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Abstract—Modern processors support aggressive power saving
techniques to reduce energy consumption. However, traditional
profiling techniques have mainly focused on performance, which
does not accurately reflect the power behavior of applications.
For example, the longest running function is not always the most
energy-hungry function. Thus software developers cannot always
take full advantage of these power-saving features.

We present Power-Sleuth, a power/performance estimation tool
which is able to provide a full description of an application’s
behavior for any frequency from a single profiling run. The
tool combines three techniques: a power and a performance
estimation model with a program phase detection technique to
deliver accurate, per-phase, per-frequency analysis.

Our evaluation (against real power measurements) shows
that we can accurately predict power and performance across
different frequencies with average errors of 3.5% and 3.9%
respectively.

I. INTRODUCTION

In the past decades, design of computer systems has focused
on delivering the highest possible performance. Optimizing
for speed has been the main goal in all levels of building a
system, from architecture-level decisions (e.g., complex cache
hierarchies, out-of-order execution) and physical-layer design
(faster transistors) to program development. Regarding the latter,
profiling software [2] has proven to be a powerful tool in the
hands of developers to optimize their code for speed. In the
last few years, however, it is power consumption that is turning
into the most critical constraint in system design. Although
hardware design has taken large steps towards minimizing
power consumption through advanced power saving techniques
(e.g., clock gating, power gating, voltage-frequency scaling),
less effort has been spent on developing power-aware software.
One of the reasons for this is the lack of advanced profiling
tools for providing software developers with power-related
information required to improve energy-efficiency of their code.
This paper introduces Power-Sleuth, a tool for investigating
your program’s power behavior.

Power-Sleuth is unique in that it brings together three
techniques: efficient run-time phase detection and identification
(Section II-A), performance estimation based on analytical
Dynamic Voltage and Frequency Scaling (DVFS) models
(Sections II-B, IV), and power estimation based on novel
correlation models (Section V). All three components are
important for a complete understanding of the power behavior
of a program.
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Figure 1. The power, time and energy consumption of two phases, X and
Y , at different frequencies, fmin and fmax, in gcc/166. The figure illustrates
the importance of considering all frequencies. For example, phases X and
Y have similar energy consumptions at fmax, but have distinctly different
energy consumptions at fmin.

Figure 1 motivates why both power and timing information
are required for characterizing energy behavior. The figure
illustrates two of the phases of gcc/166 (SPEC2006 [11]),
detected with a phase detection tool, and the corresponding
core power, execution time and energy consumption. Traditional
profiling tools have focused on analyzing an application with
respect to time. When it comes to energy, however, it is not
always the case that phases with the longest execution time
are the most energy-hungry phases. In our example, phase X
executes for longer time in maximum frequency compared to
phase Y , but it consumes less power, so the total energy of
the two phases is roughly the same. This means that both time
and power are required to classify phases regarding energy.

Modern processors support multiple clock-frequency steps.
As we show in Figure 1, ignoring this functionality can provide
misleading information about the program behavior. Phase X
is the most important of the two regarding execution time
under maximum frequency, however phase Y runs for longer
time at minimum frequency. This means that different phases
are affected in a different way by frequency scaling, thus
determining where a program spends most of its execution time
is frequency dependent. Moreover, since time and power do not
change uniformly with frequency, it is not valid to claim that
phases X and Y are similar in terms of energy; although energy
consumptions are roughly the same at maximum frequency,
phase Y consumes about 39% more energy when the two



phases are executed at minimum frequency.
In addition, analyzing a program in phases, as opposed

to, say, execution intervals, is indispensable in two ways.
First, phases allow us to relate the performance and power
analysis back to the source code. A program phase typically
comprises a small set of function calls, thus when we talk about
phase A, we can actually reason about the power/performance
behavior of specific parts of the program. Second, if we want
to understand the power/performance behavior of a program
in sufficient detail so as to optimize it, by necessity we need
to collect profiling information at a finer granularity than the
whole program. Breaking up the execution of a program in
intervals, and profiling each interval individually, allows us to
do just that. However, adding phase detection on top of the
intervals, brings significant leverage in how we can collect
the profiling information. Since, with phase detection, each
interval is assigned to a specific phase, we know that it has
similar behavior to other intervals of the same phase. We can
thus guide our profiling to track many more events than what
the hardware allows us to sample at any time. The end result
is that phase detection allows us to profile a single run of
the application without restricting our ability to gather the
necessary profiling information.

In brief, Power-Sleuth works as follows: it runs an application
once, collects the data required, and then from this data it can
provide power and performance information in any frequency
of interest.

The main contributions of this paper are:
• We present a novel power correlation model that is

independent of frequency.
• We combine three main components (power and per-

formance estimation models and a phase detection and
classification technique) to deliver per-phase and per-
frequency power/performance analysis.

• We evaluate our approach against real, fine-grained power
measurements.

• We demonstrate how accurate power/performance predic-
tion can be utilized for understanding and improving the
power efficiency of applications.

The evaluation of our approach shows that we can predict
power and performance with average errors of 3.5% and 3.9%
respectively.

II. BACKGROUND

A. Detecting Program Phases

Power-Sleuth analyzes programs at the level of program-
phases. We use the ScarPhase [25] library to detect and
classify phases. ScarPhase is an execution history based, low
overhead (2%), online phase detection library. Since it is based
on the application’s execution history, it detects hardware
independent phases [27, 23]. Such phases can be readily missed
by performance-counter based phase detection.

To detect phases, ScarPhase monitors executed code, based
on the observation that changes in executed code reflect changes
in many different metrics [26, 27, 4, 28, 21]. To accomplish
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(a) Breakdown of LLC miss-interval into elastic-inelastic areas. The inelastic
area does not scale with frequency scaling, whereas the elastic area changes
with frequency scaling (but not proportionally). The total memory latency (sum
of elastic and inelastic cycles) scales proportionally with frequency.
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(b) Case of overlapping LLC misses handled by stall-based model. Due to the
forwarding of the second miss to the head of the Reorder Buffer, an additional
stall interval is introduced.

Figure 2. Interval-based DVFS model

this, execution is divided into non-overlapping intervals. During
each interval, hardware performance counters are used to
sample conditional branches using Intel Precise Event Based
Sampling [22, 13]. The address of each branch is hashed
into a vector of counters called a conditional branch vector
(CBRV), similar to a basic block vector (BBV) [26] but with
only conditional branches. Each entry in the vector shows
how many times its corresponding conditional branches were
sampled during the interval.

The vectors are then used to determine phases by clustering
them together using an online clustering algorithm, such as
leader-follower [6]. Intervals with similar vectors are then
grouped into the same cluster and considered to belong to the
same phase.

B. Analytical DVFS Models

In our previous work [20] we described two analytical
interval-based models, named stall-based and miss-based mod-
els, to predict the impact of frequency scaling in an application’s
execution time. Both models are derived from Karkhanis and
Smith [18, 8] interval-based performance model. The two
models extend the basic performance model by identifying:
1) the critical events that are affected by frequency scaling and
2) how these events are affected by frequency. In particular, the
models suggest that execution time measured in cycles remains
unaffected by frequency unless an off-chip request occurs. In
this case, slowing down the processor results in a reduction
of the latency of the main memory (measured in cycles). Two
more groups, working independently, came up with models
similar to ours [7, 24].



Table I
PERFORMANCE COUNTERS

Phase Detection
EVENT NAME EVENT CODE
INST RETIRED.ANY FIXED CTR
BR INST RETIRED 0x01C4

Power Estimation
EVENT NAME EVENT CODE PARAM
UOPS EXECUTED.PORT 234 CORE 0x80B1 0.75
L2 RQSTS.MISS 0xAA24 -4.51
L2 RQSTS.REFERENCES.ANY 0xFF24 3.08
RESOURCE STALLS.ANY 0x01A2 -1.38
FP COMP OPS EXE.SSE FP 0X0410 0.94
BR MISP EXEC.ANY 0x7F89 0.35
POWER MODEL CONSTANT – 2.11

Performance Estimation
EVENT NAME EVENT CODE
CPU CLK UNHALTED FIXED CTR
UOPS EXECUTED.CORE STALL CYCLES 0x3FB1
LLC MISSES 0x412E

Stall-based model. The basic interval-based performance
model breaks execution of program into intervals. During
the steady state intervals, the processor executes instructions
at a constant rate, limited by the processor’s width and the
program’s Instruction Level Parallelism. Steady state intervals
are punctuated by miss events (e.g., cache misses, branch
mispredictions), which introduce stall cycles. Figure 2a shows
how the basic interval-based performance model represents
a miss-interval due to a Last Level Cache miss. When an
LLC miss occurs, the processor continues to issue instructions
for a few cycles until the Reorder Buffer (ROB) fills up. The
processor then keeps executing instructions until the Instruction
Queue (IQ) drains out of instructions independent to the
pending miss. When the miss is serviced, new instructions
enter the instruction window and the issue rate ramps up
until it reaches the steady state. Off-chip requests are crucial
events for core frequency scaling, thus it is important to
understand how memory latency changes with frequency.
Since mem lat in core cycles = mem lat in nsec ×
core freq and memory latency measured in nsec is not
affected by core frequency scaling, memory latency measured
in cycles scales proportionally with frequency. The stall-based
model assumes that stall cycles due to off-chip requests
scale proportionally with frequency. This is of course an
approximation, since it disregards the ROB-fill area:

stall cycles = mem lat−ROB fill

≈ mem lat
(1)

Figure 2b shows the case of overlapping LLC misses. In
addition to the first stall interval, a second stall interval appears
due to the forwarding of the second miss to the head of the
ROB. In this case, the stall-based model can still be applied,
since total stall cycles are approximately equal to memory
latency:

stall1 + stall2 = y +mem lat−ROB fill − x

≈ mem lat
(2)
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Figure 3. Multiplexing/Interpolation methodology for event 1. (a) shows
the case that an event is sampled in an interval. (b) shows how an event is
approximated when it is not sampled in the same interval, but in intervals
of the same instance of the phase. In (c), the event is not monitored in the
current instance, so it is approximated using information from past and future
instances. Finally, in (d) the event is never monitored for this phase and is
approximated using information of the whole program execution. Note that
for cases b, c and d, for the intervals that event 1 is actually sampled, the
same approach as in case (a) is used.

In any case, stall cycles are approximately equal to memory
latency, thus the total number of stall cycles (for a given part
of the program) will scale proportionally to frequency. On the
other hand, non-stall cycles remain intact when frequency is
scaled. If c is the total execution cycles for a given amount
of instructions and st is the total stall cycles under frequency
f0, then for frequency f1 (with a scaling factor k = f0/f1)
stall cycles, execution cycles and execution time can be
approximated as

stnew =
st

k

cnew = c− st+
st

k

tnew =
cnew
f1

=
cnew × k

f0
=

(c− st)× k + st

f0

(3)

Miss-based model. The miss-based model on the other
hand improves prediction accuracy by taking into account the
existence of ROB − fill area. As shown in Figure 2a, the
whole miss interval equals memory latency, and thus it is the
whole miss interval that scales proportionally with frequency.
In the case of overlapping misses (Figure 2b), if LLC Miss 2
occurs y cycles after LLC Miss 1, it will also be serviced y
cycles after LLC Miss 1, regardless the frequency, since y
belongs to the inelastic area of the first miss interval. Thus, the
stalls generated by LLC Miss 2 do not scale with frequency,
meaning that only the miss interval of the first miss in a cluster
of overlapping misses scales with frequency. By counting the
number of these misses, our model predicts execution time
over different frequencies with great accuracy (1% error on
average). More details about the miss-based model can be
found in [20].

III. POWER-SLEUTH OVERVIEW

Power-Sleuth is a power/performance estimation tool. To
use Power-Sleuth, the user needs to run an application only
once. During this run, the tool collects all the data required,



and then it estimates the energy consumption of each program
phase. Moreover, without any additional runs of the application,
Power-Sleuth is able to predict how power and performance
of each phase will be affected if it is executed under any other
frequency.

Power-Sleuth combines three basic components: an analytical
DVFS performance model, an effective capacitance correlation
model and a phase detection technique. Execution of the pro-
gram is divided into intervals of 100M committed instructions
each. Using ScarPhase, each interval is characterized by a
phase ID. Performance and power models rely on information
gathered by hardware performance counters: with our current
setup, 11 different performance counter events have to be
monitored per interval. Execution cycles and instructions retired
can be monitored using two of the fixed counters, but the
remaining 9 events have to be monitored using programmable
performance counters. However, only 4 counters are available in
our processor. One way of gathering all the required information
is running the application multiple times and monitoring
different events in every run. This would imply performing
3 complete runs of the same application before applying the
power/performance models to give a picture of the application’s
behavior. Power-Sleuth manages to collect all the required
information from a single run of the application by using a
phase-guided multiplexing/interpolation technique.

In the remainder of the paper we use the following termi-
nology. We refer to a window of 100M retired instructions as
an interval. Each interval belongs to a phase and is assigned a
phase ID by the phase detection component of Power-Sleuth.
Finally, we refer to consecutive intervals of the same phase as
an instance of this phase.

A. Phase-Guided Counter Multiplexing

Since we need to concurrently monitor more events than the
hardware supports, we have to multiplex multiple events in
the available set of counters. Employing a simple time-based
multiplexing methodology requires the program to have rather
uniform behavior, otherwise approximating events that are not
monitored with previous values of these events results in high
errors. Instead of a simple time-based approach, we use a
phase-guided time-based multiplexing methodology, shown in
Figure 3. In this example we assume that there is only one
available counter and two different events to measure, named
event 1 and event 2. The same approach can be extended for
different number of events to monitor. The performance counter
is programmed to measure events in a per-phase, round-robin
fashion. This means that Power-Sleuth remembers the type of
event monitored in the last interval of each phase and programs
the performance counter to measure the next event when an
interval with the same phase ID is about to execute again. Since
the counter has to be programmed at runtime, Power-Sleuth
needs to predict the phase ID of the next interval. We use the
same prediction method as in [25]. Figures 3a-d show how
events 1 and 2 are sampled for different patterns of phases A,
B and C.

B. Phase-Guided Interpolation

As a consequence of multiplexing counters, not all of the
events are sampled in every interval. To solve this issue we
develop a phase-aware interpolation method. There is a total
of 4 different cases for an event during an interval. The event
is:

1) monitored in this interval,
2) not monitored in this interval but monitored in other

intervals of the current instance of the phase,
3) not monitored in the current instance of the phase, but

monitored in other (future or past) instances of the same
phase,

4) never monitored for this phase.
Figures 3a-d show the priority for approximating event 1 in
various intervals, with (a) being the highest priority and (d)
the lowest. Of course, the same idea applies for approximating
event 2. Figure 3a shows case 1, when event 1 was actually
sampled in some interval. Then the value sampled is used for
this interval. In Figure 3b consecutive intervals of phase B are
executed, and thus sampling is interleaved between events 1
and 2. For the intervals that event 2 was sampled, event 1 is
approximated as the average of the values of event 1 sampled in
the current instance of this phase. Figure 3c depicts an example
of case 3: there is an instance of phase A that event 1 is never
sampled (third interval of this example). In this case, the average
of the values of event 1 sampled in all past and future intervals
of the same phase are used as an approximation. Finally, as
shown in Figure 3d, there is an extreme case that event 1 is
never sampled for some phase (phase C in the example). In
this case, the average of values of event 1 sampled in the
whole execution of the program, regardless the phase, is used
to approximate event 1.

The approach described above lets us have one value for
each event of interest (either sampled or approximated) in every
interval. This information is then fed to our models to predict
power and execution time of each interval not only for the
frequency the application was profiled in, but for any frequency
the user wants, even if this frequency is not included in the
processor’s possible V-f configurations. Intervals of the same
instance of a phase are grouped together to get a more smooth
view of the average behavior per instance of the phases, and
finally different instances of the phases are accumulated to
get a per-phase performance/energy breakdown for the whole
program. Note however that since we use a multiplexing and
interpolating method, Power-Sleuth can still provide per interval
information.

C. Experimental Setup

We run our experiments in an Intel Core i7 920 machine
(Nehalem micro-architecture). The processor is a quad-core
machine with 9 frequency steps (2.66GHz to 1.6GHz), 4
programmable performance counters and 3 more counters
monitoring fixed events. We run benchmarks from SPEC2006
suite in a 2.6.38-12 Linux kernel. Power gating (turning off
idle cores to save leakage power) is deactivated so that we can
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measure idle power in all frequencies. We collect real power
samples using current sensors and a 16-channel A/D device.
These samples are used as reference for our power estimation.

IV. PERFORMANCE ESTIMATION

In [29] we employed the models described in Section II-B
to develop frequency scaling governors. These governors adapt
to program behavior and pick the frequency that minimizes
various energy efficiency metrics, such as Energy Delay Product
(EDP) with/without performance constraints. In this work we
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Figure 6. nsec per instruction for astar/lakes. The top of the figure shows
the phases detected. fmax and fmin show the execution times for maximum
and minimum frequency and fmax −→ fmin is the predicted execution time
for minimum frequency when profiling is performed in maximum frequency.

use the same models, but from a different perspective: the goal
now is to provide a per-phase estimation of how execution
time is affected by frequency scaling. Moreover, performance
prediction is crucial for our novel, cross-frequency power
estimation method described in Section V.

After running an application once and collecting appropriate
statistics, performance of each interval/phase can be estimated
using the models described in Section II-B. The miss-based
model, though more accurate, cannot be applied in our proces-
sor since there is no performance-counter event monitoring the
number of clusters of misses. Neither the stall-based model can



be applied as it is; there is no counter for measuring stalls due
to off-chip requests. These stalls, however, can be approximated
by the minimum between all the pipeline execution stalls and
the worst case stalls due to off-chip misses. The latter ones are
simply the number of last level cache misses multiplied by the
memory latency. More details about applying the stall-based
model in a Nehalem processor can be found in [29].

Figure 4 illustrates the error of our prediction. The error
shown per benchmark is not just the error in predicting the
whole execution time. Consecutive intervals of the same phase
are grouped together and the execution time of this instance of
the phase is predicted. The prediction is compared to the actual
execution time of the instance and the relative error is calculated.
The figure shows the average of all of these errors along the
execution of the program, weighted with the number of intervals
of each phase. This way possible over/underestimations of
different phases do not cancel each other and the error presented
corresponds to the accuracy of predicting execution times of
separate phases across different frequencies.

The leftmost bar shows the accuracy of a simple linear
scaling model which assumes that execution time scales pro-
portionally with frequency. Though this estimation is accurate
for CPU bound programs (such as calculix and h264ref), the
error is huge for the memory bound applications, reaching up
to 39.1% for libquantum. This proves the necessity of using a
model that takes into account the asynchronous nature of off-
chip accesses. The next bar shows the prediction error when a
profile run is performed in maximum frequency (2.66GHz) and
execution time is predicted for minimum frequency (1.6GHz).
As shown in the figure, most of the benchmarks suffer low
prediction errors, within 5%, whereas the worst case prediction
is 15.1% (libquantum). Bare in mind that libquantum is the
most memory bound application, so disregarding the ROB-fill
area results in higher prediction error. The average error over all
benchmarks is about 3.9%. The next bar shows how prediction
accuracy can be improved by performing the profiling run in the
median frequency between max and min (2.13GHz). Profiling
time is now longer, but the closer the profiling frequency
is to the target frequency, the better the prediction accuracy,
thus worst case and average errors are reduced down to 8.4%
and 2.4% respectively. Finally, the rightmost bar shows that
prediction accuracy is not affected when Power-Sleuth collects
profiling data in low frequency and predicts performance for a
high frequency, since average error is 4.2%.

Power-Sleuth predicts execution time individually for each
interval/phase. The metric we use is nsec per instruction: we
divide execution time of each interval with the instructions
executed in that interval (100M). Figures 5, 6 show the
execution of the phases of gcc/166 and astar/lakes respectively.
We run Power-Sleuth in maximum frequency and we measure
execution time (fmax). At the same time, we predict execution
time for minimum frequency (fmax −→ fmin). Finally, we run
Power-Sleuth once more to actually measure execution time in
minimum frequency and evaluate the accuracy of our prediction.
At the top of each figure, we show the phases detected by
Power-Sleuth. The figures show that Power-Sleuth accurately

predicts the increase in execution time due to frequency scaling.
The relative increase of execution time between maximum and
minimum frequency is a metric of how memory bound an
application is. The closer the ratio to 1, the more memory
bound the phase is. For the predicted execution time, we
average intervals of the same instance of a phase together,
to get a more smooth view of the phase behavior. Thus, we
can see the average performance of phase D in gcc, filtering
out the peaks that appear in some intervals. However, since
we perform per interval prediction, the user can skip this step.

V. POWER ESTIMATION

We model total power consumption as the sum of dynamic
power consumption (dissipated by the switching activity of tran-
sistors) and static power (dissipated by leakage currents)[19]:

P = Pstatic + afCV 2 = Pstatic + fCeffV
2 (4)

where Pstatic is the static power, f is the operating frequency,
V is the supply voltage, C is the processor capacitance, a is the
activity factor and Ceff = a× C is the effective capacitance.

Several researchers have correlated power with performance
counter events [3, 10, 14, 17]. Their work is limited by
voltage and frequency scaling in the sense that different models
have to be formed to predict power in different frequencies.
Moreover, these models, unless coupled with a performance
prediction model, are not able to predict power when target
frequency is not the same as the profiling frequency. Modern
processors’ power measuring capabilities [12] suffer from
similar limitations: power monitoring can only provide power
for current V-f configuration and for the whole package. Thus,
it is impossible to estimate power per core in multiprocess
workloads, as well as for different frequencies. To address
these limitations, we develop a model that correlates core’s
effective capacitance with performance counters. As explained
later in this section, the model is frequency independent and
thus fulfills the requirements of Power-Sleuth.

A. Methodology

What is unique in our approach is that rather than correlating
power with events, we develop a model that investigates
directly the source of power consumption: charging and
discharging of processor node-capacitances. Component activity
makes capacitors switch state, and this switching activity
results in power consumption which depends on the processor
frequency and voltage supply. Component activity (i.e. effective
capacitance) does not depend on voltage and frequency; it
is only related to architecture level details and application
behavior.

We develop a correlation model for estimating effective
capacitance by training the model in maximum frequency, and
then using the same parameters we can estimate power in
any Voltage-frequency setting with Equation (4). Thus, the
problem of estimating power is reduced to estimating effective
capacitance. More importantly, we do not need to collect the
data fed to the model from a profiling run in the same frequency
as the target frequency: we monitor performance counter events



0

2

4

6

8

10

astar/lakes

astar/rivers

bwaves

bzip2/chicken

bzip2/combined

bzip2/liberty

bzip2/program

bzip2/source

bzip2/text

cactusadm

calculix

dealII
gamess/cytosine

gamess/h2ocu2

gamess/triazolium

gcc/166

gcc/200

gcc/c-typeck

gcc/cp-decl

gcc/expr

gcc/expr2

gcc/g23

gcc/s04

gemsfdtd

gobmk/13x13

gobmk/nngs

gobmk/score2

gobmk/trevorc

gobmk/trevord

gromacs

h264ref/freb

h264ref/frem

h264ref/sem

hmmer/retro

hmmer/swiss41

lbm leslie3d

libquantum

mcf
milc

namd
omnetpp

povray

sjeng
soplex/pds

soplex/ref

sphinx3

tonto
zeusmp

average

R
el

at
iv

e
E

rr
or

(%
)

fmax → fmax fmax → fmin

Figure 7. Relative error in predicting power consumption. We run the application in maximum frequency and predict power for maximum (left bar) and
minimum (right bar) frequency.
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Figure 8. Power consumption (measured and predicted) for the first half of
gcc/166 at maximum (upper part) and minimum (bottom part) frequency. The
second half is identical and thus omitted. Both predictions are based on the
data collected from a profiling run in maximum frequency.

in maximum frequency (minimizing profiling time) and then we
estimate event rates by using the analytical DVFS performance
model presented in Section II-B. This is possible because most
events of interest (like micro-ops executed, cache misses etc.)
are not affected by frequency scaling and the event rates (on
a per cycle basis) are simply the event counts divided by the
prediction of execution cycles under the target frequency.

We assume that effective capacitance is a linear function
of various event rates that best describe the power behavior
of the processor. We tried different events in order to track
the activity of different processor components: execution units,
cache hierarchy, branch predictor, and utilization of various
other resources, such as load buffers and reservation station.
We ended up with the events shown in Table I, which is a
good compromise between good accuracy and low number of
events monitored. One of the events with high correlation is
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Figure 9. Power consumption (measured and predicted) for astar/lakes at
maximum (upper part) and minimum (bottom part) frequency. Both predictions
are based on the data collected from a profiling run in maximum frequency.

the RESOURCE STALLS.ANY event, which is a cycle count
event and thus can be affected by frequency scaling: if resource
stalls overlap with memory stalls they scale with frequency,
otherwise they do not. Since it is impossible to monitor a union
of the two events (cycles that are both resource and execution
stalls), we use the heuristic that if resource stalls are more than
execution stalls, a part of them overlaps with execution stalls
and thus scales with frequency in the same way as execution
stalls. This approximation, though based on a -educated- guess,
provides good results: it improves the error compared to the
case that no special care is taken for the scaling of resource
stalls. To predict effective capacitance, we use the following
equation:

Cpred =

5∑
k=0

paramk × eventk
cycles

+ param6 (5)



where eventk, k = 0, ..., 5 are shown in Table I. To train
our model for the specific hardware, we use real power
measurements. We run a set of benchmarks in maximum
frequency, measure processor total power consumption, subtract
static power (measured for all frequencies when the processor
is idle) and finally divide with f ×V 2 . This way we compute
the average effective capacitance Ci for benchmark i. We train
our model by minimizing

∑
i∈specs

(
Ci − Cpredi

)2
, or

∑
i∈specs

(
Ci −

5∑
k=0

paramk × eventk,i
cyclesi

− param6

)2
(6)

After obtaining the parameter values paramk, k = 0, 1, ..., 6
that minimize expression (6) (shown in Table I), we can use
them for effective capacitance estimation of any application.

B. Evaluation

We run all the applications in maximum frequency and let
Power-Sleuth collect the profiling data. Similarly to perfor-
mance estimation, we estimate power consumption for each
interval separately and then we average intervals of the same
instance of the phase. Unlike performance prediction, we have
to predict power consumption even for the profiling frequency,
since no real power measurements are used by the end tool. The
left bar in Figure 7 shows the error when profiling frequency
is maximum and we predict for the same frequency. The worst
case error is about 6%, while the average error is below 4%.
The right bar of the same figure shows the error when from
the same data (collected in the profiling run under maximum
frequency) we predict power consumption under minimum
frequency. Remember that to do so, we first need to use the
performance model to get the event rates under minimum
frequency, and then we can use the power correlation model
to estimate power. The figure shows that we can accurately
predict power even when we profile the application under a
frequency different than the target frequency.

Finally, Figures 8 and 9 show power predicted over time for
gcc/166 and astar/lakes in maximum and minimum frequency.
Each application was profiled in maximum frequency, and the
data was used to predict for both frequencies. The figures
show that Power-Sleuth successfully tracks power variation
over time, with a worst case prediction of about 10% (phase
D for gcc/166 in minimum frequency).

C. Power Measurement Infrastructure

In Sections V-A, V-B we used real power measurements to
train our model and to evaluate our method. To achieve the
high level of accuracy and resolution we need for Power-Sleuth,
we created the infrastructure depicted in Figure 10. We use
current sensors [5] to measure the current through each voltage
rail supplying the motherboard: the main ATX connector 3.3V,
5V and 12V, as well as the separate 12V rail supplying the
processor. Though only the latter one is needed for this work,
our future work includes extending Power-Sleuth for estimating
uncore (L3 cache and memory controller in Intel architectures)
and memory power, thus our measuring setup tracks them as
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Figure 10. Our power measurement setup. A PCB board with an array of
current sensors is inserted between the power supply and the motherboard of
the target system. The outputs of the sensors are tracked by an ADC, which
sends the results through a USB connection to a separate logging PC.
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Figure 11. Per-phase execution time and energy for gcc/166. The 6 most
important phases are shown. The figure shows that ranking of phases is different
for execution time and energy, and also depends on frequency.

well. The current sensors are 3-pin components. Pins 1 and
2 are connected across a sense resistor Rs. The current flows
through the resistor and, depending on this current, an output
voltage is produced in pin 3. To measure currents for the whole
system, we design a PCB which is installed between the power
supply and the motherboard, with a current sensor inserted
between the two ends of the cables of interest. The outputs of
the sensors are connected to a 16-channel Analog-to-Digital
data acquisition device capable of sampling 200K samples per
second. We use a sampling rate of 1KHz per channel, which
is enough for measuring power at a phase granularity and
evaluating the accuracy of phase-power prediction.

VI. USING POWER-SLEUTH

Having evaluated the accuracy of Power-Sleuth in the
previous sections, in this section we demonstrate how a user
can employ the tool to characterize and possibly improve the
energy efficiency of an application.

A. Phase-Energy Characterization

Power-Sleuth can give the user a breakdown of execution
time and energy of program phases, for any possible frequency.
Figure 11 shows the 6 most important phases of gcc/166. As the
figure shows, ordering the phases by execution time depends
on frequency: phase A is the longest running in maximum
frequency, but in minimum frequency it is phase C that runs for
the longest time. By comparing execution times of the phases
for maximum and minimum frequency, it is obvious that phase
A is memory bound (execution time is not affected much by
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Figure 12. Power over time predicted by Power-Sleuth for astar/lakes. The
two curves show power for maximum frequency, as well as power when a
DVFS schedule that aims to minimize EDP within 10% of performance penalty
is applied. The schedule was calculated by Power-Sleuth, and the prediction
for this schedule is performed without an extra run of the application.

frequency scaling), whereas phase C is CPU bound (scaling
frequency down results in significant performance overhead).
Using this information, the user can select to run phase A in
low frequency, by injecting a DVFS command in the source
code, at the beginning of phase A. The energy consumed in this
case will be reduced from 170J to 70J, as shown in the right
part of Figure 11. Alternatively, since memory is the bottleneck
in phase A, one can try to optimize the memory behavior of
this phase using appropriate tools [1]. By doing so, power
will increase (since the processor will execute instructions at a
higher rate), but execution time will decrease, so energy could
either increase or decrease: in this case, the user can evaluate
both versions of the program using Power-Sleuth and pick the
most efficient code.

Phases B and C, on the other hand, are significantly
affected by frequency scaling and thus are CPU-bound phases.
Frequency scaling should be avoided in such phases to keep
performance at a high level. High energy consumption in these
phases comes from high processor utilization, and thus this
piece of code is already efficient enough. However, the user
can still apply various optimizations, such as improving hit
rate in the lower levels of the cache hierarchy or reordering
instructions to increase Instruction Level Parallelism, and see
how these optimizations impact energy.

B. Optimal DVFS Schedule

After the profiling run, Power-Sleuth has all the required
data to predict performance and energy under any frequency. It
is thus capable of providing an optimal DVFS configuration for
each phase, according to user specifications. The metric of inter-
est for optimization can be any metric involving performance or
power, such as minimum EDP (Energy Delay Product) or ED2P,
or even metrics under constraints (e.g., limited performance
penalty, etc.). Figure 12 shows astar/lakes power consumption
over time predicted by Power-Sleuth for maximum frequency,
as well as for the recommended DVFS schedule. In this
example, minimizing EDP within a performance overhead of
10% for each phase is our optimization criterion. The schedule
then can be applied in practice with DVFS commands at the
beginning of each phase.

VII. RELATED WORK

In this section we discuss work related to power profiling
and estimation.

Power measurement. Ge et al. [9] developed a tool, called
PowerPack, to profile power dissipation of a computer system
(processor, memory, disks etc.). The authors use extra hardware
to measure power consumption, and they modify the target
application by inserting library calls to communicate with the
profiler so as to monitor specific code regions. Instead, we only
use real power measurements once, to get the characteristics
of the processor, and then we estimate power of applications
at a program-phase granularity (10s of msec). Moreover, we
do not modify the target application, since mapping of power
estimation with code is achieved using the phase-detection
component.

Power estimation. Joseph and Martonosi [17] correlate
power with hardware performance counters to estimate power
consumption. They evaluate their method in both a simulator
and a real processor. The authors use circuit-level power
information and approximate component activities using heuris-
tics (when this information is not readily available from the
performance counters) to get a per-component breakdown
of power consumption. Conrteras and Martonosi [3] use a
total of 7 performance counter events to estimate core and
main memory power consumption in Intel XScale processor.
The power model formed can be parameterized in the sense
that different regression parameters are used for the different
processor Voltage-frequency configurations. More recently,
Goel et al. [10] followed a similar approach to get power
estimation for multithreaded and multiprocess workloads and
employ it for implementing a power-capping scheduler.

Unlike the above mentioned approaches, we correlate ef-
fective capacitance (the processor’s capacitance coupled with
node activity factors) [29] with processor performance counters
events and then estimate power using Equation (4). This
approach allows us to have a unified model across all different
V -f combinations.

Phase detection. Isci and Martonosi [16] compared control-
flow-based (e.g., ScarPhase [25], SimPoint [27]) phase detec-
tion with power-event-counter-based [14, 15] phase detection.
They used 15 power related performance counters to monitor
the execution and to detect phases. They found that event-
counter-based phase detection produced slightly more accurate
results (i.e., more homogeneous power behavior within phases).
However, the goal of their work was to use phase detection
for runtime optimizations (i.e., apply new hardware settings
at phase changes). In this work, we focus on profiling, and
we want to map the power profile back to the code, which
control-flow-based phase detection does by default.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we introduced Power-Sleuth, a tool that esti-
mates performance and power consumption of an application in
different frequencies. The tool is capable of characterizing the
behavior of an application in any frequency, from a set of data
collected in a single frequency. To achieve this, we utilize an



analytical DVFS performance model, a novel power-estimation
model and a phase detection and classification technique. We
show that we can predict power and performance with high
accuracy, not only for the whole execution of an application,
but also for each program phase individually. Finally, we show
use-cases of how the information provided by Power-Sleuth
can be used to improve the power-efficiency of an application.

In our future work we plan to extend our methodology to
account for memory and uncore power, as well as port and
evaluate Power-Sleuth in more platforms.
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