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Abstract—As processing power continues to increase while memory access latency and band-

width become serious bottlenecks, processors and DRAM memory will be packaged increasingly

tighter together, possibly on a single chip. This integration would introduce orders of magnitude

superior bandwidth/latency to local memory than to remote memory. In this situation, an on-chip

vector unit is advantageous since it can make efficient use of such high internal bandwidth. How-

ever, real-life vector applications, which have enormous memory requirements, would not fit in

the non-expandable memory of a single integrated device and their performance would be prima-

rily determined by the amount of remote traffic they require. We propose a solution for running

large vector applications on multiple, vector-capable, tightly integrated processor-memory nodes.

Vector processors of individual nodes cooperate together to work as a single larger vector proces-

sor, while the vector application occupies the memory of all nodes. The physical vector registers

of the nodes combine together to form larger architectural registers. Vector operations on the

architectural registers are distributed among the nodes, each of which operates on its assigned

elements. One of the novel contributions of our work is a variable, program defined, mapping of

elements of the architectural vector registers to elements of the physical vector registers. This

capability considerably reduces remote traffic for loading and storing physical vector registers to

and from the distributed memory of the system. We introduce the notion of mapping vectors to

specify this variable mapping. We present heuristics for selecting traffic efficient mapping vectors

and selecting appropriate memory interleavings. Simulation results show that the DIstributed
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Vector Architecture (DIVA) we propose has the potential to result in lower remote traffic than

other approaches.

1    Introduction

1.1  Technology Trends

The ever-increasing gap between processing power and memory speed points to a future of higher

integration of processors and DRAM memory [7,8,5]. This integration, which currently exists at

the level of the printed circuit board (PCB), may be achieved by initially putting processors and

memory on multi-chip modules (MCM) and eventually on the same chip. Such tightly coupled

systems will offer two advantages: first, a substantial increase in the available bandwidth between

the processor and its memory and second, a reduction of the memory access latency. The band-

width advantage follows from the vastly improved ability to interconnect the processor with its

memory banks and the latency advantage follows from the elimination of the overhead of crossing

chip boundaries.

The improved memory bandwidth, coupled with the improvement of access latency, is an excel-

lent opportunity to implement of on-chip vector units [7]. Vector units can exploit significant

memory bandwidth because of their efficient issue and their ability to have deep pipelines. How-

ever, providing ample external bandwidth is expensive. This is evident in the design of CRAY

vector supercomputers such as the C-90 and the T-90 that employ Static RAM (SRAM) and elab-

orate interconnection networks to achieve very high performance from their memory systems.

With the integration of vector units and memory on the same device we can build systems with the

potential for significantly lower cost-performance than traditional supercomputers. In this paper,

we are not examining the details of building a such device but rather how to connect such devices

together to form larger systems.

1.2  Distributed Vector Processing

The importance of vector processing in the high-performance scientific arena is evident from the

successful career of the vector supercomputer. Vector processing is a good fit for many real-life

problems. Its serial programming model is also popular among engineers and scientists since the

burden of extracting the application parallelism (and hence performance) falls to the vectorizing

compiler. This proven model, now in use for two decades, is supported by significant vectorizing
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compiler technology and accounts for a very important section of scientific computation.

However, vector applications are memory intensive —codes such as weather prediction, crash-test

simulations, or physics simulations run with huge data sets— and they would overflow any single

device with a limited and non-expandable memory. These applications would require external

memory access. Furthermore, processor-memory integration will increase the relative cost of

external accesses by making on-chip accesses much faster. Providing a very expensive external

memory system to speed up external accesses, would invalidate the cost-performance advantage

of such devices. Cache memory on the integrated device could help alleviate the cost of external

accesses, but for a large class of vector applications caches are not quite as effective as in other

application domains. In this work, we propose a way to address the problem of external accesses.

We propose an architecture based on a collection of highly integrated processor-memory devices

with vector capabilities (Figure 1). We use the term node to refer to such devices. A number of

such nodes are connected together with some kind of interconnection network —bus, mesh, ring,

etc...). We focus on single-threaded vector applications (or to a single thread of a parallel applica-

tion that is not amenable to further high level parallelization) whose memory requirements exceed

the memory capacity of any of the nodes. The aggregate memory of the devices, however, satisfies

the memory requirements of the application. No other additional memory is present in the system

beyond that of the nodes.

FIGURE 1. DIVA system comprised of four nodes. Each node contains some part of the system memory
along with a processor and a vector unit. In this example each node has three physical vector registers. An
application running on all four nodes (occupying all their memory) refers to architectural vector registers
that are the aggregate of four physical vector register (one of every node).

The straightforward solution to execute an application that does not fit in one node would be to

execute it on a processor of one node, but use memory on other nodes to hold its dataset. How-
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ever, we propose to use the vector capability of all the devices to work simultaneously on the

application. This provides two advantages: first, the aggregate vector power of the nodes can

speed up vector instructions; second, external communication can be reduced by loading and stor-

ing vector elements locally on the nodes. In this model, the vector application references architec-

tural vector registers that are formed by combining together the physical vector registers of the

nodes (Figure 1). The length of the architectural vector registers depends on the number of nodes

used by the application and the length of the physical vector registers in these nodes.

One of the main contributions of our work is a method of assigning elements of the architectural

vector registers to the elements of the physical vector registers. In essence, we distribute the ele-

ments of the architectural vector registers around the nodes to increase the locality of vector loads

and stores. Mapping vectors define the correspondence of architectural elements to physical ele-

ments. They are set at any instant by the application to reduce external communication. By apply-

ing heuristics to select mapping vectors, as well as heuristics to interleave the memory, we can

achieve locality for vector loads and stores that leads to less remote communication than other

approaches based on caches (simulation results are discussed in Section 3).

1.3  Paper Overview

In the next section we present a detailed description of DIVA and its execution model, focusing on

mapping vectors. In the rest of Section 2 we discuss heuristics for mapping vector selection and

memory interleaving selection. In Section 3 we describe our simulation methodology and present

simulation results. We compare, in terms of remote traffic, DIVA to COMA [13,14] and to CC-NUMA

models, where the application executes on one processor and remote memory is accessed as

required. Section 4 concludes the paper with a summary and future work.

2    DIVA

2.1  Architecture and Execution Model

We conceive DIVA as an evolution of the scalable shared memory systems available today, e.g., the

T3E [2,3], the Origin 2000 [11], or the Convex Exemplar [12]. These are clustered designs where

a small number of processors are tightly coupled to a local memory, and these clusters are con-

nected together through an interconnection network. For simplicity, in this work we are only look-

ing at single processor nodes although similar ideas are applicable to clustered systems.
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A DIVA processor has scalar and vector execution capability. The basic structure of the processor

is similar to vector processors of the CRAY PVP machines [1] or the Convex vector machines.

Briefly, the processor has a scalar execution unit which performs scalar computations and flow

control. Vector instructions are sent to the vector execution unit which is a register based unit.

Vector registers are loaded from and stored to memory through explicit instructions. All computa-

tion instructions work on the vector registers. Each DIVA node can work independently on an

application1; in this mode DIVA nodes operate like traditional vector processors. Multiple DIVA

nodes also have the capability to work together on a single vector application whose dataset is dis-

tributed among the nodes’ memories.

In this cooperative mode of operation, all DIVA nodes execute all scalar instructions of the applica-

tion. Each processor maintains its own scalar register set and performs (redundantly) all scalar

computations. When a processor accesses scalar data that reside in its local memory (owning

processor) it broadcasts them to other nodes. When a processor tries to access remote scalar data,

it will receive them from the broadcasting processor. This scheme was proposed by Garcia-Moli-

nas et al. [6] as a way to build a system with massive memory from a cluster of VAX-11 comput-

ers. Burger, Kaxiras and Goodman introduced the DataScalar architecture that extended this

paradigm to work with caches (that reduce the number of broadcasts dramatically) and out-of-

order execution that allows nodes to run asynchronously, fetching their local data and broadcast-

ing them for the benefit of the rest of the nodes [4].

DIVA nodes however, cooperate on the execution of vector instructions, each executing a different

part of the instruction in parallel with other nodes. This partition of work is possible, because vec-

tor instructions refer to architectural vector registers while nodes operate only on their physical

vector registers. In Figure 2, four physical vector registers in four DIVA nodes combine to form a

16-element architectural vector register. Instructions that refer to this architectural register exe-

1 This in fact may be the preferred mode of operation when the application fits in a single node.
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cute with a potential four-fold speed-up.

FIGURE 2. Physical vector registers combine to form architectural vector registers

A mapping vector describes the assignment of architectural elements to physical elements and it

is distributed in mapping vector registers in the nodes (Figure 2). Ideally, we want to assign archi-

tectural elements in nodes where the corresponding memory data are located, thus reducing the

number of external accesses needed to load or store these elements.

Prior to using the physical vector registers that comprise an architectural register, a mapping vec-

tor must be created and the mapping vector registers must be set accordingly. We introduce the

SETMV instruction as the mechanism to create a mapping vector (other mechanisms are possible

and we will briefly discuss some in Section 2.2). To illustrate the use of mapping vectors, consider

the following simple loop and the sequence of vector instructions it is compiled to.

The SETMV instruction defines a mapping of architectural elements to physical elements. This

mapping must be the same for the physical vector registers that combine to form the architectural

register V0 and for the physical vector registers that combine to form V1. This is because, we are

adding V0 and V1 together which requires exact alignment of V0 and V1 elements in the corre-

sponding physical registers. By specifying that both v0 and v1 are loaded using the mapping vec-

tor MV0, we provide the necessary guarantee of aligned elements for the vector add instruction.

2 6 10 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 11 15 0 4 8 12 1 5 9 13

Architectural Vector
Register (Virtual)

Element:

Physical
Vector
Register

Mapping
Vector
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DO 100 I=1,16
C(I)=A(I)+B(2*I)

100 CONTINUE

SETMV MV0
VLOAD V0, BASE=A, STRIDE=1, MV0 (VL=16)
VLOAD V1, BASE=B, STRIDE=2, MV0 (VL=16)
VADD V0, V0, V1 /* V0=V0+V1 */
VSTORE V0, BASE=C, STRIDE=1, MV0 (VL=16)
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To put it all together, we will describe the execution of the example code in a four node DIVA sys-

tem shown in Figure 3. For each node we show two physical vector registers (PhV0 and PhV1) of

length 4. Four PhV0 (PhV1) combine to form the architectural vector register V0 (V1) of length

16. We also show one mapping vector (MV0) and 16 words of memory for each node. Memory is

word-interleaved, i.e., consecutive words map on adjacent nodes (the address of each memory

location is also shown in this figure). In the general case, memory is block-interleaved specifically

for each application to provide a good lay-out of memory vectors (see Section 2.3). The shaded

areas in memory represent the memory vectors A and B which are referenced in the example code:

vector A starts at address 6 and it is accessed with a stride of 1 (light shade), while vector B starts

at address 30 and it is accessed with a stride of 2 (dark shade).

FIGURE 3. Four node DIVA system. For each node, two physical registers (PhV0 and PhV1), one mapping
vector (MV0) and 16 words of memory are shown. The lay-out of vectors A and B (referenced in the
example code) is also depicted as shaded areas in memory.

Figure 3 shows the state of the system after the execution of the SETMV instruction: the mapping

vectors are set in every node. When the nodes encounter the first vector load instruction they each

load their physical vectors with the elements described in their mapping vectors. Elements of a

physical vector are loaded according to the following formula:

, where i=0,1,2,3 for Figure 3. In the general

case, the number of valid entries in the mapping vector registers controls the length of the vector

operations in each node. Application gather and scatter instructions are executed in the usual man-

ner. For example, the following formula is used for a gather instruction:

. In this case, a hidden indirection is that PhVin-

Node 0

PhV0

PhV1

MV0 2 6 10 14

0 4 8 12

16 20 24 28

32 36 40 44

48 52 56 60

Memory

Node 1

PhV0

PhV1

MV0 3 7 11 15

1 5 9 13

17 21 25 29

33 37 41 45

49 53 57 61

Memory

Node 2

PhV0

PhV1

MV0 0 4 8 12

2 6 10 14

18 22 26 30

34 38 42 46

50 54 58 62

Memory

Node 3

PhV0

PhV1

MV0 1 5 9 13

3 7 11 15

19 23 27 31

35 39 43 47

51 55 59 63

Memory

PhV0 i[ ] BaseAddress Stride+ MV0 i[ ]×( )←

PhVx i[ ] BaseAddress PhVindex i[ ]+( )←
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dex (the index register) already follows a mapping vector which is inherited by PhVx.

In Figure 3, the mapping vector is set to exactly mirror the lay-out of vector A in memory: element

0 of V1 is assigned to node 2 where the staring address 6 of vector A is located, element 1 to node

3 where address 7 is located, etc.... This results in no external communication for the first load —

all elements are loaded from local memory. However, the second load has to follow the same

mapping vector (otherwise the elements of V1 would not align with the elements of V0). Vector B

maps only on nodes 0 and 2. The particular element assignment of MV0 leads to 12 remote

accesses (e.g., element 2 of V1 is assigned to node 0, while address 34 is located on node 2). Only

four local accesses (all in node 2) take place. Figure 4 shows the contents of the physical vector

registers after the two loads complete. The shaded elements of V1 are the ones that required

remote accesses. To summarize, in this example, a mapping vector was set to mirror the lay-out of

vector A in memory. This led to 12 remote accesses (all from loading vector B) out of a total of 32

accesses for the two loads.

FIGURE 4. State of the DIVA system after executing the two loads of the example code. V0 elements are
loaded locally, because mapping vector MV0 is set to mirror vector A in memory. 12 elements of V1,
however, require remote communication according to the same mapping vector.

2.2  Mapping vector selection

A mapping vector must be defined for every distinct computation slice, i.e., a group of related

vector instructions that load some vector registers, compute on them and store the results. Once a

mapping vector is used to load or initialize a vector register, the rest of the registers in the compu-

tational slice must use the same mapping vector for their elements to align properly in the physi-

cal registers.

node 0

PhV0 (8) (12) (16) (20)

PhV1 (34) (42) (50) (58)

MV0 2 6 10 14

0 4 8 12

16 20 24 28

32 36 40 44

48 52 56 60

Memory

node 1

PhV0 (9) (13) (17) (21)

PhV1 (36) (44) (52) (60)

MV0 3 7 11 15

1 5 9 13

17 21 25 29

33 37 41 45

49 53 57 61

Memory

node 2

PhV0 (6) (10) (14) (18)

PhV1 (30) (38) (46) (54)

MV0 0 4 8 12

2 6 10 14

18 22 26 30

34 38 42 46

50 54 58 62

Memory

node 3

PhV0 (7) (11) (15) (19)

PhV1 (32) (40) (48) (56)

MV0 1 5 9 13

3 7 11 15

19 23 27 31

35 39 43 47

51 55 59 63

Memory
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To accommodate unrelated computation slices interleaved in the instruction stream, as in the

example of Figure 5, more than one mapping vector may be needed. Two different mapping vec-

tors (MV0 and MV1) are needed in this example, since it is likely that each computation would per-

form better with its own way to assign the location of the architectural vector elements. CRAY

compilers rarely interleave more than two independent computation slices; so in practice, we

could do with as few as two mapping vectors2.

FIGURE 5. Sample code with two independent computation slices that are interleaved in the instruction
stream.

The goal in selecting a mapping vector for a computation slice is to minimize the overall commu-

nication of the slice’s memory operations. This can be done either in compile-time or at run-time.

At compile-time, the compiler computes a mapping vector and stores it as static data along with

the binary of the application. When the binary is executed, the mapping vector is simply loaded

from memory. This provides the compiler with great flexibility in computing mapping vectors that

minimize the overall communication of a slice. Unfortunately, this approach requires considerable

information to be available at compile-time. The base addresses and strides of the memory opera-

tions, as well as the run-time memory interleaving, must be known to compute mapping vectors.

This information may not be available since base address and stride arguments (kept in scalar reg-

isters) are frequently unknown at compile-time. Because generating mapping vectors at compile

time is not trivial and requires considerable compiler involvement, we are not going to expand on

it in this paper. It is an area of research that we are investigating further.

In this paper we examine the case where the mapping vectors are constructed at run-time by a spe-

2 The useful range for mapping vectors is from 1 up to the number of architectural vector registers.

---------------------------------------------------------------
SLICE 1 SLICE 2

---------------------------------------------------------------
SETMV MV0, BASE=A,STRIDE=1
VLOAD V0,BASE=A,STRIDE=1,MV0

SETMV MV1 BASE=D,STRIDE=1
VLOAD V3,BASE=D,STRIDE=1,MV1

VLOAD V1,BASE=B,STRIDE=2,MV0
VADD V0, V0+V1

VLOAD V4,BASE=E,STRIDE=1,MV1
VADD V3, V3+V4
VSTORE V3,BASE=F,STRIDE=1,MV1

VSTORE V0, BASE=C,STRIDE=1,MV0

DO 100 I=1,16
C(I)=A(I)+B(2*I)
F(I)=D(I)+E(I)

100 CONTINUE

Example code
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cial SETMV instruction3. This instruction takes three arguments: a mapping vector identifier, a

base address and a stride (its syntax in our pseudo-assembly is “SETMV MV0,base=A,stride=N”

or “SETMV MV0,S1,S2” where S1 and S2 are scalar registers). It creates a mapping vector that mir-

rors a memory vector whose lay-out is defined by the base address and the stride. Each node is

responsible to decide which elements of the architectural register are be assigned to it. This is

done in a distributed fashion: each node generates all the addresses of the memory vector and

decides which of them, according to the memory interleaving used at that instant, are local. Each

node assigns elements corresponding to local addresses to its physical register elements.

SETMV semantics are straightforward when everything fits nicely (the number of local addresses

in a node is equal to its physical vector length). There are cases, however, where some nodes have

more elements in their local memory than what they can fit in their physical vector registers (an

element overflow condition), while other nodes do not have enough local elements to fill their reg-

isters. For instance, in the example of the previous section, if we used the lay-out of vector B as

the basis for setting the mapping vector (i.e., SETMV MV0,base=30,stride=2) nodes 0 and 2

would each try to assign 8 elements in their 4-element physical vectors. The SETMV instruction

semantics are aware of such cases and redistribute elements when this happens. This is again done

in a distributed fashion, without any communication. Since every node goes through all the

addresses of the SETMV instruction, they can keep count of elements assigned in all nodes. Every

node implements a number of counters (one for each node in the system). The counters’ size is

equal to the length of the physical vector registers. A counter overflow indicates that a node is full.

Responsibility for the extra elements in an overflowing node passes to the first non-full node

according to a pre-specified order (e.g., based on the node identifier). This continues until all

architectural vector elements are assigned to some node. This algorithm is independent of the rel-

ative speed of the nodes and guarantees that no assignment conflicts will occur.

The SETMV instruction limits the mapping vector to mirror a memory vector described only by a

base address and a stride. Arbitrary mapping vectors can be generated with an indexed version of

3 Alternatively, instead of a specialized instruction (SETMV), the compiler could put in code that computes traffic
efficient mapping vectors at run-time. It is likely that saving a few remote transfers would pay for the additional
time spent in computing the mapping vectors. In this work, we describe only SETMV; general code could emulate
this instruction or even provide better functionality.
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the SETMV, where with the help of an index register, we can describe any irregular memory vector.

We have not examined yet the possibilities of this more general form of SETMV, which presents

similar challenges as with the case of generating mapping vectors at compile-time. Instead, we

have limited our investigation to the simpler form of SETMV.

The compiler inserts a SETMV instruction at the beginning of every computation slice and has to

choose its base address and stride arguments. These arguments (whether they are literals or scalar

register identifiers) are copied from one of the load or store instructions of the corresponding

computation slice. In other words, we choose a mapping vector for a computation slice, to mirror

a memory vector referenced in that slice. According to the available information, the compiler can

make choices of varying optimality for selecting these arguments:

• If the compiler has no information about the run-time interleaving or the base addresses and

strides of the loads and stores of a slice, it blindly copies the arguments of the first load (or

store) it encounters in the slice. We call this first choice selection.

• If the compiler does have information on base address, strides and run-time interleaving, it can

select the arguments of a load or store that lead to less overall traffic for the whole slice. We

call this best choice selection.

Best choice selection is based on the following simple heuristic, but more elaborate methods are

possible. For each memory operation in the slice we generate all its addresses and compute the

home node for all its elements according to the run-time memory interleaving. We then compare

the home nodes of each memory operation to the home nodes of all the other memory operations

and we select the one with the most matches.

For a typical vector program the compiler will be able to make an intelligent choice for some of

computation slices, but not for others. The resulting compiled program will contain a mix of

SETMV instructions based on the best choice selection and SETMV instructions based on the first

choice selection.

In a DIVA program, vector loads and stores must designate a mapping vector. This can be imple-

mented by using an extra mapping vector identifier field in the instructions. Alternatively, one of

the mapping vectors can be implicitly active. In this case, a new instruction is needed to activate a
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mapping vector. Arithmetic or logic vector instructions do not have to designate a mapping vector,

since they operate on vector registers already loaded or initialized according to a specific mapping

vector.

2.3  Memory Interleaving

Ideally, in a DIVA system we want to control data placement so we can distribute and align the

memory vectors of an application. We want to distribute memory vectors across the nodes to take

advantage of the system’s multiple vector units and our ability to distribute the architectural vec-

tor registers. Additionally, we want to align memory vectors accessed in the same computational

slice, to minimize remote traffic.

To achieve distribution and alignment of memory vectors we can do of the following: i) use the

compiler to allocate arrays and other data structures appropriately (or even in custom ways); ii)

use directives in the source code to specify particular allocation policies for data alignment and

distribution; iii) interleave memory. For this study we restrict our attention to distributing memory

vectors across the DIVA nodes by simply interleaving memory. Remote traffic in a DIVA system is,

therefore, a function of both memory interleaving and mapping vector selection. Without any

other provision for custom data placement, simply interleaving memory leads to acceptable distri-

bution of memory vectors, but it does not offer any help in preventing misalignment of related

vectors. In the evaluation section we examine programs compiled for vector supercomputers,

without any provision for DIVA-specific memory allocation. This defaults to running legacy code

on DIVA systems.

We interleave memory in a DIVA system by choosing which bits of an address are the node

address bits. By using the low order bits of an address, we interleave words in the DIVA nodes.

Shifting the node address bits toward the high order bits of an address results in interleaving larger

and larger blocks (e.g., if we shift the node address bits 4 places toward the high order bits, we

interleave blocks of 16 words among the DIVA nodes).

For the evaluations in the following section we assume a segmented memory space. Entire appli-

cations fit in one segment. Virtual to physical address translation involves just adding an offset to

the virtual address. For each application the operating system sets the run-time interleaving. It is

possible to have simultaneously multiple interleavings for the same application. This serves to
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distribute different data structures in memory (e.g., the two factors of a matrix multiplication can

be interleaved differently so their memory vectors are distributed in the same manner). However,

in the evaluation of Section 3, we report results for a single interleaving per application. We dis-

cuss heuristics for selecting such an interleaving in the next section.

3    Preliminary Evaluation

3.1  Metric

We focus our evaluation on the external traffic generated by DIVA. We consider this a critical

measure since the divergence between internal and external bandwidth will only increase with

progressively higher integration of processors and memory. The major bottleneck of any system

based on highly integrated processor-memory nodes will be external accesses [5].

3.2  Methodology

We use trace-driven simulation to evaluate DIVA and compare it with other systems. We collected

instruction traces for 6 of the NAS kernels and 6 of the NAS applications [9] running on CRAY C-

90 vector supercomputers. Since these instruction traces lack the SETMV instructions, we used a

preprocessor to take the place of the DIVA compiler.

The preprocessor discovers computation slices in the traces, assigns mapping vectors to them,

inserts the appropriate SETMV instructions at the beginning of each slice, and adds mapping vector

arguments to the appropriate instructions. The preprocessor works in two different modes to sim-

ulate the case where the compiler has enough information to make an intelligent choice for the

SETMV arguments and the case where it does not. In the first case, the preprocessor uses the heu-

ristic described in Section 2.2 to select the best memory operation of a slice (best choice selec-

tion). In the second case, the preprocessor selects the arguments of the first memory operation of a

slice and uses them for the corresponding SETMV (first choice selection). A realistic compiler

would produce a mix of first and best selections.

We examine DIVA systems with 2, 4, and 8 nodes. Since we use traces from 128 element vector

supercomputers the architectural vector registers in DIVA are fixed to 128 elements. The length of

the nodes’ physical vector registers is 64, 32, and 16 for the 2, 4, and 8 node configurations

respectively. In reality, the architectural length of DIVA varies with the number of nodes: adding
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more nodes allows for larger vectors and more parallelism.

We also examine DIVA systems with and without caches. The first case is NUMA DIVA without any

remote-data caches. Each node has a vector processor and local memory and there is no remote-

data caching in the system4. The second case is CC-NUMA DIVA, a NUMA DIVA with the addition of

small caches in the nodes. These are remote-data caches that are kept coherent with an invalida-

tion protocol. We assume that the remote-data caches are implemented in the same technology as

local memory and are always 1/16th of the memory size. They are optimized to reduce traffic:

they are write-back, write-validate, with a line size of 1 word (8 Bytes). Because of the relatively

large size of the caches, we examined them as direct-mapped. We intent to expand our evaluation

to set-associative caches.

3.3  Baseline systems

We compare DIVA (NUMA DIVA and CC-NUMA DIVA) to two baseline systems that rely only on

caches to reduce external communication. For both of these systems, we assume that only one

node executes the program but it references memory in other nodes. The exact same traces are

used for both DIVA (which parallelizes individual vector instructions across the nodes) and the

baseline systems. Remote traffic results when the node executing the application tries to access

data located on another node. In the first baseline system (STANDARD CC-NUMA) each node has a

part of the global memory and a remote-data cache (1/16th of the local memory). This cache is

also optimized in the same way as the caches we use in the DIVA systems: it is write-back, write-

validate, with a line size of 1 word. As of yet, we have examined direct-mapped caches but we

plan to expand our evaluation to set associative caches.

In the second baseline system (COMA) the whole memory of a node is used as a huge cache. This

represents the case of a Cache Only Memory Architecture (COMA) [13] system. Since these

caches are the size of the local memory, tag overhead becomes a serious issue. We implement

these caches as write-back, write-validate, 4-word line sectored caches [15]. DIVA can also be

implemented as a COMA, and we plan to expand our evaluation to include COMA DIVA.

4 We are not concerned with caching of local data inside a node since our main concern is remote traffic. Caching for
local data and the various ways it can be implemented is beyond the scope of this paper.
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We implicitly assume that a single node in the baseline systems has equivalent vector capabilities

as with a multiple node DIVA system. In other words, we assume that the length of the physical

vectors in a baseline node is equal to the architectural vector length of a DIVA and that vector

instructions (besides memory operations) execute with similar speed (thus giving no advantage to

DIVA’s parallelization of individual vector instructions). In reality, either DIVA can employ more

vector processing power on a single application than the baseline systems or, for the same

processing power, DIVA nodes can be less expensive than the baseline nodes.

3.4  Memory and Cache Size Scaling

In all systems we examine (NUMA DIVA, CC-NUMA DIVA, STD. CC-NUMA and COMA) we scale the

memory and cache sizes for each application. Memory on a node is always assumed to be 1/n of

the application size, where n is the number of nodes required by the application. The small cache-

coherent caches are always fixed to 1/16th of a node’s memory capacity, while the COMA caches

are equal to a node’s memory capacity.

The real world situation is one where memory and cache sizes are fixed, while application size

varies. We do the reverse here: we keep application size fixed and scale memory and cache size to

fit the application in whatever number of nodes we chose. We do this to simplify the simulation

process. To keep things simple, we also round the application size up to the closest power-of-two

and we assume a perfect fit in memory. That is, we assume that, if the application runs on two

nodes, each node has a memory capacity of one-half the size of the application; if it runs on four

nodes, each node has a capacity of one-fourth of the application’s size, and so on.

3.5  Kernels

We use the set of six small kernels to illustrate the behavior of a DIVA system since they are too

small to be used for traffic comparisons. The kernels are from the suite of NAS kernels and are the

following5: BTRIX (BTX1), EMIT (EMT1), FFT (FT11), GMTRY (GMY1), MXM (MXM1), VPENTA

(VPT1). They represent important computation segments from large scientific applications.

We present the behavior of the kernels on a NUMA DIVA system. We use the first choice selection

for the SETMV instructions. In Figure 6 we present six graphs, one for each kernel. To show the

5 We use the short-hand name in the graphs in Figure 6 and Figure 10.
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effect of memory interleaving on remote traffic, we use 17 different memory interleavings ranging

from 1 word to 64Kwords (the horizontal axis represents interleaving size in words). The vertical

axis represents traffic as a percentage of the total data traffic between the vector registers and

memory required by the application. We do not consider request traffic. In each of the graphs we

superimpose results for 2, 4 and 8 DIVA nodes. The traffic for 2 nodes is the lower curve, the traffic

for the 4 nodes the middle, and traffic for 8 nodes the top curve.
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FIGURE 6. Kernel Traffic
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For many of the kernels, there is a correlation between DIVA traffic for a specific interleaving and

the predominant stride and vector length. In Table 1we present the predominant strides and vector

lengths for these kernels.

For FFT, MXM, and VPENTA the interleavings where DIVA has the lowest traffic correspond to the

interleavings that would distribute memory vectors with the dominant stride and vector length

evenly across all nodes (Figure 6). For a memory vector of stride S and length L, two interleavings

I that distribute it on N nodes are given by the following formulae:  and .

FFT and VPENTA have low traffic at the points approximately described by both the above equa-

tions while MXM at the points described by the first equation (Figure 6). Broadly speaking, the

explanation of this result is that the first equation produces interleavings that distribute memory

vectors in contiguous groups of elements among the nodes while the second distributes consecu-

tive elements among the nodes. It then becomes a matter of how well different vectors used in the

same computation align in the nodes. It is more likely for two vectors to align in the same node, if

they are distributed in contiguous groups, than to align when their consecutive elements are inter-

leaved in the nodes. To illustrate this situation, consider the following example code that produces

a common reference pattern in vector applications:

Kernel Dominant
Strides

Dominant
Vector length

BTRIX 825, 1 28

EMIT 1 64

FFT 258 128

GMTRY 2 99, 1 to 98,
100

MXM 1 128

VPENTA 129 128

Table 1: Kernel statistics

I
S
N
---- L⋅= I S

N
----=

DO 100 I=1,16
A[I] = A[I+1] * 3.14159

100 CONTINUE
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Lets assume for simplicity that we are going to load A[I] and A[I+1] with two independent load

instructions without any optimization at the register level; so vector A is accessed twice in the

same loop with an offset of 1. If we distribute this vector in memory according to the first formula

(Figure 7) we will have a misalignment in the two sets of accesses. If the first set (A[I]) executes

with no remote traffic then the second (A[I+1]) will cost us 4 remote accesses out of a total of 16

(remember that the accesses depicted in Figure 7 must correspond to aligned physical elements).

FIGURE 7. Alignment problems when distributing memory vectors in groups of contiguous elements (first
formula).

If, however, we use the second formula to distribute the memory vector (Figure 8) the misalign-

ment becomes much more serious. In this case, none of the A[I] accesses and A[I+1] accesses

align in any node. If a mapping vector generates no remote traffic for the A[I] accesses then the

same mapping vector makes all A[I+1] accesses remote.

FIGURE 8. Alignment problems when distributing consecutive elements around the nodes (second
formula).
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application entirely in one node. For VPENTA the sharp increase of traffic for interleavings greater

than 64, 32, and 16 for the 2, 4, and 8 nodes respectively, is due to alignment problems.

The behavior of BTRIX, EMIT, and GMTRY is more unpredictable. BTRIX has both distribution and

alignment problems. EMIT and GMTRY make extensive use of gather and scatter operations which

are largely responsible for the anomalies in their traffic behavior. The traffic behavior of EMIT is

especially unstable at large interleavings for 2 nodes. This behavior is due to EMIT’s small vectors

(64 elements) fitting entirely in one node. Because each DIVA node, in the 2 node case, has 64-ele-

ment physical vector registers, memory vectors can be accessed with no remote traffic when they

are on the same chip. If, however, related memory vectors map onto different nodes then the

resulting traffic is considerable.

The results of this section give us a heuristic to select a memory interleaving for an application:

we simply select the one that is going to distribute memory vectors of the dominant stride and

vector length across the nodes. The best way to distribute these vectors depends on their align-

ment properties. Many times, distributing the elements in contiguous parts proves to be effective.

In the absence of reference patterns similar to that in Figure 8, distributing consecutive elements

across the nodes can also lead to minimal traffic. To select an interleaving we need to know the

predominant stride and vector length of the programs. For many cases the compiler can provide

these values. For the cases where this is not feasible, profiling can be used.

3.6  Benchmarks

We use vector versions of the NAS parallel benchmarks [9] for our evaluations. The NAS parallel

benchmarks are a suite of five kernels and three pseudo-applications. In this paper, we use three of

the five kernels (IS, FT and MG) and the three pseudo-applications (LU, SP and BT). We run small

problem sizes of these benchmarks for ease of tracing and simulation. Also, we run the applica-

tions in single thread mode. These benchmarks are in fact quite amenable to high level paralleliza-

tion and do not really belong in our target application set. However, applications that belong in

our target set tend to be large proprietary codes such as NASTRAN or GAUSSIAN which are

extremely difficult to get access to or work with. We picked the NAS parallel applications instead,

because of availability, ease of use and general familiarity.

A characteristic of these applications is that they generate their own dataset (practically they have
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no input data). This makes the large COMA caches quite effective, since there are very few cold

misses due to the write-validate policy. In Table 2 we present some statistics for these bench-

marks. For each one we list the problem size and the memory references of the corresponding

trace. These benchmarks have a multitude of strides and vector lengths. Here, we present the most

important ones for each application.

In Figure 9 we present the traffic results for these benchmarks. Similarly to the graphs in Figure 6,

the horizontal axis represents different interleavings (the interleaved block size ranges from 1 to

256 words) and the vertical axis represents remote traffic as a percent of the total traffic (100%)

required for data transfers between memory and vector registers. The graphs are divided in 3 sec-

tions from left to right for 2, 4, and 8 nodes.

We present four sets of results for DIVA systems: NUMA DIVA and CC-NUMA DIVA each with first

choice selection and best choice selection of SETMV arguments. These cases are referred to as

“NUMA first,” “CC-NUMA first,” “NUMA best,” and “CC-NUMA best” in the graphs. We also present

the traffic for STD. COMA (“COMA”) and STD. CC-NUMA (“CC-NUMA base”) baseline systems. The

traffic results of these two cases are independent of the interleaving used for DIVA and they are

represented by straight lines. We select in advance an interleaving for these cases that produces

the least traffic. For the particular set of benchmarks the interleavings for STD. CC-NUMA and STD.

COMA where very large, often comparable in size to the memory capacity of the nodes. In Table 3

we present the cache sizes for the STD. COMA system. The cache sizes of the CC-NUMA DIVA and

Benchmarks
Problem Size

Memory
References
(Millions)

Dominant
Strides

Dominant
Vector
lengths

BT 16x16x16, 4 iterations 53 1, 17 14

FT 64x64x64 101 1 64

IS 64K keys 26.5 1 128

LU 16x16x16, 20 Iter. 65 > 1024, 1,
17, 255

128, 1 to 14,
120, 116

MG 128x128x128, 4 Iter. 594 1, 2 128, 64, 32,
16

SP 16x16x16, 20 Iter. 69 1, 17 14, 128

Table 2: NAS benchmark statistics
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the STD. CC-NUMA are 1/16th of the corresponding COMA caches.

The results in Figure 9 show that there is a performance gap between first choice and best choice

selection of SETMV arguments. As we have discussed, we expect a real compiler to fall somewhere

in between. The remote-data cache in CC-NUMA DIVA provides significant reductions in traffic for

all the benchmarks. The bottom-line of the graphs is that the best cases of CC-NUMA DIVA produce

less traffic than both STD. CC-NUMA and STD. COMA for three benchmarks (FT, IS, and MG). For SP,

CC-NUMA DIVA produces less traffic than STD. CC-NUMA for 4 and 8 nodes.

Application
Active
Memory Size
(rounded up)

COMA Cache
size
2 nodes

COMA Cache
Size
4 nodes

COMA Cache
Size
8 nodes

BT 64 MByte 32 MByte 16 MByte 8 MByte

FT 16 MByte 8 MByte 4 MByte 2 MByte

IS 4 MByte 2 MByte 512 KByte 256 KByte

LU 8 MByte 4 MByte 1 MByte 512 KByte

MG 64 MByte 32 MByte 16 MByte 8 MByte

SP 4 MByte 2 MByte 1 MByte 512 KByte

Table 3: Cache sizes for COMA
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FIGURE 9. Benchmark Traffic
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3.7  Optimizations

Data placement presents a significant opportunity in optimizing DIVA programs. The results pre-

sented in the previous section were for unoptimized programs. Instead, the data placement of

these programs was specific to the CRAY supercomputers that were used to collect the traces.

Often, prime number array dimensions (good for avoiding bank conflicts in supercomputers) pro-

duced misalignment problems in DIVA.

Since we do not have a compiler capable of DIVA-specific data placement, we implemented sim-

ple source code transformations to explore the performance advantages of custom data placement.

Our intention was to allocate data structures in memory to reduce misalignment of memory vec-

tors. In its general form, this is not a trivial problem. We followed a very simple approach: for

three of the kernels and three of the benchmarks, without changing the structure of the programs,

we re-allocated their multi-dimensional arrays so that some (but not all) of the dimensions

became powers-of-two. This provided significant benefits in terms of traffic reduction. In essence,

allocating with powers-of-two dimensions resulted in statistically much less misalignment of

memory vectors.

The results for the optimized kernels (BTRIX, EMIT, GMTRY, and VPENTA) are shown in Figure 10.

In Figure 11 we show the results for the optimized benchmarks (BT, LU, and SP). In these graphs

we changed only the DIVA results. The STD. CC-NUMA and STD. COMA results come from the unop-

timized versions of the programs (the optimized benchmarks exhibit worse cache behavior than

before). With this simple optimization CC-NUMA DIVA (and in some cases NUMA DIVA) produces

less traffic than the STD. CC-NUMA and almost in all cases (except LU) it produces at most as much

traffic as STD. COMA.
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FIGURE 10. Optimized kernel traffic
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FIGURE 11. Optimized benchmark traffic
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4    Conclusions

The paper considers a future where processors and local memory are tightly packaged together,

possibly on the same chip. We expect that when this happens the bandwidth/latency of a processor

to its local memory will be orders of magnitude superior to its bandwidth/latency to remote mem-

ory. Under such conditions, applications that fit in local memory would perform extremely well.

Applications that may be parallelized in a distributed fashion, where each thread fits in local

memory and there is very little communication between the threads, would also perform

extremely well. However, applications that do not fit in local memory and are not amenable to

parallelization in a distributed fashion would be greatly limited by the external traffic required. An

important class of applications including several large proprietary codes belong in this category.

We propose a novel approach for running such applications when they are dominated by vector

computations.

We propose placing the application on as many nodes as needed to hold its entire dataset and

using the nodes together as one large vector processor. The physical vector registers on the indi-

vidual processors combine together to form architectural vector registers referenced by the appli-

cation. A significant innovation is that we allow variable mappings of architectural elements to

physical vector elements. The mappings are selected to reduce remote accesses. We propose to

use mapping vectors to specify the correspondence of architectural to physical elements at any

instant. We describe an implementation of an instruction that creates mapping vectors and we

present heuristics for selecting its arguments leading to traffic efficient mapping vectors. Memory

interleaving, also, has a significant effect on the amount of remote traffic and we propose heuris-

tics for selecting appropriate interleavings for applications. Custom data placement is very prom-

ising for reducing remote traffic but we have not dealt with the problem in its general form.

We evaluated these ideas through simulations using traces generated on CRAY vector machines.

Two types of DIVA systems are evaluated: with cache (CC-NUMA DIVA) and without cache (NUMA

DIVA). The two DIVA systems are compared to two baseline systems. One baseline system is STD.

CC-NUMA, where one node runs the entire application using the memory of other nodes. The other

baseline system is COMA where all local memory is treated as one huge cache. DIVA systems can

also be run in a COMA fashion and we plan to extend our evaluation to include such systems. The

comparisons show that with good mapping vector and memory interleaving selection, the DIVA
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systems result in significantly lower traffic than CC-NUMA on several codes. For some cases the

baseline COMA system has lower remote traffic than the DIVA systems. However, these results are

for programs that were unoptimized for DIVA.

Remote traffic in DIVA is quite sensitive to data placement. Better alignment of data arrays could

result in lower traffic. We present some preliminary results on the reduction in remote traffic when

arrays are aligned on power-of-two boundaries. With such simple source code transformations,

DIVA produces less traffic than the baseline COMA system as well.

There are several directions for future research in DIVA. Some of the important ones are develop-

ing more sophisticated approaches for mapping vector selection, investigating simple array align-

ment techniques for reducing traffic, and exploring different ideas for memory interleaving.
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