
Abstract—The integration of memory on the same die as
the processor (IRAM) has the potential to offer unprece-
dented bandwidth that can be exploited efficiently by
vector processors. However, real-world scientific vector
applications with their very large memory requirements
and their poor locality, would easily overflow any single
IRAM device. In this environment, traditional
approaches such as caching or paging generate consid-
erable traffic, diminishing the performance advantage of
processor-memory integration. To exploit the full poten-
tial of IRAM in the realm of large-scale scientific com-
puting, we propose a DIstributed Vector Architecture
(DIVA), that uses multiple vector-capable IRAM nodes
in a distributed shared-memory configuration. The
advantages of our approach are twofold: (i) we speed up
the execution of the vector instructions by parallelizing
them across the nodes, (ii) we reduce external traffic, by
bringing computation to data rather than data to com-
putation. We dynamically map the computation of indi-
vidual vector instructions on nodes to coincide, to the
extent possible, with the corresponding data in memory.
As an implementation, we propose a mechanism to
assign at run-time elements of the architectural vector
registers on nodes, using the layout of data in memory
as a blueprint. Using traces of vector supercomputer
programs we demonstrate that DIVA often generates
considerably less external traffic compared to single or
multiple-node alternatives that are based solely on
caching or paging. Considerable performance gains are
then possible because of DIVA’s inter-node parallelism.

1 Introduction

While microprocessors follow an explosive growth in
performance, DRAM-based memory systems fall
behind creating the infamous memory wall [5,9]. Inte-
gration of main memory on the same die with a micro-
processor (IRAM) promises a high-performance yet
inexpensive memory system [1,2,7]. Through the elimi-
nation of the pin interface, IRAM is expected to deliver:

• A substantial increase in memory bandwidth (hun-
dredfold increase over the current workstation mem-
ory bandwidth) due to the vastly improved ability to
interconnect the processing core to multiple DRAM
row buffers.

• A reduction of the memory access latency (tenfold
decrease over current workstation memory latency)
following the elimination of crossing chip bound-
aries.

An inexpensive, high-performance memory system,
coupled with the need for a processing core that can
translate bandwidth into performance, is a compelling
reason for implementing a vector supercomputer on a
chip [10,2]. Vector units have demonstrated an excellent
ability to exploit high bandwidth. This is because of
their very efficient instruction issue and because they
can be implemented with deep pipelines. Their execu-
tion can also be parallelized using multiple “pipes,” i.e.,
different pipelines operating concurrently. Furthermore,
vector units represent a well-understood technology,
with relatively simple implementations, that is backed
by mature compiler support.

Although the marriage of vector units and IRAM at first
seems idyllic, considering the application domain of sci-
entific vector applications, where vector units tradition-
ally have thrived, and the limited, non-expandable
nature of the on-chip memory, some signs of disagree-
ment arise. Scientific vector applications are memory
intensive —codes such as weather prediction, crash-test
simulations, or physics simulations run with huge data
sets— and they would overflow any single device with a
limited and non-expandable memory1. Such applica-

1 There are, however, some applications such as multimedia
and cryptography that can be vectorized and have moderate
memory requirements [2]. These applications could fit in a
single IRAM. However, in this work we concentrate exclu-
sively on large scientific applications.

Distributed Vector Architecture: Beyond a Single Vector-IRAM

Stefanos Kaxiras†, Rabin Sugumar‡, James Schwarzmeier‡

† Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton St.
Madison WI, 53705

kaxiras@cs.wisc.edu

‡ CRAY Research/Silicon Graphics
900 Lowater Rd.

Chippewa Falls, WI 54729
{rabin,jads}@cray.com

tions inevitably require external access. The problem is
magnified by the increase of the relative cost of external
accesses, since processor-memory integration makes on-
chip accesses much faster. Providing an expensive exter-
nal memory system to speed up external accesses would
invalidate the cost-performance advantage of IRAM.
Paging to external memory also leads to excessive traffic
(thrashing), if the working set of the application does
not fit in the device (see Section 3). The applications in
question have poor locality and, frequently, their work-
ing sets represent a significant part of their full dataset.
Using the on-chip memory as a huge cache for external
memory could help alleviate the cost of external
accesses, but still, the caching behavior of the target
applications generates considerable external traffic (see
Section 3).

In this paper, we attack the problem of running large
vector applications by employing multiple Vector IRAM
nodes. Not only do we distribute the dataset of the appli-
cation over the memory of the nodes, but we also dis-
tribute the computation of the vector instructions across
the nodes (i.e., we parallelize individual vector instruc-
tions). A simplistic approach is to statically assign the
computation of specific vector elements on specific
nodes. This would generate excessive traffic, since data
would have to be shipped to the arbitrary node where the
computation is taking place. Instead, we continuously
re-assign element computation on nodes, attempting to
put it where the data are. Of course, data movement is
still necessary, since operating on two elements residing
in different nodes requires at least one data movement to
bring them together. Despite the distributed nature of
our approach, we show that for our target work-load, the
NAS benchmarks [3], it actually has less external traffic
than other centralized (single-node) or distributed (mul-

tiple-node) approaches. In the rest of this paper we
describe the principles of the architecture and we
present one possible implementation (Section 2). In Sec-
tion 3 we present an evaluation of this implementation.
Finally, we conclude in Section 5.

2 DIVA

In Figure 1 we show a DIstributed Vector Architecture
(DIVA) based on a collection of IRAM nodes with vec-
tor capabilities. The nodes are connected together with
an interconnection network in a distributed shared-
memory configuration. A large vector application occu-
pies the memory of multiple nodes, all of which cooper-
ate on the execution of individual vector instructions.
The application references architectural vector registers
(Figure 1) that represent the aggregate of multiple phys-
ical vector registers, one from each node. Nodes operate
only on their own physical registers (i.e., only on the
subset of the architectural elements that happen to be
present in their physical registers). Since vectorizing
compilers guarantee the independence of the computa-
tions within a vector instruction, nodes work concur-
rently on their own part of the vector instruction,
providing a speed up proportional to their number.

The actual part of the vector instruction that is executed
by a node depends on the mapping of the architectural
vector elements to the physical vector elements. Since
our goal is to bring the computation to data rather than
data to the computation, we propose a dynamic, pro-
gram controlled mapping of architectural elements to
physical elements. By mapping architectural elements to
coincide in the same nodes with the corresponding data
in memory, we effectively map the computation of the
vector instructions to reduce traffic.

FIGURE 1. DIVA system comprised of four nodes. Each node contains some part of the system memory along with
a processor and a vector unit. In this example each node has two physical vector registers. An application running
on all four nodes (occupying all their memory) refers to two architectural vector registers. Each architectural
register is comprised of four physical registers (one per node).

Shared MEMORY

Architectural Vector registers

Interconnection Network

Physical

Registers

Vector
Unit

Scalar
Unit

Vector

MEM.

In Figure 2, we show a mapping of the elements of an
architectural vector register to the elements of the physi-
cal vector registers. In this figure, the architectural ele-
ment 0 is assigned to node 2, element 1 to node 3, etc....
We apply this mapping when element 0 is loaded with
data (m0) present in node 2’s memory, element 1 loaded
with data (m1) from node 3’s memory, and so on. Load-
ing this architectural vector register would thus require
no external traffic. Unfortunately, we have to map multi-
ple architectural vector registers that take part in the
same computation in exactly the same way, otherwise
their corresponding elements will not align properly in
the nodes. The best mapping for loading an architectural
vector register with a memory vector, is not always com-
patible with the best mapping for loading another regis-
ter with a different memory vector. If these two
architectural vector registers are to be part of the same
computation (e.g., added or multiplied together), we
have to select one of the mappings and forgo the other
(or even forgo both and use a third mapping). Data
placement techniques can help align memory vectors
used in the same computations and thus reduce mapping
conflicts.

Mapping the computation of vector instructions among
the nodes is possible because in DIVA the architectural
elements do not have a predefined fixed mapping. Map-
pings can be generated statically at compile-time if suf-
ficient information is available, or at run-time, in which
case appropriate mechanisms are needed. In the next
section we describe a DIVA implementation based on

mechanisms to dynamically generate element mappings.
As we show in Section 3, this implementation performs
well with minimal, or even without any compile-time
support.

2.1 An example DIVA implementation

The emphasis for the DIVA implementation we discuss
in this paper, is on distributing vector computation
dynamically in hardware. A simplistic distribution of
the application dataset is provided by block-interleaving
the memory across the nodes. Each node executes scalar
instruction redundantly, maintaining its own scalar reg-
ister set, similarly to the Massive Memory Machine [6]
or the DataScalar architecture [4]. Alternatively a SIMD
configuration is possible, where only one master node
executes scalar instructions and broadcasts vector
instructions to slave nodes so they can executed them in
parallel. The parallelization of vector instructions is
based on two mechanisms: (i) a vector instruction,
called SETMV that generates element mappings on the
fly, and (ii), special vector registers, called mapping vec-
tor registers, that enforce the element mappings gener-
ated by the SETMV.

SETMV instruction and Mapping Vector

As we have mentioned previously, architectural vector
registers that participate in the same computation must
be mapped on physical registers in exactly the same
way. Before we load or initialize any register of a com-

FIGURE 2. An element mapping of architectural to physical vector elements.

2 6 10 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 11 15 0 4 8 12 1 5 9 13

Architectural Vector
Register (abstraction)

Element #:

Physical
Vector
Register

Mapping
Vector
Register

Element Mapping

m1 m5m0 m4
m8 m12 m9 m13

m3 m7
m11 m15

m2 m6
m10 m14

Node 0 Node 1 Node 2 Node 3

Memory

putation slice (a group of related instructions such as
those in Figure 3, that load some registers, compute on
them and store results), we must have an element map-
ping. This is the job of the compiler if we rely on static,
compile-time techniques or a run-time mechanism such
as the SETMV instruction we describe here. A SETMV
instruction, therefore, precedes every computation slice
(Figure 3).

SETMV creates an element mapping using as a blue-
print the layout of a memory vector referenced in the
computation slice. In the example in Figure 3, the
SETMV instruction uses the memory vector accessed in
the first vector load. SETMV is the only vector instruc-
tion that runs in is entirety in every node. A node execut-
ing this instruction generates the addresses of all the
elements of the memory vector and uses a run-time
locality test to determine which of these addresses are
local to it. Architectural elements are assigned to the
node where the corresponding memory element is local.

The semantics of the SETMV instruction also handle, in
a distributed fashion, cases where an imbalance in the
number of elements local to a node would overflow the
physical vector registers with more architectural ele-
ments than they can handle. Each node keeps track of
the number of elements assigned to other nodes using a
counter per node. When a counter exceeds the size of
the physical vector registers (counter overflow) the cor-
responding node is full. Responsibility for the extra ele-
ments in an overflowing node passes to the first non-full
node according to a pre-specified order (e.g., based on
the node identifier). This continues until all architectural
vector elements are assigned to some node. This algo-
rithm is independent of the relative speed of the nodes
and guarantees that no assignment conflicts will occur.

The cost of executing the SETMV instruction can be
hidden by chaining the appropriate vector load instruc-
tion off of it. In the example of Figure 3, the SETMV
uses the same memory vector accessed in the first vector
load. Chaining these two instructions allows the
addresses generated by the SETMV, that correspond to
locally assigned elements, to be used by the vector load.
The cost of generating extraneous addresses (of non-
locally assigned elements) can be largely hidden by the
relatively longer memory accesses of the vector load.

A mapping vector represents the element mapping gen-
erated by a SETMV. Similarly to the architectural vector
registers, a mapping vector is distributed in mapping
vector registers across the nodes (Figure 2). The execu-
tion of the SETMV instruction in a node results in set-
ting a mapping vector register to contain the
architectural element numbers assigned to the node (in
the example of Figure 2, the mapping vector register in
node 0 contains the architectural element numbers 2, 6,
10, and 14). We use a small number of mapping vectors
to accommodate multiple independent computation
slices that are interleaved in the instruction stream.

In each node, a mapping vector register tailors the
behavior of the corresponding vector load (store)
instructions specifically to the subset of the architectural
elements assigned to the node. To execute a vector load
(store), a node consults its appropriate mapping vector
register and loads (stores) only the elements described
therein. Other computations (e.g., addition, multiplica-
tion, etc.) are not affected by the mapping vectors and
proceed at full speed as soon as the physical vector reg-
isters are loaded2.

Compiler involvement

We have examined the compiler involvement in select-
ing the memory vector that SETMV instructions use as
a blueprint to generate element mappings. The default
case in our evaluation is that the compiler does not have
enough information to select intelligently which of the
memory vectors of a computation slice should be used
as the blueprint for the element mapping. In this case,
the first memory vector accessed in the computation
slice is used by the SETMV instruction (we refer to this
case as “first choice” selection). If, however, the com-
piler does have enough information it can possibly
select a memory vector leading to a better element map-
ping for the whole computation slice (we refer to this
case as “best choice” selection).

2 Full-empty bits in the physical elements can be used to sig-
nal completion of memory accesses.

FIGURE 3. A SETMV instruction creates a
mapping (stored in the mapping vector MV0) at the
beginning of a computation slice. Memory
instructions of the computation slice adhere to the
mapping vector MV0.

DO 100 I=1,16
C(I)=A(I)+B(2*I)

100 CONTINUE

FORTRAN CODE

SETMV BASE=A, STRIDE=1, MV0
VLOAD V0, BASE=A, STRIDE=1, MV0 (VL=16)
VLOAD V1, BASE=B, STRIDE=2, MV0 (VL=16)
VADD V0, V0, V1 /* V0=V0+V1 */
VSTORE V0, BASE=C, STRIDE=1, MV0 (VL=16

COMPUTATION SLICE

“Best choice” selection is based on the following simple
heuristic, but more elaborate methods are possible. For
each vector load/store in the computation slice we gen-
erate all its addresses and compute the home node for all
its elements according to the run-time memory inter-
leaving. We then compare the home nodes of each vec-
tor load/store to the home nodes of all the other vector
loads/stores and we select the one with the most
matches.

An actual compiler would be able to make some intelli-
gent choices for some computation slices but presum-
ably not for all. The resulting compiled program will
contain a mix of SETMV instructions based on the “best

choice” selection and SETMV instructions based on the
“first choice” selection.

Data optimization

In a DIVA system, we distribute memory vectors across
the nodes to maximize the available parallelism. Addi-
tionally, we want to align memory vectors accessed in
the same computation slice, to minimize remote traffic.

Data optimization techniques (i.e., compile-time data
placement to minimize communication) can be applied
in DIVA to achieve memory vector distribution and
alignment. In general, it is a difficult and application
dependent problem, although techniques have been
developed for, and used in SIMD computers. In DIVA,
the ability to map the computation of vector instructions
gives us a new degree of freedom that can simplify data
optimization. This is an area for further study.

As of yet, we have only studied a simple block-inter-
leaving data distribution scheme. We block-interleave
memory in a DIVA system by selecting which bits of the

address are used as the node address bits. The guiding
heuristic for selecting a block size for an application is
that it should effectively distribute across the nodes the
application’s dominant kind of memory vectors (deter-
mined by the application’s dominant stride and domi-
nant vector length). Although this heuristic proved
useful, it did not always produce the best interleaving.

As for aligning memory vectors, we have only scratched
the surface of the problem, experimenting with limited,
simple source code transformations. These transforma-
tions affected solely the allocation of data structures and
involved changing some array dimensions to powers-of-
two. Memory vectors that start at multiples of power-of-
two addresses are much more likely to align in nodes
than memory vectors that start at arbitrary addresses.

For the evaluations in the following section we assume a
segmented memory space. Applications fit in one seg-
ment. Virtual to physical address translation involves
adding an offset to the virtual address. For each applica-
tion the operating system sets the run-time interleaving.
With more elaborate hardware it is possible to have
simultaneously multiple interleavings for the same
application. In this way, we can distribute effectively the
different data structures of the application (e.g., we can
select interleavings to distribute either the rows or the
columns of matrices that are multiplied together). How-
ever, in the evaluation of Section 3, we report results for
a single interleaving per application.

3 Evaluation

DIVA’s performance is based on two factors: (i) the par-
allel execution of vector instructions across the nodes,
(ii) the low external traffic from controlling the mapping
of the vector computation to the nodes. As a preliminary

FIGURE 4. Comparison Systems

Mem $

CPU

Mem $

CPU
2,4,8

...

DIVA Variable element mapping

2,4,8
...

Multi-node Fixed element mapping

...

1-node + Mem + $ + ext. mem

Ext. Mem

Mem $ Mem $ Mem $

...

1-node + All-cache + ext. mem

Ext. Mem

Cache

CPU CPU CPU

CPU

...

1-node + Page-cache + ext. mem

Ext. Mem

Page
CPU

Cache

1 2

3 4 5

evaluation, we set out to examine how the external traf-
fic of a DIVA system compares to other alternatives.
External traffic is a critical measure, since if it were
excessive it would invalidate the parallelism advantage
of DIVA. At this stage, we are only concerned with the
characteristics of the memory organization that affect
external accesses and not with the details of the internal
memory hierarchy that affect the performance of the
vector units. We used trace driven simulation to evaluate
the DIVA implementation. Traces for 6 vectorized NAS
benchmarks (BT, FT, IS, LU, MG, SP)[3], that represent
scientific codes, were collected on a CRAY supercom-
puter with 128-element vector registers. Memory inter-
leaving was partially guided by the heuristic mentioned
in Section 2. Here, we report results for the best inter-
leavings we have found. Still, data distribution by inter-
leaving is a crude method and significant improvements
are possible in this area.

We compare, in terms of traffic, five alternatives based
on IRAM nodes (Figure 4):

1. A multi-node DIVA system. The application is inter-
leaved across the nodes. Each node contains a small
cache for external data. This cache is 1/16 of the
DRAM memory capacity of the node and provides
on average a 27% decrease of the external traffic,
over DIVA without any cache. The cache is opti-
mized for traffic and it is 2-way set-associative, 1-
word block, write-back, write-validate. Source code
transformations to affect the alignment of memory
vectors were applied only in this case.

2. A multi-node shared-memory system without vari-
able mapping of the architectural vector registers.
Again, each node holds a part of the application
dataset and includes a small cache for external data
(with the same specifications as in the previous
case). This system is inherently traffic-intensive and
caching proves quite effective, providing a 40%
decrease of the external traffic over the same system
without caches.

3. A single-node system with a statically allocated part
of the application on the on-chip memory and an
cache for external data. The cache is 1/16 of the
DRAM memory capacity of the node and has the
same specifications as in the first case.

4. A single-node system that uses its on-chip memory
as a huge cache. The size of the cache is equal to the
DRAM memory capacity of the node. The cache is
2-way, 4-word block (to reduce tag overhead), sec-
tored with 1-word sub-blocks to reduce traffic [8],
write-back, and write-validate. Although this system
may not be realistic (because of tag storage overhead
and tag access overhead), it represents a “lower
bound” for cache-based systems.

5. A single-node system with demand-paging to exter-
nal memory. 4K pages are swapped in and out of the
on-chip memory. This system represents another
point the spectrum of cache-based systems with
fairly large, fixed-size cache blocks (pages) and full
associativity. Possibly, a practical implementation of
a cache-based system would fall between cases 4
and 5.

We examined DIVA systems with 2, 4, and 8 nodes. We
scale the memory capacity of each node so the applica-
tion occupies the memory of all nodes (e.g., if an appli-
cation runs in 4 nodes, the memory capacity of the
IRAM node is 1/4 of the application size). Since a node
cache is always 1/16 of the node memory, the total
cache capacity for the multi-node systems is always 1/
16 of the application size. We scale the memory and the
cache of the other four alternatives in the same way so
we always compare systems built with identical (equal
memory and cache capacity) IRAMs.

For the DIVA system, alignment of memory vectors,
was affected by simplistic changes in the allocation of
data structures in three of the six benchmarks (BT, LU,
and SP). These changes yield an average reduction in
external traffic for 2,4, and 8 nodes of 60% for BT, 24%
for LU and 66% for SP. For the results we present here,
we assumed that the compiler, lacking compile-time
information, blindly selects the first accessed memory
vector of each computation slice to use in the SETMV
instruction (“first choise” selection). We have found,
however, that using “best choise” selection of memory
vectors, reduces external traffic by up to 22% (15% on
average). DIVA traffic with an actual compiler should
fall between the “first” and “best” case.

Table 1 shows the external traffic of the five systems, as
a percentage of the total traffic required by the applica-
tion to move data between the memory and the vector
registers. The same results are plotted in Figure 5.

Four of the benchmarks (BT, IS, LU, and SP) thrash
when they run in demand-paging IRAMs with a mem-
ory capacity 1/4 or 1/8 of the application size. In most
cases, DIVA exhibits less traffic than any of the other
four alternatives. On average, for all the programs and
all the node configurations, DIVA produces 70% less
traffic than the multi-node system, 34% less than the
single-node with static memory allocation, 10% less
than the single-node all-cache system, and 87% less
than the single-node with demand-paging. DIVA with-
out any cache (not shown in Figure 5) is also very com-
petitive, yielding 29% less traffic than a multi-node with
caches, 10% less than the static-allocation single-node
with cache, 21% more traffic than the all-cache single-

node, and 82% less traffic than the demand-paging sin-
gle node.

3.1 Scalability issues

We expect DIVA to scale to a small number of nodes
(possibly up to 16). The results in Table 1 (also in Fig-
ure 5) show that DIVA’s average traffic for the 6 NAS
benchmarks increases from 11% for two nodes, to 19%
for four nodes, to 28% for eight nodes. This traffic
increase, coupled with the decrease in the amount of
work per node, limit the obtainable speed-up over other
systems.

These results are for a fixed architectural length of 128
elements regardless of the number of nodes. This is a
limitation of our trace-driven approach since we used
traces for 128-element vectors for all node configura-
tions. In an actual DIVA system the architectural vector
length would be a function of the number of nodes. This
can make a difference for the applications that can use
larger vectors. However, for some applications the vec-
tor length may not scale with respect to the dataset size.
For example, in some of the NAS benchmarks the
dataset size is a function of all the dimensions of the
program’s multi-dimensional arrays while the vector
length is a function of only one dimension.

For the DIVA implementation presented in this paper, a
factor that limits its scalability to arbitrary number of
nodes is the SETMV instruction. First, SETMV is not
parallelized and its execution for very large vectors
eventually limits speedup. Second, SETMV semantics

require a number of counters (one for every node in the
system) which in turn implies a pre-defined upper limit
in the number of nodes. However, we believe that
SETMV is not a bottleneck for the vector lengths of
ordinary applications and for the range of nodes where
DIVA is applicable. Furthermore, the cost of SETMV is
amortized over a computation slice. Other approaches to
create element mappings are possible, instead of the
SETMV instruction. For example, in each node special
instructions can modify the base address and stride of
vector loads/stores to access only local elements [11].
However, such an approach would introduce overhead
for every vector load/store instruction which may not be
a desirable trade-off for small number of nodes and
small to medium vector lengths.

4 Related work

Researchers of the IRAM group at U.C. Berkeley have
proposed vector units for IRAM and are exploring vari-
ous implementation issues of Vector IRAM chips [2].
The emphasis of this work is on applications that fit in
the memory of an IRAM node.

The DataScalar architecture (developed by Burger,
Goodman and one of the authors) [4], is an architecture
that uses multiple nodes to execute serial programs that
do not fit in the memory of one of the nodes. DataScalar
is based on the ESP execution model of the Massive
Memory Machine [6]. In this model all nodes execute
all the instructions of an application. Each node main-
tains its own register set and performs (redundantly) all
computations. A node accessing local data (owning
node), broadcasts them to other nodes. The DataScalar
architecture extends this paradigm to work with caches
(that dramatically reduce the number of broadcasts) and
out-of-order execution that allows nodes to run asyn-
chronously.

Result communication in DataScalar allows code to be
executed only by a subset of the nodes [4]. Results gen-
erated by this code are broadcast as required so they are
visible to the rest of the nodes. Locality tests determine
where code is executed. Using result communication, a
DataScalar system (based on superscalar nodes) can
emulate a DIVA system. Loops that would correspond
to a series of vector instructions in DIVA systems can be
executed in parallel using result communication. Loop
iterations start with a locality test that replaces the corre-
sponding element locality test of the SETMV instruc-
tion. The locality test assigns each iteration to a specific
node in the same way SETMV assigns architectural ele-
ments to nodes.

System

Nodes DIVA Multi+$ 1+M+$ 1+All $ 1+Page

B
T

2 7.28 25.92 12.47 7.98 76.91
4 14.21 45.52 22.55 20.35 189.80
8 21.23 59.13 29.01 25.65 213.15

F
T

2 8.40 24.94 13.19 13.89 14.20
4 14.52 40.03 19.27 18.27 23.21
8 21.30 51.82 46.08 26.11 28.76

IS

2 24.27 37.90 29.32 6.26 14.28
4 38.10 58.53 58.55 49.51 78.34
8 48.39 69.76 69.87 73.58 970.89

LU

2 15.60 20.04 17.63 7.87 511.23
4 28.52 36.84 29.13 17.59 650.88
8 38.62 55.19 38.72 27.47 825.10

M
G

2 7.53 11.81 9.14 14.51 18.47
4 13.84 18.72 15.38 19.34 30.27
8 22.28 24.84 25.86 21.45 34.64

S
P

2 3.82 26.71 12.65 4.22 5.63
4 8.09 48.44 34.59 13.78 28.41
8 16.22 66.00 55.53 29.48 137.36

Table 1: External traffic (% of total) of the five systems
for the 6 NAS benchmarks

5 Conclusions

In this work we propose an architecture based on multi-
ple IRAM nodes that can execute efficiently large-scale,
scientific vector applications. We parallelize and dynam-
ically map the computation of vector instructions across
the nodes. The reduced traffic of DIVA, coupled with
inter-node parallelism can potentially yield significant
performance advantages facilitating the acceptance of
IRAM for scientific computation. The implications of
this are numerous including desktop supercomputers
and cost-effective large-scale shared-memory machines
with vector capabilities.

Significant work needs to be done to further evaluate
DIVA, explore techniques for data optimization (data
placement and memory vector alignment), and explore
the capabilities of the compiler. We are currently in the
process of developing timing simulations of DIVA sys-
tems.

At the same time we are examining alternative DIVA
implementations based on different schemes for element
mapping. To further reduce external traffic, we pursue a
promising direction working on a push-mode DIVA
where we eliminate requests by having each node dis-
cover what the other nodes need from its local memory
and pushing the data to the appropriate destinations.

6 References
[1] David Patterson, Tom Anderson, and Kathy

Yelick, “The Case for IRAM.” In Proceedings of
HOT Chips 8, Stanford, California, August 1996.

[2] David Patterson et al., “The case for Intelligent

RAM,” IEEE Micro, Vol 17, No. 2, March/April
1997

[3] David H. Bailey et al., “The NAS parallel bench-
mark: Summary and Preliminary Results.” IEEE
Supercomputing ‘91, pp 158-165. Nov., 1991.

[4] Doug Burger, Stefanos Kaxiras, and James R.
Goodman, “DataScalar Architectures,” To appear
in the 24th ISCA, June, 1997.

[5] Doug Burger, James R. Goodman, and Alain Kägi,
“Memory Bandwidth Limitations of Future Micro-
processors.” In Proceedings of the 23rd ISCA,
pages 79–90, May 1996.

[6] Hector Garcia-Molina, Richard J. Lipton, and
Jacobo Valdes, “A Massive Memory Machine.”
IEEE Transactions on Computers, C-33(5):391–
399, May 1984.

[7] Ashley Saulsbury, Fong Pong, and Andreas
Nowatzyk, “Missing the Memory Wall: The Case
for Processor/Memory Integration.” In Proceed-
ings of the 23rd ISCA, May 1996.

[8] J. S. Liptay. Structural Aspects of the System/360
Model 85, Part II: The cache. IBM Systems Jour-
nal, 7(1):15-21, 1968.

[9] W.A. Wulf, S.A. McKee, “Hitting the Memory
Wall: Implications of the Obvious,” Computer
Architecture News Vol 23, No. 1, March 1995.

[10] Stefanos Kaxiras and Rabin Sugumar, “Distributed
Vector Architecture: Fine Grain Parallelism with
Efficient Communication,” University of Wiscon-
sin-Madison, Dept. of Computer Sciences, TR-
1339, February 1997

[11] Krste Asanovic, personal communication, March
1997

.

FIGURE 5. Traffic comparisons

DIVA

Multiple nodes with cache

Single-node with cache

Single-node, all-cache

Single-node, Page cache

2 nodes: 1/2 app. mem./IRAM
4 nodes: 1/4 app. mem./IRAM
8 nodes: 1/8 app. mem./IRAM

2 nodes 4 nodes 8 nodes0

20

40

60

80

100
%

 o
f T

ot
al

 T
ra

ffi
c

2 nodes 4 nodes 8 nodes0

20

40

60

80

100

%
 o

f T
ot

al
 T

ra
ffi

c

2 nodes 4 nodes 8 nodes0

20

40

60

80

100

%
 o

f T
ot

al
 T

ra
ffi

c

2 nodes 4 nodes 8 nodes0

20

40

60

80

100

%
 o

f T
ot

al
 T

ra
ffi

c

2 nodes 4 nodes 8 nodes0

20

40

60

80

100

%
 o

f T
ot

al
 T

ra
ffi

c
NAS BT NAS FT

NAS IS NAS LU

NAS MG NAS SP

2 nodes 4 nodes 8 nodes0

20

40

60

80

100

%
 o

f T
ot

al
 T

ra
ffi

c

189% 213%

970% 511% 650% 825%

137%

