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Research Statement 

Kevin Moore 

Throughout my education and my early career, I’ve been drawn to problems in both 
hardware and software.  It was my desire to work on hardware that led me back to school 
after working for two years as a software developer.  After joining a hardware-oriented 
research group as a graduate student, it was my experience with software that led me to 
my research focus—the interaction between hardware and software.  Through my 
research, I strive to facilitate the development of highly scalable, reliable and robust 
software by making the interface between hardware and software as clear, efficient and 
powerful as possible. 

The hardware/software interface is particularly relevant today because the computer 
industry’s transition from uniprocessor chips to chip multiprocessors (CMPs) has 
profound implications for the development of software.  In contrast to the circuit and 
architecture-level improvements of the 90’s, the introduction of CMPs, which incorporate 
multiple processing units on the same chip, requires that software change in order to reap 
the benefits of the enhanced hardware.  For a computer system to take advantage of even 
the dual-core processors common today, it must use parallel software.  With plans for 
more parallel CMPs in the near future, software will need to not only be parallel, but to 
scale to larger and larger numbers of processors to keep pace with evolving hardware. 

A pressing challenge in the movement to an explicitly parallel model of computing is to 
give programmers, compiler writers and language designers a more powerful means of 
synchronization.  My doctoral research attacks this problem by investigating practical, 
high performance transactional memory systems.  Transactional memory gives 
programmers the ability to declare the synchronization properties their programs need, 
without requiring that they develop a mechanism (e.g., a locking scheme) to enforce these 
properties.  Furthermore, transactions may be nested to allow programmers to build 
thread-safe libraries without exposing implementation details such as locking 
conventions to higher levels of software. 

Transactional memory systems may be implemented in software, in hardware or in a 
combination of the two. Typically, transactional memory systems do not limit the amount 
of memory a transaction may access nor the length of time a transaction may run.  
Though intuitive for programmers, that model is poorly suited for direct implementation 
in hardware, which is limited to structures of fixed size.  Ideally, an implementation of 
transactional memory should:  (1) make the common case—short transactions that 
commit—fast; (2) defer rare cases and difficult-to-implement cases to software; (3) allow 
transactions of any size and duration; and, (4) allow programmers to nest transactions to 
arbitrary depths. 

LogTM 

In my doctoral research, I developed Log-Based Transactional Memory (LogTM), a 
transactional memory system that combines software-based version management (with 
limited hardware support) and conservative hardware conflict detection to support 
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arbitrary-sized transactions with limited hardware. Version management is the 
maintaining of multiple versions of data values: “new” values generated inside a 
transaction that remain if the transaction commits and “old” values that remain if the 
transaction aborts.  LogTM performs version management by eagerly updating memory in 
place during transactions and saving old values in a per-thread transaction log.  No further 
action is needed to commit a transaction since new values are kept in place.  To abort a 
transaction, LogTM restores saved values from the log.  Fortunately, (for most 
workloads) aborts are rare.  LogTM leverages that rarity to reduce hardware complexity 
by performing aborts in software. Conflict detection identifies overlaps between the write 
set of each transaction with the read set or write set of other concurrent transactions.  Like 
other hardware transactional memory systems, LogTM detects conflicts on cached data 
by augmenting the cache coherence mechanism, adding a read (R) and write (W) bit to 
each cache line.  LogTM extends this mechanism with sticky states, additional coherence 
states in which the directory continues to send coherence messages to a processor for a 
block that it has already evicted from its cache.  Receiving coherence messages for evicted 
blocks (in sticky states) allows a processor to conservatively detect conflicts for blocks 
not present in the cache.  

Before I began work on LogTM, the only published hardware transactional memory 
systems relied heavily on the cache.  The size and associativity of the cache limited the 
scope of transactions.  LogTM’s unique log-based version management combined with 
innovative sticky states allow it to break this dependence on the cache without adding 
complex hardware.  Unlike previous schemes, which relied on keeping old values in 
memory and storing new values in the cache, LogTM stores new and old versions in 
separate memory locations, which may be cached and evicted independently.  Like the 
stack, the transaction log is a part of a thread’s virtual memory and is effectively 
unbounded. Sticky states, although part of the coherence mechanism, break the 
dependence between conflict detection and caching.  By allowing conflict detection on 
blocks after eviction, sticky states enable transactions whose read and write sets exceed 
the capacity or associativity of the cache.  Perhaps most importantly, LogTM guarantees 
that transactions appear atomic to applications, but it allows some lower-level software 
to observe transactions’ intermediate values.  This allows LogTM to involve software in 
maintaining the atomicity of transactions. LogTM uses hardware to perform the most 
performance critical tasks, tracking read and write sets and detecting conflicts, but leaves 
rare and complicated tasks, such as aborting transactions, to software. 

Extending LogTM 

It has been my great fortune over the past two years to see my simple idea grow into a 
successful research project.  What began as a lonely effort by my advisor and I is now a 
sizeable team, including several members who specialize in programming languages and 
operating systems. Our multi-discipline collaboration has allowed us to improve LogTM 
by extending it to support nested transactions and to allow thread switching and paging 
within transactions.  This process led us to explore the precise semantics of transactions 
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(especially nested transactions) and to design mechanisms for invoking operating system 
services within transactions. 

Closed nested transactions, in which child transactions commit atomically with their 
parent, facilitate software composition by allowing programmers to make library calls 
within transactions that may contain transactions themselves.  Open nested transactions 
increase concurrency by exposing updates immediately upon commit, independent of the 
status of their parent transaction.  My colleagues and I extended LogTM to support both 
open and closed nested transactions (Nested LogTM).  Nested LogTM provides version 
management for nested transactions by segmenting the transaction log into a stack of log 
frames.  Nested LogTM provides conflict detection for a few of levels of nested 
transactions by replicating the R and W bits in the cache.  In the course of this work, we 
reasoned about the precise semantics for nested transactions, discovering conditions 
under which previously published TM systems produced unintuitive behavior.  We 
further proposed non-transactional escape actions, which neither abort nor cause other 
transactions to abort, to facilitate the execution of system calls and irreversible actions. 

A recurring problem in computer systems is the need to virtualize limited hardware 
resources by saving and restoring state in software.  Hardware transactional memory 
systems maintain state in both conflict detection and version management that must be 
virtualized to allow transactions to span system events such as thread switching and 
virtual memory paging.  LogTM, because it stores old values in virtual memory (the 
transaction log), virtualizes its version management.  The R/W bits, however, pose a 
challenge to virtualization because those bits cannot be easily accessed by software.   
Additionally, they limit the depth to which transactions can be nested.  To overcome 
these limitations, my colleagues and I developed LogTM Signature Edition (LogTM-SE), 
which decouples conflict detection from cache tag and data arrays. 

LogTM-SE tracks read and write sets using compact Bloom filter-like signatures. Unlike 
R/W bits, signatures can be easily saved and restored by software.  LogTM-SE supports 
unbounded nesting by saving the signature to the transaction log on each transaction 
begin (e.g., in the header of the parent transaction’s log frame) and restoring the parent’s 
signature on a transaction abort, or open transaction commit.  Signatures may also be 
combined.  LogTM-SE includes a saved signature per thread context, which represents 
the combined signatures of all suspended transactions in the current thread’s process. All 
load and store instructions check their local saved signature to detect conflicts with 
suspended transactions.  Software manipulation of signatures also allows LogTM-SE to 
support virtual memory paging in transactions—e.g., by adding a migrating page’s new 
physical address to the appropriate signatures. 

Future Work 

This is an exciting time to be a computer scientist.  The transition to CMP is a 
fundamental shift in the computer industry.  Now, more than ever, chip makers are 
interested in the interaction between hardware and software and are considering new  
interfaces, including transactional memory. As I enter the next phase of my research 
career, I am eager to continue promoting the development of efficient, scalable and 
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reliable software by both improving transactional memory and developing additional 
hardware mechanisms that will enhance the capabilities of software designers. 

The biggest challenge I see to the adoption of transactional memory is to balance the 
generality of the interface against the complexity of the hardware.  Based on my 
experience developing LogTM, I feel the key to meeting that challenge is for the 
hardware to provide simple, flexible mechanisms whose state is accessible to software.  
Developing LogTM, I held the view that an atomic transaction was not a primitive 
provided by the hardware, but a property guaranteed to applications by a transactional 
memory system comprised of both hardware and software components.  Carrying this 
philosophy a step further, instead of providing begin and commit transaction instructions, 
the hardware could directly expose the internal mechanisms provided to support 
transactional memory.  LogTM-SE, for example, provides hardware assistance for 
logging, tracking of read and write sets (in signatures), and conflict detection.  These 
simple primitives will be easier to implement in hardware and, if exposed separately, may 
be applied by language designers and compiler writers in many ways, including, but not 
limited to, implementing transactional memory. 

What we need most as we enter the era of many-core computing is highly concurrent 
software.  In order to develop highly concurrent software using transactions, 
programmers are likely to need new tools to debug and optimize transactional software, 
hardware support for other synchronization techniques and a more relaxed model of 
atomicity such as open nested transactions.  In my experience, converting lock-based 
programs to use transactional memory programs does not always immediately increase 
concurrency.  Pitfalls, such as conflicts caused by false sharing and contention on shared 
resources (e.g., free lists), can erode the performance gains of transactional memory.  
Tools that report the frequency of transaction conflicts and aborts caused by contention 
on particular data structures will help detect bottlenecks in transactional memory 
programs.  Furthermore, while transactional memory provides a simple replacement for 
mutual exclusion locking, it does not directly address other common synchronization 
paradigms, such as barriers, reductions and condition variables.  Hardware support for 
these forms of synchronization will become increasingly important as transactional 
memory eliminates other synchronization bottlenecks.  Finally, closed nesting in 
transactional memory can lead to serialization when long-running transactions access 
shared resources (e.g., by allocating memory).  Open nesting can increase concurrency by 
raising the level of abstraction at which transactional semantics are guaranteed.  Working 
with Nested LogTM, I saw that open nested transactions could dramatically increase 
throughput, but that its semantics were unintuitive in many cases.  I believe that finding 
ways to help programmers reason about atomicity at higher levels of abstraction will 
bring us much closer to the concurrency we need to effectively utilize emerging many-
core computer systems. 


