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Abstract-The effect of caching is fully determined by the
program locality or the data reuse and several cache management
techniques try to base their decisions on the prediction of
temporal locality in programs. However, prior work reports only
rough techniques which either try to predict when a cache block
loses its temporal locality or try to categorize cache items as
highly or poorly temporal. In this work, we quantify the temporal
characteristics of the cache block at run time by predicting the
cache block reuse distances (measured in intervening cache
accesses), based on the access patterns of the instructions (PCs)
that touch the cache blocks. We show that an instruction-based
reused distance predictor is very accurate and allows
approximation of optimal replacement decisions, since we can
“see” the future. We experimentally evaluate our prediction
scheme in various sizes L2 caches using a subset of the most
memory intensive SPEC2000 benchmarks. Our proposal obtains
a significant improvement in terms of IPC over traditional LRU
up to 130.6% (17.2% on average) and it also outperforms the
previous state of the art proposal (namely Dynamic Insertion
Policy or DIP) by up to 80.7% (15.8% on average).

I.  INTRODUCTION

Caching is widely used in almost all computing systems,
and cache performance decidedly determines system
performance due to the gap between the speed of the processor
and main memory. Computer architects attack this problem by
offering an increasingly larger portion of the silicon area to
cache hierarchies (currently 40-60%) and by devising
sophisticated prefetching and replacement mechanisms, but
still main memory access latencies are a significant factor in
the poor performance of many applications. Furthermore, the
shift from frequency scaling to scaling the number of cores, not
only does not solve the problem but rather increases the
reliance on on-chip caches. As a result, offering improved
cache management is a venue to make better use of on-chip
transistors, increase the apparent capacity of caches, and
reduce the impact of long memory latencies.

The effect of caching is fully determined by the program
locality or the data reuse patterns. As the memory hierarchy
becomes deeper and deeper its performance increasingly
depends on our ability to predict program locality. Previous
work discloses mainly two ways of locality analysis: compile-
time analysis [33,4,6,5] of the program source code (i.e. loop
nests), which is not as effective for dynamic control flow and
data indirection, and profiling [2,3,19] which analyzes the
program for a given number of selected inputs, but may fail to

capture possible changes in other inputs. Ideally, a prediction
scheme is needed that can be used at run-time and can be both
efficient and accurate.

To this end, in this paper, we show that it is possible to
directly predict the reuse distances of the memory references
via instruction (PC) based prediction at run-time. We
introduce a new class of reuse-distance predictors enhanced
with the required confidence mechanisms. We explore the
structure of the predictors in terms of the required size and the
associativity and indicate several ways to increase their
effectiveness. We found (using all the benchmarks of the
SPEC2000 suite) that measuring the reuse distances in L2
accesses (using a binary distribution granularity for low
storage requirements) afford us high accuracy in predicting the
temporal characteristics of the memory references (when a
memory reference is going to be accessed in the future).

In this work, we demonstrate run-time reuse-distance
prediction by applying it to managing the replacement policy
of the L2 caches (the last level of the on-chip hierarchy in our
experimental environment). While L1 caches are designed with
simplicity and fast access time in mind, L2 caches are less
sensitive to latency, and focus more on minimizing expensive
accesses to memory. Thus, the L2 cache is of paramount
importance in all modern computers, since it is the last line of
defence before hitting the memory wall and experiencing the
long latencies imposed by the main memory and by off-chip
busses. But in L2 caches, it is well documented that the widely
implemented LRU policy is far from optimal in many
applications [22,32,16,23,26].

The reason is twofold. First, L2 caches are typically highly
associative which means that when a new item is placed into
the cache, it has to travel all the way down the LRU stack until
it becomes the LRU candidate for replacement. Cache blocks
with very large reuse-distances (which are likely misses) will
still occupy useful space in the cache without contributing to
the hit rate. Ideally, those blocks should be replaced with
blocks with short temporal reuse distance, even if such
decision requires a circumvention in the time ordering
introduced by the LRU algorithm (e.g., [23,26]). The second
reason, why LRU is not ideal for L2 caches, is the filtering
effect of the L1 caches. L2 caches are hidden behind L1 caches
and accessed upon an L1 miss. This often inverts the temporal
reuse patterns of the addresses as they are observed by the L2.

These reasons indicate that L2 caches require more
sophisticated replacement strategies than pure LRU decisions
and many researchers turn their attention in providing schemes
to predict the temporal characteristics of the cache items
[18,12,22,32,16,23]. However, all the previous schemes try to



predict the temporal locality of the cache blocks in a binary
manner (as temporal or non temporal) or try to predict when a
cache block will lose its temporal locality. In contrast to
previous approaches (as we will show later), our instruction-
based predictor allows us to fully quantify the temporal locality
of the memory accesses. The output of the predictor is the
reuse distance of the cache blocks using a power-of-two
distribution (measured in L2 accesses). As a result, direct
comparisons among the temporal locality of the cache blocks
are possible, which distinguishes our scheme as a fine-grained
approach, in contrast to previously proposed coarse-grain
approaches [18,12,22,32,16,23]. The main contributions of this
work are the following.
• We systematically examine reuse-distance prediction and

show that its success depends on both the access stream and
the way reuse distances are measured at the cache level of
interest (in our case the L2). Specifically, we show that we
can obtain great improvements over prior approaches, in
both accuracy and coverage, by tracking for the prediction
only a filtered L2 access stream discounting irrelevant
events such as writebacks, and at the same time measuring
reuse distances in terms of the intervening filtered L2
accesses.

• We study practical predictor organizations, concerning size,
associativity and embedded confidence estimation, and
show that the PC prediction requirements in terms of
hardware are quite small (under 2% of the total L2 size).

• In addition, we study efficient techniques to collect reuse
distances at run-time (reuse-distance sampling), something
that has been largely glossed over in prior work.

• We apply the improved prediction mechanisms in a hybrid
replacement mechanism which automatically reverts to
LRU when it is required. Having reuse-distance information
for each cacheline in a set would allows us to approximate
optimal replacement decisions by looking into the future.
However, lack of prediction information does lot limit our
mechanism since we can also look into the past: the longer a
cacheline remains unaccessed the higher the probability that
it is useless [15]. Our algorithm dynamically picks one of
the two candidates (the one indicated by “past” information
and the one indicated by “future” prediction). An extension
of the algorithm is to victimize the currently fetched block
by not caching it at all in the L2 (selective caching).

• Finally, we thoroughly evaluate our approach for all
SPEC2000 benchmarks and for various L2 cache sizes. Our
results indicate a significant speed up in 8 out of the 26
SPEC2000 applications by up to 130.6% and 17.2% on
average, while not slowing down any of the remaining
applications by more than 1%. Furthermore, we compare
our approach to a recently proposed scheme (namely
Dynamic Insertion Policy or DIP [23]) and we show that we
surpass it terms of IPC by up to 49.6% (10% on average)
and by up to 80.7% (15.8% on average) when the selective
caching approach is employed.
The remainder of this paper is organized as follows.

Section II presents the motivation of this work and clarifies the
correct framework to correlate the reuse distances of the cache
blocks with the memory access instructions. Section III
provides evidence of this correlation and presents our
instruction based reuse distance predictor. Section IV discusses

and quantifies the effectiveness of the predictors using
practical, low overhead sampling techniques. In Section V, we
evaluate our methodology in improving the replacement
decisions of the L2 caches. In Section VI, we put this work in
context of related work. Finally, Section VII concludes the
paper.

II.  MEASURING REUSE DISTANCES

In this work, we attempt to relate the reuse distance of cache
blocks to memory-access instructions. Our premise is that, due
to program locality and the regular nature of loops, certain
frequent memory-access instructions tend to access cache
blocks that exhibit predictable reuse behavior.

To proceed with this kind of prediction we need to clarify
two questions:
• At what cache level do we measure the reuse distances?
• How do we measure reuse distances?

The problem is complicated because of the multilevel cache
hierarchy: there are multiple ways to associate instruction (PC)
information to access information (in our case reuse distance
information) at the different cache levels. For example, one can
use the number of intervening (memory-access) instructions as
a measure of reuse distances —in other words, one can count
as a reuse distance of a cache block the number of loads/stores
executed between two successive accesses to the cache block.

This would be fine as long as our target cache is the L1.
However, this type of measuring of the reuse distances would
not be appropriate for managing the L2 cache. This is because
such reuse distances correspond to how frequently a cache
block is accessed by the instruction stream and not how they
are accessed in the L2. The L2 access stream is the stream of
misses and writebacks coming out of the L1 and this gives to
the (L2) cache blocks a totally different reuse distance
behavior than what we can infer from the processor accesses
[16,23].

Consider the example in Figure 1 which shows the accesses
to a single 2-way set in the L1 and the corresponding accesses
to the L2. Cache blocks A, B, C, and D are accessed by the
processor resulting in the eventual eviction of A and B from
the L1 set (because of C and D) and their re-fetch. Measuring
the reuse distance of A using processor accesses we end up
with three different reuse distances (which might actually
hamper prediction). In any case it seems that the behavior of A
is different than the behavior of B. In contrast, measuring their

Figure 1.  Depending on how we measure reuse distances at 
different cache levels we can get different behaviors for the same 

cache blocks

A A AB A B A AA B A B AC D B

L1 timeline

L2 timeline
A B A BC D

L2 reuse distance (in L2 accesses):
A: 3 (BCD in between)
B: 3 (CDA in between)

L2 reuse distance (in L1 accesses):
A: 0 (successive accesses), 1 (B in between), 3 (BCD in between)
B: 2 (AA in between), 3 (CDA in between)

L1 
accesses

L2 
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L1 misses

Memory References



behavior using L2 accesses the two blocks seem equivalent.
For the purpose of managing the L2 it is the latter that matters.

While previous work made no distinction which access
stream is used to count reuse distances, here we argue that for
managing a specific cache level, one must rely on the access
stream of this level to measure the reuse distances. To prove
this point, Figure 2 compares accuracy and coverage for
making reuse-distance predictions in the L2, but measuring the
reuse distances in two different ways: with processor accesses
(L1 accesses), and with L2 accesses. Without getting into the
details of the prediction mechanisms, reuse distances are
associated with the instructions (PCs) that access the L2 and
predictions are performed based on history. It is evident from
Figure 2 that markedly improved results can be expected by
choosing the right “counter” for reuse distances.

A. Filtered access streams
While for the processor access stream one can expect that

each access is genuinely related to program behavior, this is
not so for all the accesses below the L1 in the cache
hierarchy.The reason is that an eviction from a cache level can
appear as an access at a lower level if it is a writeback (i.e.,
appears as a write at the lower level). An eviction, however, is
not related to the instruction that caused it in the first place. In
other words, accesses corresponding to writebacks cannot be
associated with any specific instruction. Failure to see this
effect can pollute reuse-distance prediction with random
information and seriously degrade the results. It is therefore
necessary to filter the access stream from such irrelevant
events. Prediction can be performed only for the read accesses
in the levels below the L1 and not for the writes. Our improved
results in Figure 2 assume such filtering.

III.  PREDICTION REQUIREMENTS

One of the motivations for correlating cache block reuse
distances to the instructions (PCs) that access them is that the
number of instructions involved is relatively small. To show
this we examined all the programs of the SPEC2000 suite. For
illustration, we show the collected reuse distances for two
representative benchmarks —art and vpr. We specifically
selected these benchmarks, because they exhibit different
reuse-distance behavior.

We run each program for 250M instructions after the
necessary skipping (see Section V for more details). We
concentrate on the L2 and collect the reuse distances for each

instruction (PC) that accesses the L2. Reuse distances are
measured in L2 accesses using a filtered access stream, as
described in Section II.A. We consider reuse distances up to
1M intervening accesses, which means that a reuse distance
has a storage requirement of 20 bits. Reuse distances larger
than this are represented with the maximum value. In many
cases, we can use a reduced resolution for the reuse distances,
discarding a few low-order bits as we will see in Section V.

Figure 3 plots the results of this experiment. For reasons of
clarity, we present the PCs that are responsible for the 98.5%
of the total accesses to the L2. In addition, we categorize the
reuse distances in four groups. The group tagged as “short”
(see Figure 3) contains the number of the reuse distances with
values between 20 and 210. Addresses in this group are
characterized with short temporal reuse patterns and are
expected to experience more cache hits. In contrast, the group
tagged as “very large” represents the number of cache blocks
with very large reuse distances (219 to 220). These addresses
are primary candidates for management (in the case of creating
a replacement algorithm, these addresses should be replaced
even if they reside in the top of the LRU stack). The “medium”
and the “large” group correspond to the number of the cache
blocks with reuse distances between 211 to 214 and 215 to 218,
respectively.

As we can see, for both programs, there is a need to capture
the reuse distances of only a few instructions in order to take a
representative picture of the benchmark’s memory behavior.
art needs 32 instructions, while in vpr, 18 PCs are capable to
capture its memory reuse-distance patterns. In any case, the
limited number of the required PCs reveals that our proposal
can be integrated in a real system with low overhead.

art shows a straightforward per-instruction reuse distance
histogram contributing to our initial argue about the
predictable nature of the reuse distances via instruction based
prediction. The bulk of the PCs touch cache blocks with
“medium” reuse distances. However, some PCs generate cache
blocks that are either “medium” or “large”. The “large” cache
blocks are primary candidates for replacement, because it is
expected to be cache misses, so their early replacement can
free up useful space in the cache. The situation in vpr is not as
clear. Unique PCs are associated with a variety of reuse
distances. However, optimization hints still exist (since there
are cache blocks with very large reuse distances). The problem

Figure 2.  Accuracy and coverage compared to previous work
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Figure 3.  Collected reuse-distances for art and vpr (corresponding 
to 98.5% of the total accesses to the L2)
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is to identify these addresses, but this subject is covered in the
following subsections.

The results of our analysis of the SPEC2000 benchmark
suite indicate that a simple structure, such as the one shown in
Figure 4, is well suited to handle the instruction-based
prediction of reuse distances. An instruction accessing a cache-
block at the target cache level initiates an access to a history
table indexed by the PC of the instruction. The history table
provides the recorded reuse-distance for this PC, along with an
estimated confidence for the prediction. Reuse distances are
collected with a sampler, which is the subject of the next
section.

Because it is unlikely that reuse distances are predictable at
a very fine resolution (i.e., it is unlikely to encounter the exact
same reuse distance over and over again) we consider
predictions as correct when the observed and predicted reuse
distances are of the “same magnitude.” There are several ways
to implement such a scheme and we have chosen to use a
power-of-two magnitude comparison with good results. Thus,
for the update of the predictor, we consider as equivalent the
reuse distances whose log2 values are the same.

According to our study a predictor size of 256 entries is
more than enough to capture all the significant PC’s in a
typical program phase. Additional entries can hold information
for rarely executed load/stores that may not be easy to predict
and do not significantly improve the effectiveness of our
prediction.

Furthermore, aliasing effects in the predictor that can
potential taint history information can be removed by making
the structure associative (lowering the power consumed by the
predictor as well). We examined several associativities for the
predictor structure and we concluded that an 8-way associative
structure is almost as good a fully associative organization in
terms of performance. Finally, our predictor design includes
confidence counters for its predictions. A confidence counter
per entry determines whether it is “safe” to attempt a
prediction (“safe threshold” —see Section V). The confidence
counters are incremented with each correct prediction and
decremented with a wrong prediction. The predictor entry is
allowed to change its reuse distance prediction (prediction
replacement) only if its confidence counter is 0.

IV.  PRACTICAL REUSE-DISTANCE COLLECTION AT RUN-TIME

The predictor structure discussed in the previous section can
deliver predictions based on its stored history information
about reuse distances. An additional mechanism is needed,
however, to collect this history and update the predictor.
Verifying the predictions increases the confidence of the
prediction entries. In contrast, refuting the predictions
decreases confidence and (depending on the setup of the

confidence mechanism) allows the update of the predictor
entries with the new observed reuse distances.

Naively, a mechanism to achieve this would be to track each
prediction until it is verified or refuted. We call such a
mechanism a “full sampler” (FS). This means that for every
access for which we have a prediction, the actual reuse
distance of the accessed block must be determined. The actual
reuse distance is then compared to the prediction and the
predictor entry for the corresponding PC is updated.

Obviously, the state of such a tracking mechanism is
enormous. The problem is that very large (actual) reuse
distances —of the order of a million accesses— require that the
corresponding prediction must be remembered for a very long
time. Note that, by nature, predictions for reuse distances are
verified out-of-order. That is, a prediction for a long reuse
distance is verified far into the future, even if subsequent
predictions for the same PC (but for smaller reuse distances)
can be verified sooner. This is inherent in all our tracking
schemes.

To determine the actual reuse distance for a prediction we
must remember when it was made (wall-time measured always
in L2 accesses). A structure holding all the outstanding
predictions (yet to be verified) needs to be searched fast and
often: with every cache access we must check whether a
previous prediction exists for the cache block address. One
could consider a very large CAM for this job, but that would be
impractical due to area, power, and speed concerns. An
alternative would be to implement a large hash table, but that
would exacerbate the storage problem. Clearly, something
much more practical is needed for the run-time prediction of
reuse distances.

Our solution is to piggyback the tracking mechanism on to
the predictor entries. Each predictor entry, corresponding to a
single PC, has the ability to store one outstanding (yet
unverified) prediction. Until this prediction is verified (or
refuted) the predictor entry can deliver new predictions (for the
subsequent invocations of the same PC), but the predictor entry
cannot be updated. We call this “Single-Prediction Sampler”
(SPS). The structure of the SPS in relation to the predictor is
shown in Figure 5. Each entry in the SPS is linked to a single
predictor entry. Every accessed address is checked against the
addresses in the sampler.1 A match determines the reuse
distance for the corresponding predictor entry.2 Although this
sampler can skip many updates, its performance holds up very
well against the full sampler (see Figure 7 for a comparison).
But, there are some cases that need special attention.

Figure 4.  Structure of the Instruction Based Predictor
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1 This can be organized as a CAM or a set-associative structure. The latter
case introduces a few storage conflicts but for associativity of 8 or more the
effects are insignificant.
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The problem with SPS is a scenario where a prediction for a
long reuse distance is followed by a string of short reuse
distances. Assuming that the long reuse distance prediction is
correct, it will be verified when we see again the same cache
block far into the future. Since the predictor entry does not
change until then, subsequent predictions will also give long
reuse distances, even though the behavior of the subsequent
accesses changes to short reuse distances. All such predictions
would be incorrect, without hope of adjusting the prediction. A
full sampler, on the other hand, would have no problem
correcting this situation. In the full sampler, even if there is an
outstanding long-reuse-distance prediction, short reuse
distances would be verified a lot sooner —“under” the
outstanding prediction— and would update the predictor entry
to deliver correct (short-reuse-distance) predictions.

While, for its simplicity, the SPS gives good results, we
need to safeguard against such situations. To this end, we add a
very small sampler intended to capture short reuse distances
that we would otherwise ignore, waiting for a long reuse
distance to be verified. We call this the “Short-Reuse-Distance
Sampler” (SRDS) and it works only with conjunction with an
SPS.

SRDS is simply a small FIFO sampling the L2 access
stream with a sampling rate of 1/N. It randomly picks one out
of N (on average) accesses and stores the prediction made on
this access (a link to the predictor entry). Because it is a FIFO
its size and sampling rate determine the maximum reuse
distance it can capture: max reuse distance = size × sampling
period. For example an 8-entry FIFO sampling every 256
accesses can “see” the reuse distances of up to 8×256=2048.

SRDS works in parallel to the SPS and can update the
predictor entry independently when it detects small reuse
distances. However, it introduces a bias towards small reuse
distances. This is because SRDS can see many short reuse
distances both because they are quick to detect and because
SRDS can overlap their detection. In contrast, SPS may take a
long time to verify a single long reuse distance and in the mean
time no other long reuse distance can be detected (cannot be
overlapped). This situation is shown in Figure 6. SRDS is able
to capture all the short reuse distances (even if they overlap).
SPS can deal with a single long reuse distance at a time. The
result is that predictions with the long reuse distances labeled b
and c in the figure go undetected (SRDS cannot see them, SPS
cannot overlap them).

There is, however, a way to account for such “lost” long
reuse distances: if an entry falls out of the SRDS FIFO without
ever seeing a reuse distance then we assume that it corresponds
to a long reuse distance. SRDS balances its updates using an
accounting scheme that tallies the long and the short reuse
distances it sees. For each long reuse an update with a short
reuse distance is inhibited. The tallies are kept in the
corresponding predictor entry.

Given this analysis Figure 7 compares the accuracy and
coverage of the prediction for FS, SPS and SPS with SRDS. It
is evident that SPS alone performs well compared to FS (or
even better, e.g., in gzip, mgrid and apsi —because it discards
noise) and in the cases SPS lags behind FS, SRDS can make up
for the lost ground (e.g., in applu, crafty and ammp).

Finally, the memory overhead introduced by our predictor
and sampler is the following: 256 × 71 bits per entry1 or
2.3Kbytes, which is a reasonable overhead compared to a
512Kbyte or 1Mbyte L2 cache. Also, since the table is very
small, it is not latency sensitive and it can be located on-chip.
Obviously, the memory requirements of the 8-entry SRDS are
negligible.

V.  REUSE-DISTANCE PREDICTION APPLICATIONS

Ideally, what we would like to do in a replacement
algorithm for the L2 is to employ Belady’s optimal
replacement in which we replace the cache block that is going
to be accessed farthest in the future. Reuse distance prediction
allows us to approximate this because it gives us a way to
estimate the next access for a cache block relative to the
anticipated accesses for other cache blocks in a set. Note that
this is the only mechanism that allows such quantitative
comparisons [22,32,16].

Assuming that we have a prediction of the reuse distance for
every cache block in a set, it is straightforward to implement
comparisons between the anticipated future accesses. Reuse
distance prediction can be stored with each cache block, along
with an indication of the time the cache block was last
accessed. At any moment, the estimated arrival of the next
access to a cache block is computed as the difference between
the predicted reuse distance and the time (measured in L2

2 Reuse distances in all our schemes are represented up to a maximum of 1M
accesses (20 bits). If we have not seen a match within this reuse distance we
eagerly update the predictor entry (with the maximum reuse distance)
allowing the verification of a new prediction. The mechanism for this is
similar to decay [15].

Figure 6.  Handling of reuse distances by the SRDS and the SPS

a b c

SPS

SRDS

“lost” long reuse distances

Time measured 
in L2 accesses

Figure 7.  Comparison of FS, SPS, and SPS+SRDS (tagged as 
SRDS) in terms of accuracy and coverage

1 26b recorded address +32b PC +5b predicted bucket +5b time stamp in
power-of-two granularity + 2b confidence counter + valid bit = 71b
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accesses) the cache block has been resident in the set. The
cache block with the farthest estimated next access is the
victim for a replacement.

While the above description requires arithmetic calculations
and comparisons, the same effect can be achieved by storing
the predicted reuse distance with each cache block (when it is
last accessed) and then decrement it with each intervening
access as time passes. It is evident that at each point in time the
remaining reuse distance corresponds to the time left for the
predicted next access. An important realization here is that
storing and manipulating the reuse distances at a reduced
resolution (for example discarding 4 to 8 of their low-order
bits) has little effect on the quality of management we can
achieve. In such a case we decrement the reuse distances every
24 to 28 intervening L2 accesses, which corresponds, on
average, to thousands or tens of thousands of cycles. This
corresponds to similar power overhead as with cache decay
counters which was shown to be negligible [15].

The above scenario works well only if we have a prediction
for all the cache blocks in a set. Since reuse distance prediction
does not provide complete coverage (i.e., a prediction for each
access), in many cases we may have cache blocks without
predictions. To handle these situations, we compare the
estimated time for the next access for the blocks for which we
do have a prediction to the time blocks have remained
unaccessed in the cache for those blocks for which we do not
have a prediction. In other words, we either look into the future
for the next access or try to estimate whether a block has
decayed [16] by staying unaccessed for a long time. An
additional decay counter that is incremented with every access
is required. The decay counter operates similarly to the reuse
distance prediction counter and at the same resolution. Among
all blocks we select for replacement the one with the largest

next-access time (which is the candidate for the optimal
replacement) or the largest decay time (which is the LRU
block).

An enhancement of the above algorithm is to take into
account the currently fetched cache block for victim selection.
If the currently fetched block has a prediction for a reuse
distance that exceeds the time-to-next-access or the decay time
of all the blocks in the set, then it can be chosen not be inserted
into the cache instead of selecting one of the residing blocks
for eviction. We call this feature Selective Caching, or SC.

A. Simulation Setup

Our experiments were performed using a detailed cycle
accurate simulator that supports a dynamic superscalar
processor model. Our baseline processor is a 4-way superscalar
processor with an 80-entry reorder buffer. We simulate a 32K,
64 byte block, 4 way, dual-ported, 2 cycle L1 data cache and a
16-way, 13 cycle unified L2 cache of various sizes. The main
memory has a 500 cycles latency and is able to deliver 16 bytes
every 8 cycles. We use various L2 cache sizes in order to have
a good understanding about the L2 cache behavior. The
instruction-based predictor utilizes 2-bit confidence counters
and a prediction is attempted —considered safe— if the value
stored in the confidence counters is greater or equal to two.

In order to show the effectiveness of our approach we
compare it to the recently proposed replacement algorithm
called Dynamic Insertion Policy or DIP [23]. DIP is a very
successful scheme requiring negligible hardware cost (less
than 2 bytes1). The underlying idea of DIP is to prevent the

Figure 8.  Read misses reduction results for 16 SPEC2K benchmarks with more than 1 miss per 1K-instructions.
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1 Recall that our approach requires 2.3Kbytes (less than 1% of the total cache
size), but we do not consider it as an important overhead in the high
performance computing area.



cache lines that are not expected to exhibit temporal locality
from not staying in the cache for long. This is done by
dynamically adapting the position of the LRU stack at which
the cache blocks are inserted. We have implemented the DIP
approach in our simulation framework by carefully porting the
code distributed by the authors [8].

To directly compare with prior work, we run all the
applications of the SPEC2000 benchmarks (both data and
computational intensive programs). But in the interest of
clarity we do not show results for benchmarks which have less
than 1 miss per thousand instructions. Such benchmarks have
low cache requirements and do not benefit from advanced
replacement algorithms. We note here that our proposal does
not negatively affect their performance. This leaves 16
benchmarks (shown all in Figure 8 and Figure 9) that can be
affected by replacement algorithms. Of those 16 benchmarks
only eight actually show significant performance improvement
(or degradation in several cases for DIP): gcc, galgel, facerec,
apsi, sixtract, ammp, art, and mcf and we concentrate on these.

The simulations were performed after the necessary skipping
instructions for every benchmark. We simulate 200M
instructions after skipping 3 billion instructions for ammp, 2B
for mcf, and 1B for the rest of the benchmarks. Finally, in order
to take a more representative picture of the actual strength of
the replacement algorithms, we warm up the caches for 100M
instructions and after that period we start to collect statistics.

B. Performance Evaluation

We performed the simulations for several L2 cache sizes
(256K to 2M) to assess the effects of cache management for
each program in different conditions. Our results show that for
the cache sizes where LRU performs adequately compared to
an optimal replacement, further management does not
contribute much. Similar conclusions are reached in several
other papers [16,21,22,23,32]. However, in the cases where
LRU does not fare well, then the opportunities for management
are significant. Figure 8 and Figure 9 show the complete
results in terms of IPC reduction and read misses reduction for

Figure 9.  Normalized IPC results for 16 SPEC2K benchmarks with more than 1 miss per 1K-instructions.

Figure 10.  IPC improvement (left) and Read misses reduction (right) results for DIP, RDM, RDM+SC
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the 16 memory-intensive benchmarks and for all cache
configurations.

For clarity Figure 10 concentrates on the cases where
management works best (256K L2 for gcc, facerec, apsi,
sixtrack, and ammp, 512K for art, facerec, apsi, sixtrack, and
ammp, 1M for galgel, art, facerec, mcf, and ammp and 2M for
art, facerec, and mcf). Incidentally, these are the cache sizes
where the working sets of these programs show an inflection
point, and begin to “fit” in the cache of the corresponding size
[2]. Management in either smaller or larger caches makes less
difference, since the working sets either do not fit at all or fit in
their entirety.

Figure 10 depicts the performance improvements —in terms
of IPC— (left-side graph) and the reduction in the
performance-critical read misses (right-side graph) over the
LRU for the 8 SPEC benchmarks. The first bar in each set of
bars represents the IPC improvements (or read-miss reduction)
when the DIP replacement algorithm is employed (the best
performing replacement policy previously published), while
the second and the third bar illustrate the results for the Reuse
Distance Management (RDM) and RDM enhanced with
Selective Caching (SC).

As we can see from Figure 10, our results indicate that in the
presented cases the benefits are substantial for both the RDM
and the RDM+SC case compared either to the LRU or even the
DIP approach. In the RDM case (without selective caching),
facerec (in 512K cache) shows the greatest performance gains
over the LRU (48.9%), while significant speedups are reported
in the other benchmarks as well. A 38.1% speedup is achieved
in gcc (256K cache), 25.4% in ammp, 22.4% in sixtrack (512K
cache), 47% in galgel, and 45.6% in art (1M cache). The best
improvement for mcf is achieved in the 2M cache (up to 19.3%
increase in IPC). As we have already mentioned, the
improvement in each benchmark is related to the cache size.
mcf is a cache greedy application and is the most memory
intensive program of the SPEC2000 suite and according to [2],
a 2M cache is still not able to accommodate its working set.

Compared to the DIP replacement algorithm, our approach
is not always superior. RDM still outperforms DIP by 10% on
average and in no case degrades performance as much as DIP
(up to 25%), but there are cases (gcc-256K, sixtrack-512K, and
ammp-1M) where DIP performs better than RDM. Still, when
the selective cache technique is employed (RDM+SC), our
approach clearly outperforms DIP: RDM+SC increases IPC
relative to DIP by up to 80.7% and 15.8% on average.

C. Power and Area Issues
Finally, we evaluate our prediction structures (SPS+SRDS)

in terms of power (energy and EDP) and area overhead –
common metrics in the low power embedded processor world.
We used a modified version of the Cacti 5.3 tool [30] to
estimate the power and area characteristics of the proposed
predictors. Our Cacti estimates showed that the power
consumption of all the structures that we introduced is
approximately 10mW (peak power) which translates into less
than 0.024% increase of the processor’s energy consumption
for all our experiments (0.0032% on average). Consider the
area, SPS+SRDS area requirements correspond to less than 1%
of the area occupied by a 256KB L2 cache (even less for larger
caches) which is negligible as well. As a result, we believe that

both the energy and the area overhead of the SPS and SRDS
predictors is minimal and affordable for every low power
processor which is equipped with an L2 cache, rendering our
proposal a viable solution in the embedded system world.

VI.  RELATED WORK

In this work, we argue that it is possible to directly predict
the temporal characteristics (reuse distances) of the memory
references via run-time instruction-based prediction and
exploit this information for cache replacement. We will briefly
overview related work in each of these directions.
Predictability of Reuse Distances.  Reuse distance analysis
was mainly explored with great success at compile time
[33,4,6,5] or during a profiling step [2,3,19] in order to
understand and improve the temporal locality of the programs.
The reuse distance of a memory reference, unlike stack
distance, can easily be captured using functionality supported
in today's hardware and operating systems [21].

Previous approaches show that both whole-program [33,4]
and instruction-based [6] reuse distances can be predicted
accurately across program inputs using a few profiling runs.
Recently, Fang et al. [5] associate the prediction of the reuse
distances to the program’s data set. As a result, they were able
to predict the reuse distances (at compile time) across various
data sets and estimate the whole program miss rates of the L1
and the L2 caches. Our approach is the first that we are aware
of that utilizes the instruction-based prediction at run-time and
not at compile time. 
Cache Management. Early work studied the limits of cache
replacement algorithms using program traces. The first attempt
was by Belady [1] who formulates the area by comparing
random replacement algorithms, LRU and an optimal
algorithm that looks into the future. Sugumar and Abraham
[27] extended the Belady’s algorithm in order to characterize
capacity and conflict misses, while Temam [29] used the
Belady’s optimality results by simultaneously exploiting
spatial and temporal locality. All those studies were more of a
way to provide a better understanding of the cache behavior
rather than to implement a real cache and related replacement
algorithms.

In the area of L1 cache management, many techniques
categorize, and handle accordingly, the memory references
based on their temporal and spatial characteristics [20,7,13,14].
Jeong and Dubois introduce the idea of cost sensitive
replacement algorithms [10]. The authors proposed different
variations of the LRU by assigning finite costs between load
and store misses. In [11], the costs were associated with the
type (read or write) of the next access to a block. In [24], the
idea of Memory Level Parallelism (MLP) aware cache
replacement was introduced.

Another class of replacement techniques [16,28] typically
involves the exploitation of the generational behavior of a
cache block from the moment that a specific line is inserted
into the cache, until the time that is evicted—inspired by the
cache decay methodology [9,15].

Most of the work in the context of the L2’s focuses either in
the identification of dead lines (e.g., last touch prediction), or
in providing cache bypassing schemes [18,12,22,31,17,32]. A
similar approach, called dynamic insertion policy [23], tries to
prevent cache blocks that are not expected to exhibit temporal



locality from not staying in the cache for long. This is done
by dynamically adapting the position of the LRU stack at
which a cache block is inserted (blocks without temporal
locality are directly inserted in the LRU position). We
compare against these techniques and show that i) we
outperform them in the vast majority of the cases and ii) they
are not as stable as our proposal: while such techniques
reduce the number of misses, they do not necessarily have a
positive impact on performance.

Finally, a recent approach, called shepherd cache [25],
attempts to emulate the Belady’s optimal algorithm for a
conventional cache. In this work, the large, highly
associative cache is replaced by a cache with lower
associativity (the main cache) and use a secondary
(shepherd) cache to approximate an optimal replacement
policy in the main cache. However, this approach requires
very large per-cache line additional storage area (up to 46
bytes) and it is characterized by a complex replacement
policy.

VII.  CONCLUSIONS

Many cache management techniques have been proposed
in the past that were based on rough assessments of the
temporal locality of cache blocks. Those techniques either
try to predict the temporal locality of the cache blocks in a
binary manner (“have” or “have-not”) or try to predict when
a cache block will lose its temporal locality. In this work, we
propose a practical way to quantitatively compare the
temporal locality of individual cache blocks via their
predicted reuse distance, which distinguishes our scheme as
a fine grained approach, in contrast to previously proposed
coarse grain approaches. We show that it is possible to
predict with high accuracy the reuse distance of the cache
blocks via instruction (PC) based prediction at run-time. We
concentrate on practical implementations of the instruction
based predictors (concerning size, associativity and
embedded confidence estimation) and we study efficient
techniques to collect reuse distances at run-time (reuse-
distance sampling). We demonstrate our reuse distance
prediction methodology by applying it to managing the
replacement policy of the L2 caches and we show that a
significant increase of the programs’s performance can be
achieved. On top and orthogonal to this, we use our
instruction based reuse distance predictor to enforce a
selective caching technique which further improves the
resulting performance gains.
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