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Abstract—IP-Lookup is a challenging problem because of the
increasing routing table sizes, increased traffic, and higher speed
links. These characteristics lead to the prevalence of hardware
solutions such as TCAMs (Ternary Content Addressable Memo-
ries), despite their high power consumption, low update rate, and
increased board area requirements. We propose a memory archi-
tecture called IPStash to act as a TCAM replacement, offering at
the same time, high update rate, higher performance, and signifi-
cant power savings. The premise of our work is that full associativ-
ity is not necessary for IP-lookup. Rather, we show that the
required associativity is simply a function of the routing table size.
Thus, we propose a memory architecture similar to set-associative
caches but enhanced with mechanisms to facilitate IP-lookup and
in particular longest prefix match (LPM). To reach a minimum
level of required associativity we introduce an iterative method to
perform LPM in a small number of iterations. This allows us to
insert route prefixes of different lengths in IPStash very efficiently,
selecting the most appropriate index in each case. Orthogonal to
this, we use skewed associativity to increase the effective capacity
of our devices. We thoroughly examine different choices in parti-
tioning routing tables for the iterative LPM and the design space
for the IPStash devices. The proposed architecture is also easily
expandable. Using the Cacti 3.2 access time and power consump-
tion simulation tool we explore the design space for IPStash devices
and we compare them with the best blocked commercial TCAMs.

Keywords (Network architectures, Network routers, routing table
lookup, Ternary Content Addressable Memories, set-associative memo-
ries)

I.       INTRODUCTION

Independently of a router’s Internet hierarchy level —core,
edge, or access platform— a function that must be performed in
the most efficient manner is packet forwarding. In other words,
determining routing, security and QoS policies for each incom-
ing packet based on information from the packet itself. A prime
example is the Internet Protocol's basic routing function (IP-
lookup) which determines the next network hop for each incom-
ing packet. Its complexity stems from wildcards in the routing
tables, and from the Longest Prefix Match (LPM) algorithm
mandated by the Classless Inter-Domain Routing (CIDR).

Since the advent of CIDR in 1993, IP routes have been
identified by a <route prefix, prefix length> pair, where the pre-
fix length is between 1 and 32 bits. For every incoming packet,
a search must be performed in the router’s forwarding table to
determine the packet’s next network hop. The search is decom-
posed into two steps. First, we find the set of routes with pre-
fixes that match the beginning of the incoming packet’s IP
destination address. Then, among this set of routes, we select
the one with the longest prefix. This identifies the next network
hop.

What makes IP-lookup an interesting problem is that it
must be performed increasingly fast on increasingly large rout-
ing tables. One direction to tackle this problem concentrates on
partitioning routing tables in optimized data structures, often in
tries (digital trees), so as to reduce as much as possible the aver-
age number of accesses needed to perform LPM [2,17,19,26].
Each lookup however, requires several (four to six) dependent-
serialized memory accesses stressing conventional memory
architectures to the limit. Memory latency and not bandwidth is
the limiting factor with these approaches. Significant effort has
been devoted to solve the latency problem either by using fast
RAM (e.g., Reduced Latency DRAM—RLDRAM) or by repli-
cating the routing table over several devices so that searches can
run in parallel to attain the necessary speeds [3]. The first solu-
tion can only mitigate the problem and the second solution
drives up system costs (due to bus replication) and further com-
plicates routing table update. In all cases the solution is a trade-
off among search speed, update speed and memory size.

TCAMs—A fruitful approach to circumvent latency restrictions
is through parallelism: searching all the routes simultaneously.
Content Addressable Memories perform exactly this fully-par-
allel search. To handle route prefixes, Ternary CAMs (TCAMs)
are used which have the capability to represent wildcards.
TCAMs have found acceptance in many commercial products;
several companies (IDT [7], Netlogic [16], Micron [15], Siber-
core [25]) currently offer a large array of TCAM products used
in IP-lookup and packet classification.

In a TCAM, IP-lookup is performed by storing routing
table entries in order of decreasing prefix lengths. TCAMs auto-
matically report the first entry among all the entries that match
the incoming packet destination address (topmost match).

The need to maintain a sorted table in a TCAM makes
incremental updates a difficult problem. If N is the total number
of prefixes to be stored in an M-entry TCAM, naive addition of
a new update can result in O(N) moves. Significant effort has
been devoted in addressing this problem [9,24], however all the
proposed algorithms require an external entity to manage and
partition the routing table.

In addition to the update problems, two other major draw-
backs plague TCAMs: high cost/density ratio and high power
consumption. The fully-associative nature of the TCAM means
that comparisons are performed on the whole memory array,
costing a lot of power: a typical 18 Mbit 512K-entry TCAM can
consume up to 15 Watts when all the entries are searched [7,25].
TCAM power consumption is critical in router applications
because it affects two important router characteristics: linecard
power and port density. Linecards have fixed power budgets
because of cooling and power distribution constraints [5]. Thus,
one can fit only a few power-hungry TCAMs per linecard. This



in turn reduces port density —the number of input/output ports
that can fit in a fixed volume— increasing the running costs for
the routers.

Efforts to divide TCAMs into “blocks” and search only the
relevant blocks have reduced power consumption considerably
[7,16,18,21,29,30]. This direction to power management actu-
ally validates our approach. “Blocked” TCAMs are in some
ways analogous to set-associative memories but in this paper
we argue for pure set-associative memory structures for IP-
lookup: many more “blocks” with less associativity and separa-
tion of the comparators from the storage array. In TCAMs,
blocking further complicates routing table management requir-
ing not only correct sorting but also correct partitioning of the
routing tables. Routing table updates also become more compli-
cated. In addition, external logic to select blocks to be searched
is necessary. All these factors further increase the distance
between our proposal and TCAMs in terms of ease-of-use while
still failing to reduce power consumption below that of a
straightforward set-associative array.

More seriously, blocked TCAMs can only reduce average
power consumption. Since the main constrain in our context is
the fixed power budget of a linecard a reduction of average
power consumption is of limited value —maximum power con-
sumption still matters. As we show in this paper, the maximum
power consumption of IPStash is less than the power consump-
tion of a comparable blocked TCAM with full power manage-
ment.

IPStash—To address TCAM problems we propose a new mem-
ory architecture for IP-lookup we call IPStash. It is based on the
simple hypothesis that IP-lookup only needs associativity
depending on routing table size; not full associativity (TCAMs)
or limited associativity (“blocked” TCAMs). As we show in this
paper this hypothesis is indeed supported by the observed struc-
ture of typical routing tables. IPStash is a set-associative mem-
ory device that directly replaces a TCAM and offers at the same
time:

• Better functionality: It behaves as a TCAM, i.e., stores the
routing table and responds with the longest prefix match to a
single external access. In contrast to TCAMs there is no
need for complex sorting and/or partitioning of the routing
table; instead, a simple route-prefix expansion is performed
but this can happen automatically and transparently.

• Fast routing table updates: since the routing table needs no
special handling, updates are also straightforward to per-
form. Updates are simply writes/deletes to/from IPStash.

• Low power: Accessing a set-associative memory is far more
power-efficient than accessing a CAM. The difference is
accessing a very small subset of the memory and performing
the relevant comparisons, instead of accessing and compar-
ing the whole memory at once.

• Higher density scaling: One bit in a TCAM requires 10-12
transistors while SRAM memory cells require 4-6 transis-
tors. Even when TCAMs are implemented using DRAM
technology they can be less dense than SRAMs.

• Easy expandability: Expanding the IPStash is as easy as
adding more devices in parallel without the need for any
complicated arbitration. The net effect is an increase of the
associativity of the whole array.

• Error Correction Codes: The requirement for ECC is fast
becoming a necessity in Internet equipment. Intergrating
ECC in IPStash (SRAM) is as straightforward as in set-asso-
ciative caches but as of yet it is unclear how ECC can be
efficiently implemented in TCAMs. In the latter case, all

memory must be checked for errors on every access since it
is impossible to tell a no-match from a one-bit error.

Contributions of this paper—The contributions of this paper
are as follows:

• We propose a set-associative memory architecture enhanced
with the necessary mechanisms to perform IP-lookup. Fur-
thermore, we introduce an iterative method to perform
Longest Prefix Match which results in very efficient storage
of the routing tables in set-associative arrays. In addition,
we show how skewed associativity can be applied with great
success to further increase the effective capacity of IPStash
devices.

• We exhaustively search the design space in two dimensions.
First we examine the choices on how to partition routing
tables for the iterative longest prefix match. The partitioning
affects how efficiently the routing tables can fit in an
IPStash. Second, we examine the design space of IPStash
devices showing the trade-off between power consumption
and performance.

• We introduce a power optimization that takes advantage of
the iterative nature of our LPM search and selectively pow-
ers-down set-associative ways that contain irrelevant
entries.

• We use real data to validate our assumptions with simula-
tions. We use the Cacti tool to estimate power consumption
and performance and we show that IPStash can be up to
64% more power efficient or 160% faster than the best com-
mercial available blocked TCAMs.
Compared to our earlier proposal [8] for a set associative

memory for IP-lookup: i) we have resolved its major shortcom-
ing which was the significant expansion of the route prefixes
(which resulted in expanded routing tables twice their original
size), ii) we introduce a new power-management technique
leading to new levels of power-consumption efficiency and iii)
while our earlier work concerned a specific point in the design
space of set-associative memories for IP-lookup, in this paper
we systematically explore a much larger space of possible solu-
tions.

Structure of this paper—Section II presents the IPStash archi-
tecture and our implementation of the LPM algorithm. In Sec-
tion III we show that IP-lookup needs associativity depending
on the routing table size. Section IV presents other features of
the architecture. Section V provides simulation results for
power consumption and Section VI discusses related work.
Finally, Section VII offers our conclusions.

II.       IPSTASH ARCHITECTURE

The main idea of the IPStash is to use a set-associative
memory structure to store routing tables. IPStash functions and
looks like a set-associative cache. However, in contrast to a
cache which holds a small part of the data set, IPStash is
intended to hold a routing table in its entirety. In other words, it
is the main storage for the routing table—not a cache for it.In
this section we describe how routing tables can be inserted in a
set-associative structure and how LPM is performed in this
case.

 A     IPStash Basics

To insert routing prefixes in a set-associative structure —as
opposed to a TCAM— we first need to define an index. Routing
prefixes can be of any length but in reality there are no prefixes



shorter than 8 bits. Thus, we can count on at least the 8 most
significant bits as the index. Disregarding for a moment the
inefficiency of such an indexing scheme, let us assume that we
do insert routing prefixes in a set-associative structure using
their 8 leftmost bits (most significant positions) as index. To
retrieve a prefix from IPStash we also need a tag. Any non-
wildcard bits beyond the 8 leftmost index bits then comprise the
tag. Tags are variable in IPStash: 0 to 24 bits with an 8-bit
index. The prefix length, stored with the tag, either as binary
value or as a mask, defines the length of the tag and how many
bits participate in the tag match. Fig. 1 shows a set of a set-asso-
ciative array containing several prefix entries with different
lengths. An incoming IP address can match many of them as in
a TCAM. Viewed differently, the variable tag match provides
the same functionality as the TCAM wildcards. The key obser-
vation here is that routing prefixes have their wildcard bits
always bundled together in the right side (least significant posi-
tions) affording us variable tags and easy implementation of
variable-tag match.

Of course, to perform LPM we need to select the longest of
all the matching prefixes in a set. To do this we need another
level of length arbitration after the tag match that gives us the
longest matching prefix. Again, the prefix length, stored with
the matching tags, is used in comparisons to select the longest
prefix. If the prefix length is stored as a binary value it is
expanded into a full bit mask. The maximum length can be
found by comparing the masks with a combinatorial circuit or
using a length arbitration bus with as many lines as the maxi-
mum prefix length. Arbitration works as follows: When multi-
ple tags match simultaneously, they assert the wire that
corresponds to their prefix length. Every matching tag sees each
other’s length and a self-proclaimed winner outputs its result on
the output bus. All other matching tags withdraw. 

As mentioned above an 8-bit index and especially the MSB
bits would be disastrous for the associativity requirements for a
large routing table. Conflict chains would be unacceptably long.
In the next subsections we show two things. First, how we can
increase the index to address a larger number of sets. Second,
how we can partition the routing table into classes, each with its
own index, to dramatically increase the efficiency of storing a
routing table in a set-associative array. Both of these techniques
are driven by the structure of the routing tables which we ana-
lyze next.

 B     Routing Table Characteristics

Many researchers have observed a distinct commonality in
the distribution of prefix lengths in routing tables [17,19,26]
that stems from the allocation of IP addresses in the Internet as
a result of CIDR. This distribution is not expected to change

significantly with time [6]. Fig. 2 shows the distribution of pre-
fix lengths for four tables taken from [22] and from different
time periods (from 1999 to 2003). We can easily draw some
general conclusions —also noted by other researchers— from
the graphs in Fig. 2: the distribution is the same for all tables
regardless of their size and creation date. With respect to the
actual prefix lengths: 24-bit prefixes comprise about 60% of the
tables; prefixes longer than 24 bits are very few (about 1%);
there are no prefixes less than 8 bits; the bulk (about 97%) of
the prefixes have lengths between 16 and 24 bits.

 C     Prefix expansion and index selection

A straightforward method to increase the index is to use a
controlled prefix expansion technique to expand prefixes to
larger lengths. For example, we can expand prefixes of lengths
8,9,10, and 11 all to length 12 thus having the opportunity to use
up to 12 bits as index.

The controlled prefix expansion creates comparably very
few additional expanded prefixes at these short lengths simply
because they are very few short prefixes to begin with. This,
however, is not true for all prefix lengths as it can be seen in
Fig. 2. As we expand prefixes into larger and larger lengths,
routing-table inflation becomes a significant problem.

Unfortunately, it is desirable to expand prefixes to large
lengths in order to gain access to the “best” indexing bits. Fig. 3
shows the bit entropy for prefixes of length 16 to 20 (upper
graph) and 21 to 24 (lower graph). The y-axis is the prefix
length, the x-axis represents the bits (up to bit 24), and the z-
axis is the entropy of the bits. Bit entropy is the bit’s apparent
randomness —how un-biased it seems towards one or zero. The
higher the entropy the better the bit for indexing. Indexing with
high entropy bits will help to spread references more evenly
across the memory minimizing the associativity requirements.
MSB bits have very low entropy and are really unsuitable for
indexing. Regardless of prefix length, the best bits for indexing
start from bit 6 and reach the prefixes’ maximum length.

The above analysis suggests expansion of prefixes to large
lengths and selection of the right-most (non-wildcard) bits as
index —prefix expansion creates high entropy bits. Even if we
could accept routing-table inflation, prefix expansion alone is
not sufficient for efficient storage of a routing table into a set-
associative structure —even with a very good index, a single
hashing of the routing table still results in unacceptably large
associativity.

 D     Class Partitioning and Iterative LPM

To address this problem, we introduce an iterative LPM
where we search for progressively shorter prefixes. This allows

Fig. 1.  IPStash with variable prefix tags
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us to treat each prefix length independently of all others. Thus,
we can insert, for example, prefixes of length 32 into IPStash
using the most appropriate index; similarly, we insert prefixes
of length 31,30,29,..., using again the most appropriate index
from the available non-wildcard bits. To perform LPM we start
by searching the longest prefixes using their corresponding
index to retrieve them. We repeat with progressively shorter
prefix lengths until we find the first match —the LPM.

But iterating over 24 prefix lengths (lengths 32 to 8) is
impractical. First, it would make some searches unacceptably
slow if we had to try several different lengths until we found a
match. Second, it would introduce great variability in the hit
latency which is clearly undesirable in a router/network proces-
sor environment. 

Our solution is to partition prefixes into a small set of
classes and iterate over the classes. For example, we can parti-
tion the routing table into the following classes:

• Class 1 contains all the prefixes from 21 to 32 bits. Any 12
(or any other number if we chose so) of the first 21 bits can
be used for indexing —bits above 21 are wildcard bits.

• Class 2 contains all the prefixes from 17 to 20 bits. Any 12
bits of the first 17 can be used as an index, but bits 18 to 20
contain wildcards.

• Class 3 contains all the prefixes from 8 to 16 bits. Only this
class —the last class containing the shortest prefixes—
requires prefix expansion of the shorter prefixes to guaran-
tee the availability of the index bits.
Class partitioning is nothing more than a definition of the

index (consequently of the tag) for a set of prefix lengths. It
allows us to re-hash a routing table multiple times, each hash
using an optimal index. Fig. 4 shows the associativity require-
ments for 8 routing tables when they are single-hashed (single
class), doubly-hashed (2 classes) and triply-hashed (3 classes).
The benefit from more than 3 classes is little; we have not seen
significant improvement going from 3 to 4 classes. The optimal
class partitioning depends on the actual routing table to be
stored and can change over-time. Thus, IPStash is configurable
with respect to the classes used to store and access a routing
table.

 E     A working example

To put it all together Fig. 5 shows how the index and tag are
extracted from a prefix belonging to some class. The class
boundaries define the range of prefix lengths that belong to the
class. The lower class boundary guarantees that no bit below
that boundary can be a wildcard bit for the prefixes belonging to
the specific class. Thus, the index can always be safely chosen
from bits below the lower class boundary. Any bits below the
lower class boundary besides the index bits form the fixed tag
of the prefix while non-wildcard bits above the lower class
boundary form the variable part of the prefix tag. The length of
the prefix is used to form a mask that controls exactly how
many bits of the tag participate in the tag match. This mask is
stored with the tag in each entry.

To insert a prefix in IPStash we first assign it to a class,
extract its index and form its tag by concatenating its fixed tag
parts with the variable part. In the same time we form the mask
stored with the tag that controls tag match (Fig. 6).

To perform LPM in IPStash we iteratively search all classes
until we find a match. For each class we take the incoming IP
address, extract the class index and form the corresponding tag
to be compared against the stored prefix tags (Fig. 7). The IP
address tag is a full tag containing all the IP address bits but
when it is compared to the stored prefix tags the corresponding
masks control which bits participate in the comparison and
which bits are ignored (Fig. 7).

 F     Skewed associativity

Although there are significant gains going from a single
hash (single class) of the routing table to wo and three hashes (2
and 3 classes) —possibly accompanied by a prefix expansion to
secure an index for the shortest class— Fig. 4 shows that there
are still considerable associativity requirements even for triple-
hashing. Our second proposal, orthogonal to class partitioning,
for increasing hashing effectiveness and decreasing associativ-
ity requirements is based on Seznec’s idea of a skewed associa-
tivity [23]. Skewed associativity can be applied in IPStash with
great success. The basic idea of skewed associativity is to use
different indexing functions for each of the set-associative
ways. Thus, items that in a standard cache would compete for a
place in the same set because of identical indexing across the
ways, in a skewed-associative cache map on different sets. One
way to think about skewed associativity is to view it as an addi-
tional increase of the entropy of the system by the introduction
of additional randomness in the distribution of the items in the
cache.

The left upper graph of Fig. 8 shows how RT5 is loaded
into an “unlimited-associativity” IPStash using 12 bits for index
and the three class approach—without restriction to the number

Fig. 3.  Bit entropy for prefixes 16- to 24-bits long (based on 8 routing tables)
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of ways. The horizontal dimension represents the sets and the
vertical dimension the set-associative ways. As it is depicted in
the graph, RT5 needs anywhere from 23 to 89 ways. If RT5 was
forced into a 64-way IPStash anything beyond 64 in the graph
would be a conflict. Despite the random look of the graph, the
jagged edges do in fact represent order (structure) in the system.
It is the order introduced by the hashing function. The effect of
skewing (shown in the right graph of Fig. 8) is to smooth-out
the jagged edges of the original graph.

We use a simple skewing technique, XORing index bits
with tag bits rotated once for each new skewed index. Details
can be found in [8]. Because many a time we do not have
enough available tag bits we create only a few distinct skewed
indices regardless of the hardware associativity and apply each
skewed index to multiple ways. Although this technique might
not give us optimal results it has the desirable characteristic of
curbing the increase in power consumption due to the multiple
distinct decoders.

The effect of skewed associativity is shown in Fig. 9 which
compares the associativity requirements with and without skew-
ing and for 1,2, and 3 classes for all 8 routing tables. The bene-

fits are significant across all cases, comparable and additive to
the benefits from multiple hashing. A distinct effect of skewing
is to “linearize” the required associativity curves and bring them
very close to the best possible outcome as it is further analyzed
in Section III.

III.       DETAILED ANALYSIS OF MEMORY 
REQUIREMENTS

Up until now we have discussed required associativity as a
function of the routing table size. In this section we examine the
memory overhead when we try to fit a routing table into a fixed-
associativity IPStash. A significant difference between IPStash
and a TCAM is that the TCAM can fit a routing table with
exactly the same number of entries as its nominal capacity,
while IPStash has some inherent capacity inefficiencies due to
imperfect hashing. The inefficiencies are divided into two
kinds:
• Inefficiency stemming from the increased size of the routing

tables because of prefix expansion in the shortest class to

Fig. 5.  Index and Tag of a prefix

Fig. 6.  Prefix insertion into IPStash

Fig. 7.  Tag match in IPStash
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secure a desired index.
• Inefficiency stemming from imperfect hashing of the rout-

ing tables. Assuming that IPStash’s associativity equals the
routing table’s required associativity, this inefficiency is
nothing else than the empty slots left in the sets where the
associativity is less than maximum.
Our approach to assess memory overhead in IPStash is to

exhaustively study the choices for different indices and class
configurations per index. We examine several different index
lengths from 8 to 16 bits. For a given index, we select a class
configuration, which —for simplicity— is common to all 8
routing tables we use. We have also examined class configura-
tions tailored individually for each routing table which gives us
a small additional benefit. Imbedded in the class configuration
is the prefix expansion in the shortest class. Fig. 10 shows the
normalized memory overhead (lower part) and required asso-
ciativity (upper part) for all the tables used in this paper. In all
cases, the class configuration that minimizes the average mem-
ory overhead of the 8 routing tables is shown.

Detailed results are presented in Table I which shows the
effect of the index on the number of the expanded prefixes and
on the memory overhead (for both skewed and non-skewed
cases). Fig. 10 and Table I show that as the number of index bits
grows, memory overhead is increasing and the required associa-
tivity is decreasing. In both cases, the trends are exponential.
On one hand we are seeking low associativity for an efficient
implementation of IPStash. On the other, increasing the index to
decrease associativity, increases both capacity inefficiencies of
IPStash: we have to both store larger expanded tables and the
empty slots left in sets correspond to a larger percentage of
wasted memory in low associativity.

This is clear in Fig. 11 which shows the relationship of the

required associativity (skewed case) to the initial size for our
eight routing tables. As we can see this relationship is remark-
ably linear —which implies good scalability with size— and
holds for all indices, albeit at different slopes. The slope of a
curve in this graph (“slope”) is a measure of the hashing effi-
ciency: the optimal slope (“opt”) for each index is 1/sets. The
ratio of the slope to its optimal is a measure of its closeness to
the optimal.

The most important observation here is that although the
slopes of the curves are quite near the theoretical optimal slopes
in each case, small indices are closer to the optimal slopes than
longer indices confirming increasing inefficiency with index
length.

To conclude, the choic of the index must strike a fine bal-
ance between the memory overhead to store a routing table and
its associativity requirements. Both memory size and associa-
tivity negatively affect power consumption and performance of
an actual IPStash device.

The above analysis pertains to information (memory over-
head, required associativity) that we extract solely from routing
tables. The rest of the paper deals with the analysis of architec-
tural trade-offs in the context of designing a memory structure
optimized for IP-lookup. This is the topic of Section V where
we use the Cacti tool to study this problem.

Fig. 10.  Memory bounds and max associativity vs index bits for all the tables
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IV.       OTHER FEATURES OF THE ARCHITECTUES

 A     Incremental Updates

According to [3] many network equipment design engi-
neers share the view that it is not the increasing size of the rout-
ing tables but the super-linear increase in the number of updates
that is going to hinder the development of next generation inter-
net devices. The requirement for a fast update rate is essential
for a router design. This is true because the routing tables are
hardly static [6,10,14]. A real life worst-case scenario that rout-
ers are called to handle is the tremendous burst of BGP update
packets that results from multiple downed links or routers. In
such unstable conditions the next generation of forwarding
engines requires bounded processing overhead for updates in
the face of several thousand route updates per second.

Routing table update has been a serious problem in many
TCAM-based proposals. The problem is that the more one opti-
mizes the routing table for a TCAM the more difficult it is to
modify it. Many times updating a routing table in a TCAM
means inserting/deleting the route externally, re-processing the
routing table, and re-loading it on the TCAM (a situation that
stands for the trie based lookup schemes). In other proposals,
there is provision for empty space distributed in the TCAM to
accommodate a number of new routes before re-processing and
re-loading the entire table is required [24]. This extra space,
however, leads to fragmentation and reduces capacity. The
updating problem becomes more difficult in “blocked” TCAMs
where additional partitioning decisions have to be taken.

In contrast, route additions in IPStash are straightforward: a
new route is expanded to the prefixes of the appropriate length
if needed (no resorting is required), and it is inserted into the
IPStash as any other prefix during the initial loading of the rout-
ing table. Deletions are also straightforward: the deleted route is
presented to the IPStash to invalidate the matching entries hav-
ing the same length as the deleted route. 

 B     Expanding the IPstash

As a result of CIDR, the trend for routing table sizes is a
rapid increase over the last few years. It is hard to predict rout-
ing table sizes 5 —or, worse, 10— years hence. Thus, scaling is
a required feature of the systems handling the Internet infra-
structure, because they should be able to face new and partly
unknown traffic demands.

IPStash can be easily expanded. There is no need for addi-
tional hardware and very little arbitration logic is required, in
contrast to TCAMs which need at least a new priority encoder
and additional connections to be added to an existing design.
We consider this as one of the main advantages of our proposal.
Adding in parallel more IPStash devices increases associativity.
Length arbitration to select the longest match across multiple
devices is now expanded outside the devices with a 32-bit
wired-or arbitration bus which is a hierarchical extension of the
length-arbitration bus discussed in Section II.A. Further details
can be found in [8].

V.       DETAILED EXPLORATION OF THE DESIGN 
SPACE

We used Cacti 3.2 tool [28] to estimate performance and
power consumption of IPStash. Cacti iterates over multiple
cache configurations until it finds a configuration optimized for
speed, power, and area. For a level comparison we examine
IPStash and TCAMs at the same technology integration (0.15u).

To increase capacity in IPStash we add more associativity.
This stems from the linear relation of routing table size and
required associativity. We extended Cacti to handle more than
32-ways, but as of yet we are unable to validate these numbers.
Thus, we use Cacti’s ability to simulate multi-banked caches to
increase size and associativity at the same time. In Cacti, multi-
ple banks are accessed in parallel and are intended mainly as an
alternative to multiple ports. We use them, however, to simulate
higher capacity and associativity.

Our basis for comparison is the Ultra-18 (18Mbit, 512K
IPv4 entries) TCAM from SiberCore [25]. Ultra-18 is presently
the top-of-line TCAM1. Table III shows the power characteris-
tics of the Ultra-18. Since in our study we cannot scale IPStash
arbitrarily (because of Cacti’s powers-of-two restrictions) we
chose to scale the TCAMs instead. Detailed characteristics pre-
sented in Table II allow us to project Ultra-18 power consump-
tion for specific capacities. Our approach is to use IPStash
memory overhead factors presented in Table I to scale TCAM
capacity. For example, a 512K-entry IPStash with a 12-bit index
has a memory overhead of 1.23 meaning that it can store a rout-
ing table of about 512/1.23 = 416K entries. Thus, we compare
against a TCAM with same scaled capacity, i.e., a TCAM with
416K entries.

We use Cacti to study various configurations (adjusting
associativity, number of sets, and number of banks) of a 512K-
entry IPStash. An entry in our case contains the maximum num-
ber of prefix bits —aside from index bits— plus the correspond-
ing mask (e.g., for a 12 bit index, 20+20 = 40 bits for tag), and
data payload (8-bit port number). Table III shows power and
latency results for some of the possible configurations where
the associativity (of each bank) is fixed at 32. Power results are
normalized for the same throughput —e.g., 100 Million
Searches Per Second (Msps), a common performance target for
many TCAMs. We restrict solutions to those with a memory
overhead less than 2 (Table I). The reasoning is that TCAMs
also have a hidden memory overhead to support wildcards
which is exactly 2.

TABLE  II.  Ultra-18 (SiberCore) power characteristics

SEARCH 
RATE (MSPS)

ALL BLOCKS SEARCHED 1 BLOCK SEARCHED 

POWER 
(WATT)

POWER PER 
Mb (WATT)

POWER 
(WATT)

POWER PER 
Mb (WATT)

50 4.44 0.247 13.32 0.74

66 5.7 0.317 16.92 0.94

83 6.81 0.378 21.34 1.186

100 7.91 0.439 25.88 1.438

TABLE  III.  Cacti power and timing results for a 512k-entry IPStash device 
with 32 way associativity

IPSTASH 
CONFIGURATION

ACCESS 
TIME 
(NS)

CYCLE 
TIME 
(NS)

MAX 
FREQ.
(MHZ)

MAX 
THR.

(MSPS)

POWER 
AT 100 
MSPS

(WATT)
INDEX 
BITS

BANKS ASSOC

8 64 32 15.19 5.66 177 59 —

9 32 32 6.11 2.04 491 163 16.14

10 16 32 5.18 1.72 582 194 9.23

11 8 32 5.4 2.28 439 146 4.93

12 4 32 4.36 2.09 479 159 2.8

13 2 32 5.71 2.56 391 130 2.02

14 1 32 8.53 4.45 225 75 —

1 Recently (Feb.-2004) Netlogic Microsystems released a new TCAM using
0.13u process technology.



Two more changes are needed in Cacti to simulate IPStash.
The first is the extra wired-or bus required for length arbitra-
tion. The arbitration bus adds both latency and power to each
access. Using Cacti’s estimates we compute the overhead to be
less than 0.4 Watts (at 100 Msps). Our estimates for the arbitra-
tion bus are based on the power and latency of the cache’s bit-
lines. We consider length arbitration as a separate pipeline stage
in IPStash which, however, does not affect cycle time —address
decoders define cycle time in all cases. The second change con-
cerns the support for skewed associativity. Skewed index con-
struction (rotations and XORs) introduces negligible latency
and power consumption to the design. However, a skewed-asso-
ciative IPStash requires separate decoders for the wordlines —
something Cacti does not do on its own. We compute latency
and power overhead of the separate decoders in all cases. We
conclude that the skewed-associative IPStash is slightly faster
than a standard IPStash while consuming about the same power.
The reason is that the decoders required in the skewed-associa-
tive case are faster than the monolithic decoder employed in the
standard case. At the same time although each of the small
decoders consumes less power than the original monolithic
decoder, all of them together consume slightly more power.

With our modifications, Cacti shows that a 512K-entry, 32-
way, IPStash easily exceeds 100 Msps. In any configuration,
pipeline cycle time is on the order of 2 to 5 ns. Power consump-
tion at 100 Msps starts at 2.13 W (including length arbitration
and skewing overhead) with a 13-bit index and increases with
decreasing index. In the extreme case of an 8-bit index, power is
overwhelming mainly due to routing overhead (among banks).
Power results are normalized for the same throughput (100
Msps) instead of frequency. Thus, the operational frequency of
IPStash may not be the same as in TCAMs —it is in fact higher.
Results are analogous for the 200 Msps level performance.

Results for the 32-way IPStash configurations show a clear
trade-off between power and performance. In the next section
we introduce a power management technique for IPStash and
present results for the most appealing configurations in terms of
power or performance in the entire design space of IPStash
devices.

 A     Power Management in IPStash

As we have shown in the previous section, for the same
performance, IPStash power consumption is significantly lower
than the announced minimum power consumption of the Ultra-
18 with optimal power management. Power management in the
TCAM typically requires both optimal partitioning of the rout-
ing tables and external hardware to selectively power-up indi-
vidual TCAM blocks.

In this section we introduce a novel power management
technique for IPStash that is simple, transparent, and often very
effective. The concept is to assign favorite —but not necessarily
exclusive— associative ways or banks of ways to different pre-
fix classes. In the following we refer to banks of ways but our
discussion applies equally well to individual associative ways.
The hope is that, for the most part, different classes end up
occupying different banks. Since in our LPM we search classes
consecutively, when a class occupies specific banks we restrict
our search solely to those.

This power management technique can be implemented
with very little hardware. First, we assign favorite banks to sets
of classes in a very simple manner: Class 1 (the largest) favors
the leftmost banks while the combination of Class 2 and Class 3
favors the rightmost banks. All the classes intermix somewhere
the middle. “Bank-favoritism” is exhibited on prefix insertion
only: we simply steer Class-1 prefixes to the left and Class-2

and 3 prefixes to the right. For each bank two bits describe three
possibilities for its contents: i) contains Class-1 prefixes only,
ii) contains Class-2 and Class-3 only, iii) contains all three
classes. Depending on the class we are searching in our LPM,
only the relevant banks participate in the access and search.

Cacti incorporates a simple model to simulate multi-bank
caches which is applicable in our case. Cacti considers each
bank as fully independent: every bank has its own independent
address and data lines. Cacti includes a routing overhead that
represents power and time penalty for driving address and data
lines to each bank.

Assuming a 512k-entry IPStash with 16 banks each con-
sisting of 16 ways, our simulations show that 84% of the total
associativity is devoted to pure set-associative ways (57% asso-
ciativity for Class-1 prefixes, 27% for the Class-2 and Class-3
prefixes) and 16% of the associativity is devoted to mixed
classes. This means that upon arrival of an incoming packet, in
the first lookup (Class-1) only 73% of the banks (12 banks)
need to be searched and only 42% of the banks (7 banks) are
needed for the other two sequential searches. Average power
consumption in this case is reduced by 37.8%.

Fig. 12 presents results for all possible configurations (1 to
64 banks, 4 to 32 associativity per bank) of a 512K IPStash with
indices of 11-14 bits. The horizontal dimension represents the
maximum search rate (in Msps) that a specific IPStash can
achieve and the vertical dimension represents maximum power
reduction compared to the scaled power consumption of the
ULTRA-18 TCAM with full memory management. All power
results are normalized for the same throughput —100 Msps. 

IPStash power consumption without any power manage-
ment is 61% lower compared to the fully-power-managed
ULTRA-18. When we employ power management in IPStash, a
further improvement in power consumption is achieved. In our
case, power management introduces negligible overhead, need-
ing no additional external hardware or effort. Considering the
search throughput, IPStash devices easily exceed the current
top-of-the-line performance of 100 Msps. In some configura-
tions more than 250 Msps are achieved.

 B     Effects of Packet Traffic on Power and Latency

As we have discussed, the concept for longest prefix match
in IPStash is to iteratively search prefix classes —usually three
in our study— for progressively shorter prefixes until a match is
found. For the analysis in Section V we assume worst case

Fig. 12.  Power vs. Speed for optimized (power managed) and un-optimized 
IPStash compared to a state-of-the-art TCAM. In each case, Pareto curves 

denote the best options in the design space.
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behavior, that is, all classes are always searched regardless of
where the first hit occurs.

In reality, we can stop the search on the first (longest)
match. As more incoming IP addresses hit, for example, on
Class 3 prefixes (the first class searched), fewer memory
accesses per search are required, thus both average search
latency and power consumption are reduced. An optimized
IPStash device should operate in this fashion. The distribution
of hits to classes for a specific traffic trace determines the bene-
fits in power and latency. Assuming a uniform distribution of
hits to three classes we can reduce power and latency by a factor
of 1/3.

Although many organizations, make packet traces publicly
available trough the National Laboratory for Applied Network
Research (NLANR) [20], privacy considerations dictate the
anonymization of IP addresses. Unfortunately, this prevents us
from obtaining reliable hit-distribution results when we use
anonymized traffic with non-anonymized routing tables. We
note here, that the hit distribution for some expected traffic can
drive the initial class selection. It might be beneficial to opt for
a sub-optimal class selection (in terms of memory-overhead and
required associativity) which, however, optimizes the average
number of accesses per search.

VI.       RELEATED WORK

TCAMs offer good functionality, but are expensive, power
hungry, and less dense than conventional SRAMs. In addition,
one needs to sort routes to guarantee correct longest prefix
match. This often is a time and power consuming process in
itself. Two solutions for the problem of updating/sorting TCAM
routing tables have been recently proposed [9,24]. The problem
of power consumption in TCAM-based routers attracts signifi-
cant attention by researchers. Liu [12] uses a combination of
pruning techniques and logic minimization algorithms to reduce
the size of TCAM-based routing tables. However, power con-
sumption still remains quite high. Zane, Narlikar and Basu [29]
take advantage of the effort of several TCAM vendors to reduce
power consumption by providing mechanisms to enable and
search only a part of a TCAM much smaller than the entire
TCAM array. The authors propose a bit-selection architecture
and partitioning technique to design a power-efficient TCAM
architecture. In [18], the authors propose to place TCAMs on
separate buses for parallel accesses and introduce a paged-
TCAM architecture to increase throughput and reduce power
consumption. The idea of a “paging” TCAM architecture is fur-
ther explored in [21,30] in order to achieve new levels of power
reduction and throughput. Our proposal is similar in spirit but
distinctly different in implementation since we advocate separa-
tion of storage (in an SRAM set-associative memory array) and
search functionality (variable tag match and length arbitration).
We believe that this separation results in the most efficient
implementations of the “blocking” or paging concept. Further-
more, our effort is centered in fitting a routing table in the most
efficient manner in the least associative array possible.

Many researchers employ caches to speed up the transla-
tion of the destination addresses to output port numbers
[1,2,4,13,27]. Studies for Internet traffic [19] show that there is
a significant locality in the packet streams that caching could be
a simple and powerful technique to address per-packet process-
ing overhead in routers. Most software-based routing table
lookup algorithms optimize the usage of cache in general pur-
pose processors, such as algorithms proposed in [4,19].

Our approach is different from all previous work. Instead
of using a cache in combination with a general-purpose proces-

sor or an ASIC routing machine, we use a stand-alone set-asso-
ciative architecture. IPStash offers unparalleled simplicity
compared to all previous proposals while being fast and power-
efficient at the same time.

VII.       CONCLUSIONS

In this paper, we propose a set-associative architecture
called IPStash which abandons the TCAMs in IP-lookup appli-
cations. IPStash overcomes many problems faced by TCAM
designs such as the complexity needed to manage the routing
table, power consumption, density and cost. IPStash can be
faster than TCAMs and more power efficient while still main-
taining the simplicity of a content addressable memory.

The recent turn of the TCAM vendors to power-efficient
blocked architectures where the TCAM is divided up in inde-
pendent blocks that can be addressed externally justifies our
approach. Blocked TCAMs resemble set-associative memories,
and our own proposal in particular, but their blocks are too few,
their associativity is too high, and their comparators are embed-
ded in the storage array instead of being separate. In our mind,
we see no reason to use a fully-associative, ternary, content-
addressable memory to do the work of a set-associative mem-
ory.

What we show in this paper is that associativity is a func-
tion of the routing table size and therefore need not be inordi-
nately high as in blocked TCAMs with respect to the current
storage capacities of such devices. What we propose is to go all
the way, and instead of having a blocked fully-associative archi-
tecture that inherits the deficiencies of the TCAMs, start with a
clean set-associative design and implement IP-lookup on it. We
show how longest prefix match can be implemented by itera-
tively searching classes of (increasingly) shorter prefixes. Pre-
fix classes allow us to hash the routing table multiple times
(each time using an optimized index) for insertion in IPStash.
Multiple-hashing coupled with skewed associativity results in a
required associativity for routing tables impressively close to
optimal.

Using Cacti, we study IPStash using 8 routing table sizes
and find that it can be more than twice as fast as the top-of-the-
line TCAMs while offering up to 64% power savings (for the
same throughput) over the announced minimum power con-
sumption of commercial products. In addition, IPStash exceeds
250 Msps while the state-of-the-art performance for TCAMs (in
the same technology) currently only reaches about 100 Msps.

We believe that IPStash is the natural evolutionary step for
large-scale IP-lookup from TCAMs to associative memories.
We are working on expanding IPStash to support many other
networking applications such as IPv6, NAT, MPLS, the han-
dling of millions of “flows” (point-to-point Internet connec-
tions) by using similar techniques as in IP-lookup.
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