
1

DataScalar Architectures and the SPSD Execution Model

Doug Burger, Stefanos Kaxiras, and James R. Goodman

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

galileo@cs.wisc.edu - http://www.cs.wisc.edu/~galileo

Abstract1

The increasing power of commodity microprocessors is forcing
system designers to provide more complex and expensive memory
hierarchies. A potentially cheaper and better-performing alterna-
tive in the long run is to integrate the processor and main memory
on the same die or module. In this paper, we propose an architec-
ture (DATASCALAR) and an execution model (SPSD) that permit
efficient execution of uniprocessor programs across multiple inte-
grated processor/memory modules. We then describe four features
of this proposal that permit improved performance: ESP gains,
memory prefetching, result communication, and hybrid parallel
execution. Finally, we present examples and measurements, which
give evidence that each feature will improve performance on future
systems that have very expensive off-chip communication.

1 Introduction
Modern microprocessors exhibit very high levels of perfor-

mance, which nevertheless continue to increase exponentially [1].
These CPUs require a memory system that can provide operands
both very quickly and at a very high rate. Current memory systems
therefore employ a deep hierarchy with complex features, to pro-
vide high performance at acceptable cost. These memory systems
generally have split level one instruction and data caches, and may
have two levels of cache on the CPU die itself [2]. In addition to
having two or three levels of caches of different sizes, with differ-
ing line sizes and associativities, these caches are generally
lockup-free [20], allowing multiple misses to be outstanding at all
levels.

Even with such aggressive memory hierarchies, however, mod-
ern processors spend much of their time stalling for needed oper-
ands, both instructions and data [4]. This situation is unlikely to be
rectified, given the continuing increases in processor performance,
increases of main memory sizes, and increases in the disparity
between processor and memory cycle times [5]. Memory latency
tolerance/reduction techniques—such as non-blocking caches [20,
11], hardware and software prefetching [6, 8, 7, 14, 19, 22], multi-
threading [21, 27], and out-of-order execution [32, 30]—may
reduce memory-related processor stalls until available memory
bandwidth is saturated. A recent study showed that aggressively
latency-tolerant processors owe fully half of their memory stall
times to limited off-chip bandwidth [4].

Although scaling up cache size, levels of cache, and cache
complexity ad infinitum may be one way to keep the memory sys-

1. This work is supported in part by NSF Grant CCR-9207971, an unre-
stricted grant from the Intel Research Council, an unrestricted grant from
the Apple Computer Advanced Technology Group, and equipment dona-
tions from Sun Microsystems.

tem balanced with processor performance, tightly coupling the
processor with main memory may eventually prove to be a more
cost-effective solution. Integrating main memory onto the same
multi-chip module (and perhaps eventually onto the CPU die
itself), serves to reduce both high memory latency and memory
bandwidth limitations. Many of the other techniques, conversely,
trade memory access latency off for memory bandwidth, never
reducing both simultaneously.

Current trends in processor design indicate that more and more
of the chip will be devoted to memory. Indeed, a huge portion of a
modern microprocessor chip is dedicated to the top of the memory
hierarchy: the registers and one or two levels of cache. Assuming
this trend continues, and as the gap between on-chip and off-chip
memory latency grows, it may become desirable to integrate the
entire memory on-chip, leaving off-chip accesses for references
that are treated more like page faults than cache misses. The on-
chip memory may even include high-density memory, such as
DRAM. Such processor/memory integration may permit a less-
complex, more cost-effective memory hierarchy of equivalent per-
formance to the current model, though it will impose rigid con-
straints on memory size. Extending the memory system becomes
problematic. We partition programs for such systems into three
categories:

• The program’s data set fits in on-chip DRAM, not requiring
any external memory other than disk or other long-latency
memory.

• The program’s data set is larger than the on-chip memory, but
a “dumb” off-chip memory system (similar to those of today)
can support reasonable processor performance,

• The program’s working set is so large that the processor
spends much of its time waiting for off-chip accesses.

This paper is targeted at the third category, proposing a system
to execute a conventional single-processor program, but in which
each main memory chip contains a processor. A program’s data set
is spread across these integrated processor/memory modules. All
processors run the same program, broadcasting operands that they
own to the other processors when needed, and performing any
tasks that can be accomplished entirely on-chip without off-chip
communication. This paper does not attempt a thorough, quantita-
tive evaluation, but rather outlines a target system, pointing out
some of the potential advantages over a conventional design.

In Section 2, we describe the DATASCALAR proposal, listing
the four major advantages it has over traditional architectures, and
describing how each advantage improves performance. In
Section 3, we discuss implementation issues associated with these
types of systems. In Section 4, we present a series of preliminary
experiments and analyses that attempt to quantify the potential of
the four major DATASCALAR advantages. Finally, in Section 5, we

2

list other research efforts related to processor/memory integration,
present future directions, and conclude.

2 DataScalar architectures and SPSD
Given that each region of main memory is tightly integrated

with a processor, new opportunities arise for achieving high per-
formance. We are proposing to exploit the fact that all words in
main memory have an on-chip processor. Solutions that require
explicit parallelism are unacceptable—our goal is that existing
serial programs should run without recompilation, and certainly
without being rewritten. If this goal is achieved, new programs and
compilers may of course exploit further opportunities posed by
this novel architecture.

Our solution is an execution model for uniprocessor programs
(an extension of Flynn’s classification [12]) that is analogous to the
Single-Program, Multiple Data stream (SPMD) execution model
identified by Darema-Rogers et al. in 1985 [9]. This execution
model, which we call Single-Program, Single Data stream (SPSD),
was inspired by the Massive Memory Machine work from the
early 1980s [15]. In SPSD, each of one or more processors runs the
same program, reading and writing exactly the same data (unlike
SPMD, in which each processor writes to different addresses).

A DATASCALAR system implements SPSD by having one or
more integrated processor/memory modules (henceforth called
MOPs, for Memory On Processor) run the same program, each
MOP assuming ownership of the physical address space that it
contains. When a MOP issues a load to an operand that it owns, it
broadcasts that operand to the other MOPs (since they are all run-
ning the same program, they too will eventually need that oper-
and). When a MOP issues a load to an operand that a different
MOP owns, the load stalls, if necessary, until the needed operand
arrives from the network, broadcast by the owning MOP. This
ownership/broadcast scheme was called ESP by the Massive
Memory Machine work.

We assume that off-chip communication will be comparatively
more expensive in future systems (alternatively, we assume that
computation will become less and less of a limitation). Forcing
every load to be broadcast would therefore be a major drawback.
We propose replicating the frequently-accessed portions of the
address space both dynamically and statically, to cut down on
inter-chip communication. For static replication, we duplicate the
most heavily-accessed pages on each MOP, accesses to which will
complete locally on every MOP, therefore not requiring a broad-
cast. Memory on each MOP is thus divided into two classes: repli-
cated and communicated. A load to a replicated datum never
requires a broadcast since it completes on every MOP, and a load
to a communicated datum always requires a broadcast, since it
completes only on the MOP that owns that particular datum. For
dynamic replication, we allow each node to cache data owned by
other MOPs. A load to a communicated datum that is found in all
processor caches is not broadcast. This introduces some interesting
consistency issues that we will discuss later in this paper.

Figure 1 shows a system-level comparison between a DATAS-
CALAR system and a future system that has some on-chip memory
but still has a large off-chip main memory. Although the replicated
and communicated portions of main memory are depicted as sepa-
rate units, they are only logically distinct.1 The caches are not
shown in this figure. Figure 2 shows how loads and stores to repli-
cated versus communicated memory differ; both CPUs issue a load
and store to replicated memory (L1 and S1), which complete on

1. For the purposes of this study, we have assumed a partitioning at the
page level, and thus this distinction would be made in the page table. Other
schemes are possible.

both MOPs. Both CPUs also issue loads to L2 and S2, which are
located in the communicated memory of MOP-1 only. MOP-1
broadcasts L2, which MOP-2 receives and consumes. S2 com-
pletes at MOP-1, but is dropped at MOP-2.

The rest of this section describes the four categories of benefits
that the DATASCALAR architecture provides.

2.1 ESP gains

The Massive Memory Machine (MMM) defined ESP, the
notion of running the same program across multiple computational
engines, broadcasting accessed local data to all non-local proces-
sors. However, the MMM proposed conventional, non-pipelined
uniprocessors connected by a single global bus, and was therefore
unlikely to provide better cost-performance than competing solu-
tions. Furthermore, the MMM was a fully synchronous architec-
ture, in which all processors proceeded in lock-step, with one
processor running slightly ahead of the others (the lead processor).
In Figure 3a we illustrate the high-level design of the MMM. In
Figure 3b we show an example of the MMM’s operation, in which
processor 3 owns the first four operands, so is the lead processor
for the first four accesses. Processor 2 owns operands five through
seven, so upon the fifth access, a lead change occurs and processor
2 becomes the lead processor. Finally, another lead change occurs
on the access to the eighth operand, and processor 3 again
becomes the lead processor.

DATASCALAR systems enjoy the same benefits from ESP as
did the MMM proposal. Major benefits are (1) reduced remote
access latency, (2) elimination of request traffic, and (3) elimina-
tion of write traffic. Because each MOP runs the same program, a
communicated operand can be sent to the other MOPs the instant
its address is resolved and it is fetched from the on-chip memory.
The request part of the access involves only an on-chip lookup.
The operand is sent directly to the other MOPs, eliminating half of
the communication delay by requiring only one-way communica-
tion. This “response-only” model also reduces traffic (increasing
effective off-chip bandwidth) because off-chip requests are
unneeded. Finally, all interchip write traffic is eliminated under
ESP. Stores (or write-backs of dirty cache lines) complete locally
on every MOP if they fall in a replicated page. Stores or write-
backs to a communicated page occur only on the owning MOP,
which preserves consistency since that MOP holds the only copy
in main memory. Note that there are no consistency issues,
because every MOP runs the same program.

Since both the MMM and DATASCALAR systems implement
ESP, they both enjoy these benefits of off-chip latency and traffic
reduction. The next two subsections describe advantages that are
unique to the DATASCALAR model.

2.2 Memory prefetching

Consider an access to a datum obtained through a pointer. In
conventional systems, a request must be sent off-chip to memory,
the pointer is returned, the processor computes the address of the
datum, sends a request to memory, and the operand is returned.
This sequence requires a total of four chip-to-chip crossings. An
ESP-based system would incur two chip crossings at most: the
owner of the pointer broadcasts the address, all nodes compute the
address of the datum, and then the owner of the datum broadcasts
the datum.

An ESP-based system such as DATASCALAR can do even bet-
ter, however, if both the pointer and datum reside on the same
MOP—the owner can therefore read both without waiting for an
off-chip access, pipelining the broadcast of both operands to the
other MOPs. We call the phenomenon of multiple consecutive
accesses falling on the same MOP memory prefetching. Since each

3

memory chip has an on-chip processor, consecutive accesses fall-
ing on any memory chip will cause memory prefetching. Another
way of visualizing memory prefetching is from the point of view
of one MOP—from its perspective, it is the processor, and all other
MOPs are simply memory—which can send it operands that it will
need, before it has even computed their addresses.

Whenever an operand depends on another operand, and the two
reside on different MOPS, an inter-chip communication is
required, effectively halting any memory prefetching occurring
down that dependence chain on any MOP. An example can be seen
in Figure 3: if each is dependent on , there are only two
inter-chip latencies on the critical path (after accessing and

). To increase the performance gains from memory prefetching,
it is therefore desirable to maximize the number of consecutive ref-
erences on single MOPs. We refer to the number of consecutive
references to operands on a single MOP as a streak. A streak
includes both replicated and communicated references.

With an in-order issue processor, a break in a streak will force
the MOP to stall until another MOP broadcasts the needed oper-
and. An out-of-order issue machine lends itself particularly well to
this model, however, as multiple MOPs may prefetch down several
dependence chains if the instruction window is sufficiently large.
The ideal case is where all MOPs are memory prefetching down
separate dependence chains that they contain locally.

The streak length does not always indicate the benefits of
prefetching. For example, consider a program fragment that adds
vector A to vector B, where all the elements of A reside on MOP X
and the elements of B reside on MOP Y. If the code fetches alter-
nately one element from A, then one element from B, the streak
length will be very short. Processors that dynamically reorder
instructions could easily race along in parallel, with processor X
taking the lead fetching the elements of vector A while processor Y
takes the lead in fetching the elements of vector B.

Memory prefetching does not require software support or
recompilation—a DataScalar system may exploit spatial locality
already inherent in reference streams. (Programs may benefit from
recompilation or programmer tuning, of course, since explicit sup-
port could increase average streak length.) When streaks are
greater than average, the DataScalar model benefits, since inter-
chip latencies on the critical path are reduced. Memory prefetching
does nothing to reduce bandwidth requirements, however, since
the operands must still be broadcast to all MOPs. The next subsec-
tion describes how DataScalar systems may reduce inter-MOP
traffic.

2.3 Result communication

DATASCALAR systems benefit from both ESP gains and mem-
ory prefetching without software support, but we believe that a sig-
nificant potential for additional improved performance can be

wi 1+ wi
w4

w7

CPU CPU

CPU

CPU

CPU

Replicated memory

Communicated memory

Inter-chip network
Inter-chip network

Main memory

On-chip
Memory

(a) Integrated architecture (traditional) (b) DATASCALAR architecture

Figure 1. Traditional system versus DATASCALAR system

Figure 2. Replicated versus communicated main memory

Memory
(communicated)

Memory
(communicated)

Memory
(replicated)

L2L1
S1 S2

Broadcast
network CPU-2

Memory
(replicated)

L2

L1

S1 S2

CPU-1
MOP-1 MOP-2

4

achieved with compiler and/or programmer support. Another
method of exploiting the fact that every memory chip contains a
processor is result communication: when most or all of the oper-
ands for a computation are found locally, on one MOP, they are not
broadcast: the result is computed locally only and broadcast to the
other MOPs. If the result is to be written into the local communi-
cated store (and is not likely to be needed again soon), the result
store, and consequently the entire computation, can complete
locally without incurring any off-chip traffic1. For example, if the
program needed to sum an entire array, and store the result in the
heap, having the entire array and heap element in communicated
store on one MOP would enable the entire summation to be per-
formed on-chip, including the final store. Subsequent accesses to
that heap element would be correct, since only the owner would
access the value from its communicated store and broadcast it. The
software support would be needed to place the entire array on the
same MOP, and to have the other MOPs bypass the code that is
only to be run on the owning MOP.

The run-time system can guarantee that certain data are allo-
cated on the same node, or the compiler can assume that no such
guarantee exists. Optimizations are possible in either case; we pro-
vide specific examples in Section 4.3.

2.4 Exploiting coarse-grain parallelism

Although our DATASCALAR proposal focuses on running uni-
processor codes efficiently, a system with a processor on each
memory chip is a de facto multiprocessor. Nothing precludes a
DATASCALAR system from executing conventional parallel pro-
grams in a conventional way. In fact, a DATASCALAR system can
switch between serial (ESP) modes and conventional parallel
modes, exploiting easily-identifiable, coarse-grain parallelism
when it exists, and running more or less serialized code efficiently
when parallelism is hard to find. The result communication con-
cept described in Section 2.3 is one manifestation of extracting
parallelism from a traditional serial program. Many programs have

1. In fact, the other nodes would only compute the result, then throw it
away!

some extractable parallelism, but at least some phases that achieve
very poor speedup on conventional multiprocessors. These pro-
grams should benefit greatly from a DATASCALAR architecture.
The issues associated with mixed serial/parallel mode execution
are under investigation.

3 DataScalar implementation issues
Because every operand must be present at every processor, the

DATASCALAR scheme can only hope to succeed if most accesses
can be found locally. At first glance, this would seem to be an
impossible limitation, and these concerns cannot be easily dis-
missed. In particular, we see little hope that this technique can be
extended to large numbers of MOPs. It is well known, however,
that a large majority of memory references tend to access a small
minority of the memory locations. For this reason, cache memo-
ries—particularly those specifically designed with this in mind—
are often able to reduce remote accesses, sometimes dramatically
[16, 4]. The challenge is to identify that part of the data and repli-
cate it. Clearly, DATASCALAR must capture this locality in order
to achieve the goal of minimal communicated data.

3.1 Dynamic Replication

Section 2 suggested that data can be replicated both statically
and dynamically, and discussed the static replication of data.
Dynamic replication can also be achieved, largely independent of
the static methods employed, though the benefits of the two meth-
ods are unlikely to be fully additive. Dynamic replication can be
achieved most easily by caching communicated data, turning it
temporarily into replicated data. In Figure 4 we show an example
of how such a system might split data into replicated and commu-
nicated classes. Some pages in main memory are marked as repli-
cated, and some are marked as communicated. Some lines in the
cache are from local communicated pages (marked as dynamically
replicated), some are from local replicated pages, and some are
caching communicated data owned by other MOPs (also marked
as dynamically replicated).

The designation of data as replicated must be made with some
care. In particular, it is necessary that communicated data be repli-

ESPESPCPU

local bus

system bus

local memory

machine i

CPU

local bus

local memory

machine j

global address space

w1 w2 w3 w4 w5 w6 w7 w8
w1 w2 w3 w4 w5 w6 w7 w8
w1 w2 w3 w4 w5 w6 w7 w8

w9

time at which processor

processors

Reference string: w1, w2, ..., w9

Locations: w5, w6, w7 in machine 2

2
1

3

(a) Design:

(b) Operation:

Figure 3. Design and operation of the ESP Massive Memory Machine (taken from [15])

1 2 3 4 5 6 7 8 9 10 11 12 13 14 receives a word

all others in machine 3

5

cated simultaneously at all nodes. This dynamic replication, how-
ever, creates some of the classic problems of shared-memory
multiprocessors, requiring carefully defined cache- and memory-
consistency models.

Because the system is running SPSD, however, many of the
classic problems of memory consistency do not occur. There is no
problem, for example, with different nodes trying to update the
same memory location with different values. Care is required,
however, to assure that all nodes receive every communicated
datum exactly once. This can most easily be guaranteed by assur-
ing that all caches maintain exactly the same set of communicated
data. They may of course have independent replacement policies
regarding the replicated data—all nodes have exactly the same rep-
licated data and this is strictly a local decision—but they must all
agree at all times on what items are replicated and what must be
communicated.

The key notion is that all caches must make the same choices as
to which communicated data to evict upon a replacement. Other-
wise, the owner of a communicated datum might find the datum in
its cache, and consequently refrain from broadcasting it. A differ-
ent MOP that had evicted the line containing that datum would
then never receive the needed datum. Out-of-order execution could
lead to memory operations occurring in a different order, with a
resulting difference in replacement decisions. For an access-based
replacement policy (such as least-recently-used), one solution is to
force accesses to the same cache set to occur in program order. For
a fill-based replacement policy (such as first-in-first-out), the cor-
responding solution is to force replacements to the same set to
occur in program order. Some first-level caches use a random
replacement policy for speed. So long as inclusion is maintained,
these issues can be ignored for all but the largest level of cache,
which will presumably use a replacement policy other than ran-
dom.

3.2 Inter-chip Communication

Because of the symmetric nature of the DATASCALAR model,
all communicated values must be broadcast to all nodes. In gen-
eral, broadcast operations are expensive, and clearly not scalable.
In special circumstances, however, such as on a ring or bus, they
may be accomplished with only minor additional cost, though reli-
able delivery and error recovery are inevitably more complicated
for broadcast operations.

Ring operations, such as those defined in the IEEE standard
Scalable Coherent Interface (SCI) [17, 28] seem particularly well-
suited for this kind of operation. On a ring, all operations are
observed by all nodes on a ring if the sender is responsible for
removing its own message. We envision a ring interconnect
because of the high-performance capability [26], but broadcast on
a ring is complicated by the fact that operands originating at differ-
ent MOPs are received at other nodes in different orders. A simple
tag can sort out data to different addresses, but the issue becomes
complicated when the same datum must be broadcast twice. Com-
plications also arise whenever certain data items must be rebroad-
cast, or cancelled (due to full network queues or speculative
broadcasts, respectively). The straightforward solution is to avoid
broadcasting the same address a second time until all MOPs have
accepted the first broadcast of the address. We are exploring other
solutions as well, which use more sophisticated tagging of broad-
casts.

In Figure 4 we show how the on-chip interconnect might inter-
act with the off-chip network. The MOP contains a queue for
broadcasts, which are obtained by interface logic snooping on the
memory bus. The interface logic also inhibits the memory from
servicing level-one cache misses and writebacks to non-local data.
When a read to a non-local line occurs, an entry is allocated in the
Broadcast Status Holding Register (BSHR), a structure similar to
the MSHR proposed for lockup-free caches [20]. The major differ-
ence between the MSHR and the BSHR is that entries may be allo-
cated in the BSHR by broadcasts arriving from the network, before

L2 cache

Main

CPU logic

L1 cache

(DRAM)
memory

BSHRs

MOP

Statically replicated data

Dynamically replicated data

Communicated data

Broadcasts

Interface
logic

strip
logic

interconnect in

bypass
buffer

receive
queue

send
queue

interconnect out

1 page

Figure 4. An example DATASCALAR machine

6

the processor issues a request for that datum. When a network
broadcast/processor request pair is matched, the BSHR forwards
the data to the processor.

3.3 Speculative execution

Fine-grain speculative execution is now appearing in most
state-of-the-art processors, and a successful DATASCALAR archi-
tecture must be compatible with out-of-order execution. Indeed,
much of the promise we see in DATASCALAR is the opportunity
for out-of-order execution, permitting several MOPs to race ahead
simultaneously on different instruction sequences. However, spec-
ulation must be tightly controlled: the broadcast of data may well
be a critical limitation of this model, and broadcast of data that
goes unused will hinder performance in a bandwidth-limited sys-
tem. We note that broadcasting data and then squashing it opens up
many difficult problems for maintaining identical cache contents
across nodes. While benefits may be seen from judicious broadcast
of speculative data, the problems introduced seem too severe for
the apparent payoff. We expect, therefore, that speculation will be
restricted to local nodes’ fetching their own data, whether repli-
cated or communicated, and queuing up the communicated data
for broadcast as soon as a speculative execution becomes non-
speculative. We are exploring more aggressive speculative com-
munication policies as well, however.

3.4 Operating Systems Issues

To the extent that an executing program is non-deterministic,
operating system code can be executed in the same manner as user
code. Synchronous exceptions, such as for an unaligned address,
would be observed at slightly different times on different MOPs,
but would cause no special problems. However, asynchronous
events could potentially cause difficulty if they are not observed at
the same point by all processors. Consider the case in which a
write causes a page fault. Since only one MOP actually performs a
write to communicated data—the other MOPs all simply discard
their result—only the owning MOP would observe the page fault.
If the other MOPs did not recognize the page fault, they might pro-
ceed beyond the fault point indefinitely. While it is interesting to
consider such a variation on the idea of an imprecise exception, the
problem can be avoided by making sure that all MOPs have the
same page table entries, and actually check for exceptions on every
memory operation. Thus each MOP would observe this page fault.
External interrupts, likewise, must be injected into the system with
care to assure that all processors observe them at the same point in
their execution.

3.5 Cost

Modern computer systems, even high-performance systems,
are becoming increasingly cost-sensitive. Thus the success of the
DATASCALAR approach may depend largely on its cost. Because
of the economies of scale, it is impossible to predict actual costs of
future systems without knowledge of volumes, which are often
largely unrelated to the effectiveness of the architecture or the
quality of the design. We can only offer the relative costs of a
DATASCALAR system as compared to a conventional processor.

It is our projection that with continuing advances, processors
will become ubiquitous, appearing, even on DRAM chips to make
more effective use of pin bandwidth. With each succeeding
DRAM generation, the cost of an on-chip processor will become
smaller, and in only a few generations, a moderately high-perfor-
mance processor will be feasible at only a small incremental cost.
An increasing portion of modern processors is devoted to memory,
composing an increasingly sophisticated hierarchy of registers and
levels of cache. We envision that this trend will continue, ulti-

mately including DRAM as well, until latencies for off-chip
accesses become so long (relative to instruction issue times) that
these accesses must be treated more like page faults than cache
misses. Such trends argue strongly for processor/memory integra-
tion.

Conventional systems today typically consist of a single pro-
cessor and a collection of memory chips, with costs often split
more or less equally between the two. A DATASCALAR system
would consist of a collection of identical chips each of which costs
more than a conventional DRAM chip, but less than a processor
chip. Because such chips would have more memory than conven-
tional processor chips, they should be able to achieve the same per-
formance with less off-chip bandwidth, and therefore, fewer pins.
Much more work is needed to characterize the communication and
computation requirements of a DATASCALAR system before
definitive cost/performance arguments can be made, but there is
adequate reason to hope that such a system can be cost-competitive
with more conventional systems of the future.

4 Measuring DATASCALAR system benefits

In this section, we discuss the potential of the previously enu-
merated, expected advantages of a DATASCALAR system. Since a
full performance comparison between possible future systems is
beyond the scope of this paper, we restrict our discussion to a high-
level comparison of two system models: a centralized processor
with an on-chip cache and off-chip main memory banks, versus a
DATASCALAR system with small processors and caches on the
memory system chips themselves.

4.1 ESP gain

The ESP broadcast model eliminates the need for off-chip
request traffic and write traffic. In Section 3.2, we mentioned the
additional cost of requiring broadcasts, which is dependent on the
interconnect used in future systems. In this subsection we restrict
our focus to traffic reduction.

Using execution-driven simulation, we measured the amount
by which off-chip traffic, both in terms of bytes and transactions,
would be reduced by using a DATASCALAR architecture instead of
a traditional system design. We simulated fourteen of the SPEC95
benchmarks [31] using the SimpleScalar tool set [3], which simu-
lates processors assuming a MIPS-like instruction set. The input
sizes used were the test input sets for all benchmarks. We
reduced the number of iterations for some of the benchmarks, after
determining that the reduction did not qualitatively change the
results. We assumed a 64-Kbyte, two-way set associative unified,
write-allocate, write-back on-chip cache. 64-Kbyte is consistent
with on-chip processor cache sizes at the time the SPEC95 bench-
marks were written.

Table 1 shows the reduction in inter-chip traffic resultant from
ESP, expressed in both bytes and transactions (we count a request/
response pair as two transactions). The first column for each mea-
sure (bytes and transactions) shows the inter-chip traffic for a tradi-
tional system, as shown in Figure 1a1. The second column for each
measure shows how much inter-chip traffic remains in a DATAS-
CALAR system (Figure 1b), assuming no statically replicated data
(which would correspond to on-chip memory in the traditional sys-
tem). The third column for each measure shows how much of the
original inter-chip traffic the DATASCALAR system still produces.
What we see is that the ESP model eliminates roughly 15% to 50%
of the inter-MOP bytes transmitted, and from 52% to 75% of the

1. Unlike Figure 1, however, we do not assume any on-chip memory other
than the cache.

7

individual transactions (because no requests are sent, the transac-
tion reduction will always be 50% or greater). These results indi-
cate that—for systems that spend much of their time stalled due to
limited memory bandwidth—implementing ESP may improve per-
formance or reduce system cost. Note that while these results are
independent of the number of MOPs, and focus on traffic reduc-
tion, they do not address the performance penalty associated with
requiring broadcasts to multiple nodes. We address this issue in
Section 3.2.

The ESP model may argue for a cache write policy other than
write-allocate, which seems to be an ill match for this model. Allo-
cating a cache line on a store that will neither be read again soon,
nor have neighbors that will be soon read, will incur a needless
inter-chip broadcast. A better solution would be to have such stores
bypass their caches, completing only at their owner (if their
address resided in communicated memory; stores to replicated
memory complete everywhere). Another alternative is to imple-
ment a write-validate policy [18], in which allocations are per-
formed only when a load is issued to a line that is either not in the
cache or does not contain the needed word (i.e., its valid bit is not
set).

4.2 Memory prefetching

In Table 2 we show experimental results that measure streaks—
the number of consecutive references satisfied locally on one
MOP—for a four-MOP system. These simulations also used the
SimpleScalar tools and assumed an identical cache configuration
to that presented in Section 4.1. For each benchmark, we repli-
cated 32 4-Kbyte pages on each node. We selected the pages to
replicate by running the benchmark, saving the number of accesses
to each page, sorting the pages by number of accesses, and choos-
ing the 32 most heavily-accessed pages. We distributed the com-
municated pages among the nodes round-robin in blocks with sizes
ranging from 4 to 32 pages. The sizes of the distribution chunks
are shown for each benchmark in the first column of Table 2. For
each benchmark, we tried to maximize the distribution block size
(to improve streak length) while still keeping it smaller than 1/4 of
both the text and the largest data (globals, heap, stack) segments.
This action prevented either segment from being completely con-
tained on one MOP, making the streak length equal to the number
of references.)

The next four columns in Table 2 show the distribution of repli-
cated pages among the four segments. By comparing these with
the sizes of each segment (shown in Table 3), the percentage of
that segment that is replicated can be calculated. This quantity is
relevant because greater replication within a segment tends to
increase streak length.

The right-most four columns show the average streak lengths of
four different types of streaks for each benchmark. The first calcu-
lates streaks using all references to memory (e.g., all cache
misses). The second and third columns compute streak length
using only instruction and data references to memory, respectively.
Finally, the right-most column shows the average number of con-
tiguous accesses to replicated pages in main memory. Very high
numbers of references to replicated pages will extend average
streak lengths (a streak ends when a reference accesses a commu-
nicated page on a different MOP than the previous reference to a
communicated page. If communicated references occur rarely,
streaks will tend to be very long).

The average streak lengths in Table 2 tend to be very high for
instructions—over 20 in every case. Part of this large length is due
to the replication of text pages, which is significant for most pro-
grams (li, tomcatv, m88ksim, turb3d, and fpppp have average code
streaks in the hundreds or thousands, and each has from 1/3 to 1/2
of the code replicated across all MOPs). Part of the explanation for
the large streaks, however, is the high spatial locality generally
found in code reference streams.

Data reference streak lengths tend to be lower than the instruc-
tion streak lengths. They are low (less than 3) for some of the float-
ing point codes (swim, applu, turb3d, mgrid, and hydro2d).
Although floating-point codes tend to have high spatial locality,
streaks are cut by interleaved accesses to arrays residing on differ-
ent mops (e.g., c[i] = a[i] + b[i]). Also, some of the spa-
tial locality is filtered out by the cache. The three other floating-
point codes have higher average data streak lengths, however,
ranging from about 6 to 33. The integer codes tend to have higher
data streak lengths than do the floating-point codes. The data
streak length for li is high because most of its data set is replicated.
The others, however, do not have large fractions of their data set
replicated, and they have average data streak lengths from about 3
to over 130.

Traffic(Mbytes) Transactions (millions)

Benchmark Total DataScalar Remaining Total DataScalar Remaining

tomcatv 1363 1150 84.4% 79.3 37.7 47.5%
swim 474 288 60.7% 27.6 9.5 34.2%
hydro2d 1182 794 67.1% 68.8 26.0 37.8%
mgrid 2371 1641 69.2% 138.0 53.7 39.0%
applu 588 363 61.7% 34.3 11.9 34.8%
m88ksim 41 35 85.7% 2.4 1.2 48.2%
turb3d 1539 920 59.8% 89.6 30.1 33.6%
gcc 1401 1129 80.5% 81.6 37.0 45.3%
compress 16 7 46.2% 1.0 0.3 26.2%
li 105 64 61.0% 6.1 2.1 34.3%
perl 1175 793 67.5% 68.4 26.0 38.0%
fpppp 15577 12992 83.4% 906.6 425.3 46.9%
wave5 1733 927 53.5% 100.9 30.4 30.1%
vortex 8971 7096 79.1% 523.6 232.5 44.4%

Table 1: ESP traffic reduction

8

These results show that even with caches filtering out spatial
locality, many programs will be able to take advantage of memory
prefetching. DATASCALAR MOPs can run ahead of the others,
finding multiple needed operands and instructions locally, and
sending them to the other MOPs early—sometimes before the
other MOPs have resolved the needed addresses.

4.3 Result communication

Although memory prefetching and the ESP gains are compati-
ble with existing software, they do not aggressively exploit the
notion of having a processor coupled with every memory chip. By
moving the processing to the operands, instead of vice-versa (the

traditional approach), we can exploit the integrated processor/
memory model. Unfortunately, this approach cannot be done trans-
parently (i.e., without explicit software support) in a DATASCA-
LAR system. When all operands needed for a computation are
located on a single MOP, only the result need be broadcast (or
stored). Optimizations are also possible when a majority of the
operands needed for a computation reside on one MOP, but not all.
It is here that the SPSD model becomes genuinely different from
SISD: different MOPs may be following different paths of execu-
tion and issuing different instructions, but are still running the
same program and working on the same data stream.

To allow different behavior on different nodes, the processors
need an instruction that generates a value (or a condition code),

Benchmark
Dist.

size (Kb)

Replicated pages (128Kb) Average streak length

text global heap stack total text data repl.

tomcatv 32 22 6 2 2 42.3 31486.7 6.7 21.7
swim 32 7 24 0 1 2.1 60.2 2.1 1.0
hydro2d 32 25 5 0 2 1.7 176.9 1.6 1.1
mgrid 32 4 27 0 1 1.5 31.4 1.5 1.0
applu 32 23 8 0 1 2.6 43.3 2.6 1.0
m88ksim 64 16 10 5 1 157.3 859.2 69.1 16.2
turb3d 64 19 12 0 1 1.7 1541.6 1.6 1.1
gcc 256 25 1 0 6 7.4 23.9 4.5 1.2
compress 16 6 25 0 1 103.5 41.7 134.7 1.3
li 16 17 2 12 1 841.2 777.2 2027.1 208.4
perl 128 26 2 3 1 7.6 34.5 4.1 2.1
fpppp 64 27 4 0 1 165.6 755.9 33.7 3.7
wave5 64 17 14 0 1 6.4 171.6 5.9 1.7
vortex 128 27 2 1 2 5.5 21.0 2.9 1.9

Table 2: Streak measurements for a four-MOP system
Each row shows the experimental parameters for each benchmark, followed by the results. The first column contains the granularity at which
communicated data are distributed round-robin around the MOPs. The second through fifth columns show the number of pages from each seg-
ment that were replicated for each benchmark. The right-most four columns show the average streak lengths for all reads, all reads to code and
data, and reads to replicated memory, respectively.

Benchmark text global heap stack total

tomcatv 164 28 37 14418 14647
swim 169 14421 28 10 14628
hydro2d 216 8653 44 14 8927
mgrid 174 7492 25 10 7701
applu 249 32322 27 27 32625
m88ksim 283 128 481 9 901
turb3d 246 25386 39 11 25682
gcc 2129 259 1694 309 4391
compress 103 43089 24 7 43223
li 178 21 88 9 296
perl 529 76 25613 8 26226
fpppp 341 475 26 21 863
wave5 389 41852 37 11 42289
vortex 970 127 25870 12 26979

Table 3: Data set sizes (in Kbytes)
Each row shows the breakdown of data set size for a benchmark, in kilobytes. The data set is broken down into the code, global data, heap, and
stack segments. The right-most column displays the sum of the four components.

9

which signifies whether a given address resides locally. This value
could be used either as a branch condition or to support predicated
execution, allowing different MOPs to engage in different behavior
based on whether or not a datum is found on-chip.

The compiler, perhaps with programmer support, may compile
for three different cases:

1. Operands for a computation are spread across multiple
MOPs, with non-disambiguable dependences among them.

2. The operands are on multiple MOPs, but the operands on one
of them are not needed to resolve the others.

3. All the operands can be guaranteed to reside on one MOP.

In case 1, the compiler does nothing, letting the system revert to
transparent ESP execution. In case 2, the operands on all but one
MOP may be broadcast, the one MOP performs the computation,
and broadcasts the result to the other MOPs. This action reduces
both traffic (the operands on the computing MOP are not sent) and
computation (on the other MOPs). If a value on the computing
MOP is needed by another MOP to resolve an address, this scheme
fails, so the compiler must guarantee that this situation does not
occur.

Disambiguating such dependencies at compile time is hard at
best and impossible at worst. A simpler solution may be to guaran-
tee that all of the operands needed for a computation reside on the
same MOP. We can extend the virtual memory system to use cer-
tain bits of an address and a hash function to determine on which
MOP it should place a given communicated page. We can then
extend the run-time storage allocator to accept an address and
return a pointer to allocated memory which resides on the same
MOP as the given address. Coupled with loader support, related
data structures may then be guaranteed to exist on the same MOP,
or at least in the same MOP’s virtual address sphere.

For brevity, we discuss only two examples below of how these
techniques may be used, but many others exist.

Summing an array: in case 1 above, all MOPs containing ele-
ments of an array broadcast the elements that they own. Each MOP
sums the entire array. An example of case 2 occurs if the MOP that
owns the first array element did not broadcast the other elements it
owns; instead, any MOP that did not own the first element would
broadcast its elements but not perform the summation. The first-
element MOP computes the sum, and broadcasts the result to all
MOPs. In case 3, the array would be either linked to or dynami-
cally allocated on the same MOP. The other MOPs would branch
around the summation and receive the broadcasted sum. Other
techniques from parallel processing, such as partial-sum reduc-
tions, could also be successful.

Manipulating a chained hash table: in case 1, lookups, inser-
tions, and deletions all require inter-MOP communication. In case
2, when performing a lookup, traffic can be reduced by following
an individual chain as long as the chain is local. After following its
local section of a chain, that MOP broadcasts only the pointer that
points to the subsequent element (which it does not own), so that
the next MOP may begin to follow the chain. A benefit is only
realized here when multiple consecutive elements in the chain
reside on the same MOP. In case 3 (shown in Figure 5), chain ele-
ments are allocated in a heap page that resides on the same MOP
as the head of the chain (using the run-time storage allocator mod-
ification described above). With this guarantee, the compiler can
generate code that is bypassed by MOPs that do not contain the
chain in their communicated store. When performing a lookup, the
owner can race down the chain without waiting for an off-chip
access, and broadcast the result of the lookup to the other MOPs.

For insertions and deletions, no off-chip traffic occurs at all, since
the result is written into the local communicated store of the
owner. Note that while a conventional system may find part of the
hash table on the processor, these optimizations always hold true
for the entire table, since there is a participating processor on every
memory chip.

Many other examples, both new ones and those drawn from the
realm of shared-memory parallel processing, exist and can be
exploited, given the appropriate level of programmer or compiler
support. The extent to which compilers can identify opportunities
for exploiting result communication without programmer support
is unclear at present, however.

5 Conclusion

In this paper we have presented a system-level organization and
execution model for future systems that have processors and mem-
ory coupled tightly together—a DATASCALAR architecture that
runs the Single-Program, Single Data stream execution model.
This proposal targets near-seamless expansion of highly-integrated
systems, and is intended to benefit future systems that are limited
by off-chip communication; e.g., those that have a large disparity
between the cost of an on-chip memory access versus that of an
off-chip access. We break the potential benefits of this model down
into four major categories, and discuss them along with the disad-
vantages of this architecture. We then discuss some of the issues
associated with implementing this type of system. Finally, we pro-
vide measurements and discussion that indicate that there is indeed
potential in the four benefit categories—ESP gains, memory
prefetching, result communication, and hybrid parallel execution.

Many of our ideas were inspired by the Massive Memory
Machine proposal, from which we obtained the concept of ESP
[15]. Other research efforts are examining the running of unipro-
cessor programs much faster by using multiple program counters;
the Multiscalar group at Wisconsin [13, 29] is one example. This is
a complementary project, however, since we focus on the part of
the system that is external to the processor (faster processors sim-
ply make our case stronger). Other projects are looking at proces-
sor/memory integration, such as the IRAM project at Berkeley
[24], the PPRAM project at Kyushu University [23], and work at
Sun Microsystems [25]. Also, Mitsubishi has developed a multi-
media processor prototype integrated with on-chip DRAM [10].

This work is part of an ongoing research effort. We are in the
process of building a detailed simulation infrastructure to evaluate
DATASCALAR systems. We are also identifying compiler algo-
rithms and language extensions that support the extraction of par-
allelism from SPSD (such as result communication). We are
working to improve the DATASCALAR architecture itself—by sup-
porting speculation more aggressively, improving static replication
(perhaps on the level of objects or words), supporting coarse-
grained dynamic replication (such as page promotion/demotion),
and identifying techniques to maximize streak length.

The DATASCALAR architecture was originally conceived to
permit system memory expansion in future systems that had inte-
grated processors and memory. The goal was to be able to run uni-
processor programs efficiently and seamlessly, even given the
presence of multiple processors on the memory chips. It is possible
that the major benefit of DATASCALAR will be the ability to
exploit parallelism in codes that were not traditionally thought of
as candidates for parallel processing. Efficient serial execution, a
seamless fallback case, and the notion of “memory parallelism”
may enable levels of performance much than either current unipro-
cessors or parallel processors achieve alone.

10

Acknowledgments
The authors thank Alain Kägi, T.N. Vijaykumar, Scott Breach,

and Babak Falsafi for their helpful discussions and intellectual
contributions to this work, and Todd Austin, who developed the
original SimpleScalar simulation tool set.

References

[1] Forest Baskett. Keynote address. 9th International Parallel Process-
ing Symposium, April 1995.

[2] Dileep P. Bhandarkar. Alpha Implementations and Architecture:
Complete Reference and Guide. Digital Press, Newton, MA, 1996.

[3] Doug Burger and Todd M. Austin. Evaluating Future Microproces-
sors: the SimpleScalar Tool Set. Technical Report 1308, Computer
Sciences Department, University of Wisconsin, Madison, WI, July
1996.

[4] Doug Burger, James R. Goodman, and Alain Kägi. Memory Band-
width Limitations of Future Microprocessors. In Proceedings of the
23rd Annual International Symposium on Computer Architecture,
pages 79–90, May 1996.

[5] Douglas C. Burger, Alain Kägi, and James R. Goodman. The
Declining Effectiveness of Dynamic Caching for General-Purpose
Microprocessors. Technical Report 1261, Computer Sciences
Department, University of Wisconsin, Madison, WI, January 1995.

[6] David Callahan, Ken Kennedy, and Allan Porterfield. Software
Prefetching. In Proceedings of the Fourth Symposium on Architec-
tural Support for Programming Languages and Operating Systems,
pages 40–52, April 1991.

[7] Tien-Fu Chen and Jean-Loup Baer. A Performance Study of Soft-
ware and Hardware Data Prefetching Schemes. In Proceedings of
the 21st Annual International Symposium on Computer Architec-
ture, pages 223–232, April 1994.

[8] William Y. Chen, Scott A. Mahlke, Pohua P. Chang, and Wen-mei
W. Hwu. Data Access Microarchitectures for Superscalar Processors
with Compiler-Assisted Data Prefetching. In Proceedings of the
24th International Symposium on Microarchitecture, pages 69–73,
November 1991.

[9] F. Darema-Rogers, V. A. Norton, and G. F. Pfister. Using a Single-
Program Multiple-Data Computation Model for Parallel Execution
of Scientific Applications. IBM Research Report RC 11552,
November 1985.

[10] Toru Shimizu et al. A Multimedia 32b RISC Microprocessor with
16Mb DRAM. In Proceedings of the 1996 International Solid-State
Circuits Conference, pages 216–217. Mitsubishi Electric Co., Feb-
ruary 1996.

[11] Keith I. Farkas and Norman P. Jouppi. Complexity/Performance
Tradeoffs with Non-Blocking Loads. In Proceedings of the 21st

Annual International Symposium on Computer Architecture, pages
211–222, April 1994.

[12] Michael J. Flynn. Some Computer Organizations and Their Effec-
tiveness. IEEE Transactions on Computers, C-21:948–960, 1972.

[13] Manoj Franklin. The Multiscalar Architecture. Ph.D. thesis, Univer-
sity of Wisconsin, December 1993.

[14] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride Directed
Prefetching in Scalar Processor. In Proceedings of the 25th Interna-
tional Symposium on Microarchitecture, pages 102–110, December
1992.

[15] Hector Garcia-Molina, Richard J. Lipton, and Jacobo Valdes. A
Massive Memory Machine. IEEE Transactions on Computers, C-
33(5):391–399, May 1984.

[16] James R. Goodman. Using Cache Memory To Reduce Processor-
Memory Traffic. In Proceedings of the 10th Annual International
Symposium on Computer Architecture, pages 124–131, June 1983.

[17] David V. James, Anthony T. Laundrie, Stein Gjessing, and
Gurindar S. Sohi. Scalable Coherent Interface. IEEE Computer,
23(6):74–77, June 1990.

[18] Norman P. Jouppi. Cache Write Policies and Performance. In Pro-
ceedings of the 20th Annual International Symposium on Computer
Architecture, pages 191–201, May 1993.

[19] Alexander C. Klaiber and Henry M. Levy. An Architecture for Soft-
ware-Controlled Data Prefetching. In Proceedings of the 18th
Annual International Symposium on Computer Architecture, pages
43–53, May 1991.

[20] David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organi-
zation. In Proceedings of the 8th Annual International Symposium
on Computer Architecture, pages 81–87, May 1981.

[21] James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: A
Multithreading Technique Targeting Multiprocessors and Worksta-
tions. In Proceedings of the Sixth Symposium on Architectural Sup-
port for Programming Languages and Operating Systems, pages
308–318, October 1994.

[22] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and
Evaluation of a Compiler Algorithm for Prefetching. In Proceedings
of the Fifth Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 62–73, October 1992.

[23] Kazuaki Murakami. PPRAM: A 21st Century’s Microprocessor
Architecture. Computer Architecture Seminar, UW-Madison, Octo-
ber 1995.

[24] David Patterson, Tom Anderson, and Kathy Yelick. The Case for
IRAM. In Proceedings of HOT Chips 8, Stanford, California,
August 1996.

[25] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk. Missing the
Memory Wall: The Case for Processor/Memory Integration. In Pro-
ceedings of the 23nd Annual International Symposium on Computer
Architecture, May 1996.

MOP 0 MOP 1 MOP 2

B: Insert element

A: Remove element

Figure 5. Operating on a fully-distributed chained hash table

11

[26] Steven L. Scott, James R. Goodman, and Mary K. Vernon. Perfor-
mance of the SCI Ring. In Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture, pages 403–414, May
1992.

[27] Burton J. Smith. Architecture and Applications of the HEP Multi-
processor Computer System. In Real-Time Signal Processing IV,
pages 241–248, 1981.

[28] IEEE Computer Society. Scalable Coherent Interface (SCI). ANSI/
IEEE Std 1596-1992, August 1993.

[29] Guri Sohi, Scott E. Breach, and T.N. Vijaykumar. Multiscalar Pro-
cessors. In Proceedings of the 22nd Annual International Sympo-

sium on Computer Architecture, pages 414–425, June 1995.

[30] Gurindar S. Sohi. Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Computers. IEEE
Transactions on Computers, 39(3):349–359, March 1990.

[31] Standard Performance Evaluation Corporation. SPEC Newsletter,
Fairfax, Virginia, September 1995.

[32] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple
Arithmetic Units. IBM Journal of Research and Development,
11(1):25–33, January 1967.

