
� 1

Design Styles [Cache Memories]

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

Let Caches Decay: Reducing Leakage Energy

via Exploitation of Cache Generational Behavior

Zhigang Hu

Department of Electrical Engineering

Princeton University

hzg@ee.princeton.edu

and

Stefanos Kaxiras

Circuits and Systems Research Lab

Agere Systems

kaxiras@agere.com

and

Margaret Martonosi

Department of Electrical Engineering

Princeton University

mrm@ee.princeton.edu

Power dissipation is increasingly important in CPUs ranging from those intended for mobile use,
all the way up to high-performance processors for high-end servers. While the bulk of the power
dissipated is dynamic switching power, leakage power is also beginning to be a concern. Chipmak-

ers expect that in future chip generations, leakage's proportion of total chip power will increase
signi�cantly.

This paper examines methods for reducing leakage power within the cache memories of the CPU.
Because caches comprise much of a CPU chip's area and transistor counts, they are reasonable
targets for attacking leakage. We discuss policies and implementations for reducing cache leakage
by invalidating and \turning o�" cache lines when they hold data not likely to be reused. In
particular, our approach is targeted at the generational nature of cache line usage. That is, cache
lines typically have a urry of frequent use when �rst brought into the cache, and then have a
period of \dead time" before they are evicted. By devising e�ective, low-power ways of deducing
dead time, our results show that in many cases we can reduce L1 cache leakage energy by 4x in
SPEC2000 applications without impacting performance. Because our decay-based techniques have
notions of competitive on-line algorithms at their roots, their energy usage can be theoretically
bounded at within a factor of two of the optimal oracle-based policy. We also examine adaptive
decay-based policies that make energy-minimizing policy choices on a per-application basis by
choosing appropriate decay intervals individually for each cache line. Our proposed adaptive
policies e�ectively reduce L1 cache leakage energy by 5x for the SPEC2000 with only negligible
degradations in performance.

Categories and Subject Descriptors: B.3.2 [Hardware]: Memory Structures

General Terms: Cache, Leakage, Power

Additional Key Words and Phrases: Cache Memories, Generational Behavior, Leakage Power,
Cache Decay

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 3

1. INTRODUCTION

Power dissipation is an increasingly pressing problem in high-performance CPUs.
Although power used to mainly be a concern in battery-operated devices, thermal,
reliability and environmental concerns are all driving an increased awareness of
power issues in desktops and servers. Most power dissipation in CMOS CPUs is
dynamic power dissipation, which arises due to signal transitions. In upcoming
chip generations, however, leakage power (also known as static power) will become
increasingly signi�cant. Because leakage current ows from every transistor that
is powered on, leakage power characteristics are di�erent from dynamic power,
which only arises when signals transition. As such, leakage power warrants new
approaches for managing it.

This paper explores options for reducing leakage power by proactively discarding
items from the cache, marking the lines invalid, and then putting the cache lines
\to sleep" in a way that dramatically reduces their leakage current. Our policies
for turning lines o� are based on generational aspects of cache line usage [Wood
et al. 1991]. Namely, cache lines typically see a urry of use when �rst brought in,
and then a period of dead time between their last access and the point where a new
data item is brought into that cache location. Turning o� the cache line during this
dead period can reduce leakage, without introducing any additional cache misses
and without hurting performance.

Contributions: We propose several policies for determining when to turn a
cache line o�. We begin with a time-based strategy, which we call cache decay,
that turns a cache line o� if a pre-set number of cycles have elapsed since its
last access. This time-based strategy has the nice property that its worst-case
energy behavior can be bounded using theories from competitive algorithms [Karlin
et al. 1991; Romer et al. 1995]. It results in roughly 70% reduction in L1 data
cache leakage energy. We also study adaptive variants of this approach, which
seek to improve average case performance by adaptively varying the decay interval
as the program runs. These adaptive approaches use an adaptation policy that
approximates chip energy tradeo�s; as such, they automatically approach the best-
case operating points in terms of leakage energy. The paper also explores cache
decay techniques for multi-level or multiprogrammed hierarchies, and discusses the
interactions of these techniques with other aspects of hierarchy design such as cache
consistency.

Overall this paper examines leakage power in data caches with an eye towards
managing it based on boundable techniques and self-tuning adaptive mechanisms.
With the increasing importance of leakage power in upcoming generations of CPUs,
and the increasing size of on-chip caches, we feel that these techniques will grow in
signi�cance over the next decade.

The structure of the paper is as follows. Section 2 gives an overview of our ap-
proach, with idealized data indicating cache decay's promise. Section 3 discusses our
experimental methodology, simulator, benchmarks, and the energy estimations we
use to evaluate our ideas. Section 4 discusses cache decay policies and implementa-

4 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

tions, including adaptive variants of our basic scheme. Section 5 explores sensitivity
of cache decay to cache geometries and looks into multi-level cache hierarchies and
multiprogramming issues which can alter the basic generational characteristics of
the programs. Finally, Section 6 touches on a number of issues that arise when
considering implementing cache decay, and Section 7 o�ers our conclusions.

2. PROBLEM OVERVIEW

2.1 Power Background

As CPU chips are more densely packed with transistors, and as clock frequencies in-
crease, power density on modern CPUs has increased exponentially in recent years.
Although power has traditionally mainly been a worry for mobile and portable de-
vices, it is now becoming a concern in even the desktop and server domains. In
CMOS circuits, the dominant form of power dissipation is \dynamic" or \switch-
ing" power. Dynamic power is proportional to the square of the supply voltage;
for that reason, it has been common to reduce supply voltage to improve both
performance and power. While e�ective, this optimization often has the side e�ect
of increasing the amount of \static" or \leakage" power that a CMOS circuit dis-
sipates. Static power is so-named because it is dissipated constantly, not simply
on wire transitions. Static power is a function of the circuit area, the fabrication
technology, and the circuit design style. In current chips, static power represents
about 2-5% of power dissipation (or even higher [J. A. Butts and G. Sohi 2000]),
but it is expected to grow exponentially in upcoming generations [Borkar 1999;
IBM Corp. 2000; Semiconductor Industry Association 1999].

2.2 Leakage Power and Cache Generations

Because caches comprise much of the area in current and future microprocessors,
it makes sense to target them when developing leakage-reducing strategies. Recent
work by Powell et al. has shown that transistor structures can be devised which
limit static leakage power by banking the cache and providing \sleep" transistors
which dramatically reduce leakage current by gating o� the Vdd current [Powell
et al. 2000; Yang et al. 2001].
Our work exploits these sleep transistors at a �ner granularity: individual cache

lines. In particular, a basic premise of our work is that, surprisingly often, cache
lines are storing items that will not be used again. Therefore, any static power
dissipated on behalf of these cache items is wasted. We aim to reduce the power
wasted on dead items in the cache, without signi�cantly worsening either program
performance or dynamic power dissipation.
Figure 1 depicts a stream of references to a particular cache line. One can break

this reference stream into generations. Each generation is comprised of a series of
references to the cache line. Using the terminology from [Wood et al. 1991], the i-th
generation begins immediately after the i-th miss to that cache line, when a new
memory line is brought into the cache frame. This generation ends when this line
is replaced and a new one is brought into the cache frame. Generations begin with
zero or more cache hits. Following the last reference before eviction, the generation
is said to have entered its dead time. At this point, this generation has no further
successful uses of the items in the cache line, so the line is said to be dead. There

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 5

HHH H H

H : HitM : Miss

Live time

Access Interval

M

Last
Access

Dead time TIME

Generation
NEW

Generation
NEW

M

Fig. 1. Cache generations in a reference stream.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

si
xt

ra
ck

ap
si

d
ea

d
_t

im
e/

(d
ea

d
_t

im
e+

liv
e_

ti
m

e)

Fig. 2. Fraction of time cached data are \dead."

is considerable prior evidence that dead cache lines comprise a signi�cant part of
the cache. For example, Wood, Hill, and Kessler showed that for their benchmark
suite dead time was typically at least 30% on average [Wood et al. 1991]. Similarly,
Burger et al. showed that most of the data in a cache will not be used in the future
[Burger et al. 1995]. They found cache \eÆciencies" (their term for fraction of data
that will be a read hit in the future before any evictions or writes) to be around
20% on average for their benchmarks. Most interestingly, they noted that fraction
of dead time gets worse with higher miss rates, since lines spend more of their time
about to be evicted.
Our goal is to exploit dead periods, particularly long ones, and to be able to turn

o� the cache lines during them. This approach reduces leakage power dissipated by
the cache storing data items that are no longer useful.

2.3 Potential Bene�ts

To motivate the potential of our approach, we start by presenting an idealized
study of its advantages. Here, we have run simulations using an \oracle" predictor
of when dead time starts in each cache line. That is, we note when a cache item has
had its last successful hit, before the cache miss that begins the next generation.
We imagine, in this section only, that we can identify these dead periods with 100%
accuracy and eliminate cache leakage during the dead periods.
Figure 2 illustrates the fraction of dead time we measured for a 32KB level-one

data cache on our benchmark collection. This is the total fraction of time cache lines

6 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

Processor Core

Instruction Window 80-RUU, 40-LSQ

Issue width 4 instructions per cycle

Functional Units 4 IntALU,1 IntMult/Div,

4 FPALU,1 FPMult/Div,

2 MemPorts

Memory Hierarchy

L1 Dcache Size 32KB, 1-way, 32B blocks

L1 Icache Size 32KB, 1-way, 32B blocks

L2 Uni�ed, 1MB, 8-way LRU,

64B blocks,6-cycle latency, WB

Memory 100 cycles

TLB Size 128-entry, 30-cycle miss penalty

Table 1. Con�guration of Simulated Processor

spend in their dead period.1 We only count complete generations that end with
a miss in the cache frame. The average across the benchmark suite is quite high:
around 65% for integer benchmarks and even higher (80%) for FP benchmarks.
Consider next an oracle predictor which knows precisely when a cache line becomes
dead. With it, we could turn the cache line o� with zero impact on cache miss rate
or program performance. Such an oracle predictor would allow us to save power
directly proportional to the shuto� ratio. If on average, 65% of the cache is shut
o�, and if we can implement this shuto� with negligible overhead power, then we
can cut cache leakage power by one half or more.
Note that this oracle prediction is not necessarily an upper bound on the leakage

power improvements to be o�ered by putting cache lines to sleep. Rather, the
oracle predictor o�ers the best possible leakage power improvements subject to the

constraint that cache misses do not increase. There may be cases where even though
a line is live (i.e., it will be referenced again) the reuse will be far into the future.
In such cases, it may be power-optimal to shut o� the cache line early, mark it
as invalid, and accept a moderate increase in the number of cache misses. Later
sections will o�er more realistic policies for managing these tradeo�s. On the other
hand, real world attempts to put cache lines to sleep will also incur some small
amounts of overhead power as we also discuss in the following sections.

3. METHODOLOGY AND MODELING

3.1 Simulator

Simulations in this paper are based on the SimpleScalar framework [Burger et al.
1996]. Our model processor has sizing parameters that closely resemble Alpha
21264 [Gwennap 1996], but without a clustered organization. The main processor
and memory hierarchy parameters are shown in Table 1.

1We sum the dead periods and the live periods of all the generations we encounter and we compute
the ratio dead=(dead + live). We do not compute individual dead ratios per generation and then
average them, as this would skew the results towards short generations.

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 7

3.2 Benchmarks

We evaluate our results using benchmarks from the SPEC CPU2000 [The Standard
Performance Evaluation Corporation 2000] and MediaBench suites [Lee et al. 1997].
The MediaBench applications help us demonstrate the utility of cache decay for
applications with signi�cant streaming data. The benchmarks are compiled for the
Alpha instruction set using the Compaq Alpha compiler with SPEC peak settings.
For each program, we follow the recommendation in [Sair and Charney 2000], but
skip a minimum of 1 billion instructions. We then simulate 500M instructions using
the reference input set.

3.3 Evaluating Power Tradeo�s

A basic premise of our evaluations is to measure the static power saved by turning o�
portions of the cache, and then compare it to the extra dynamic power dissipated in
our method. Our method dissipates extra dynamic power in two main ways. First,
we introduce counter hardware to support our decay policy decisions, so we need
to account for the dynamic power of these counters in our evaluations. Second,
our method can dissipate extra dynamic power in cases where our decay policy
introduces additional L1 cache misses not present in the original reference stream.
These L1 misses translate to extra L2 reads and sometimes also extra writebacks.
Turning o� a dirty line results in an early writeback which is extraneous only if
paired with an extra miss. For the rest of this paper, when we discuss extra misses
we implicitly include associated extra writebacks.
Since both leakage and dynamic power values vary heavily with di�erent designs

and fabrication processes, it is diÆcult to nail down speci�c values for evaluation
purposes. Rather, in this paper we focus on ratios of values. In this section, we
describe our rationale for the range of ratio values we focus on. Later sections
present our results for di�erent ratios within this range.
A key energy metric in our study is \normalized cache leakage energy". This

refers to a ratio of the energy of the L1 with cache decay policies, versus the
original L1 cache leakage energy. The numerator in this relationship sums three
terms. The �rst term is the improved leakage energy resulting from our policies.
The second term is energy from counter maintenance or other overhead hardware
for cache decay policies. The third term is extra dynamic energy incurred if cache
decay introduces extra L1 misses that result in extra L2 cache accesses (reads and
writebacks).
Dividing through by original cache leakage energy, we can use weighting factors

that relate the dynamic energy of extra L2 accesses and extra counters, to the
original cache leakage energy per cycle. Thus, the normalized cache leakage energy
after versus before our improvements can be represented as the sum of three terms:
ActiveRatio+(Ovhd : leak)(OvhdActivity)+(L2Access : leak)(extraL2Accesses).
ActiveRatio is the average fraction of the cache bits, tag or data, that are powered
on. Ovhd:leak is the ratio of the cost of counter accesses in our cache decay method
relative to the leakage energy. This multiplied by overhead activity (OvhdActivity)
gives a relative sense of overhead energy in the system. The L2Access:leak ratio
relates dynamic energy due to an additional miss (or writeback) to a single clock
cycle of static leakage energy in the L1 cache. Multiplying this by the number

8 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

of extra L2 accesses induced by cache decay gives the dynamic cost induced. By
exploring di�erent plausible values for the two key ratios, we present the bene�ts
of cache decay somewhat independently of fabrication details.

3.4 Relating Dynamic and Static Energy Costs

Considering appropriate ratios is fundamental in evaluating our policies. We focus
here on the L2Access:leak ratio. We defer policy counter overheads to Section 4
where implementations are covered.
We wish to turn o� cache lines as often as possible in order to save leakage power.

We balance this, however, against a desire to avoid increasing the miss rate of the
L1 cache. Increasing the miss rate of the L1 cache has several power implications.
First and most directly, it causes dynamic power dissipation due to an access to the
L2 cache, and possible additional accesses down the memory hierarchy. Second, a
L1 cache miss may force dependent instructions to stall, interfering with smooth
pipeline operation and dissipating extra power. Third and �nally, the additional
L1 cache miss may cause the program to run for extra cycles, and these extra cycles
will also lead to extra power being dissipated.
We encapsulate the energy dissipated due to an extra miss into a single ratio

called L2Access:leak. The predominant e�ect to model is the amount of dynamic
power dissipated in the level-two cache and beyond, due to the level-one cache miss.
Additional power due to stalls and extra program cycles is minimal. Benchmarks
see very few cycles of increased runtime (< 0:7%) due to the increased misses for the
decay policies we consider. In fact, in some situations, some benchmarks actually
run slightly faster with cache decay techniques. This is because writebacks occur
eagerly on cache decays, and so are less likely to stall the processor later on [H.-H.
Lee, G. S. Tyson, M. Farrens 2000].
To model the ratio of dynamic L2 access energy compared to static L1 leakage

per cycle, we �rst refer to recent work which estimates dynamic energy per L2
cache access in the range of 3-5nJ per access for L2 caches of the size we consider
(1MB) [Kamble and Ghose 1997]. We then compared this data to industry data
by back-calculating energy per cache access for Alpha 21164's 96KB S-cache; it is
roughly 10nJ per access for a 300MHz fabricated in a 0.5� process [Bowhill et al.
1995]. Although the S-cache is about one-tenth the capacity of the L2 caches we
consider, our back-calculation led to a higher energy estimate. First, we note that
banking strategies typically employed in large caches lessen the degree by which
energy-per-access scales with size. Second, the higher 0.5� feature size used in
this older design would lead to larger capacitance and higher energy per access.
Our main validation goal was to check that data given by the analytic models are
plausible; our results in later sections are plotted for ratios varying widely enough
to absorb signi�cant error in these calculations.
The denominator of the L2Access:leak relates to the leakage energy dissipated

by the L1 data cache. Again, we collected this data from several methods and
compared. From the low-Vt data given in Table 2 of [Yang et al. 2001], one can
calculate that the leakage energy per cycle for a 32KB cache will be roughly 0.45nJ.
A simple aggregate calculation from industry data helps us validate this. Namely,
using leakage power of roughly 2-5% of current CPU power dissipation, L1 cache
is roughly 10-20% of that leakage [Borkar 1999], and CPU power dissipations are

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 9

around 75W. This places L1 leakage energy at roughly 0.3nJ per cycle. Again, both
methods of calculating this data give results within the same order-of-magnitude.
Dividing the 4nJ dynamic energy per access estimate by the .45nJ static leakage

per cycle estimate, we get a ratio of 8.9 relating extra miss power to static leakage
per cycle. Clearly, these estimates will vary widely with design style and fabrication
technology though. In the future, leakage energy is expected to increase dramati-
cally, which will also impact this relationship. To account for all these factors, our
energy results are plotted for several L2Access:leak ratios varying over a wide range
(5 to 100). Our results are conservative in the sense that high leakage in future
technologies will tend to decrease this ratio. If that happens, it will only improve
on the results we present in this paper.

4. TIME-BASED LEAKAGE CONTROL: CACHE DECAY

We now examine possible policies for guiding how to use a mechanism that can
reduce cache leakage by turning o� individual cache lines. A key aspect of these
policies is the desire to balance the potential for saving leakage energy (by turning
lines o�) against the potential for incurring extra level-two cache accesses (if we
introduce extra misses by turning lines o� prematurely). We wish to either deduce
immediately at a reference point that the cache line is now worth turning o�, or
else infer this fact by watching its behavior over time, deducing when no further
accesses are likely to arise, and therefore turning the line o�. This section focuses
on the latter case, which we refer to as time-based cache decay.
With oracle knowledge of reference patterns, Figure 2 demonstrated that the

leakage energy to be saved would be signi�cant. The question is: can we develop
policies that come acceptably close to this oracle? In fact, this question can be
approached by relating it to the theoretical area of competitive algorithms [Kimbrel
and Karlin 2000]. Competitive algorithms make cost/bene�t decisions online (i.e.,
without oracle knowledge of the future) that o�er bene�ts within a constant factor of
an optimal o�ine (i.e., oracle-based) algorithm. A body of computer systems work
has previously successfully applied such strategies to problems including superpage
promotion for TLB performance, prefetching and multiprocessor synchronization
[Karlin et al. 1991], [Romer et al. 1995].
A generic policy for competitive algorithms is to take action at a point in time

where the extra cost we have incurred so far by waiting is precisely equal to the
extra cost we might incur if we act but guess wrong. Such a policy, it has been
shown, leads to worst case cost that is within a factor of two of the o�ine optimal
algorithm.2

For example, in the case of our cache decay policy we are trying to determine
when to turn a cache line o�. The longer we wait, the higher the leakage energy
dissipated. On the other hand, if we prematurely turn o� a line that may still have
hits, then we inject extra misses which incur dynamic power for L2 cache accesses.

2[Romer et al. 1995] includes a helpful example: the ski rent-vs.-buy problem. For example, if ski
rental charges are $40 per day, and skis cost $400 to buy, then online approaches suggest that a
beginning skier (who doesn't know whether they will enjoy skiing or not) would be wise to rent
skis 10 times before buying. This equalizes the rental cost to the purchase cost, bounding total
cost at two times the optimal o�ine approach.

10 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

0

20

40

60

80

100

120

1 13 25 37 49 61 73 85

>
=

10
0

cycles(x100)

cu
m

u
la

tv
ie

%

access_inter_gzip access_inter_applu dead_time_gzip dead_time_applu

Fig. 3. Cumulative distribution of Access Interval and Dead Time for gzip and applu.

Competitive algorithms point us towards a solution: we could leave each cache line
turned on until the static energy it has dissipated since its last access is precisely
equal to the dynamic energy that would be dissipated if turning the line o� induces
an extra miss. With such a policy, we could guarantee that the energy used would
be within a factor of two of that used by the optimal o�ine policy shown in Figure
2.

As calculated in Section 3 the dynamic energy required for a single L2 access is
roughly 9 times as large as the static leakage energy dissipated by whole L1 data
cache. If we consider just one line from the L1 cache, then that ratio gets multiplied
by 1024, since the cache we are studying has 1024 lines. This analysis suggests that
to come within a factor of two of the oracle-policy (worst-case) we should leave
cache lines turned on until they have gone roughly 10,000 cycles without an access.
At that point, we should turn them o�. Since the L2Access:leak ratio varies so
heavily with design and fabrication factors, we consider a wider range of decay
intervals, from 1K to 512K cycles, to explore the design space thoroughly.
The optimality of this oracle-based policy applies to the case where no additional

cache misses are allowed to be added. In cases of very glacial reuse, however, it
may be energy-bene�cial to turn o� a cache line, mark its contents invalid, and
incur an L2 cache miss later, rather than to hold contents in L1 and incur leakage
power for a long time period.

For the online approach (and its bound) to be of practical interest, the wait times
before turning a cache line o� must be short enough to be seen in real-life. That
is the average dead times (Figure 1) seen in real programs must be long enough
to allow the lines to be turned o� a useful amount of the time. Therefore, we
wish to characterize the cache dead times typically seen in applications, in order to
gauge what sorts of decay intervals may be practical. Figure 3 shows cumulative
distributions of access intervals and dead times for gzip (dotted lines) and applu
(solid lines). The last point on the horizontal axis graph represents the tail of the
distributions beyond that point. We use the term access interval to refer to the time
between any two accesses during the live-time of a cache generation (see Figure 1).
Dead time refers to the time between the last hit to an item in cache, and when it is

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 11

actually evicted. Our experiments show that across the benchmark suite, there are
a sizable fraction of dead times greater than 10,000 cycles. Thus, the time range
suggested by the online policy turns out to be one of signi�cant practical promise.
Figure 3 also highlights the fact that there is a huge di�erence between average

access interval and average dead time. For gzip, the average access interval during
live time is 458 cycles while the average dead time is nearly 38,243 cycles. For
applu, the results are similar: 181 cycles per access interval and 14,984 cycles per
dead time. This suggests to us that dead times are not only long, but that they
may also be moderately easy to identify, since we will be able to notice when the
urry of short access interval references is over.
Based on these observations, this section focuses on time-based techniques in

which cache decay intervals are set between 1K and 512K cycles for the level-one
cache. These intervals span broadly over the range suggested by both competitive
algorithms and the dead time distributions. The following subsection details a par-
ticular way of implementing a time-based policy with a single �xed decay interval.
Section 4.3 re�nes this approach to consider an adaptive policy whose decay interval
automatically adjusts to application behavior.

4.1 Hardware Implementations of Cache Decay

To switch o� a cache line we use the gated Vdd technique developed by Powell et
al. [Powell et al. 2000]. The idea in this technique is to insert a \sleep" transis-
tor between the ground (or supply) and the SRAM cells of the cache line. The
stacking e�ect [Chen et al. 1998] of this transistor when it is o� reduces by orders
of magnitude the leakage current of the SRAM cell transistors to the point that
leakage power of the cache line can be considered negligible. According to [Powell
et al. 2000] a speci�c implementation of the gated Vdd transistor (NMOS gated Vdd,
dual Vt, wide, with charge pump) results in minimal impact in access latency but
with a 5% area penalty. We assume this implementation of the gated Vdd technique
throughout this paper.
One way to represent recency of a cache line's access is via a binary counter

associated with the cache line. Each time the cache line is accessed the counter
is reset to its initial value. The counter is incremented periodically at �xed time
intervals. If no accesses to the cache line occur and the counter saturates to its
maximum count (signifying that the decay interval has elapsed) it switches o�
power to the corresponding cache line.
Our competitive algorithm bound and the dead time distributions both indicate

that decay intervals should be in the range of tens of thousands of cycles. Such large
decay intervals make it impractical for the counters to count cycles|too many bits
would be required. Instead, it is necessary for the counters to tick at a much coarser
level. Our solution is to utilize a hierarchical counter mechanism where a single
global cycle counter is set up to provide the ticks for smaller cache-line counters
(as shown in Figure 4).
Our simulations show that an infrequently-ticking two-bit counter per cache line

provides suÆcient resolution and produces the same results as a larger counter with
the same e�ective decay interval. If it takes four ticks of the 2-bit counter to decay
a cache line (�gure 4), the resulting decay interval is|on average|3.5 times the
period of the global counter.

12 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

In our power evaluations, we assume that the global counter will come for free,
since many processors already contain various cycle counters for the operating sys-
tem or for performance counting [Dean et al. 1997; Intel Corp. 1997; Zagha et al.
1996]. If such counters are not available, a simple N-bit binary ripple counter could
be built with 40N + 20 transistors, of which few would transition each cycle.

To minimize state transitions in the local 2-bit cache-line counters and thus mini-
mize dynamic power consumption we use Gray coding so only one bit changes state
at any time. Furthermore, to simplify the counters and minimize transistor count
we chose to implement them asynchronously. Each cache line contains circuitry
to implement the state machine depicted in Figure 4. The two inputs to the local
counters, the global tick signal T generated by the global counter and the cache-line
access signal WRD, are well behaved so there are no meta-stability problems. The
output signal Power-O�, controls the gated Vdd transistor and turns o� power when
asserted. To avoid the possibility of a burst of writebacks with every global tick
signal (if multiple dirty lines decay simultaneously) the tick signal is cascaded from
one local counter to the next with a one-cycle latency. This does not a�ect results
but it spreads writebacks in time.
All local counters change value with every T pulse. However, this happens at

very coarse intervals (equal to the period of the global counter). Resetting a local
counter with an access to a cache line is not a cause of concern either. If the cache
line is heavily accessed the counter has no opportunity to change from its initial
value so resetting it does not expend any dynamic power (none of the counter's
transistors switch). The cases where power is consumed are accesses to cache lines
that have been idle for at least one period of the global counter. Our simulation
results indicate that over all 1024 2-bit counters used in our scheme, there are 0.2
bit transitions per cycle on average. Modeling each counter as a 2-bit register in
Wattch [Brooks et al. 2000], we estimate roughly .1pJ per access. Therefore, at an
average of 0.02pJ per cycle, the power expended by all 1024 of these infrequently-
ticking counters is roughly 4 orders of magnitude lower than the cache leakage
energy which we estimate at 0.45nJ per cycle. For this reason, our power analysis
will consider this counter overhead to be negligible from this point forward.
Switching o� power to a cache line has important implications for the rest of the

cache circuitry. In particular, the �rst access to a powered-o� cache line should:
(i) result in a miss (since data and tag might be corrupted without power) (ii)
reset the counter and restore power to the cache line and (iii) delay an appropriate
amount of time until the cache-line circuits stabilize after power is restored. To
satisfy these requirements we use the Valid bit of the cache line as part of the decay
mechanism (Figure 4). First, the valid bit is always powered. Second, we add a
reset capability to the valid bit so the Power-O� signal can clear it. Thus, the �rst
access to a power-o� cache line always results in a miss regardless of the contents
of the tag. Since satisfying this miss from the lower memory hierarchy is the only
way to restore the valid bit, a newly-powered cache line will have enough time to
stabilize. In addition, no other access (to this cache line) can read the possibly
corrupted data in the interim.

Analog implementation: Another way to represent the recency of a cache
line's access is via charge stored on a capacitor. Each time the cache line is accessed,
the capacitor is grounded. In the common case of a frequently-accessed cache line,

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 13

BV

M
V Vg

B

CACHE-LINE (DATA + TAG)

Counter
2-bit
FSM M

B B

Power-Off

CACHE-LINE (DATA + TAG)

00

S1 S0
WRD

WRD

T/0 PowerOff01

State Diagram for 2-bit (S1,S0), saturating, Gray-code counter with two inputs (WRD, T)

1 1 1

RESET

T

LOCAL 2-BIT COUNTERS

WRD

WRD

WRD
ROW

DECODERS

ALWAYS POWERED SWITCHED POWER

GLOBAL COUNTER

TT

WRD

T

VALID BIT

CASCADED
TICK
PULSE

V

V

V

Fig. 4. Hierarchical counters

the capacitor will be discharged. Over time, the capacitor is charged through a
resistor connected to the supply voltage (Vdd). Once the charge reaches a suÆciently
high level, a voltage comparator detects it, asserts the Power-O� signal and switches
o� power to the corresponding cache line. Although the RC time constant cannot
be changed (it is determined by the fabricated size of the capacitor and resistor)
the bias of the voltage comparator can be adjusted to di�erent temporal access
patterns. An analog implementation is inherently noise sensitive and can change
state asynchronously with the remainder of the digital circuitry. Some method
of synchronously sampling the voltage comparator must be used to avoid meta-
stability. Since an analog implementation can be fabricated to mimic the digital
implementation, the rest of this paper focuses on the latter.

4.2 Results

We now present experimental results for the time-based decay policy based on
binary counters described in Section 4.1. First Figures 5 and 6 plot the active
ratio and miss rate as a function of cache decay interval for a collection of integer
and oating point programs. In each graph, each application has �ve bars. In
the active ratio graph, the �rst bar is the active ratio for a traditional 32KB L1
data cache. Since all the cache is turned on all the time, the active ratio is 100%.
Furthermore, we have determined that our benchmark programs touch the entirety
of the standard caches for the duration of execution (active ratio over 99%). The
other bars show the active ratio (average number of cache bits turned on) for
decay intervals ranging from 512K cycles down to 1K cycles. Clearly, shorter decay
intervals dramatically reduce the active ratio, and thus reduce leakage energy in
the L1 data cache, but that is only part of the story. The miss rate graphs show
how increasingly aggressive decay intervals a�ect the programs' miss rates.
Figure 7 plots similar data averaged over all the benchmarks. The upper curve

14 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

0.00

0.03

0.06

0.09

0.12

0.15

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

m
is

s
ra

te

orig 512K cycle decay interval 64Kc 8Kc 1Kc

0

20

40

60

80

100

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

ac
ti

ve
ra

ti
o

Fig. 5. Miss rate and active ratio of a 32KB decay cache for SPECint 2000.

0.00

0.10

0.20

0.30

0.40

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

m
is

s
ra

te

orig 512K cycle decay interval 64Kc 8Kc 1Kc

0

20

40

60

80

100

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

ac
ti

ve
ra

ti
o

Fig. 6. Miss rate and active ratio of a 32KB decay cache for SPECfp 2000.

corresponds to traditional non-decaying caches in which the miss rates change with
the cache sizes. In a traditional cache without decay, active size is just the full
cache size. The lower curve in this graph corresponds to a decay cache whose full
size is �xed at 32KB. For this cache, we can vary the decay interval and see how
this inuences the active size, i.e. the the number of cache lines turned on. Starting
at the 16KB traditional cache and dropping downwards, one sees that the decay
cache has much better miss rate characteristics than standard caches with the same
active size.
Figure 8 shows the normalized cache leakage energy metric for the integer and

oating point benchmarks. In this graph, we assume that L2Access:leak ratio is
equal to 10 as discussed in Section 3. We normalize to the leakage energy dissipated
by the original 32KB L1 data cache with no decay scheme in use. Although the
behaviors of each benchmark are unique, the general trend is that a decay interval of
8K cycles shows the best energy improvements. This is quite close to the roughly
10Kcycle interval suggested for worst-case bounding by the theoretical analysis.
For the integer benchmarks, all of the decay intervals | including even 1Kcycle
for some |result in net improvements. For the oating point benchmarks, 8Kcycle
is also the best decay interval. All but one of the oating point benchmarks are
improved by cache decay techniques for the full decay-interval range.
We also wanted to explore the sensitivity of our results to di�erent ratios of

dynamic L2 energy versus static L1 leakage. Figure 9 plots four curves of nor-
malized cache leakage energy. Each curve represents the average of all the SPEC

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 15

4KB standard

8KB standard

16KB standard

32KB standard

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 8 16 24 32
active size(KB)

m
is

s
ra

te

32KB decay cache standard caches

Fig. 7. Comparison of a �xed-size 32KB decay cache with varying decay intervals to standard
4KB, 8KB, 16KB, and 32KB caches. For the decay cache, the di�erent points in the curve
represent di�erent decay intervals. From left to right, they are: 1Kcycles, 8Kcycles, 64Kcycles,
and 512Kcycles. Active size and miss rate are geometric means over all SPEC 2000 benchmarks.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

gzip vpr gcc mcf crafty parser
eon perlbmk gap vortex bzip2 twolf

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

wupwise swim mgrid applu mesa
galgel art equake facerec ammp
lucas fma3d sixtrack apsi

Fig. 8. Normalized cache leakage energy for an L2Access:leak ratio of 10. This metric takes into
account both static energy savings and dynamic energy overhead. Left graph shows SPECint2000;
right graph shows SPECfp2000.

benchmarks. The curves correspond to L2Access:leak ratios of 5, 10, 20, and 100.
All of the ratios show signi�cant leakage improvements, with smaller ratios being
especially favorable. When the L2Access:leak ratio equals 100, then small decay in-
tervals (less than 8K cycles) are detrimental to both performance and power. This
is because short decay intervals may induce extra cache misses by turning o� cache
lines prematurely; this e�ect is particularly bad when L2Access:leak is 100 because
high ratios mean that the added energy cost of additional L2 misses is quite high.
To assess these results one needs to take into consideration the impact on per-

formance. If cache decay slows down execution because of the increased miss rate
then its power advantage diminishes. For the decay scenarios we consider, not only
we do not observe any slow-down but in fact we observe a very slight speed up in
some cases, which we attribute to eager writebacks [H.-H. Lee, G. S. Tyson, M.
Farrens 2000]. Beyond this point, however, cache decay is bound to slow down
execution. For our simulated con�guration, performance impact is negligible ex-
cept for very small decay intervals: the 8Kcycle interval|which yields very low

16 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

0.0

0.2

0.4

0.6

0.8

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

ratio=100 ratio=20 ratio=10 ratio=5

1.8

Fig. 9. Normalized L1 data cache leakage energy averaged across SPEC suite for various
L2Access:leak ratios.

normalized leakage energy (Figures 8 and 9)|decreases IPC by 0.1% while the
1Kcycle interval|which we do not expect to be used widely|decreases IPC by
0.7%. Less aggressive processors might su�er comparably more from increased
miss rates, which would make very small decay intervals undesirable.
In addition to the SPEC applications graphed here, we have also done some initial

studies with MediaBench applications [Lee et al. 1997]. The results are even more
successful than those presented here partly due to the generally poor reuse seen in
streaming applications; MediaBench applications can make use of very aggressive
decay policies. Since the working set of MediaBench can, however, be quite small
(for gsm, only about 50% of the L1 data cache lines are ever touched) we do not
present the results here.

4.3 Adaptive Variants of Time-based Decay

So far we have investigated cache decay using a single decay interval for all of the
cache. We have argued that such a decay interval can be chosen considering the
relative cost of a miss to leakage power in order to bound worst-case performance.
However, Figure 8 shows that in order to achieve best average-case results this
choice should be application-speci�c. Even within an application, a single decay
interval is not a match for every generation: generations with shorter dead times
than the decay interval are ignored, while others are penalized by the obligatory
wait for the decay interval to elapse. In this section we present an adaptive de-
cay approach that chooses decay intervals at run-time to match the behavior of
individual cache lines.
Motivation for an adaptive approach: Figure 10 shows details about why a

single decay interval cannot capture all the potential bene�t of an oracle scheme.
In this �gure two bars are shown for each program: a decay bar on the left and an
oracle bar on the right. Within the bar for the oracle-based approach, there are
three regions. The lower region of the oracle bar corresponds to the lower region
of the decay bar which is the bene�t (the shut-o� ratio) that comes from decaying
truly dead cache lines. The two upper regions of the oracle bar represent bene�t
that the single-interval decay schemes of Section 4.2 cannot capture. The middle

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 17

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

gz
ip

de
ca

y

or
ac

le

vp
r

de
ca

y

or
ac

le

m
cf

de
ca

y

or
ac

le

cr
af

ty
de

ca
y

or
ac

le

pa
rs

er
de

ca
y

or
ac

le

pe
rlb

m
k

de
ca

y

or
ac

le

ga
p

de
ca

y

or
ac

le

vo
rt

ex
de

ca
y

or
ac

le

B
en

ef
it

(s
h

u
t-

o
ff

ra
ti

o
)

Decayed dead Decayed live Oracle dead Wait time Short dead

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

w
up

w
is

e
de

ca
y

or
ac

le

sw
im

de
ca

y

or
ac

le

m
gr

id
de

ca
y

or
ac

le

m
es

a
de

ca
y

or
ac

le

ar
td

ec
ay

or
ac

le

eq
ua

ke
de

ca
y

or
ac

le

fa
ce

re
c

de
ca

y

or
ac

le

ap
si

de
ca

y

or
ac

le

B
en

ef
it

(s
h

u
t-

o
ff

ra
ti

o
)

Fig. 10. Lost opportunities for time-based decay (64Kcycle decay interval). SPECint2000 and
SPECfp2000.

region of the oracle bar is the bene�t lost while waiting for the decay interval to
elapse. The upper region is lost bene�t corresponding to dead periods that are
shorter than the decay interval. On the other hand, the decay scheme can also
mistakenly turn o� live cache lines. Although this results in extraneous misses
(decay misses) it also represents bene�t in terms of leakage power. This e�ect is
shown as the top region of the decay bars. For some SPECfp2000 programs the
bene�t from short dead periods is quite large in the oracle bars.
Implementation: An ideal decay scheme would choose automatically the best

decay interval for each generation. Since this is not possible without prior knowledge
of a generation's last access, we present here an adaptive approach to chose decay
intervals per cache-line.

Our adaptive scheme attempts to choose the smallest possible decay interval
(out of a prede�ned set of intervals) individually for each cache-line. The idea is
to start with a short decay interval, detect whether this was a mistake, and adjust
the decay interval accordingly. A mistake in our case is to prematurely decay a
cache-line and incur a decay miss. We can detect such mistakes if we leave the tags
always powered-on but this is a signi�cant price to pay (up to 10% of the cache's
leakage if we leave all the tag bits on). Instead we opted for a scheme that infers
possible mistakes according to how fast a miss appears after decay. We determined
that this scheme works equally well or better than an exact scheme which dissipates
tag leakage power.

The idea is to reset a line's 2-bit counter upon decay and then reuse it to gauge
dead time (Figure 11). If dead time turns out to be very short (the local counter
did not advance a single step) then chances are that we have made a mistake and
incurred a decay-miss. But if the local counter reaches its maximum value while we
are still in the dead period then chances are that this was a successful decay. Upon
mistakes|misses with the counter at minimum value (00 in Figure 11)|we adjust
the decay interval upwards; upon successes|misses with counter at maximum value
(10)|we adjust it downwards. Misses with the counter at intermediate values (01
or 11) do not a�ect the decay interval.

We use exponentially increasing decay intervals similarly to Ethernet's exponen-
tial back-o� collision algorithm but the set of decay intervals can be tailored to
the situation. As we incur mistakes, for a cache line, we exponentially increase its

18 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

10 00 11011100 01 10

Decay

Interval

increases the decay interval

A miss in here (perceived mistake)

Decay

Accesses

A miss from this point forward

decreses the decay interval (success)

Miss

TIME

Dead time

Last

Generation

Live time

NEW

Access

Fig. 11. Adaptive decay.

320.00

0.01

0.02

0.03

0.04

0.05

0 8 16 24 32
active size(KB)

#
ex

tr
a

L
2

ac
ce

ss

decay

adaptive

standard

oracle

Fig. 12. E�ect of adaptive decay. Iso-power lines show constant power (L2Access : leak = 10).
Results averaged over all SPEC2000.

decay interval. By backing-o� a single step in the decay-interval progression rather
than jumping to the smallest interval we introduce hysteresis in our algorithm.
Implementation of the adaptive decay scheme requires simple changes in the

decay implementation discussed previously. We introduce a small �eld per cache
line, called decay speed �eld, to select a decay interval. An N-bit �eld can select up to
2N decay intervals. The decay-speed �eld selects di�erent tick pulses coming from
the same or di�erent global cycle counters. This allows great exibility in selecting
the relative magnitude of the decay intervals. The value of this �eld is incremented
whenever we incur a perceived decay miss and decremented on a perceived successful
decay. We assume that higher value means longer decay interval.
Results: Figure 12 presents results of an adaptive scheme with 10 decay intervals

(4-bit decay-speed �eld). The decay intervals range from 1K cycles to 512K cycles
(the full range used in our previous experiments) and are successive powers-of-
two. In the same �gure we repeat results for the single-interval decay and for
various standard caches. We also plot iso-power lines, lines on which total power
dissipation remains constant (for L2Access : leak = 10). The adaptive decay
scheme automatically converges to a point below the single-interval decay curve.
This corresponds to a total power lower than the iso-power line tangent to the decay
curve. This point has very good characteristics: signi�cant reduction in active
area and modest increase in miss ratio. Intuitively, we would expect this from
the adaptive scheme since it tries to maximize bene�t but also is aware of cost.
This behavior is application-independent: the adaptive scheme tends to converge

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 19

to points that are close or lower than the highest iso-power line tangent to the
single-decay curve.
Adaptive decay for set-associative caches: Figure 13 demonstrates the

e�ect of adaptive decay for a 4-way 32KB data cache. As in the previous section,
the decay interval starts with an aggressively small value but increases in the event
of a decay-caused miss. To identify a decay-caused miss, we keep part of the cache
tag always powered on. If during a cache access, the lookup tag matches the partial
powered-on tag but the data are decayed, then we declare it a decay-caused miss
and modify the decay interval to a more conservative (larger) value. Since the
powered-on partial tag leads to additional leakage power, we should choose it to
be as small as possible. On the other hand, too few powered-on bits will lead to
aliasing e�ects where the lookup tag matches the partial tag but does not match
the whole tag. In our experiments, we found that a 5-bit partial tag e�ectively
removes aliasing e�ects with minimal additional leakage power.

320.00

0.01

0.02

0.03

0.04

0.05

0 8 16 24 32
active size(KB)

#
ex

tr
a

L
2

ac
ce

ss
p

er
cy

cl
e

decay

adaptive

standard

Fig. 13. E�ect of adaptive decay for a 4-way 32KB cache. Iso-power lines show constant power
(L2Access : leak = 10). Results averaged over all SPEC2000.

5. CHANGES IN THE GENERATIONAL BEHAVIOR AND DECAY

In this section we will �rst examine sensitivity of cache decay to cache size, as-
sociativity and block size. Then we show the e�ectiveness of cache decay for the
instruction cache. We then discuss how cache decay can be applied when multi-level
cache hierarchies or multi-programming change the apparent generational behavior
of cache lines.

5.1 Sensitivity to cache size, associativity and block size

Cache characteristics usually vary with di�erent cache geometries, namely cache
size, associativity and block size. In this section, we explore the e�ect of changing
these parameters on cache decay behavior. Figure 14 and 15 plot ActiveRatio-
MissRate curves of di�erent cache size, associativity and block size for SPEC2000
benchmark suite. Across the con�gurations, we observed trends consistent to the
32KB direct-mapped cache shown in the previous section. Cache decay constantly
shows a bene�t even for very small caches.

20 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 90 100

active ratio(%)

m
is

s
ra

te

16K 32K 64K

Fig. 14. ActiveRatio-MissRate curve for mcf for di�erent sizes of L1 data cache.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 90 100

active ratio(%)

m
is

s
ra

te

1_way 2_way 4_way

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 10 20 30 40 50 60 70 80 90 100

active ratio(%)

m
is

s
ra

te

16B 32B 64B

Fig. 15. ActiveRatio-MissRate curve for mcf for di�erent associativity(Left) and block size(Right)
of a 32KB L1 data cache.

5.2 Instruction Cache

Cache decay can also be applied to instruction caches since they typically exhibit
even more locality than data cache. In fact, compared to a data cache, instruction
caches have the additional bene�t that they does not have any writeback traÆc.
Figure 16 shows the normalized leakage energy for a 32KB L1 instruction cache.
Notice that even without decay, the instruction cache is not fully touched during
our simulation period. The �gure shows that decay works very well except for very
small decay intervals.

5.3 Multiple Levels of Cache Hierarchy

Cache decay is likely to be useful at multiple levels of the hierarchy since it can be
usefully employed in any cache in which the active ratio is low enough to warrant
line shut-o�s. For several reasons, the payo� is likely to increase as one moves
outward in the hierarchy. First, a level-two or level-three cache is likely to be larger
than the level-one cache, and therefore will dissipate more leakage power. Second,
outer levels of the cache hierarchy are likely to have longer generations with larger
dead time intervals. This means they are more amenable to our time-based decay
strategies. On the other hand, the energy consumed by any extra L2 misses we

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 21

0.0

0.1

0.2

0.3

0.4

0.5

orig 512K 64K 8K 1K

decay interval(cycles)
n

o
rm

al
iz

ed
le

ak
ag

e
en

er
g

y

ratio=100 ratio=20 ratio=10 ratio=5

1.32

Fig. 16. Normalized L1 instruction cache leakage energy averaged across SPEC suite for various
L2Access:leak ratios.

induce could be quite large, especially if servicing them requires going o� chip.
The major di�erence between L1 and L2 is the �ltering of the reference stream

that takes place in L1 which changes the distribution of the access intervals and
dead periods in L2. Our data shows that the average access interval and dead time
for L2 cache are 79,490 and 2,714,980 cycles respectively. Though access intervals
and dead periods become signi�cantly larger, their relative di�erence remains large
and this allows decay to work.
The increased access intervals and dead times suggest we should consider much

larger decay intervals for the L2 compared to those in the L1. This meshes well
with the competitive analysis which also points to an increase in decay interval
because the cost of an induced L2 cache miss is so much higher than the cost of
an induced L1 cache miss. As a simple heuristic to choose a decay interval, we
note that since there is a 100-fold increase in the dead periods in L2, we will also
multiply our L1 decay interval by 100. Therefore a 64Kcycle decay interval in L1
translates to decay intervals on the order of 6400K cycles in the L2.
Here, we assume that multilevel inclusion is preserved in the cache hierarchy

[Baer and Wang 1988]. Multilevel inclusion allows snooping on the lowest level
tags only and simpli�es writebacks and coherence protocols. Inclusion bits are used
to indicate presence of a cache line in higher levels. For L2 cache lines that also
reside in the L1 we can turn o� only the data but not the tag. Figures 17 shows
miss rate and active ratio results for the 1MB L2 cache. As before, cache decay
is quite e�ective at reducing the active ratio in the cache. Miss rates tend to be
tolerable as long as one avoids very short decay intervals. (In this case, 128Kcycle
is too short.)
It is natural to want to convert these miss rates and active ratios into energy

estimates. This would require, however, coming up with estimates on the ratio
of L2 leakage to the extra dynamic power of an induced L2 miss. This dynamic
power is particularly hard to characterize since it would often require estimating
power for an o�-chip access to the next level of the hierarchy. We are not that
daring! Instead, we report the \breakeven" ratio. This is essentially the value of
L2Access:leak at which this scheme would break even for the L2 cache.
In these benchmarks, breakeven L2Access:leak ratios for an 1Mcycle decay in-

22 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

0.0

0.2

0.4

0.6

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

L
2

m
is

s
ra

te

orig 8192Kcycles decay interval 1024Kc 128Kc 16Kc

0

20

40

60

80

100

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

L
2

ac
ti

ve
ra

ti
o

0.0

0.2

0.4

0.6

0.8

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

L
2

m
is

s
ra

te

orig 8192Kcycles decay interval 1024Kc 128Kc 16Kc

0

20

40

60

80

100

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

L
2

ac
ti

ve
ra

ti
o

Fig. 17. Miss rate and active ratio of a 1MB L2 decay cache for SPECint 2000(Upper) and
SPECfp 2000(Lower).eon and fma3d do not fully utilize the L2 cache.

terval range from 71 to 155,773 with an average of 2400. For a 128Kcycle decay
interval, breakeven L2Access:leak ratios range from 16 to 58,906 with an average of
586. The art benchmark tends to have one of the lowest breakeven ratios; this is
because its average L2 access interval is very close to its average L2 dead time so
cache decay is very prone to inducing extra misses.

5.4 Multiprogramming

Our prior results all focus on a single application process using all of the cache. In
many situations, however, the CPU will be time-shared and thus several applica-
tions will be sharing the cache. Multiprogramming can have several di�erent e�ects
on the data and policies we have presented. The key questions concern the impact
of multiprogramming on the cache's dead times, live times, and active ratios.
To evaluate multiprogramming's impact on L1 cache decay e�ectiveness, we have

done some preliminary studies of cache live/dead statistics for a multiprogramming
workload. The workload was constructed as follows. We collected reference traces
from six benchmarks individually: gcc, gzip, mgrid, swim, vpr and wupwise. In
each trace, we recorded the address referenced and the time at which each reference
occurred. We then \sew" together pieces of the traces, with each benchmark getting
40ms time quanta in a round-robin rotation to approximate cache conicts in a real
system.
Multiprogramming retains the good behavior of the single-program runs. Aver-

age dead time remains roughly equal to the average dead times of the component ap-
plications. This is because the context switch interval is suÆciently coarse-grained
that it does not impact many cache generations. In a workload where cache dead

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 23

0.0

0.2

0.4

0.6

0.8

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

ratio=100 ratio=20 ratio=10 ratio=5

2.2 1.7

Fig. 18. Normalized L1 data cache leakage energy for cache decay methods on a multiprogrammed
workload.

times are 13,860 cycles long on average, the context switch interval is many orders of
magnitude larger. Thus, decay techniques remain e�ective for this workload. Mul-
tiprogramming also allows opportunities for more aggressive decay policies such as
decaying items at the end of a process time quantum.
While multiprogramming slightly increases the overall active ratio in the cache,

it also gives opportunities to be more aggressive in turning cache lines o�. In
particular, one could turn o� many lightly-used lines at each context switch, since
they are unlikely to survive in the cache until the next time this process gets to
run. One could also consider per-process counter schemes. These schemes would
allow processes who have recently woken up to ensure that they do not turn o� any
of their own cache lines; since these lines have been dormant so long, they would
otherwise be key candidates for shut-o� even now as they are likely to be used again.
A solution to this situation would be to have global counters considered part of the
process state, swapped in and out at context switches, and cache-line counters
tagged with the process ID. It is unlikely, however, that this complexity would be
warranted based on current or near-future values for dead periods, context-switch
interval, and leakage.

6. DISCUSSION

This section explores alternative policies to control decay, some of the interactions
of the cache decay methods with other hardware structures and application of decay
in other situations.

6.1 LRU Decay

Time-based decay is in essence a Working Set algorithm. Working Set and global
LRU perform comparably in virtual memory paging [Stallings 2001] and this is also
holds for cache decay. Global LRU mechanisms that have been proposed previously
for cache management involve a separate structure to maintain LRU order of the
cache blocks (e.g., Set-reference History Table [Peir et al. 1998], Indirect-Index
Cache [Hallnor and Reinhardt 2000]). Such structures are likely to be expensive
both in terms of transistor count and power consumption. The global LRU structure

24 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

0.04

0.06

0.08

0.10

0.12

0 8 16 24 32

active size(KB)
m

is
s

ra
te

decay standard global LRU

Fig. 19. Global LRU decay vs. Working Set decay. Miss rates and active sizes as geometric
means over all SPEC2000 programs.

needs to be updated with every cache access thus expending dynamic power. In
contrast, the local counters in the Working-Set implementation rarely switch when
a cache line is accessed. To implement an LRU algorithm for cache decay we
use a structure, similar to those proposed by [Peir et al. 1998] and [Hallnor and
Reinhardt 2000], to maintain the LRU order of cache lines. Instead of controlling a
decay interval, in the LRU implementation we directly control the active size of the
cache, i.e., we can request half of the lines|the least recently used|to be turned
o�. In Figure 19 we compare the behavior of an idealized global LRU scheme with
the Working Set decay and standard caches of various sizes (as in Figure 7). We
control the LRU decay scheme by requesting 0% to 90% (in increments of 10%) of
the cache lines to be turned o�. Working Set decay shows a small advantage at the
knee of the curve while LRU decay at the far left. The two schemes are very close in
behavior and the decision on which one to use should be based on implementation
costs.

6.2 Multiprocessor Cache Coherence

Another key issue in the realization of our cache decay mechanism is that also be us-
able in cache-coherent multiprocessor systems. Although we do not have quantita-
tive results here, we feel that cache decay and multiprocessor cache coherence work
well together. The key correctness issue to implement is that putting a cache line
to sleep should be treated as any other cache eviction. If the line is dirty/exclusive,
it should be written back to caches lower in the hierarchy or to memory. If the line
is clean, then turning it o� simply requires marking it as invalid. In directory-based
protocols, one would also typically notify the directory that the evicting node is
no longer a sharer of this line. Interestingly, cache decay may improve coherence
protocol performance by purging stale information from cache (eager writebacks).
Particularly in directory-based protocols, this can allow the system to save on stale
invalidate traÆc. From this aspect cache decay can be considered a poor man's
predictor for dynamic-self invalidation [Lebeck and Wood 1995; Lai and Falsa�
2000]. Invalidations arriving from other processors can also be exploited by cache
decay methods. In particular, these invalidations can be used as an additional hint
on when to turn o� cache lines.

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 25

6.3 Victim Caches, Line Bu�ers and Stream Bu�ers

We also note that our cache decay schemes are orthogonal and synergistic with
other \helper" caches such as victim caches or stream bu�ers. These other caching
structures can be helpful as ways of mitigating the cache miss increases from cache
decay, without as much leakage power as larger structures.

6.4 DRAM Caches

Some recent work has discussed the possibility of DRAM-based caches [Wilson and
Olukotun 1997]. In such structures, there is a natural analog to the SRAM cache de-
cay scheme we propose here. Namely, one could consider approaches in which lines
targeted for shuto� do not receive refresh, and eventually the values decay away.
A key point to note is that typically DRAM refresh is done on granularities larger
than individual cache lines, so this strategy would need to be modi�ed somewhat.
At the extreme, one can have a DRAM cache with no refresh. In a decay DRAM
cache, a mechanism to distinguish among decayed lines and valid lines is necessary.
A simple solution is to guarantee that the valid bit, by fabrication, decays faster
than the tag and data bits. Also, care must be taken not to lose any dirty data in
a write-back cache. In this case, dirty lines, distinguished by the dirty bit, can be
selectively refreshed, or \cleansed" with a writeback prior to decay. Savings in a
decay DRAM cache include reduction in both static and refresh (dynamic) power.
The refresh interval in DRAM memories is fairly large, and would correspond to
decay intervals of millions of cycles in our simulations. Even for L2 caches such
decay intervals do not increase miss rate signi�cantly.

6.5 Cache decay with 4-transistor-DRAM caches

Cache decay is also a natural application in quasi-static memory technologies that
share characteristics of both 6-transistor Static RAM (SRAM) and 1-transistor
Dynamic RAM (DRAM) technologies. Here, we discuss a decay cache that uses
4-transistor DRAM memory cells with no path to ground. Such cells readily re-
place ordinary 6-transistor static cells in CMOS processes. Such 4T \DRAM" cells
possess two characteristics �tting for decay: they are refreshed upon access and
they decay over time if not accessed.
The 4T cells are similar to the ordinary 6T cells but lack two transistors connected

to Vdd that replenish the charge that is lost via leakage. Their size is smaller than
a SRAM cell because they only require four transistors and have no Vdd lines.
4T cells naturally decay over time without the need to switch them o� as with
SRAM memory cells. Once they lose their charge they stop leaking since there is
no connection to Vdd.
In addition, 4T cells are automatically refreshed from the precharged bit lines

whenever they are accessed. When a 4T cell is accessed, its internal nodes go to
a full voltage swing refreshing the logical value stored in it; there is no need for a
read-write cycle as in 1T DRAM. As the cell decays and leaks charge, the voltage
di�erence of its internal nodes drops to the point where the sense ampli�ers cannot
distinguish its logical value. Below this threshold we have a decayed state, where
reading a 4T DRAM cell may produce a random value |not necessarily a zero.
The decay interval in a 4T decay cache depends on the time it takes the voltage

di�erential in the cells to drop below a safe detection threshold. This in turn de-

26 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

pends on the leakage currents present in the 4T cell which are a�ected by variations
in the process technology and by temperature. To study decay intervals for the 4T
decay cache we used Agere's COM2 0:16� 1.5V CMOS process and we simulated
the appropriate circuits using Celerity tools. We studied hold times (time from last
access to 100mV di�erential voltage in the cell) for three temperatures, room tem-
perature (25Æ C), operating temperature (85Æ C) and high temperature (125Æ C) as
shown in table 2. Although there can be signi�cant variations in the manufactured
transistors we note that for most of production lots transistor behavior is close to
nominal. Selecting I/O transistors |readily available in COM2 technology | for
the 4T cells signi�cantly extends hold times at the expense of increased cell area.
Even in this case the 4T cell area is still less than that of the 6T cell. The following
table lists the hold times in ns for the temperatures we studied. In many cases
these hold times are appropriate for cache decay by not been exceedingly small.

1.5V 3.3V
25Æ C 85Æ C 125Æ C 25Æ C 85Æ C 125Æ C

NOM 18,000 1700 560 1,040,000 57,200 9400

Table 2. Hold times in nanoseconds for 1.5V and 3.3V versions of 4T cells at di�erent operating
temperatures.

Given that the hold time is large enough to be comparable with the suggested
decay intervals in this paper the only issue that remains is to distinguish among
decayed and live 4T cells. For this we use decay counters and 6T SRAM valid bits.
In this case, the decay counters are used not to switch-o� cache lines (since this is
unnecessary in this design) but rather to indicate via the stable valid bits when the
values of the 4T cells become unreliable because of their natural decay.
Since 4T cells discharge at a speci�c rate (as do the DRAM memory cells) there

is no bene�t in decaying and invalidating a cache line any sooner than its hold time.
When the hold time is large (on the order of 10's of thousands of machine cycles
for GHz clocks) the local cache-line decay counters can be very coarse grained with
very low resolution. In this case, single-bit local cache-line decay counters can be
used. The global counter ticks at a period half the hold time. Since the last access
to a cache line in relation to the next global tick pulse is unknown, decay intervals
range from one-half hold time to a full hold time (with an average of 3/4 of the
hold time).

6.6 Branch Predictors

Cache decay can also be applied to other memory structures in a processor such as
large branch prediction structures [Yeh and Patt 1993]. Decay in branch predictors
has interesting implications in terms of cost. While we can expect savings for
leakage power as in caches, the cost of a premature decay in a branch predictor
is the possibility of a bad prediction rather than a miss. Thus, dynamic power
expended in the processor must be considered in this case.

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 27

7. CONCLUSIONS

This paper has described methods to reduce cache leakage power by exploiting
generational characteristics of cache-line usage. We introduce the concept of cache
decay, where individual cache lines are turned o� (eliminating their leakage power)
when they enter a dead period|the time between the last successful access and
a line's eviction. We propose several energy-eÆcient techniques that deduce en-
trance to the dead period with small error. Error in our techniques translates
into extraneous cache misses and writebacks which dissipate dynamic power and
harm performance. Thus, our techniques must strike a balance between leakage
power saved and dynamic power induced. Our evaluations span a range of as-
sumed ratios between dynamic and static power, in order to give both current and
forward-looking predictions of cache decay's utility.
Our basic method for cache decay is a time-based Working Set algorithm over all

cache lines. A cache line is kept on as long as it is re-accessed within a time win-
dow called \decay interval." This approach is roughly equivalent to a global LRU
algorithm but our proposed implementation is more eÆcient (in terms of transis-
tor budget and power) than global LRU implementations proposed previously. In
our implementation, a global counter provides a coarse time signal for small per-
cache-line counters. Cache lines are \decayed" when a cache-line counter reaches its
maximum value. This simple scheme works well for a wide range of applications, L1
and L2 cache sizes, and cache types (instruction, data). It also survives multipro-
gramming environments despite the increased occupancy of the cache. Compared
to standard caches of various sizes, a decay cache o�ers better active size (for the
same miss rate) or better miss rate (for the same active size) for all the cases we
have examined.
Regulating a decay cache to achieve a desired balance between bene�t and over-

head is accomplished by adjusting the decay interval. Competitive on-line algorithm
theory allows one to reason about appropriate decay intervals given a dynamic to
static energy ratio. Speci�cally, competitive on-line algorithms teach us how to se-
lect a decay interval that bounds worst case behavior within a constant factor of an
oracle scheme. To escape the burden of selecting an appropriate decay interval to
optimize average case behavior for di�erent situations (involving di�erent applica-
tions, di�erent cache architectures, and di�erent power ratios) we propose adaptive
decay algorithms that automatically converge to the desired behavior. The adap-
tive schemes involve selecting among a multitude of decay intervals per cache line
and monitoring success (no extraneous misses) or failure (extraneous misses) for
feedback.
With the increasing importance of leakage power in upcoming generations of

CPUs, and the increasing size of on-chip memory, cache decay can be a useful
architectural tool to save power or to rearrange the power budget within a chip.

ACKNOWLEDGMENTS

We would like to thank Girija Narlikar and Rae McLellan for their contributions in
the initial stages of this work. Our thanks to Jim Goodman who turned our atten-
tion to adaptive decay techniques and to Alan J. Smith for pointing out LRU decay
and multiprogramming. Our thanks to Nevin Heintze, Babak Falsa�, Mark Hill,

28 � Zhigang Hu, Stefanos Kaxiras and Margaret Martonosi

Guri Sohi, Adam Butts, Erik Hallnor, and the anonymous referees for providing
helpful comments.

REFERENCES

Baer, J. and Wang, W. 1988. On the inclusion property in multi-level cache hierarchies.
In Proc. ISCA-15 (1988).

Borkar, S. 1999. Design challenges of technology scaling. IEEE Micro 19, 4.

Bowhill, W. J. et al. 1995. Circuit Implementation of a 300-MHz 64-bit Second-
generation CMOS Alpha CPU. Digital Technical Journal 7, 1, 100{118.

Brooks, D., Tiwari, V., and Martonosi, M. 2000. Wattch: A Framework for
Architecture-Level Power Analysis and Optimizations. In Proc. ISCA-27 (ISCA 2000).

Burger, D., Austin, T. M., and Bennett, S. 1996. Evaluating future microprocessors:
the SimpleScalar tool set. Tech. Report TR-1308 (July), Univ. of Wisconsin-Madison Com-
puter Sciences Dept.

Burger, D., Goodman, J., and Kagi, A. The declining e�ectiveness of dynamic caching
for general-purpose microprocessors. Tech. Report TR-1216, Univ. of Wisconsin-Madison
Computer Sciences Dept.

Chen, Z. et al. 1998. Estimation of standby leakage power in CMOS circuits considering
accurate modeling of transistor stacks. In ISLPED (1998).

Dean, J., Hicks, J., et al. 1997. Pro�leme: Hardware support for instruction-level pro�l-
ing on out-of-order processors. In Proc. Micro-30 (1997).

Gwennap, L. 1996. Digital 21264 sets new standard. Microprocessor Report , 11{16.

H.-H. Lee, G. S. Tyson, M. Farrens. 2000. Eager Writeback - a Technique for Improving
Bandwidth Utilization. In Proc. Micro-33 (Dec. 2000).

Hallnor, E. G. and Reinhardt, S. K. 2000. A fully associative software-managed cache
design. In Proc. ISCA-27 (June 2000).

IBM Corp. Personal communication. November, 2000.

Intel Corp. Intel architecture optimization manual.

J. A. Butts and G. Sohi. 2000. A Static Power Model for Architects. In Proc. Micro-33

(Dec. 2000).

Kamble, M. B. and Ghose, K. 1997. Analytical Energy Dissipation Models for Low Power
Caches. In ISLPED (1997).

Karlin, A. et al. 1991. Empirical studies of competitive spinning for a shared-memory
multiprocessor. In Proc. SOSP (1991).

Kimbrel, T. and Karlin, A. 2000. Near-optimal parallel prefetching and caching. SIAM
Journal on computing.

Lai, A.-C. and Falsafi, B. 2000. Selective, Accurate, and Timely Self-Invalidation Using
Last-Touch Prediction. In Proc. ISCA-27 (May 2000).

Lebeck, A. R. and Wood, D. A. 1995. Dynamic Self-Invalidation: Reducing Coherence
Overhead in Shared-Memory Multiprocessors. In Proc. ISCA-22 (June 1995).

Lee, C., Potkonjak, M., and Mangione-Smith, W. H. 1997. MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and Communication Systems. In Proc. Micro-30

(Dec. 1997).

Peir, J., Lee, Y., and Hsu, W. 1998. Capturing Dynamic Memory Reference Behavior
with Adaptive Cache Topology. In Proc. ASPLOS-VIII (Nov. 1998).

Powell, M. D. et al. 2000. Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-
Submicron Cache Memories. In ISLPED (2000).

Romer, T., Ohlrich, W., Karlin, A., and Bershad, B. 1995. Reducing TLB and memory
overhead using online superpage promotion. In Proc. ISCA-22 (1995).

Sair, S. and Charney, M. 2000. Memory behavior of the SPEC2000 benchmark suite.
Technical report, IBM.

Semiconductor Industry Association. 1999. The International Technology Roadmap for
Semiconductors. http://www.semichips.org.

Let Caches Decay: Reducing Leakage Energy via Exploitation of Cache Generational Behavior � 29

Stallings, W. 2001. Operating Systems. Prentice Hall.

The Standard Performance Evaluation Corporation. 2000. WWW Site.
http://www.spec.org.

U.S. Environmental Protection Agency. Energy Star Program web page.
http://www.epa.gov/energystar/.

Wilson, K. M. and Olukotun, K. 1997. Designing high bandwidth on-chip caches. In
Proc. ISCA-24 (June 1997), pp. 121{32.

Wood, D. A., Hill, M. D., and Kessler, R. E. 1991. A Model for Estimating Trace-
Sample Miss Ratios. In ACM SIGMETRICS (June 1991), pp. 79{89.

Yang, S.-H. et al. 2001. An Integrated Circuit/Architecture Approach to Reducing Leak-
age in Deep-Submicron High-Performance I-Caches. In Proc. HPCA-7 (2001).

Yeh, T. N. and Patt, Y. 1993. A Comparison of Dynamic Branch Predictors that Use
Two Levels of Branch History. In Proc. ISCA-20 (May 1993).

Zagha, M., Larson, B., et al. 1996. Performance analysis using the MIPS R10000 per-
formance counters. In Proc. Supercomputing (1996).

