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the average sized node fits in a cache block, and not the largest in-core B-tree node. This result does not
hold for out-of-core B-trees due to the enormous penalty of accessing an additional disk page.

Figure 16. B-tree node size.
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Appendix A.  B-Tree Node Sizing
B-trees are a structure that addresses the performance gap between memory and disk. The previous

discussion showed that clustering and compressing a binary tree produces a structural similar to a B-tree.
However, in order to efficiently handle insertions and deletions, B-trees reserve extra space in tree nodes.
Due to the high cost of transferring data between disk and memory, B-trees nodes are sized to fit in a disk
page when completely full. Thus it seems advantageous to size an in-core B-tree node to fit in a cache
block.

We ran a microbenchmark to verify this hypothesis. The microbenchmark constructed an in-core
B-tree containing 32767 keys, where each node except for the root contained betweend and2d keys. It
then performed a million searches for randomly selected keys in this in-core B-tree. We performed a num-
ber of experiments varying the size ofd and obtained the results shown in the graph (Figure 16).
The graph advocates a 96 byte in-core B-tree node when the cache block size is only 64 bytes. This seem-
ingly surprising result, is intuitive on closer examination. A 96 byte in-core B-tree node implies that the
node may contain 5 to 10 keys, whereas a 64 byte in-core B-tree node can contain only 3 to 6 keys. Since
the cache block size is 64 bytes, in-core B-tree nodes that contain 5 or 6 keys fit in a single cache block,
and those that contain 7 to 10 keys require 2 cache blocks. Since most B-tree nodes are not completely full,
a 96 byte tree node may fit in a cache block. Even if the tree node occupies two cache blocks, the child
pointer traversed during a search may reside in the first cache block. A larger in-core B-tree node causes
less frequent node splitting, reducing the height of the tree and resulting in fewer accesses per search.
Thus, this result indicates that for the optimal-sized in-core B-tree node, most node accesses require only a
single cache block transfer. The occasional additional cache block required, is more than compensated for
by the reduced tree height a larger node size entails. Hence we should size an in-core B-tree node such that
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performance, while we focus on the cache performance of individual memory-resident pointer-based data
structures.

Lam et al. [25] developed a theoretical model of data conflicts in the cache and analyzed the impli-
cations for blocked array algorithms. They showed that cache interference is highly sensitive to the stride
of data accesses and the size of blocks, which can result in wide variation in performance for different
matrix sizes. Their cache model captures loop nests that access arrays in a regular manner, while our model
focuses on series of pointer-path accesses to memory-resident pointer-based data structures.

LaMarca and Ladner [26, 27] considered the effects of caches on sorting algorithms, and improved
performance by restructuring these algorithms to exploit caches. In addition, they constructed a cache-con-
scious heap structure that clustered and aligned heap elements to cache blocks. Their “collective analysis”
models an algorithm’s behavior in the presence of direct-mapped caches and obtains fairly accurate predic-
tions. Their framework relies on the “independence reference assumption” [4] (memory references are
independent), and is algorithm-centric, whereas ours is data structure-centric, and specifically targets cor-
relations between multiple accesses to the same data structure.

7 Conclusions
Traditionally, in-core pointer-based data structures were designed and programmed as if memory

access costs were uniform. Increasingly expensive memory hierarchies open an opportunity to achieve sig-
nificant performance improvements by redesigning data structures to use caches more effectively. This
paper demonstrates that three techniques—clustering, compression, andcoloring—can improve the spatial
and temporal locality of pointer-based data structures. Programmers can use the framework and cache-con-
scious techniques described in this paper to design key structures for new applications.

However, applying the techniques to existing codes may require considerable effort. This paper
also shows how cache-conscious layout techniques can be semi-automatically applied. Our structure reor-
ganizer and cache-conscious memory allocator greatly reduce the programming effort and application
knowledge required.

Microbenchmarks show that cache-conscious trees outperform their naive counterparts by a factor
of 4–5, and even outperform more-complex B-trees by a factor of 1.5. For pointer-based codes from the
Olden benchmark suite, our semi-automatic cache-conscious data placement techniques result in signifi-
cant speedups (28–194%) and even outperform state-of-the-art prefetching. When applied to two large,
real-world applications, they produced speedups of 42% and 27%.
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transformation theory, based on unimodular matrix transformations, that unifies loop transforms such as
interchange, reversal, and skewing. They used a heuristic algorithm to select the best combination of loop
transformations. Carr et. al [13] used a simple model of spatial and temporal reuse of cache lines to apply
compound loop transformations. We, on the other hand, consider an entirely different class of data struc-
tures. Pointer-based data structures do not support random access, and hence changing most programs’
access patterns is impractical.

Database researchers long ago faced a similar performance gap between main memory and disk
speeds. They designed specialized data structures, such as B-trees [7, 15], to bridge this gap. In addition,
databases use clustering [6, 48, 17, 8] and compression [15] to improve a program’s virtual memory per-
formance. Appendix A shows that the spirit of database techniques carries over to in-core data structures,
but different costs lead to different design decisions.

Clustering has also been used to improve virtual memory performance of Smalltalk and LISP sys-
tems [31, 47, 51, 24, 16] by reorganizing data structures during garbage collection. These studies focused
on a program’s paging behavior, not its cache behavior. Our work differs, not only because of the different
cost for a cache miss and a page fault, but also because cache blocks are far smaller than memory pages.

Recently Calder et al. [11] have applied placement techniques developed for instruction caches
[19, 37, 30] to data. Their technique reduces cache conflicts, and is based on profiling and assumes no prior
knowledge of the data structure. Our work complements theirs by providing techniques and analysis for
designing and laying out data structures, and semi-automatic techniques that improve a structure’s cache
locality without profiling.

Several other cost models have tried to capture the hierarchical nature of memory systems. The
Uniform Memory Hierarchy (UMH) model of Alpern et al. [5] models memory as a sequence of increas-
ingly large modules <M0, M1,... >, in which each moduleMu, is represented with 3 parameters, <su, nu, lu>.
Intuitively, Mu is a box that holdsnu blocks, each of sizesu, andlu is the latency for transferring this block
to the next level of the hierarchy. The UMH model assumes that the ratio ofnu to su is the same for all
modules, the ratio ofsu to su-1 is a constant, and that the transfer cost between levels of the hierarchy can
be represented by one function,f(u). This model is closely related to the Hierarchical Memory Model
(HMM) [2], and the Block Transfer model (BT) [3]. Each model is a family of machines parameterized by
a function that represents the cost of accessing data. An HMMf(x) is a RAM machine where referencing
thek-th memory location costsf(k). For a BTf(x) machine, referencing thek-th memory location costsf(k)
as well. However, a block of lengthl starting at locationk can be transferred at costf(k) + l. The HMM
model does not take spatial locality into account and, like the BT model, only permits one data transfer at a
time, whereas the UMH model allows separate data blocks to be transferred simultaneously between dif-
ferent memory modules. To date, these models have only been applied to problems, such as matrix multi-
plications and FFT, in which the computation is oblivious to data values. Our model is more limited in
scope and focuses on the cache behavior of in-core, pointer-based data structures.

Researchers have also used empirical models of program behavior [4, 41, 46] to analyze cache per-
formance [38, 43, 21]. These efforts tailor the analysis to specific cache parameters, which limits their
scope. Two exceptions are Agarwal’s comprehensive cache model [1] and Singh’s model [42]. Agarwal’s
model uses a large number of parameters, some of which appear to require measurements to calibrate. He
provides performance validation that shows that the model’s predictions are quite accurate. However, the
model’s complexity and large number of parameters, makes it difficult to gain insight into the impact of
different cache parameters on performance. Singh presents a technique for calculating the cache miss rate
for fully associative caches from a mathematical model of the behavior of workloads. His technique
requires fewer parameters than Agarwal’s model, but again measurements appear necessary to calibrate
them. The model’s predictions are accurate for large, fully associative caches, but are not as good for small
caches. Hill [22] proposed the simple 3C model, which classifies cache misses into three categories—com-
pulsory, capacity, and conflict. The model provides an intuitive explanation for the causes of cache misses,
but it lacks predictive power. These cache models focus on analyzing and predicting a program’s cache
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5.4.3 Transparent C-trees
We apply the model to predict the performance advantage of transparent C-trees, which use both

subtree clustering and coloring. For the experiments, subtrees of size 3 were clustered in a single cache
block and 64 x 384 tree nodes (half the L2 cache capacity as 384 nodes fit in a 8K page) were colored into
a unique portion of the L2 cache. The tree size was also increased from 262,144 to 4,194,304 nodes. The
results are shown in Figure 15. As the graph shows, the model underestimated the actual speedup by only
15% and accurately predicted the shape of the curve.

6 Related Work
Previous research has attacked the processor-memory gap by reordering computations to increase

their spatial and temporal locality [18, 52, 13]. Most of this work focused on codes that access arrays in a
regular manner. Gannon et al. [18] studied an exhaustive approach that generated all possible permutations
of a loop nest and selected the best one using an evaluation function. Wolf and Lam [52] developed a loop

Figure 14. Predicted and actual effects of coloring.

Figure 15. Predicted and actual speedup for C-trees.
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5.4 Model Validation
This section validates the model in two ways. First it shows that the individual techniques of

cache-conscious design and layout correspond to the model. Second, it validates the model’s predictions of
performance improvement. The model has good predictive power, underestimating the actual performance
improvement by not more than 15% and accurately predicting the shape of speedup curves. Some reasons
for this systematic underestimation might be a lower L1 cache miss rate (assumed 1 here) and TLB perfor-
mance improvements not captured by our model.

The experimental setup is the same as before (see Section 4.1). The tree microbenchmark is used
for the experiments of 1 million repeated searches for randomly generated keys in a tree containing
2,097,151 keys with 3 tree nodes in a cache block.

5.4.1 Clustering
First, we used the model to compare the performance benefits of subtree and depth-first clustering

of trees and validated its predictions against real executions. In both cases, tree nodes were not colored to
reduce cache conflicts, so all performance improvement is due to clustering. As noted previously, the L1
cache miss rate for this large tree is likely to be very close to 1. The L2 miss rate for the subtree clustered
tree is1/log2(3+1) = 0.5. The L2 miss rate for the depth-first clustered tree is1/(2(1-0.125)) = 0.571.
Using these miss rates in Equation 5 for best-case cache-conscious speedup, we obtained the predictions in
Figure 13. The model underestimates the speedup for both clustering techniques by only 8–9%.

5.4.2 Coloring
To validate the model’s prediction of the benefit of coloring, we varied the number of tree nodes

that are uniquely mapped to a region of the cache from 384 (one 8K page’s worth) to 64 x 384 (half the L2
cache capacity). Although colored, tree nodes were not clustered, so the performance benefits are attribut-
able to the coloring. The model predicts the L2 miss rate to be 1 - (log2(nodes uniquely mapped+1)/
log2(total nodes+1)). Figure 14 shows that the model underestimates the improvement by only 8–14% and
accurately predicts the shape of the speedup curve.

Figure 13. Predicted and actual effects of clustering.
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elements into cache blocks.K can also be increased bycompressing data structure elements, which permits
an increased clustering of elements. Techniques that increaseK also increaseR, since data structurecom-
pression, as well as smarterclustering, make more efficient use of the cache and increase the likelihood of
a structure element being re-referenced before being replaced. In addition,R can be increased by judi-
ciouslycoloringdata structure elements to reduce cache conflicts.

We use the model to derive an equation for speedup in terms of cache miss rates that results from
applying cache-conscious data placement techniques to a pointer-based data structure. This metric is desir-
able, as speedup is often more meaningful than cache miss rate, and is easier to measure.

Cache-conscious speedup = (tmemory)Naive / (tmemory)Cache-conscious

When only the structure layout is changed, the number of memory references remains the same
and the equation reduces to

In the worst case, with pointer-path accesses to a data structure that is laid out naively,K = 1 andR
= 0 (i.e., each cache block contains a single element with no reuse from prior accesses) and the miss rate is
1. Then, we have

(5)

5.3 Steady-State Performance Analysis
The cache-conscious functions,K andR, must be computed before applying the model. This sec-

tion demonstrates how to calculate the steady-state performance of a cache-conscious tree.(see Section
4.2) subjected to a series of random key searches.

Consider a balanced, complete binary tree ofn nodes. Let the size of a node bee words. If the
cache block size isb words ande < b, up tob/e nodes can be clustered in a cache block. Let subtrees of
sizek = b/e nodes fit in a cache block. The tree is colored so the top(c/2 x b/e x a) nodes of the tree
map uniquely to the firstc/2 sets of the cache with no conflicts and the remaining nodes of the tree map
into nextc/2 sets of the cache (other divisions of the cache are possible). If the number of tree searches is
large, we can ignore the start-up behavior, and approximate the data structure’s performance by its amor-
tized steady-state miss rate (Equation 4).

Coloring subtree-clustered binary trees ensures that, in steady-state, the top(c/2x b/e x a) nodes
are present in the cache. A binary tree search examineslog2(n+1) nodes, and in the worst-case (random
searches on a large tree approximate this), the firstlog2((c/2x b/e x a)+1) nodes will hit in the cache, and
the remaining nodes will miss. Since subtrees of sizek = b/e nodes are clustered in cache blocks, a single
cache block transfer brings inlog2(k+1) nodes that are needed for the current search. Hence, the steady-
state miss rate for the structure is

Comparing with Equation 4, we getK = log2(k+1) andRs = log2(c/2x k x a + 1).This result indicates that
cache-conscious trees have logarithmic spatial and temporal locality functions, which intuitively appear to
be the best attainable, since the access function itself is logarithmic.
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on the distribution of the different access types). For example,D is log2(n+1) for a key search on a bal-
anced binary search tree. Let the size of an individual structure element bee. If e < b, thenb/e is the
number of structure elements that fit in a cache block. LetM represent the mapping of data structure ele-
ments to memory locations. LetK represent the average number of structure elements residing in the same
cache block that are required for the current pointer-path access.K depends on the pointer-path access
functionD, the mapping of data structure elements to memory locationsM, and the size of individual data
structure elementse relative to the cache block sizeb, and is a measure of a data structure’s spatial locality
for the pointer-path access function,D. From the definition ofK it follows that

Let R represent the number of elements of the data structure required for the current pointer-path
access that are already present in the cache because of prior accesses.R depends onD, M, e, the number of
data structure elements,n, and cache replacement which depends onc, b,anda. R(i) is the number of ele-
ments brought into the cache by prior accesses that are reused during thei-th pointer-path access, and is a
measure of a data structure’s temporal locality for the pointer-path access function,D. From the definition
of R it follows that

With these definitions, the miss rate for a single pointer-path access to a pointer-based data struc-
ture can be written as

m(i) = (number of cache misses) / (total references)

(3)

The reuse functionR(i) is highly dependent oni, for small values ofi, because initially, a data
structure suffers from cold start misses. However, one is often interested in the steady-state performance of
a data structure once start-up misses are eliminated. If a data structure is colored to reduce cache conflicts
(see Section 2.2.3), thenR(i) will attain a constant valueRs when this steady state is reached. SinceD and
K are both independent ofi, the amortized steady-state miss ratems of a data structure can be approxi-
mated by its amortized miss ratema(p), for a large, random sequence of pointer-path accessesp, all of the
same type, as follows

(4)

Equation 3 can be used to analyze the transient start-up behavior of a pointer-based data structure, and
Equation 4 to analyze its steady-state behavior.

5.2 Speedup Analysis
The cache model above shows that a pointer-based data structure’s miss rate can be decreased in

three ways—increasingK, increasingR, or decreasingD. DecreasingD is not always possible if the data
structure has been optimized for a uniform cost memory system, while the cache-conscious design tech-
niques increaseK andR. On the other hand,K can be increased by intelligentlyclustering data structure
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5 Analytic Framework
Although the cache-conscious data placement techniques can improve a structure’s spatial and

temporal locality, their description is ad hoc. The framework presented in this section addresses this diffi-
culty by quantifying their performance advantage. The framework permitsa priori estimation of the bene-
fits of these techniques. Its intended use is not to estimate the cache performance of a data structure, but
rather to compare the relative performance of a structure with its cache-conscious counterpart.

A key part of the framework is a data structure-centric cache model that analyzes the behavior of a
series of accesses that traverse pointer-paths in pointer-based data structures. A pointer-path access refer-
ences multiple elements of a data structure by traversing pointers (Figure 3). Some examples are: searching
for an element in a tree, or traversing a linked list. To make the details concrete, this paper applies the ana-
lytic framework to predict the steady-state performance of cache-conscious trees. The framework can also
predict the start-up or transient performance of pointer-based data structures.

5.1 Analytic Model
For a two level blocking cache configuration, the expected memory access time for a pointer-path

access to an in-core pointer-based data structure is given by
tmemory = (th + mL1 x tmL1 + mL1 x mL2 x tmL2) x (Memory References)

th: level 1 cache access time
mL1, mL2: miss rates for the level 1 and level 2 caches respectively

tmL1, tmL2: miss penalties for the level 1 and level 2 caches respectively

A cache-conscious data structure should minimize this memory access time. Since miss penalties
are determined by hardware, design and layout of a data structure can only attempt to minimize its miss
rate. We now develop a simple model for computing a data structure’s miss rate. Since a pointer-path
access to a data structure can reference multiple structure elements, letm(i) represent the miss rate for the
i-th pointer-path access to the structure. Given a sequence ofp pointer-path accesses to the structure, we
define the amortized miss rate as

(1)

For a long, random sequence of pointer-path accesses, this amortized miss rate can be shown to
approach a steady-state value,ms (in fact, the limit exists for all but the most pathological sequence of val-
ues form(i)). We define the amortized steady-state miss rate,ms as

(2)

Equation 2 implies thatms can be approximated byma(p) for large enoughp. Thus the memory
system performance of a pointer-based data structure that is repeatedly accessed randomly, can be charac-
terized by this steady-state, amortized miss rate.

We examine this amortized miss rate for a cache configurationC< c, b, a >,wherec is the cache
capacity in sets, b is the cache block size in words, and a is the cache associativity. Consider a pointer-
based data structure consisting ofn homogenous elements, subjected to a random sequence of pointer-path
accesses of the same type. LetD be a pointer-path access function that represents the average number of
unique references required to access an element of the structure.D depends on the data structure, and the
type of pointer-path access (if the pointer-path accesses are not of the same type,D additionally depends

ma p( )
m i( )

i 1=

p

∑
p

-----------------------
=

ms ma p( )
p ∞→
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octree, which represents the scene to be modeled. This structure is highly optimized. The program uses
implicit knowledge of the structure’s layout to eliminate pointers, much like an implicit heap, and it lays
out this structure in depth-first order (consequently, it did not make sense to use a cache-conscious heap
allocator in this case). We changed the octree to use subtree clustering and colored the data structure to
reduce cache conflicts.

VIS (Verification Interacting with Synthesis) is a system for formal verification, synthesis, and
simulation of finite state systems [9]. VIS synthesizes finite state systems and/or verifies properties of these
systems from Verilog descriptions. The fundamental data structure used in VIS is a multi-level network of
latches and combinational gates, which is represented by Binary Decision Diagrams (BDDs). Since BDDs
are DAGs, our transparent clustering and coloring technique is not directly applicable. However, we modi-
fied VIS to use our cache-conscious heap allocator with thenew-block strategy.

Figure 12 shows the results. Cache-conscious clustering and coloring produced a speedup of 42%
for RADIANCE, and cache-conscious heap allocation resulted in a speedup of 27% for VIS. The result for
VIS demonstrates that cache-conscious data placement can even improve the performance of graph-like
data structures, in which data elements have multiple parents. Significantly, very few changes to these 60–
160 thousand line programs produced these large performance improvements.

4.5 Discussion
Table 3 summarizes the trade-offs among the cache-conscious data placement techniques. The

techniques in this paper focus on single data structures. Real programs, of course, use multiple data struc-
tures, though often references to one structure predominates. Our techniques can be applied to each struc-
ture in turn to improve its performance. Future work will consider interactions among different structures.

Table 3: Summary of cache-conscious data placement techniques.

Technique
Data

Structures
Program

Knowledge

Source
Code

Modification
Suitability Performance

CC Design Universal High Large All structures High
Transparent Data
Reorganization

Tree-like Moderate Small Mostly-static trees,
lists

Moderate–High

CC Heap Allocation Universal Low Small Dynamic structures Moderate–High

Figure 12. RADIANCE and VIS Applications. Actual execution times above each bar.
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not be retired.
Treeadd andperimeter both create their pointer-based structures (trees) at program start-up and do

not subsequently modify them. Although cache-conscious data placement improves performance, the gain
is only 10–20% because structure elements are created in the same order as the dominant traversal order,
which produces a “natural” cache-conscious layout. However, all cache-conscious data placement tech-
niques outperform hardware prefetching and are competitive with software prefetching fortreeadd, and
outperform both software and hardware prefetching forperimeter. The new-block allocation policy
requires 12% and 30% more memory thanclosest andfirst-fit allocation policies, fortreeadd andperimeter
respectively (primarily due to leaf nodes being allocated in new blocks).

Health’s primary data structure is linked lists, to which elements are repeatedly added and
removed. The cache-conscious version periodically invoked the transparent clustering and coloring routine
to reorganize the lists (no attempt was made to determine the optimal interval between invocations).
Despite this overhead, transparent clustering and coloring significantly outperforming both software and
hardware prefetching. Not surprisingly, thenew-block allocation strategy, which left space in cache blocks
to add new list elements, outperformed the other allocators, at a cost of 7% additional memory.

Mst’s primary data structure is a hash table that uses chaining for collisions. It constructs this
structure at program start-up and it does not change during program execution. As forhealth, thenew-
block allocator and transparent clustering and coloring, significantly outperformed other schemes. Color-
ing did not have much impact since the hash table lists were short. Since the hash lists are short, with no
locality between lists, incorrect placement incurs a high penalty. Thenew-block allocator significantly out-
performed bothfirst-fit, andclosest allocation schemes, at a cost of only 3% extra memory.

In summary, transparent clustering and coloring outperformed hardware and software prefetching
schemes for all benchmarks, resulting in speedups of 28–138% over the base case, and 3–138% over
prefetching. With the exception oftreeadd, thenew-block allocation strategy alone outperformed prefetch-
ing by 12–194%. In addition, thenew-block allocator compares favorably with the other allocations
schemes, with low memory overheads (with the exception ofperimeter).

4.4 Macrobenchmarks
We also studied the impact of cache-conscious data placement on two real-world applications.

RADIANCE is a tool for modeling the distribution of visible radiation in an illuminated space [49]. Its
input is a three-dimensional geometric model of the space. Using radiosity equations and ray tracing, it
produces a map of spectral radiance values in a color image. RADIANCE’s primary data structure is an

Figure 11. Performance of cache-conscious data placement.

B - Base
HP - H/W prefetch
SP - S/W prefetch
FA - First-fit allocator
CA - Closest allocator

Cl - Transparent
clustering

Cl+Col - Transparent
clustering
and coloring

NA - New-block
allocator
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Figure 10 shows that both B-trees and transparent C-trees outperform randomly clustered binary trees by
up to a factor of 4–5, and depth-first clustered binary trees by up to a factor of 2.5–3. Moreover, transparent
C-trees outperform B-trees by a factor of 1.5. The reason for this is that B-trees reserve extra space in tree
nodes to handle insertion gracefully, and hence do not manage cache space as efficiently as transparent C-
trees. However, we expect B-trees to perform better than transparent C-trees when trees change due to
insertions and deletions.

4.3 Olden Benchmarks
Table 2 describes the four Olden benchmarks. We used RSIM to perform a detailed comparison of

the performance of our semi-automated cache-conscious data placement techniques—transparent cluster-
ing and coloring, and cache-conscious heap allocation (closest, first-fit, andnew-block strategies)—against
other latency reducing schemes, such as hardware prefetching (prefetching all loads and stores currently in
the reorder buffer) and software prefetching (we implement Luk and Mowry’s greedy prefetching scheme
[29] by hand).

Figure 11 shows the results. The execution times are normalized against the original, unoptimized
code. We used a commonly applied approach to attributing execution delays to various causes [34, 40]. If,
in a cycle, the processor retires the maximum number of instructions, that cycle is counted as busy time.
Otherwise, the cycle is charged to the stall time component corresponding to the first instruction that could

Table 2: Benchmark characteristics.

Name Description
Main Pointer-

Based Structures
Input Data Set

Memory
Allocated

TreeAdd Sums the values stored in tree nodes Binary tree 256 K nodes 4 MB
Health Simulation of Columbian health

care system
Doubly linked
lists

max. level = 3, max.
time =3000

828 KB

Mst Computes minimum spanning tree
of a graph

Array of singly
linked lists

512 nodes 12 KB

Perimeter Computes perimeter of regions in
images

Quadtree 4K x 4K image 64 MB

Figure 10. Binary tree microbenchmark.
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4 Evaluation of Cache-Conscious Data Placement
To evaluate the benefit of the cache-conscious techniques, we use a combination of a simple

microbenchmark, four small benchmarks from the Olden suite, and two large, real-world applications. The
microbenchmark performed a large number of random searches on different forms of balanced trees. The
Olden benchmarks were a variety of pointer-based applications written in C. The macrobenchmarks were a
60,000 line ray tracing program and a 160,000 line system that formally verifies finite state systems using
Binary Decision Diagrams (BDDs).

4.1 Methodology
The microbenchmarks and macrobenchmarks were run on a Sun Ultraserver E5000, which con-

tained 12 167Mhz UltraSPARC processors and 2 GB of memory running Solaris 2.5.1. This system has
two levels of blocking cache — a < 1K, 4, 1> L1 data cache and a < 16K, 16, 1> L2 cache. A L1 data cache
hit takes 1 cycle (i.e.,th = 1). A L1 data cache miss, with a L2 cache hit, costs 6 additional cycles (i.e.,tmL1

= 6). A L2 miss typically results in an additional 64 cycle delay (i.e.,tmL2 = 64). All benchmarks were
compiled with gcc (version 2.7.1) at the -O2 optimization level and run on a single processor of the E5000.

We also performed detailed cycle-by-cycle uniprocessor simulations of the four Olden bench-
marks using RSIM [33]. RSIM is an execution driven simulator that models a dynamically-scheduled, out-
of-order processor similar to the MIPS R10000. It simulates an aggressive memory hierarchy that includes
a non-blocking, multiported and pipelined L1 cache, and a non-blocking and pipelined L2 cache. Table 1
contains the simulation parameters.

4.2 Tree Microbenchmarks
This microbenchmark measures the performance of subtree-clustered binary trees (without inter-

nal pointer compression) that were colored to reduce cache conflicts. We call this structure atransparent
C-tree and compare its performance against an in-core B-tree (see Appendix A), also colored to reduce
cache conflicts, and against random and depth-first clustered binary trees. The microbenchmark does not
involve insertions or deletions. The tree contained 2,097,151 keys and covered 40 MB, which is forty times
the L2 cache’s size. Since the L1 cache block size is 16 bytes and its capacity is 16K bytes, it provides
practically no clustering or reuse, and hence its miss rate was very close to one. We measured the average
search time for a randomly selected element, while varying the number of repeated searches to 1 million.

Table 1: Simulation Parameters.

Issue Width 4
Functional Units 2 Int, 2 FP, 2 Addr. gen., 1 Branch
Integer Multiply, Divide 3, 9 cycles
All Other Integer 1 cycle
FP Divide, Square Root 10, 10 cycles
All Other FP 3 cycles
Reorder Buffer Size 64
Branch Prediction Scheme 2-bit history counters
Branch Prediction Buffer Size 512
L1 Data Cache 16 KB, direct-mapped, dual ported, write-through
Write Buffer Size 8
L2 Cache 256 KB, 2-way set associative, write-back
Cache Line Size 128 bytes
L1 hit 1 cycle
L1 miss 9 cycles
L2 miss 60 cycles
MSHRs L1, L2 8, 8
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early phase of a computation, and subsequently heavily referenced. Neither the construction or consump-
tion code need change, as the structure can be transparently reorganized between the two. For dynamically
changing structures, the reorganization routine may have to be periodically invoked. A programmer sup-
plies the data reorganization routine (which is templatized with respect to the structure type) with a pointer
to the root of the data structure, a function to help traverse the structure, and cache parameters. Figure 8
contains the code used to reorganize the quadtree data structure of the Olden benchmarkperimeter.

The reoganization routine copies the structure over to a contiguous block of memory. In the pro-
cess it divides the tree-like structure into subtrees, starting from the root (see Figure 4), which are then laid
out linearly. The structure is also colored such that the firstp elements traversed map uniquely to a portion
of the cache (determined by theColor_const parameter) and do not conflict with other structure elements
(see Figure 7). The value ofp and size of subtrees is determined by the cache parameters and structure ele-
ment size. In addition, care is taken to ensure that the gaps in the virtual address space, required to imple-
ment coloring correspond to multiples of the virtual memory page size.

3.2 Cache-Conscious Heap Allocation
While the transparent data reorganization limits programming effort, it currently only works for

tree-like structures that can be safely relocated. An alternative approach, which also requires little pro-
grammer intervention, is to apply cache-conscious data placement at allocation time, thereby eliminating
the need to reorganize data.

Our cache-conscious heap allocator (ccmalloc ) takes an additional parameter, which is a pointer
to a data structure element that is likely to be in contemporaneous use (for e.g., the parent of a tree node).
ccmalloc  attempts to co-locate the new data item in the same physical cache block as the existing data.
Figure 9 shows code from the Olden benchmarkhealth, which illustrates its usage. In a memory hierarchy,
different cache block sizes means that data can be co-located different ways. Our cache-conscious heap
allocator attempts to co-locate in L2 cache blocks. In our system (Sun UltraSPARC 1), the L1 cache blocks
are only 16 bytes (L2 are 64), which limits the number of objects that can fit in a block. Also, the book-
keeping overhead in the allocator is inversely proportional to the size of a cache block, so larger blocks are
both more likely to be successful and incur less overhead.

An important issue is where to allocate the new data item if a cache block is full. For two reasons,
our allocator tries to put the new data item as close to the existing pointer as possible. First, as the program-
mer has supplied a strong hint that the two items are likely to be accessed together,ccmalloc  tries to co-
locate them on the same page, to reduce the working set size. Second, putting them on the same page
ensures they will not conflict in the cache. In addition to choosing a page,ccmalloc  must select a block
on the page. Theclosest strategy tries to allocate the new element in a cache block as close to the existing
block as possible. Thenew-block strategy allocates the new data item in an unused cache block, optimisti-
cally reserving the reminder of the block for future co-location. Thefirst-fit strategy uses a first-fit policy to
find a cache block that has sufficient empty space. The next section evaluates these strategies.

Figure 9. Cache-conscious heap allocation.

void addList(struct List *list, struct Patient *patient) {

struct List *b;
while (list != NULL) {

b = list;
list = list->forward;

}
list = (struct List *) ccmalloc (sizeof(struct List), b);
list->patient = patient;
list->back = b;
list->forward = NULL;
b->forward = list;

}
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data structures and considerable programming effort. This section describes two semi-automatic ways of
applying cache-conscious data placement, both of which significantly reduce the required level of pro-
gramming effort and knowledge and architectural familiarity. The first is a transparent (semantic-preserv-
ing) reorganizer for tree-like structures, and the second is a cache-conscious heap allocator.

3.1 Transparent Cache-Conscious Data Reorganization
In a language, such as C, that permits unrestricted use of pointers, analysis techniques are not yet

powerful enough to distinguish all pointers to a structure. Without this knowledge, a system cannot move
data structures without an application’s cooperation (as it could in a language designed for garbage collec-
tion). However, if a programmer guarantees the safety of such an operation, a system can transparently
reorganize a data structure to improve locality. To test this approach, we implemented a data reorganizer
that applies the clustering and coloring (but not compression) techniques from Section 2.

This tool currently operates on tree-like structures (and lists) with homogeneous elements and
without any external pointers into the middle of the structure (or any data structure that can be decomposed
into components satisfying this property). In addition, it relaxes the strict tree property by allowing struc-
ture elements to contain a parent or predecessor pointer.

This type of reorganization is appropriate for read-mostly data structures, which are built in an

Frequently accessed

Cache

Virtual Address Space

p

C-p

data structure elements
Remaining data structure

elements

Figure 7. Coloring data structure elements to reduce cache conflicts.

p C-p p C-p p C-p p C-p

Figure 8. Transparent cache-conscious data reorganization.

main()
{

......

root = maketree(4096, ..., ...);

ccreorganize (&root, next_node ,

......

}

Quadtree next_node (Quadtree node, int i)
{

switch(i) {
case -1:

return (node->parent);
case 1:

return (node->nw);
case 2:

return (node->ne);
case 3:

return (node->sw);
case 4:

return (node->se);
}

}

Cache_blk_size, Cache_associativity,

/* Valid values for i are -1,
1 ... Max_kids */

Num_nodes, Max_kids, Cache_sets,

Color_const);
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pressed information. However, with high memory access costs, computation may be cheaper than
additional memory references. Structure compression techniques include data encodings such as key com-
pression [15], and structure encodings such as pointer elimination and fluff extraction.

Pointer elimination replaces pointers by computed offsets. The classic example of pointer elimina-
tion is the implicit heap data structure, in which children of a node are stored at known offsets in an array.
Another example is the tree structure in Figure 5, which eliminates the internal subtree pointers from the
tree in Figure 4.

Fluff extraction is based on the observation that most searches examine only a portion of individ-
ual elements, until a match is found. Fluff extraction does not compress the data structure. Instead, it sepa-
rates heavily accessed portions of data structure elements from rarely accessed portions (Figure 6). The
heavily accessed portions can then be clustered to improve locality. Applying fluff extraction to the tree in
Figure 5, results in an object that is structurally equivalent to a B-tree (except for the space in a B-tree node
reserved for insertions).

2.2.3 Coloring
Caches have finite associativity, which means that only a limited number of concurrently accessed

data elements can map to the same cache line without causing conflict misses. Coloring maps contempora-
neously-accessed elements to non-conflicting regions of the cache. Figure 7 illustrates a two-color scheme
for a 2-way set-associative cache for mapping data structure elements (easily extended to multiple colors).
A cache withC cache sets (each set containsa = associativity blocks) is partitioned into two regions, one
containingp sets, and the otherC - p sets. Frequently accessed structure elements are uniquely mapped to
the first cache region and the remaining elements are mapped to the other region. The mapping ensures that
frequently accessed data structure elements do not conflict among themselves and are not replaced by
infrequently accessed elements. For a tree structure, thep most frequently accessed elements are the top
levels of the tree.

3 Semi-Automatic Cache-Conscious Data Placement
A programmer familiar with a machine’s cache hierarchy can apply cache-conscious design to

important structures. However, these techniques may require a detailed knowledge of a program’s code and

Figure 5. Compression by pointer elimination.

for (p = Head; p != NULL; p = p->next)
{

 if (p->key == Key)
break;

}

if (p != NULL)
 Examine other fields of p;

Head

Head

Fluff

Key
Figure 6. Compression through fluff extraction.
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A cache configuration C is a vector< c, b, a > where:
c = cache capacity in sets
b = cache block size in words
a = cache associativity.

For example, a two-way set-associative 64 Kbyte cache with 64 byte blocks is <512, 16, 2> (assuming 4
byte words).

2.2 Design and Layout Techniques
This section discusses three general techniques—clustering, compression, andcoloring—that can

be combined in a wide variety of ways to produce cache-efficient data structures. The running example in
this section is binary trees.

2.2.1 Clustering
Clustering tries to pack, in a cache block, data structure elements that are likely to be accessed suc-

cessively. Clustering improves spatial and temporal locality and provides automatic prefetching.
An effective way to cluster a tree is to pack subtrees into a cache block. Figure 4 illustrates subtree

clustering for a binary tree. An intuitive justification for binary subtree clustering is as follows (detailed
analysis is in Section 5.3). For a series of random tree searches, the probability of accessing either child of
a node is 1/2. Withk nodes in a subtree clustered in a cache block, the expected number of accesses to the
block is the height of the subtree,log2(k+1), which is larger than 2 fork > 3. An alternative is a depth-first
clustering scheme, in which thek nodes in a block form a single parent-child-grandchild-... chain. In this
case, the expected number of accesses to the block is:

Of course, this analysis assumes a random access pattern. For specific access patterns, such as depth-first
search, other clustering schemes may be better. The disadvantage of subtree clustering is that tree modifi-
cations can destroy locality. However, for trees that change infrequently, clustering is effective.

2.2.2 Compression
Compressing data structure elements enables more elements to be clustered in a cache block. This

both increases cache block utilization and shrinks a structure’s memory footprint, which can reduce capac-
ity and conflict misses. Compression typically requires additional processor operations to decode com-

Figure 4. Subtree Clustering.
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coloring techniques to the structure. A programmer only must supply a function to help traverse the
data structure. In addition, the section describes a heap allocator that performs cache-conscious data
placement at allocation time. In this case, a programmer only supplies an additional argument tomal-
loc.

• Evaluation of cache-conscious data placement—Section 4 presents measurements that demonstrate
the performance benefits of cache-conscious data placement. Microbenchmarks show that cache-con-
scious trees outperform their naive counterparts by a factor of 4–5, and can even outperform B-trees by
a factor of 1.5. We also applied our techniques to pointer-intensive programs in the Olden benchmark
suite [39]. Semi-automatic cache-conscious data placement produced significant speedups, 28–194%,
and even outperformed state-of-the-art prefetching by 3%–194%. In addition, we applied the tech-
niques to full application programs. RADIANCE [49], a widely used ray-tracing program, ran 42%
faster, and VIS [9], a model verification package, improved by 27%.

• Analytic framework—Section 5 presents an analytic framework for evaluating and quantifying the
performance benefits of cache-conscious pointer-based data structures. A key part of this framework is
a data structure-centric cache model of a series of accesses that traverse a pointer-based data structure.
The model characterizes the performance of a pointer-based data structure by its amortized miss rate
over a sequence of pointer-path accesses. This paper applies the framework to cache-conscious trees
and validates its predictions with microbenchmarks. The model has good predictive power. Our ana-
lytic framework and techniques work well for tree-like structures, lists, and certain kinds of hash
tables. More complex graph-like structures, although difficult to analyze, still benefit from our cache-
conscious data placement techniques.

• Differences between cache-memory and memory-disk performance gaps—Appendix A illustrates
subtle differences between the cache-memory and the memory-disk performance gaps, such as an opti-
mally sized in-core B-tree node occupying 1.5 cache blocks, rather than a single cache block due to
different access penalties.

2 Cache-Conscious Design Techniques
The section shows how to design and layout data structures for a memory organization that

includes caches.

2.1 Cache Parameters
Caches can be parameterized by capacity, block size, associativity, indexing (virtual or physical),

write hit/miss policy, and non-blocking degree. This paper focuses on three essential parameters: capacity,
block size, and associativity. The other parameters are likely to have second-order effects (with the possi-
ble exception of non-blocking degree, which we did not consider as a design parameter in this paper).

Figure 3. Pointer-path access in a binary tree.
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disparity in memory-access costs. Figure 2 shows the opportunity cost (in potential instruction executions)
of referencing data at various levels of a memory hierarchy. The 1980 cost (1–4) is for a VAX 11/780 [14],
and the 1997 cost (1–256) is for an UltraSparc-2 [20]. The difference between a cache hit and miss is now
almost two orders of magnitude. As a result, many programs’ performance is dominated by memory refer-
ences. Moreover, the large cost disparity undercuts the fundamental random-access memory (RAM) model
used by most programmers to design data structures and algorithms.

Many hardware and software techniques—such as prefetching [32, 12], multithreading [28, 45],
non-blocking caches [23], dynamic instruction scheduling, and speculative execution—have attempted to
reduce or tolerate memory latency. These techniques require complex hardware and compilers, but have
proven ineffective for many programs [10, 36].

The fundamental problem with these techniques is that they attack the manifestation (memory
latency), not the source (poor reference locality), of the bottleneck. The only research that directly
addressed this bottleneck has focused on improving cache locality in scientific programs that manipulate
dense matrices [52, 13, 18]. Two properties of arrays underlie this work: uniform, random access to ele-
ments and a number theoretic basis for statically analyzing data dependencies.

Many data structures, however, contain pointers and share neither property. Pointer-based struc-
tures, fortunately, possess another, extremely useful property: elements in a compound data structure can
be placed in different memory (and cache) locations without affecting a program’s semantics. This paper
describes techniques, useful in designing pointer-based data structures to exploit thislocation-transpar-
ency property to reduce memory access costs, and provides an analytic framework for these techniques.
Applying the techniques to existing programs may require considerable effort. To reduce the barrier of pro-
gramming effort and application understanding, this paper also presents two semi-automatic techniques for
improving cache performance. Measurements demonstrate that cache-conscious data structures and data
placement offer significant performance benefits—in most cases, outperforming state-of-the-art prefetch-
ing.

This paper makes the following contributions:
• Cache-conscious design techniques—careful placement of structure elements in memory provides a

programmer with a mechanism to improve the performance of a memory hierarchy. Three tech-
niques—clustering, compression, and coloring—improve cache performance by increasing a data
structure’s spatial and temporal locality and by reducing cache conflicts. Clustering places structure
elements likely to be accessed in succession in the same cache block. Compression reduces structure
size or separates the active portion of structure elements. Coloring maps concurrently-accessed ele-
ments to non-conflicting regions of the cache. Section 2 discusses these techniques.

• Semi-automatic cache-conscious data placement—Section 3 describes a transparent data reorganizer
for tree-like structures (also lists and hash tables that use chaining), which applies the clustering and
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Abstract
Processor and memory technology trends show a continual increase in the cost of accessing main
memory. Machine designers have tried to mitigate the effect of this trend through hardware and
software prefetching, multiple levels of cache, non-blocking caches, dynamic instruction schedul-
ing, speculative execution, etc.
These techniques, unfortunately, have only been partially successful for pointer-manipulating pro-
grams. This paper explores the complementary approach of redesigning and reorganizing data
structures to improve cache locality. Pointer-based structures allow data to be placed in arbitrary
locations in memory, and consequently in a cache. This freedom enables a programmer to improve
performance by applying techniques such as clustering, compression, and coloring.
To reduce the cost and complexity of applying these techniques, this paper also presents two semi-
automatic techniques for implementing cache-conscious data structures with minimal programmer
effort. The first reorganizes tree-like data structures to improve locality. The second is a cache-
conscious heap allocator. Our evaluations—with a tree microbenchmark, four Olden benchmarks,
and two large applications—show that cache-conscious data structures, including those imple-
mented by semi-automatic techniques, can produce large performance improvements and outper-
form hardware and software prefetching.

1 Introduction
Since 1980, microprocessor performance has improved 60% per year. Over the same period, mem-

ory access time decreased only 10% per year [35], which has produced a large processor-memory imbal-
ance. Figure 1 shows that the resulting processor–memory gap grew at 45% per year. Processor memory
caches are the ubiquitous hardware solution to this problem [50, 44]. In the beginning, a single level of
cache sufficed, but the increasing imbalance now demands a memory hierarchy, which introduces a large
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Figure 1. Processor-memory performance imbalance [35].
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