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Abstract 

Querying large numbers of data sources is gain-
ing importance due to increasing numbers of in-
dependent data providers. One of the key chal-
lenges is executing queries on all relevant infor-
mation sources in a scalable fashion and retriev-
ing fresh results. The key to scalability is to send 
queries only to the relevant servers and avoid 
wasting resources on data sources which will not 
provide any results. Thus, a catalog service, 
which would determine the relevant data sources 
given a query, is an essential component in effi-
ciently processing queries in a distributed envi-
ronment. This paper proposes a catalog frame-
work which is distributed across the data sources 
themselves and does not require any central in-
frastructure. As new data sources become avail-
able, they automatically become part of the cata-
log service infrastructure, which allows scalabil-
ity to large numbers of nodes. Furthermore, we 
propose techniques for workload adaptability. 
Using simulation and real-world data we show 
that our approach is valid and can scale to thou-
sands of data sources. 

1. Introduction 

Our vision is demonstrated by the following scenario: At 
some computer terminal of a large distributed system a 
user issues a query. Based on the query, the system de-
termines where to look for answers and contacts each 
node containing relevant data. Upon completion of the 
query, regardless of the number of results or how they are 
ranked and presented, the system guarantees that all the 

relevant data sources known at query submission time 
have been contacted. The naïve way to implement our 
vision would be to send a query to each of the participat-
ing nodes in the network. While this approach would 
work for a small number of data providers it certainly 
does not scale. Hence, when a system incorporates thou-
sands of nodes, a facility is needed that allows the selec-
tion of the subset of nodes that will produce results, leav-
ing out nodes that will definitely not produce results. Such 
a facility implies the deployment of catalog-like function-
ality. 

A catalog service in a large distributed system can be 
used to determine which nodes should receive queries 
based on query content. Additionally it can be used to 
perform other tasks such as query optimization in a dis-
tributed environment. There are three basic designs for 
building a catalog service for a distributed system: 1) A 
central catalog service, 2) a fully-replicated catalog on 
each participating node, or 3) a fully distributed catalog 
service. A centralized design implies a resource exclu-
sively dedicated to servicing catalog requests. Existing 
technology allows the construction of such servers that 
could sufficiently handle thousands of nodes. Such a solu-
tion, however, requires a central infrastructure and a 
scheme to share expenses among the participating peers. 
To avoid this each node in the system can take over the 
burden of catalog maintenance. To this end, one simple 
design is the use of a fully replicated catalog on each peer 
(as practiced in distributed database systems [18]). When 
a new peer joins the system it downloads the catalog from 
any existing peer and it can immediately query the entire 
community. Nevertheless, maintenance of the catalogs 
requires O(n2) number of messages for the formation of a 
network of n nodes. Clearly, this is not scalable to thou-
sands of nodes. 

We focus on a fully distributed architecture motivated 
by recent advances in peer-to-peer computing (P2P). P2P 
systems research has proposed a number of new distrib-
uted architectures with desirable traits, including no cen-
tral infrastructure, better utilization of distributed re-
sources, and fault tolerance. Particular attention has been 
paid into making these systems scalable to large numbers 
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of nodes, avoiding shortcomings of the early P2P pioneers 
such as file sharing systems like Gnutella [9] and Napster 
[17]. Representatives of scalable location and routing pro-
tocols are CAN [21], Pastry [22], Chord [25] and Tapes-
try [32], henceforth referred to as Distributed Hash Tables 
or DHTs. Each of these protocols, however, allows only 
simple key based lookup queries. 

This paper studies the feasibility of using existing P2P 
technology as the basis for efficiently facilitating complex 
queries over an arbitrary large number of data reposito-
ries. Given an arbitrary query q and a large number of 
data repositories, our goal is to send q only to the reposi-
tories that have data relevant to q without relying on a 
centralized catalog infrastructure. Additionally, data re-
positories must be able to join the P2P system and make 
their data available for queries. Our design builds on cur-
rent P2P technologies. The contributions of this work are: 
• A catalog framework for locating data sources  
• A fully decentralized design of a distributed catalog 

service that allows data providers to join and make 
their data query-able by all existing peers. 

• Techniques to adapt to the query workload and dis-
tribute the catalog service load fairly across the par-
ticipating nodes. 

• An experimental evaluation of a distributed catalog for 
locating data sources in large distributed XML reposi-
tories. 
The rest of this paper is organized as follows: The sys-

tem model of our envisioned catalog service is described 
in Section 2 where a simple example demonstrates its 
application. Section 3 discusses the desired features of the 
data summaries for our distributed catalog and proposes 
two designs. In Section 4 we show how our system 
evolves as new nodes join. Section 5 describes how the 
catalog service is used in order to direct queries to the 
relevant data sources. Section 6 points out load balancing 
issues and proposes effective solutions. Section 7 presents 
our experiments. Related work and Conclusions (Sections 
8 and 9) follow at the end. 

2. System Model 

Conceptually the system allows an arbitrary number of 
data providers or nodes to join and make their data avail-
able. Let Ni (1 < i� n) denote the n nodes, each of which 
publishes a set Di of data objects. When a node Ni wants 
to join the system it creates catalog information which is 
the set Ci = { (kj, Sij) | Sij is a summary of kj on node Ni} . 
The items kj are present in the data objects Di. In an XML 
repository if Di is a set of documents, the kj’s will be a 
subset of the attribute and element names in Di. Each Sij is 
summary catalog information (or data summary) corre-
sponding to kj and depends on the data on node Ni. For 
example, a data summary for the element price on node 
Ni might contain all the unique paths that lead to price as 
well as a histogram of price’s values.  

The catalog service determines which nodes a query Q 
should execute on using the functions query_parts() and 
map(). The function query_parts extracts a set of kj’ s 
from a query. Given a query Q. The function map: 
{ Q} ×{ { Ci  |  1  <  i  �  n} }    →   { Ni  |  1  <  i  �  n} , uses 
query_parts() to examine the relevant sets of data summa-
ries Sij in order to determine the nodes storing data rele-
vant to Q. Of course the catalog service may contain addi-
tional information but this paper focuses on the imple-
mentation of map when the number of nodes in the sys-
tem becomes very large. 

One possible map function would be the constant 
function map(Q, { Ci} ) = { Ni | 1< i �n} . However, such an 
implementation would not scale for large values of n since 
it would require contacting every node for every query. 
The study in [10] demonstrates on a real system that the 
key to scalability is minimizing the number of messages 
in the distributed system. Hence, our goal is to implement 
map(Q, { Ci} ) = { N | P1 ∨ P2}  where P1: Executing Q on N 
yields a non-empty results set and P2: Executing part of Q 
on N is required to produce the final result set for Q. 
Proposition P2 covers the case in which Q requires a join 
or an intersection of data across different nodes. To 
achieve our goal, our implementation of map employs a 
fully distributed catalog design based on DHTs. 

2.1. DHT Background 

The DHTs have very desirable characteristics. Their goal 
is to provide the efficient location of data items in a very 
large and dynamic distributed system without relying on 
any centralized infrastructure. Thus, given a key, the cor-
responding data item can be efficiently located using only 
O(logn) network messages ([22], [25]) where n is the total 
number of nodes in the system. Moreover, the distributed 
system evolves gracefully and can scale to very large 
numbers of nodes. Hence, current DHT designs provide a 
means to create large fully distributed dynamic networks 
of nodes for storage and efficient retrieval of objects. Our 
work leverages this functionality to provide a scalable 
fully distributed catalog service. Chord, which serves as 
the experimental substrate of our work, is publicly avail-
able and has been successfully used in other projects such 
as CFS [7]. Nevertheless, our design does not depend on 
the specific DHT implementation and can work with any 
of the aforementioned DHT protocols. 

The Chord protocol supports just one lookup opera-
tion: It maps a given key to a node. Depending on the 
application this node is responsible for associating the key 
with the corresponding data item (object). Chord uses 
hashing to map both keys and node identifiers (such as IP 
address and port) onto the identifier ring (Figure 1). Each 
key is assigned to its successor node, which is the nearest 
node traveling the ring clockwise. Nodes and keys may be 
added or removed at any time, while Chord maintains 
efficient lookups using just O(logn) state on each node in 



the system. For a detailed description of Chord and its 
algorithms refer to [25].  

 

2.2. Keys and Objects 

One of the design challenges is to determine how to map 
the catalog information to the DHT. Based on our concep-
tual catalog model the obvious choice for keys are the 
items kj, henceforth also referred to as keys. The objects 
stored are sets of data summaries Sij, and not just single 
data summaries since mapping from kj to Sij is not 1 to 1.  

An example using a simple XPath [29] query illus-
trates how the outlined concepts can be put into practice. 
Consider four XML repositories which contain the data 
shown in Table 1. Assume that element tags are chosen as 
keys kj and that each summary Sij contains a set of all the 
possible paths in the data that lead to kj. For example 
S1, author ={ library/catalogs/book, library/reservation/book}  
while S2, author = { bookstore/book} . Table 2 shows how the 
DHT assigned the keys to the nodes that joined the net-
work. The summary sets are stored along with the keys. 

 

Paths in XML Data 
N1 library/catalogs/book/author,  

library/reservation/book/author 
N2 bookstore/book/price, bookstore/book/author 
N3 bookstore/book/price, bookstore/book/author 
N4 bookstore/book/price, bookstore/book/author 

Table 1: Nodes with sample data 

Query Q1=/library/reservation//book illustrates how the 
data summaries can be used. Q1, submitted on N3, asks for 
all reserved books from all the library nodes in the P2P 
network (Figure 2). Determining which nodes to send Q1 
to is done as follows: The tag name book serves as the 
DHT lookup key. Q1 is sent by the DHT layer to N4 (step 
1), which stores the portion of the catalog which contains 
book information. On N4, the path in Q1 is matched 
against Si,book, (1<i<4). N4 replies to N3 with the node set 
{ N1}  (step 2) since only S1,book matches the given query 
and so N1 is the only node that stores at least one XML 
document that contains a book element with a library an-
cestor. Finally, N3 sends Q1 to N1 for execution (step 3). 
The example illustrates one possible way to use DHTs by 
appropriately defining kj and Sij for XML repositories. 

 

DHT Index 
N1 author:{ (S1,author), (S2,author), (S3,author), (S4,author)}  
N2 reservation: { (S1,res.)}  
N3 -- 
N4 book: { (S1,book), (S2,book), (S3,book), (S4,book)} , 

price: { (S2,price), (S3,price), (S4,price)}  

Table 2: Part of the DHT index on each node 

 

3. Data Summaries 

The extraction of the data summaries Sij from the set Di is 
the next step in the design process. Considering how the 
summaries could be used can provide insights into how 
they should be extracted from the data on each node. As-
sume that our input queries are XPath expressions and the 
data on the participating nodes are XML documents. Con-
sider the path expression //book//price. Assuming that 
book is chosen as the lookup key for this path, the set of 
data summaries { Si,book}  should enable the catalog to find 
nodes that have documents in which price is a descendant 
of book. Consequently data summaries should contain 
descendant information for book. Alternatively, if price is 
used as the lookup key, ancestor information is required. 
Besides structural summaries, summarizing values is 
equally important. Consider the example query 
//book[category = ”Peer-to-Peer” ]. If there are 100,000 
nodes that store book information but only 20 of them 
specialize in “Peer-to-Peer”  books, it would be much 
more efficient to send such a query only to the 20 relevant 
nodes and not to all nodes that have books. 

Flexibility in data summarization is also an essential 
requirement for our system since there are various data 
value domains and schemas. There are many different 
data summarization techniques and naturally none of them 
is suitable in every case. Consequently, data providers 
that join the system should enjoy the flexibility of choos-
ing from a variety summarization techniques that fit their 
data. For example histograms [13] are suitable for nu-
meric values while Bloom filters [3] are more suitable for 
web addresses. In some cases no summarization is neces-
sary, such as the domain of all states in the USA. 

Note a fine distinction between the data summaries 
provided to the system by a data source Ns and the sum-
maries actually stored on some other node Nc in the sys-

N1 N2 

N3 N4 

Q1 
(1) Q1, book 

(2) { N1}  

(3) execute Q1 

Q1 

Figure 2: Execution of Q1 

N1 

Nodes 

Keys 

N2 successor of N1 

Figure 1: The Chord identifier ring 



tem. Conceptually, Nc receives a set { (kj, Sij)}  from the 
other nodes in the system. However, it is not required to 
store each Sij as provided by the data source. Nc can store 
the summary information however it desires, but should 
not degrade its accuracy or otherwise change its content. 

In this paper we evaluate our design on large networks 
of independent XML data repositories. Two path summa-
rization methods for XML data are presented that are suit-
able for the purposes of our experiments. For both designs 
we adopt the choice of keys and summaries made in the 
initial example (Section 2.2): XML element tags and at-
tribute names are our keys kj. For each kj the correspond-
ing data summary Sij stores all possible unique paths to kj, 
which, in essence, corresponds to structural ancestor in-
formation. During a lookup operation, the last step of an 
XPath branch is used, which eliminates false positives 
from the structural summaries. Other configurations are 
also possible. 

 The DHT layer distributes the set of keys across the 
nodes in the system. The catalog CTN on node N holds 
the set of the data summaries for keys assigned to N. In 
essence CTN implements the map function for XPath que-
ries for all keys assigned to N. For our study we imple-
mented CTN using the methods described below. The 
performance of these implementations was then measured 
and the results were used in our simulation experiments. 

3.1. Generic B+-Tree 

This method for implementing CTN is the most generic in 
the sense that it is both simple and independent of the 
structure of the data summaries. The keys of the B+-Tree 
are the pairs (k, N) where k corresponds to the element 
tag or the attribute name and N is the node that contrib-
uted a summary S for k. Only a prefix lookup on k is re-
quired but having N in the key helps speed up the algo-
rithm in Section 5. S contains two parts: The structural 
summary SS and the value summary VS, both of which 
are optional.  

The simplest way to implement SS is to store all 
unique paths that lead to k in the data of N. The space 
required for this will be usually small. Let c denote the 
total number of paths that lead to k; let l denote the aver-
age depth of each path and finally, let t denote the size in 
bytes allocated for storing each tag on the path. The size 
of SS is then approximately s = c⋅l⋅t. To make s independ-
ent of the length of the element names, tags are hashed to 
32-bit integers. Using reasonable values of 10, 4, and 4 
([5]), for c, l, and t, respectively, the size of SS will be 
about 160 bytes. If the size of SS becomes a performance 
limiting issue in pathological cases (very large c or l) 
more advanced summarization techniques ([1], [19]) can 
be applied. VS depends on the value domain of k. If k has 
numeric values simple ranges suffice. Bloom filters [3] 
can be used when we are interested only in equality que-
ries on the value domain of k. 

Given a simple XPath query Q: /a1/a2/.../an/k op x the 
nodes that must receive Q are determined as follows: 
Each Si that corresponds to k and node Ni is examined. Q 
will be sent to Ni only if SSi contains /a1/a2/.../an and 
VSi op x =TRUE (op is an operator such as ‘=’  or ‘<’ ). As 
expected, the set { Ni}  returned by this procedure will con-
tain some false positives, mainly because of the accuracy 
of the value summary. The structural summary has a very 
low probability of producing false positives, when a good 
hash function is used, because hash collisions must occur 
in every element of a path to produce a false positive. 
Nevertheless, false negatives can always be avoided, as 
long as the summaries are updated regularly. Note that SS 
can also handle XPath queries with wildcards and “ //” . 

One problem arises when the number of B+-tree en-
tries for k becomes large, in which case the system may 
need to match a path against a large number of potentially 
very similar structural summaries. The solution is to re-
place all keys (k, Ni) with keys (k, Ci) that correspond to 
data items CSi. Ci corresponds to a cluster of nodes with 
similar structure and CSi is a new compound summary 
constructed by merging the structural summaries of the 
nodes in Ci. The paths contained in all Sis are merged and 
to each path p, a subset RN is assigned. RN contains the 
nodes that either contain or don’ t contain p, depending on 
which choice yields a smaller set. The other alternative 
for handling large numbers of nodes is to use an index 
keyed by the path. 

3.2. Path Index 

A path index is an alternative which is less flexible than 
the previous method but more efficient for elements that 
appear on large numbers of nodes. Flexibility is limited 
because this design requires that the structural summaries 
contain paths while the previous method works for any 
structural summary. Processing one summary per node is, 
however, no longer necessary. Consider again the query 
Q: /a1/a2/…/an/k. The DHT will relay Q based on k to Nc 
for the purposes of catalog lookup. On Nc, a B+-Tree 
keyed on inverse paths will guide the lookup. The data 
items in the tree are lists of nodes and each node is spe-
cially annotated if it has provided a value summary for the 
specific path. Thus, if the B+-tree contains the key 
k/an/…/a2/a1, retrieving the corresponding data item will 
yield the nodes in the system that contain /a1/a2/…/an/k. In 
order to make the key sizes of the index less variable the 
tags are replaced with constant size integers using hash-
ing. Processing queries with wildcards is also possible. 
For example, Q: //a1//* /an/k can be processed by initiating 
a range scan using the B+-Tree key k/an, and evaluating 
each subsequent B+-Tree key for at least one element of 
any tag above an and an element a1 somewhere in the path 
above all the others. 

With this structure a node must be associated with 
each path it contributes and consequently with each corre-
sponding key in the B+-Tree. For example if node N con-



tributes 10,000 different paths for tag k, a reference to N 
has to appear in 10,000 data items in the B+-Tree. Simi-
larly, if a path is present on 10,000 nodes its associated 
data item must contain references to all these nodes. Size 
concerns stemming from these cases can be easily ad-
dressed by either clustering nodes with similar documents 
into groups or by simply compressing the node lists. Our 
study assumes that a scalable, efficient and reasonably 
sized index is available on each participating node. 

4. System Evolution 

System evolution, such as bootstrapping and node arrival 
and departures, is defined by the Chord protocol. The 
specification, however, refers only to the keys and not to 
the objects corresponding to those keys. It is up to the 
application to manage storage and retrieval of the objects 
corresponding to the Chord keys. This section describes 
how the distributed catalog service evolves when nodes 
join, leave and update their data, and how objects, which 
are the sets of data summaries, are stored and accessed. 
 

4.1. Arriving Nodes 

Section 2 outlines a model according to which nodes cre-
ate the data they provide to the P2P network. Each new 
node Nn that joins the system creates the set Cn which 
makes the data of Nn query-able by the nodes already in 
the system. First Nn contacts any node Nc in the system 
(Step 1, Figure 3). Chord finds Nn’s successor Ns in the 
identifier ring. The new node Nn, now part of the identi-
fier ring, injects each (knj, Snj) ∈ Cn into the system and 
the Chord protocol decides which nodes should receive 
the new catalog information (Step 2). Since uploading 
Nn’s catalog information may take some time, not all the 
data on Cn becomes immediately query-able by existing 
nodes in the system. Only after all the summaries in Cn 
have found their way to their hosts is Nn’s entire data visi-
ble to other nodes in the system. 

Additionally, Nn becomes part of the catalog infra-
structure and is available to share the load of the catalog 
service by hosting parts of the summary sets already in 
the network. The Chord protocol will assign to Nn keys kj 
for which Nn is the successor in the identifier ring. These 
keys are located on Ns (k1 and k2, Figure 3). Our design 
co-locates keys and summary sets in the interest of avoid-
ing one extra network message during lookup. Therefore, 
it follows that when Nn joins the system both keys and 
data summaries need to be moved from Ns to Nn (Step 3). 

Moving the keys from one node to another happens 
much faster than moving the summaries, because the for-
mer are smaller. Thus, each kj for which Nn becomes re-
sponsible initially points to Ns until the corresponding 
data summary Sij is fully transferred to Nn (Step 2). Dur-
ing this transitional period lookups will be relayed from 
Nn to Ns. Figure 3 shows the time line of Nn joining the 
system. 

 

4.2. Updates and Departures 

Catalog information stored in the system may need to be 
updated as the data on individual nodes changes. Update 
requests are handled in a similar way as insertion of in-
formation during join (Step 2, Figure 3). Updates to sum-
maries follow the “single writer/multiple readers”  model; 
only a node that has created a data summary (the owner) 
is allowed to change its content. Nodes that store the data 
summaries do not alter their content, although they may 
alter the way they are stored.  

When a node N decides to leave the system, it must 
hand over the catalog information to its successor accord-
ing to the Chord protocol. Furthermore, it notifies the 
nodes that hold N’s catalog data. To achieve this, N uses 
the keys it inserted into the system to find the nodes that 
currently hold N’s catalog information. Another valid 
approach is one where N does not do anything upon leav-
ing the system and lets the remaining nodes detect its ab-
sence over time. 

4.3. Expected System Volatility 

The system volatility, the rate at which nodes join and 
leave the system, is a key factor to consider when design-
ing such a system. If this rate is expected to be high the 
design should avoid moving large amounts of data across 
nodes as part of system maintenance. DHTs generally try 
to minimize the amount of state stored on each node in 
order to be able to facilitate any level of volatility. Cata-
log information, which is moved across nodes, is not 
large, but its size would probably be an issue in an envi-
ronment similar to those of other file-sharing systems like 
Gnutella and Napster, in which there is a high turnover of 
nodes. Our target, however, is a community of independ-
ent data providers that are interested in making their data 
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Nn k1, { Si1}  
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Figure 3: Node Nn joining the network 



widely query-able and therefore are highly unlikely to 
have the same behavior as individuals sharing music files. 

We expect that nodes, having joined, will leave only 
for scheduled maintenance and then rejoin. In this case 
they do not need to reinsert their catalog information into 
the system as they do during the initial join phase. There-
fore, the goal is to achieve high throughput of catalog 
lookup requests and not to mitigate the impact of system 
volatility by minimizing the amount of catalog data stored 
on each node. Nevertheless, the dynamic maintenance 
algorithms of DHT designs are important even in a low 
volatility environment, since they allow new nodes to join 
in a scalable way. 

5. Processing Catalog Queries 

Given an XPath query, a catalog lookup determines which 
nodes in the system should receive the query. The system 
can handle general branching XPath queries. Consider the 
following example which is based on the sample network 
introduced in Section 2.2 and the query Q2: 
//book/[author=”J. Smith” ]/price. Q2 retrieves the prices 
of books by author “J. Smith”  and has two branches: 

Q21: //book/price 
Q22: //book/author =”J. Smith”  

Both branches must be satisfied and thus the query will be 
sent only to those nodes that have both paths in their re-
positories. Figure 4 shows the steps for each query 
branch. Q2 is sent to N4 (step1), where, based on price and 
Q21, the set N21={ N2, N3, N4}  is produced. Q2 and N21 are 
then forwarded to N1, which is responsible for author 
elements (step 2). Q22 contains a value predicate on au-
thor. Hence, both structural and value summaries are util-
ized to select relevant nodes. Assuming only N2 has au-
thors named “J. Smith” , the lookup using Q22 yields the 
set N22={ N2}  (step 3). Finally, N3 sends Q2 to N2 for exe-
cution (step 4), since it is the only node appearing in 
N21 ∩ N22. 

 
The class of XPath queries that the system can handle are 
of the form p = /a1[b1]/a2[b2]/…/an[bn] op value. Each bi is 
in turn a path. The path steps can include wildcards and 
the ‘ //’  navigation operator. The structural part of the 
XPath query is handled using the structural catalog infor-
mation. The value predicate uses the value summaries. 
The implementation of query_parts selects the target tag 

name of each branch of the query. The algorithm for re-
solving this general query is as follows: 

1: Extract all the N simple paths spi from p. Simple 
paths have the form spi=/ai1/ai2/…/ai,M i op value 
(1<i<N). Let the set of candidate nodes be N = ∅. 

2: Pick the next ai,M i in the set T of targets of the simple 
paths. 

3: Visit the node Nc responsible for ai,M i and retrieve the 
set of candidate nodes Ni for spi using the catalog in-
formation on Nc. 

4: Set N = N ∩ Ni, or N = Ni if N = ∅. T = T - { ai,M i}  
5: If T ≠≠≠≠ ∅ go to 2. 
6: N contains the nodes on which p should be submit-

ted. 
Caching catalog query results or even summaries on 

nodes that submit queries is feasible. Of course this would 
increase performance by offloading frequently contacted 
nodes, but also would raise cache maintenance and invali-
dation issues. Our study does not deal with caching cata-
log query results or data summaries since accessing the 
primary copy of a data summary is guaranteed to fetch the 
most up to date results. Incorporating caching as an addi-
tional layer over the present design is left as future work. 

6. Catalog Lookup Scalability Issues 

Current implementations of DHTs balance the load across 
participating nodes by distributing keys uniformly under 
the assumption that the keys are accessed uniformly. Our 
system cannot be load balanced by relying solely on the 
provisions of the DHT layer because some elements will 
be used in queries more frequently than others. The result 
will be a higher processing load for catalog queries on the 
nodes that are responsible for frequently accessed ele-
ments, which invalidates the uniformity assumption of 
key accesses present in DHT designs. Furthermore, it can 
lead to scalability limits unless the processing load for 
popular elements is distributed across more nodes in the 
system. Even if the processing load of catalog lookups on 
nodes is negligible compared to the processing of the ac-
tual queries on each node, such lookups still consume 
resources such as available connections. This section de-
scribes techniques that allow the redistribution of the cata-
log query load dynamically based on the global query 
workload. It is assumed that nodes are willing assist with 
load balancing. 

6.1. Structure Based Splitting 

The last step in a branch of an XPath query is used as the 
lookup key for locating the corresponding summary set. 
When the request rate for a key exceeds a specific thresh-
old, the affected node initiates a key split which forms 
new keys. This has the effect of transferring part of the 
load to other nodes. The following example illustrates 
how this technique works (Figure 5). Consider the tag 
price and for illustration purposes, assume bike, car, boat 

N1 N2 

N3 N4 

Q2 
(1) Q2,Q21, price 

(2) Q2,Q22, author, { N2, N3, N4}  

Q2 

(4) execute Q2 

(3) { N2,}  

Figure 4: Processing strategy for Q2 



and house are its possible parent elements. Let N hold the 
data summaries for price. Once N detects that requests for 
price exceed its capacity for catalog requests it initiates a 
split of price. Thus, N creates four new keys: 
k1 = bike/price, k2 = car/price, k3 = boat/price and 
k4 = house/price. Then N creates a new set of data sum-
maries by appropriately splitting the existing data summa-
ries of price. The new keys k1, k2, k3, k4 and the corre-
sponding partial summaries are handed to the DHT layer 
and eventually end up on nodes N1, N2, N3 and N4 respec-
tively. Care is taken that N does not receive any of the 
new keys. Finally, N has two choices for what to do with 
the initial data summaries for price: it keeps them (split-
replicate) or it discards them (split-toss). Both approaches 
are valid since, combined, the new summaries contain the 
same information as the old summaries. Updates to the 
price summary requested by price’s owners have to be 
propagated to the affected new summaries in either case. 

 
Once the tag price has been split, query processing 

changes slightly. When some node Nq submits a query 
q1=//car/price < $10,000, q1 will initially arrive on N 
which is responsible for price summaries. N will then 
respond to Nq that price has been split and that new keys 
of level 2 should be used when submitting catalog look-
ups. Nq will cache this information and will resubmit the 
catalog lookup request using the new key car/price. Even-
tually all nodes that request price catalog information will 
find out about the split and replace the key price with its 
corresponding level 2 key for subsequent queries. The 
level of a key indicates the number of path steps contained 
in it. Initially all keys are level 1. 

There is, however, a class of queries that will not be 
able to use a level 2 key. Consider the query 
q2=//store[name=”A” ]//price < $1000 submitted by node 
Nq in which the parent of price is not defined. If N fol-
lowed the split-replicate policy during the splitting of 
price, it will process q2 itself. If N followed the split-toss 
policy, Nq being aware of this fact will have to submit 
four catalog queries using the four possible keys and then 
merge the results from nodes N1, N2, N3 and N4.  

Query q2 makes one trade-off between split-toss and 
split-replicate apparent: data replication versus more mes-

sages per query. Another arises in when the split is no 
longer necessary because of changes in the global work-
load. Using split-replicate, any of the nodes N1, N2, N3 
and N4 can safely discard its price summaries when it 
notices that it does not receive any significant traffic. Us-
ing, split-toss, however, all nodes involved in the split 
need to coordinate their actions. 

In general, the structure-based splitting (SBS) algo-
rithm takes as input the key k to split and the set 
Kk = { (p, v, N)}  where p is a path that leads to k, v is the 
value summary associated with k and N is the owner node 
of the pair (p, v). Note that k itself can be the product of a 
split. In this case the owner node is the node of the origi-
nal unsplit key. The output of SBS is the set { (ki, K i)}  and 
the mapping (k, { ki} ). If a split is necessary but the key 
cannot be split, the solution is replication described next. 

6.2. Replication 

Another method for balancing the catalog query load is to 
replicate sets of summaries on other nodes. When a node 
N detects that queries of one of its keys k exceeds a spe-
cific rate, it contacts one or more nodes in the system and 
requests that they replicate the summary data for k. N also 
creates a mapping for k’s new catalog data locations 
which it hands over to nodes that request lookups on k. A 
node Nq queries the specified new locations in a 
round-robin fashion, after it is notified that key k has been 
replicated. 

6.3. Splitting vs. Replication 

There are several important differences between the two 
methods of load balancing. Replication is oblivious to the 
content of the data summaries and works with any sum-
marization method. SBS exploits the structure summaries 
to create as many partitions as there are level 2 keys. Thus 
if there are a level 2 keys which contain the key k being 
split, the initial request r rate is roughly divided by (a + 1) 
in the case of split-replicate. Furthermore, if a new parti-
tion on a node is not receiving a significant rate of re-
quests it can be safely discarded, if split-replicate is used. 
On the contrary, plain replication cannot, a priori, decide 
the optimal number of new replicas. One choice is to cre-
ate only one replica on one other node in the system and 
let the new node replicate further if the rate of requests is 
still too high. The other choice is to create many replicas 
at once, which will cause the system to react to the in-
creased load more rapidly. Another difference is that split-
replicate replicates the information only once per split. 
Also, a single update in the case of SBS needs to be 
propagated to only one other summary per split, whereas 
in the case of replication it must go to all replicas. Prob-
lems such as those described in [11] are not an issue since 
only the owner of a data summary set requests updates to 
catalog information. In any case, replication is the last 
resort for load balancing if no further splitting is possible. 

Figure 5: Splitting of price 
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7. Experimental Results 

The goal of our experiments is to demonstrate the viabil-
ity of our approach. Thus, certain traits of the DHT de-
signs are taken for granted. For instance we do not evalu-
ate how our system works under various degrees of vola-
tility, or how different parameters of the underlying DHT 
affect the number of messages in the network. The focus 
is to facilitate scalable catalog lookups during query proc-
essing. A simulator is used to verify the scalability of 
catalog lookups in very large networks. 

7.1. Experimental Data 

Our goal is to use data that will be very similar to the data 
one could expect in a real world deployment of our cata-
log service. This can be achieved using data from poten-
tial data providers that would find the catalog service use-
ful. Additionally, we opt for using XML data since this is 
the de facto standard for platform independent data repre-
sentation and information exchange. The website 
www.xml.org contains a registry in which organizations 
that use XML data can register their schemas. We believe 
that this data is very close to reality and therefore we use 
it in our experiments. We found 30 usable schemas that 
draw from various domains such as Banking, Transporta-
tion, Arts and many others. The data collection contains 
3500 unique element and attribute names and 16,000 dif-
ferent paths from root elements to leaves. 

7.1.1. Data Generation 

The purpose of data generation is to assign the available 
schemas to the nodes in the system. Each node N is as-
signed a number of schemas NS which is drawn from a 
normal distribution with mean MNS and standard devia-
tions SNS. Each schema is chosen with probability pro-
portional to a weight WS. Changing WS allows regulation 
of the popularity of each schema. For each chosen schema 
we create a node-specific schema as follows: All the paths 
that are required in the schema are also included in the 
node specific schema. The paths that are not required are 
included with probability PP, in order to create a more 
realistic situation. 

Each node must create data summaries to insert into 
the catalog service. To this end each possible path that 
leads to leaf is enumerated and, for each element and at-
tribute found in the node’s assigned schemas, a structural 
summary is built. Note that commonly used element 
names that appear in multiple schemas will contain paths 
from different schemas in their summaries. In our study 
we ignored namespaces. 

7.1.2. Query Load Generation 

The query load is generated concurrently with data gen-
eration and is done in such a way that makes the gener-
ated queries follow the distribution of the generated data 
across all nodes. Each schema is assigned query credits 

QC which is proportional to WS. While paths are enu-
merated, each path is picked with some probability QP to 
contribute to the query pool. For each chosen path p the 
size of the XPath query it yields is between two and four 
80% of the time (a similar assumption is made in [1] and 
[19]). The other 20% of the time the size of the query is 
uniformly distributed between one and the size of the path 
p. The target of the XPath query is chosen to be one ele-
ment or attribute of path p as follows: The target is the eth 
item from the leaf with e exponentially distributed with 
mean 2. This gives preference to tags closer to the leaf 
nodes, which is more realistic. Once a query is created the 
QC corresponding to the schema is decreased by one. 
Thus, popular schemas contribute more queries to the 
query pool than less popular ones. 

7.2. Simulator Architecture 

The simulator used for evaluating our catalog service is 
based on the Chord protocol simulator found on the Chord 
project website. The DHT substrate is used unmodified 
and contains some additional optimizations (such as LRU 
finger tables) not found in [25]. These optimizations fur-
ther decrease the number of network messages required 
but do not affect our study. Each message between nodes 
incurs a network delay exponentially distributed with an 
average of 50ms. Nodes do not unexpectedly die and so 
all nodes that join are available for catalog queries. The 
average local processing time for Chord maintenance 
tasks is uniformly distributed between 50 ms and 200 ms. 

An additional layer translates an XPath query Q to the 
necessary Chord lookups, based on the algorithms de-
scribed earlier. Once the query reaches the node with the 
appropriate summary it is evaluated and the set N of can-
didate nodes that match the structure of the query is pro-
duced. To simulate the effect of value summaries a per-
centage (CT) of the nodes in N are discarded before N is 
sent back to the query origin. Upon receiving N the origin 
sends the XPath query to the nodes found in N. 

Catalog related processing is simulated in more detail 
than Chord specific tasks. Each node simultaneously 
serves up to CR catalog requests using the proces-
sor-sharing discipline [14] while additional requests are 
queued in a FCFS queue that can hold at most CQ re-
quests. The time it takes to process each catalog request is 
101 ms on average and follows the distribution of the 
measured times. Measurements were taken on a Pentium 
III at 800 MHz, running Linux 7.2 with an IDE disk on 
implementations of the structures presented in Section 3 
using the data generated. These numbers represent the 
time it takes if a request is processed alone and are in-
creased according to the processor-sharing discipline. The 
time for XPath queries was set to be uniformly distributed 
with a mean of 500 ms and a standard deviation of 500 ms 
and represents the background load on the system. 

The system is driven by simulated users, who pick a 
query from the query pool and submit it on a random node 



in the system. The number of users U is a multiple of the 
number of nodes in the system so that the system becomes 
loaded. Each user submits a new query after all generated 
XPath queries have finished executing and after a think 
time of 5 seconds and a typing time of 3 seconds as speci-
fied in the TPC benchmark specifications [26]. Note that 
by setting the CT parameter to 100% no XPath queries are 
generated and thus the system runs in catalog-only mode. 
This setting simulates the case where each data provider 
uses a dedicated catalog processor or assigns a maximum 
bandwidth to catalog queries (in conjunction with appro-
priately setting CQ). 

The discussion on load-balancing left the triggering of 
splitting or replication unspecified. Our opinion is that in 
a real system the rate of requests that will cause a load 
balancing reaction is a local decision. For our simulations 
however, the nodes in the system are all equivalent and 
there is a common policy for all of them. A load balanc-
ing action on a node is triggered once the number of re-
quests has reached CR and new requests are put on the 
FCFS queue. This indicates that the node is receiving 
more requests than desired. To remedy the situation a key 
must be either split or replicated. The key chosen is the 
most frequently occurring key in catalog queries among 
the CR requests that are served using Processor Sharing. 
The load incurred by a load balancing action is also simu-
lated. 

 

Number of 
Nodes 

Parameters 

All Setups MNS=5, SNS=5, PP=90%, 
WS=10 (for all schemas), QP=80%, 
CT=100%, CR=20, CQ=500 

500 U=5,000, NQ=400,000 
1000 U=10,000, NQ=800,000 
2000 U=20,000, NQ=1,600,000 
3000 U=30,000, NQ=2,000,000 
5000 U=50,000, NQ=4,000,000 

Table 3: Experimental parameters 

7.3. Experiments 

In our experiments we focus on processing catalog que-
ries in a system that has formed, stabilized. Updates are 
not considered since the update traffic is assumed to be 
orders of magnitude less intense than the query traffic and 
so does not affect load balancing. Furthermore, the per-
formance of data summarization techniques is not tested 
since it is not the focus of this paper. The structural sum-
maries used for the experiments are 100% accurate. The 
scenario of the experiments is as follows: Users start 
submitting queries after thinking and typing. They submit 
a new query after the previous one has finished. The ac-
tivity stops after NQ number of queries have been submit-
ted and finished. The main metrics examined are the aver-
age throughput for catalog queries and the average re-
sponse time for each catalog query. The distribution of the 

catalog requests across nodes as well as the number of 
load balancing actions are also of interest. We test catalog 
query processing under the following different settings: 

1. No load balancing (C) 
2. Split-replicate load balancing (SR) 
3. Split-toss load balancing (ST) 
4. Replication (R) one replica at a time  

The values for the parameters described previously are 
taken from the Table 3. 

7.3.1. Performance 

This section presents the performance of the catalog ser-
vice for various settings. 
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Graph 1: Average response times for catalog queries 

The response times measured show that using the DHT 
alone, without any provisions for adapting to the query 
workload does not scale (Graph 1). (All measured 95% 
confidence intervals are within at least 0.5% of the 
means). 

 

Number of Nodes 500 1000 2000 3000 5000 
Average hops per 
request 

3.5 4.1 5.0 5.7 7.0 

Table 4: Average number of network hops per request 

SR shows the best scalability characteristics when 
adapting to the query load, holding the average response 
time below 2.1 sec. The increase in response times for SR 
can be attributed to an increase in the average hops per 
catalog request (Table 4) and to the increased load be-
cause of insertions caused by splits. ST does not scale as 
well because it discards the split summary set. This causes 
the generation of more messages per query and more 
splits (Graph 6), thus increasing response time. Replica-
tion performs better than ST but worse than SR since it 
cannot adapt quickly to the query load because only one 
replica is created each time a node reaches the request 
limit CR. SR splits a key as many times as there are next 
level keys and so distributes the overload faster. In both 
SR and ST there were no cases where splitting a key was 
not possible. 
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Graph 2: Combined throughput of queries 

The throughput results in Graph 2 once again show 
that Chord alone cannot handle the increasing rate of re-
quests as the system grows because some nodes are over-
loaded. In the 500 node case SR, ST and R achieve the 
maximum throughput rate which is 624 queries/sec. To 
achieve this, only a very small number of splits and repli-
cations were required. SR also works very well for all five 
sizes of networks. Both ST and R do not perform as well 
as SR in the large networks of 2000, 3000 and 5000 
nodes. The performance of R vs. ST is, however, reversed 
relative to the response time numbers. The explanation is 
that, on average, ST generates more requests and splits. 
However, it reacts to the increased rate on the large net-
works faster than R because more new keys are generated 
per split. Table 5 shows the number of catalog lookups 
rejected by nodes in the system because they were over-
loaded. Some individual nodes drop more than 50% of the 
requests if no load balancing takes place. In any case, 
using SR provides double the throughput of C without 
any significant loss of requests and with at least a five 
times improvement in response times. 

 

Network 
sizes 

C SR ST R 

500 2% 0% 0% 0% 
1000 4% 0% 0% 0% 
2000 8% 0% 2% 0% 
3000 11% 0% 4% 0% 
5000 18% 1% 6% 1% 

Table 5: Droped requests across all configurations 

7.3.2. Data Summary Sizes  

The increased performance observed using load-balancing 
comes at a very low cost in terms of storage using the 
path index described in Section 3.2. The average size of 
the catalog on each node prior to load balancing actions is 
about 12KB-15KB (for all approaches). The maximum 
size of the catalog information on any node for various 
network sizes is shown in the following table 

 

network size 500 1000 2000 3000 5000 
Size (KB) 165 247 495 740 1135 

 

Using SR and R the average catalog size increases by 
roughly 2KB, while the maximum catalog size on a node 
does not change. ST naturally does not alter the average 
catalog size with respect to C. All load-balancing tech-
niques require that each node stores a map M with the 
new key mappings for keys that were split or replicated. 
In the case of 5000 nodes the size of M is 35 KB and 
6 KB for SR and R, respectively. 

7.3.3. Request Load Distribution 

Graphs 3, 4, and 5 show the distribution of the requests 
across the nodes in the system for configurations of 500, 
2000 and 5000 nodes (1000 and 3000 networks are omit-
ted for brevity). The nodes in the system, ranked by the 
number of requests received, are on the X axis. Each 
graph contains the first 50 nodes which receive roughly 
34% of all requests in all configurations when no load 
balancing is used. 
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Graph 3: Request distribution (500 Nodes) 
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Graph 4: Request distribution (2000 Nodes) 

Obviously, if no actions are taken, the distribution of 
requests across nodes is not balanced. Therefore load bal-
ancing is necessary for scalability. Using splitting and 
replication the system achieves a fairer distribution of 



requests which reflects in better throughput and response 
times (Section 7.3.1). 

0

20000

40000

60000

80000

100000

120000

140000

160000

0 10 20 30 40 50

Nodes ranked by number of requests

N
u

m
b

er
 o

f 
re

q
u

es
ts

C

SR

ST

R

 

Graph 5: Request distribution (5000 Nodes) 

Using load balancing on the 500 node network leaves 
the first 50 nodes handling about 27% of the query load. 
While not ideal, the redistribution seems adequate to han-
dle the overall rate of requests, which is 624 queries/sec. 
If the rate were higher more load balancing actions would 
distribute the load more evenly. This is evident in the lar-
ger network configurations. The higher request rate 
causes more splits and replications and thus the first 50 
nodes receive only about 11% and 7% of the users’  re-
quests in the 2000 and 5000 node networks respectively. 
It is important to note that strategy ST generates about 
1.5-2.5 times more catalog requests than SR because it 
discards the split summary. 
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Graph 6: Number of load balancing actions for SR (all 
levels) and R 

As expected the network of 500 nodes required the 
fewest splits since the nodes in it are subjected to the low-
est request rate of all networks. Furthermore, as stated, the 
ST strategy incurs more splits than SR, since in the for-
mer, the initial summary is discarded and all the requests 
that could be answered using the initial summary go to the 
split replicas. This causes higher level splitting. In the 
5000 node case ST causes almost twice as many splits as 
SR. Graph 6 shows the increasing number of load balanc-
ing actions for SR and R as the networks grow larger. In 

order to keep up with the request rate the system adapts to 
the query load. 

The number of new keys created by the load balancing 
methods is an indicator of how fast each policy reacts to 
the query load characteristics. Consider the case of 2000 
nodes: R causes 149 replications. This corresponds to 149 
new keys. SR causes just 111 splits but creates 1793 new 
keys, which balances the query load faster. The small 
number of splits relative to the total number of elements 
and attributes clearly shows that dynamic splitting is pre-
ferred to splitting keys in advance. Note that in the 5000 
node configuration, SR creates 5300 new keys with only 
415 splits. Cascading effects were also observed when 
nodes became overloaded as a result of accepting new 
keys. Cascading, however, stopped once requests were 
dispersed across a sufficient number of nodes.  

To conclude, our experiments indicate that SR is the 
most suitable strategy for load balancing a distributed 
catalog based on our framework. It achieves good scal-
ability, fast reaction to the query load characteristics while 
incurring a small overhead for creating new keys. 

7.3.4. Alternate Query Load 

We experimented with a different query workload in 
which elements at all levels are the targets of paths with 
equal probability. The results are similar to those obtained 
with the previous workload which favors deeper paths. As 
expected the distribution of the load is slightly less 
skewed leading to a smaller number of load balancing 
actions. The relative performance of C, SR, ST and R 
remains the same. 

8. Related Work 

Distributed databases ([18], [28]) use catalogs to store 
fragmentation information. Each site has its own replica 
of the catalog and determines where to execute a query or 
parts of a query. The fact that all the sites of a DDBMS 
are under the control of a single authority makes this de-
sign feasible since the number of nodes in the system is 
not large. The problem our design tries to address is dif-
ferent in that there is no central authority, no controlled 
data fragmentation and a much larger number of data pro-
viders. More recent distributed query processor designs 
such as the one in [4] recognize the need for scalable cata-
log services and advocate distributed catalogs. A distrib-
uted catalog proposal based on multiple hierarchies can be 
found in [20]. This approach is not automatic since it re-
lies on manual extraction of categories from the data. 

Our work builds upon recent peer-to-peer DHT proto-
cols that were inspired by earlier pioneers such as FreeNet 
and Gnutella ([8], [9]). They guarantee a definite answer 
to a lookup query within a bounded number of network 
hops, while Gnutella and FreeNet and other peer-to-peer 
studies opt for returning the first 10 or 100 matches to a 
query, if any, are found without any guarantees. The dif-
ference of the earlier proposed LH* [16] from current 



DHT designs is that it allows a hash table to grow by ex-
panding on servers taken from a large preexisting pool, 
rather than allowing nodes to join and become part of an 
existing distributed hash table. 

Distributed file systems based on DHT protocols can 
be found in [7] and [23]. All those studies recognize the 
need for performing additional load balancing on top of 
the DHT layer to achieve scalability. They resort to repli-
cation of popular files across nodes in the system, assum-
ing that sufficient storage is available.  

The study in [12] advocates traditional query process-
ing techniques over data stored in the DHTs. In contrast, 
our approach uses the DHTs for storing metadata, which 
it uses to guide queries to the relevant data sources. 

Other studies of peer-to-peer systems ([6], [30]) use 
metadata on each peer to efficiently route searches to 
other peers or answer searches on behalf of other peers in 
the network. Their query satisfaction criterion (first 100 
results render a query satisfactorily answered) is, how-
ever, geared more towards the need of file sharing indi-
viduals. 

Sun’s JXTA Search [27] provides searches of data 
sources that actively produce data (such as news sites). 
The system builds indices on the queries a data source can 
answer and distributes them across JXTA hubs to which 
data sources connect. Thus, the way catalog information 
is distributed across the hubs is determined by where the 
data providers connect. It is anticipated that providers of 
similar topics will connect to the same hubs. In our case 
catalog information location is independent of where pro-
viders join the system. 

DNS [2] is a distributed hierarchical catalog service 
which is widely used. The naming service it provides is 
very a similar concept to our mapping of queries to data 
repositories. The analogy is that our system identifies 
relevant servers from a query instead of a symbolic name. 

9. Conclusions 

We presented a design based on established technol-
ogy that allows the implementation of completely decen-
tralized catalog services for large numbers of nodes. In 
addition to leveraging existing technology we identified 
application-specific circumstances that require enhance-
ments in the form of load-balancing in order to achieve 
scalability. Using simulation we demonstrate that our ap-
proach is valid and has good scalability characteristics. 
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