Glew. MLP yes! ILP no! In Wild and Crazy Ideas Session,
8th International Conference on Architectural Support for
Programming Languages and Operating Systems, 1998.

[5] A. Gonzélez, C. Aliagas, and M. Valero. A Data Cache with
Multiple Caching Strategies tuned to Different Types of
Locality. Proc. of the International Conference on
Supercomputing, 1995.

[6] J.Jeong and M. Dubois. Cost-sensitive cache replacement
algorithms. Proc. of the International Symposium on High
Performance Computer Architecture, 2003.

[7] T.Johnson, D. Connors, M. Merten, and W. Hwu. Run-Time
Cache Bypassing. IEEE Transactions on Computers, 1999.

[8] M. Kampe and F. Dahlgren. Exploration of the Spatial
Locality on Emerging Applications and the Consequences for
Cache Performance. Proc. of the International Parallel and
Distributed Computing Symposium, 2000.

[9] T.S. Karkhanis and J.E. Smith. A first-order superscalar
processor model. Proc. of the International Symposium on
Computer Architecture, 2004.

[10] M. Karlsson and E. Hagersten. Timestamp-Based Selective
Cache Allocation. In the Workshop on Memory Performance
Issues, 2001.

[11] S. Kaxiras, Z. Hu, M. Martonosi. Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power.
Proc. of the International Symposium on Computer
Architecture, 2001.

[12] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache
Replacement Based on Reuse-Distance Prediction. Proc. of
the International Conference on Computer Design, 2007.

[13] M. Kharbutli and Y. Solihin. Counter-Based Cache
Replacement Algorithms. Proc. of the International
Conference on Computer Design, 2005.

[14] A. C. Lai and B. Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. Proc. of the
International Symposium on Computer Architecture, 2000.

[15] J. Lee, Y. Solihin and J. Torellas. Automatically mapping
code on an intelligent memory architecture. Proc. of the
International Symposium on High-Performance Computer
Architecture, 2001.

[16] W. F. Lin and S. K. Reinhardt. Predicting last-touch
references under optimal replacement. University of Michigan
Technical Report, 2002.

[17] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
Evaluation techniques for storage hierarchies. IBM Systems
Journal, 1970.

[18] V. Milutinovic, B. Markovic, M. Tomasevic, and M.
Tremblay. The Split Temporal/Spatial Cache: Initial
Performance analysis. Journal of Systems Architecture: the
EUROMICRO Journal, 1996.

[19] P. Petoumenos, G. Keramidas, and S. Kaxiras. Instruction
based Reuse Distance Prediction for Effective Cache
Management. Proc. of the International Symposium on
Systems, Architectures, Modeling, and Simulation, 2009.

[20] P. Petoumenos, G. Psychou, S. Kaxiras, J.M. Cebrian
Gonzalez and J.L. Aragon. MLP-Aware Instruction Queue
Resizing: the Key to Power-efficient Performance. Proc. of
the International Conference on Architecture of Computing
Systems, 2010.

[21] T. Piquet, O. Rochecouste, and A. Seznec. Exploiting Single-
Usage for Effective Memory Management. Proc. of the Asia-
Pacific Computer Systems Architecture Conference, 2007.

[22] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and J. Emer.
Adaptive insertion policies for high-performance caching.
Proc. of the International Symposium on Computer
Architecture, 2007.

[23] M. K. Qureshi, D. Lynch, O. Mutlu, and Y. N. Patt. A Case
for MLP-Aware Cache Replacement. Proc. of the
International Symposium on Computer Architecture, 2006.

[24] K. Rajan and R. Govindarajan. Emulating optimal
replacement with a shepherd cache. Proc. of the International
Symposium on Microarchitecture, 2007.

[25] S. T. Srinivasan and A.R. Lebeck. Load latency tolerance in
dynamically scheduled processors. Proc. of the International
Symposium on Microarchitecture, 1998.

[26] M. Takagi and K. Hiraki. Inter-Reference Gap Distribution
Replacement: an Improved Replacement Algorithm for Set-
Associative Caches. Proc. of the International Conference on
Supercomputing, 2004.

[27] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A
modified approach to data cache management. Proc. of the
International Symposium on Microarchitecture, 1995.

[28] W. A. Wong and J. L. Baer. Modified LRU policies for
improving second-level cache behavior. Proc. of the
International Symposium on High-Performance Computer
Architecture, 2000.

