
1

Research Statement

Kevin Moore

Throughout my education and my early career, I’ve been drawn to problems in both
hardware and software. It was my desire to work on hardware that led me back to school
after working for two years as a software developer. After joining a hardware-oriented
research group as a graduate student, it was my experience with software that led me to
my research focus—the interaction between hardware and software. Through my
research, I strive to facilitate the development of highly scalable, reliable and robust
software by making the interface between hardware and software as clear, efficient and
powerful as possible.

The hardware/software interface is particularly relevant today because the computer
industry’s transition from uniprocessor chips to chip multiprocessors (CMPs) has
profound implications for the development of software. In contrast to the circuit and
architecture-level improvements of the 90’s, the introduction of CMPs, which incorporate
multiple processing units on the same chip, requires that software change in order to reap
the benefits of the enhanced hardware. For a computer system to take advantage of even
the dual-core processors common today, it must use parallel software. With plans for
more parallel CMPs in the near future, software will need to not only be parallel, but to
scale to larger and larger numbers of processors to keep pace with evolving hardware.

A pressing challenge in the movement to an explicitly parallel model of computing is to
give programmers, compiler writers and language designers a more powerful means of
synchronization. My doctoral research attacks this problem by investigating practical,
high performance transactional memory systems. Transactional memory gives
programmers the ability to declare the synchronization properties their programs need,
without requiring that they develop a mechanism (e.g., a locking scheme) to enforce these
properties. Furthermore, transactions may be nested to allow programmers to build
thread-safe libraries without exposing implementation details such as locking
conventions to higher levels of software.

Transactional memory systems may be implemented in software, in hardware or in a
combination of the two. Typically, transactional memory systems do not limit the amount
of memory a transaction may access nor the length of time a transaction may run.
Though intuitive for programmers, that model is poorly suited for direct implementation
in hardware, which is limited to structures of fixed size. Ideally, an implementation of
transactional memory should: (1) make the common case—short transactions that
commit—fast; (2) defer rare cases and difficult-to-implement cases to software; (3) allow
transactions of any size and duration; and, (4) allow programmers to nest transactions to
arbitrary depths.

LogTM

In my doctoral research, I developed Log-Based Transactional Memory (LogTM), a
transactional memory system that combines software-based version management (with
limited hardware support) and conservative hardware conflict detection to support

2

arbitrary-sized transactions with limited hardware. Version management is the
maintaining of multiple versions of data values: “new” values generated inside a
transaction that remain if the transaction commits and “old” values that remain if the
transaction aborts. LogTM performs version management by eagerly updating memory in
place during transactions and saving old values in a per-thread transaction log. No further
action is needed to commit a transaction since new values are kept in place. To abort a
transaction, LogTM restores saved values from the log. Fortunately, (for most
workloads) aborts are rare. LogTM leverages that rarity to reduce hardware complexity
by performing aborts in software. Conflict detection identifies overlaps between the write
set of each transaction with the read set or write set of other concurrent transactions. Like
other hardware transactional memory systems, LogTM detects conflicts on cached data
by augmenting the cache coherence mechanism, adding a read (R) and write (W) bit to
each cache line. LogTM extends this mechanism with sticky states, additional coherence
states in which the directory continues to send coherence messages to a processor for a
block that it has already evicted from its cache. Receiving coherence messages for evicted
blocks (in sticky states) allows a processor to conservatively detect conflicts for blocks
not present in the cache.

Before I began work on LogTM, the only published hardware transactional memory
systems relied heavily on the cache. The size and associativity of the cache limited the
scope of transactions. LogTM’s unique log-based version management combined with
innovative sticky states allow it to break this dependence on the cache without adding
complex hardware. Unlike previous schemes, which relied on keeping old values in
memory and storing new values in the cache, LogTM stores new and old versions in
separate memory locations, which may be cached and evicted independently. Like the
stack, the transaction log is a part of a thread’s virtual memory and is effectively
unbounded. Sticky states, although part of the coherence mechanism, break the
dependence between conflict detection and caching. By allowing conflict detection on
blocks after eviction, sticky states enable transactions whose read and write sets exceed
the capacity or associativity of the cache. Perhaps most importantly, LogTM guarantees
that transactions appear atomic to applications, but it allows some lower-level software
to observe transactions’ intermediate values. This allows LogTM to involve software in
maintaining the atomicity of transactions. LogTM uses hardware to perform the most
performance critical tasks, tracking read and write sets and detecting conflicts, but leaves
rare and complicated tasks, such as aborting transactions, to software.

Extending LogTM

It has been my great fortune over the past two years to see my simple idea grow into a
successful research project. What began as a lonely effort by my advisor and I is now a
sizeable team, including several members who specialize in programming languages and
operating systems. Our multi-discipline collaboration has allowed us to improve LogTM
by extending it to support nested transactions and to allow thread switching and paging
within transactions. This process led us to explore the precise semantics of transactions

3

(especially nested transactions) and to design mechanisms for invoking operating system
services within transactions.

Closed nested transactions, in which child transactions commit atomically with their
parent, facilitate software composition by allowing programmers to make library calls
within transactions that may contain transactions themselves. Open nested transactions
increase concurrency by exposing updates immediately upon commit, independent of the
status of their parent transaction. My colleagues and I extended LogTM to support both
open and closed nested transactions (Nested LogTM). Nested LogTM provides version
management for nested transactions by segmenting the transaction log into a stack of log
frames. Nested LogTM provides conflict detection for a few of levels of nested
transactions by replicating the R and W bits in the cache. In the course of this work, we
reasoned about the precise semantics for nested transactions, discovering conditions
under which previously published TM systems produced unintuitive behavior. We
further proposed non-transactional escape actions, which neither abort nor cause other
transactions to abort, to facilitate the execution of system calls and irreversible actions.

A recurring problem in computer systems is the need to virtualize limited hardware
resources by saving and restoring state in software. Hardware transactional memory
systems maintain state in both conflict detection and version management that must be
virtualized to allow transactions to span system events such as thread switching and
virtual memory paging. LogTM, because it stores old values in virtual memory (the
transaction log), virtualizes its version management. The R/W bits, however, pose a
challenge to virtualization because those bits cannot be easily accessed by software.
Additionally, they limit the depth to which transactions can be nested. To overcome
these limitations, my colleagues and I developed LogTM Signature Edition (LogTM-SE),
which decouples conflict detection from cache tag and data arrays.

LogTM-SE tracks read and write sets using compact Bloom filter-like signatures. Unlike
R/W bits, signatures can be easily saved and restored by software. LogTM-SE supports
unbounded nesting by saving the signature to the transaction log on each transaction
begin (e.g., in the header of the parent transaction’s log frame) and restoring the parent’s
signature on a transaction abort, or open transaction commit. Signatures may also be
combined. LogTM-SE includes a saved signature per thread context, which represents
the combined signatures of all suspended transactions in the current thread’s process. All
load and store instructions check their local saved signature to detect conflicts with
suspended transactions. Software manipulation of signatures also allows LogTM-SE to
support virtual memory paging in transactions—e.g., by adding a migrating page’s new
physical address to the appropriate signatures.

Future Work

This is an exciting time to be a computer scientist. The transition to CMP is a
fundamental shift in the computer industry. Now, more than ever, chip makers are
interested in the interaction between hardware and software and are considering new
interfaces, including transactional memory. As I enter the next phase of my research
career, I am eager to continue promoting the development of efficient, scalable and

4

reliable software by both improving transactional memory and developing additional
hardware mechanisms that will enhance the capabilities of software designers.

The biggest challenge I see to the adoption of transactional memory is to balance the
generality of the interface against the complexity of the hardware. Based on my
experience developing LogTM, I feel the key to meeting that challenge is for the
hardware to provide simple, flexible mechanisms whose state is accessible to software.
Developing LogTM, I held the view that an atomic transaction was not a primitive
provided by the hardware, but a property guaranteed to applications by a transactional
memory system comprised of both hardware and software components. Carrying this
philosophy a step further, instead of providing begin and commit transaction instructions,
the hardware could directly expose the internal mechanisms provided to support
transactional memory. LogTM-SE, for example, provides hardware assistance for
logging, tracking of read and write sets (in signatures), and conflict detection. These
simple primitives will be easier to implement in hardware and, if exposed separately, may
be applied by language designers and compiler writers in many ways, including, but not
limited to, implementing transactional memory.

What we need most as we enter the era of many-core computing is highly concurrent
software. In order to develop highly concurrent software using transactions,
programmers are likely to need new tools to debug and optimize transactional software,
hardware support for other synchronization techniques and a more relaxed model of
atomicity such as open nested transactions. In my experience, converting lock-based
programs to use transactional memory programs does not always immediately increase
concurrency. Pitfalls, such as conflicts caused by false sharing and contention on shared
resources (e.g., free lists), can erode the performance gains of transactional memory.
Tools that report the frequency of transaction conflicts and aborts caused by contention
on particular data structures will help detect bottlenecks in transactional memory
programs. Furthermore, while transactional memory provides a simple replacement for
mutual exclusion locking, it does not directly address other common synchronization
paradigms, such as barriers, reductions and condition variables. Hardware support for
these forms of synchronization will become increasingly important as transactional
memory eliminates other synchronization bottlenecks. Finally, closed nesting in
transactional memory can lead to serialization when long-running transactions access
shared resources (e.g., by allocating memory). Open nesting can increase concurrency by
raising the level of abstraction at which transactional semantics are guaranteed. Working
with Nested LogTM, I saw that open nested transactions could dramatically increase
throughput, but that its semantics were unintuitive in many cases. I believe that finding
ways to help programmers reason about atomicity at higher levels of abstraction will
bring us much closer to the concurrency we need to effectively utilize emerging many-
core computer systems.

