POLYTYPIC PROVING

by

Anne Mulhern

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

2010

© Copyright by Anne Mulhern 2010
All Rights Reserved

ACKNOWLEDGMENTS

I wish to thank Charles Fischer and Ben Liblit, sine quibus non.
Others who have contributed significantly to the progress of this thesis

are:

¢ The people who have attended my Coq seminars.
¢ The members of the CBI team, past and present.

* The members of the administrative staff in the department, past and
present.

I would like to thank them as well.

I would like to thank the members of my committee and Robert Wilson.

I would like to thank Jon Giffin for giving me honest, clear, and unaf-
fected answers to puzzling C++ questions, among other things.

I would like to thank Tristan Ravitch for introducing me to presenta-
tions with Beamer, among other things.

I would like to thank Will Benton for many things, including providing
the IXTEX infrastructure for formatting this document.

I would like to thank Kim Nichols.

CONTENTS

ii

Contents i

List of Tables vi

List of Figures vii

Abstract xv

1 Introduction 1

1.1
1.2
1.3
1.4

Motivation 1
Generalizing General Induction 4
Extending Structural Induction and Recursion

Lemma Extraction and Proof Analysis 7

I Generalizing General Induction

2 A Mutually Inductive Type as a Dependent Type

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

Introduction 14

Theory of the Transformation 17
Implementation of the Transformation 23
Structural Induction and Recursion 25

Effect of Representation on Extracted Code 29
Conclusion 32

Autogenerating Uniform Functions 33

Introduction 33
Background 34
Marker Functions 36
Context Folding 40

14

11

3.5 Properties of the Initial Value 46
3.6 Conclusions and Related Work 47

4 Autogenerating Measures 49
4.1 Introduction 49
4.2 Properties of Measures 49
4.3 Autogenerating Measures 57

5 Autogenerating General Recursion Principles 58
5.1 Motivation 58
5.2 Background 59
5.3 Specification Language 68
5.4 The principle algorithm 76
5.5 Types of General Recursion Principles 78
5.6 Recursion Principles with Measures 81
5.7 Recursion Principles Using a General Relation 91
5.8 Recursion Principles as Explicit Combinators 91
5.9 Discussion and Related Work 93

II Extending Structural Induction and Recursion

6 Heterogeneous Structural Recursion 103
6.1 Introduction 103
6.2 Implementation 106
6.3 Generalized Properties over Lists 115
6.4 Conclusions and Related Work 118

7 Tagged Structural Recursion 121
7.1 Introduction 121
7.2 Structure and Use of the Tagged Structural Recursion Princi-
ple 122

7.3 Implementation 128
7.4 Results of Extraction and Evaluation 129
7.5 Conclusion and Related Work 130

8 Variadic Types 132
8.1 Introduction 132
8.2 Structure of the Recursion Principle 138
8.3 Use of a Variadic Type 141
8.4 Implementation 149
8.5 Experimental Results 151
8.6 Restrictions on the Use of Variadic Types 153
8.7 Conclusion and Related Work 156

III Lemma Extraction and Proof Analysis

9 Canonical Inversion 161
9.1 Introduction 161
9.2 The canonical_inversion algorithm 168
9.3 Memoization 172
9.4 Discussion 176

10 Proof Analysis 179
10.1 Introduction 179
10.2 Impact Analysis 182
10.3 Proof Segmentation 187
10.4 Conclusion 196

IV Conclusion

11 Conclusion 202

11.1 Generalizing General Induction and Recursion 202

iv

158

201

11.2 Extending Structural Induction and Recursion 203
11.3 Lemma Extraction and Proof Analysis 205
11.4 Coq and Matita 206

V References 207

References 208

Vi

LIST OF TABLES

2.1 Unified result types for equivalent types. 26
2.2 Discrete result types for equivalent types. 26

vii

LIST OF FIGURES

2.1 Several definitions of trees and forests. 15
2.2 Subset relationships of transformed and extracted types for
treesand forests. L L oL 16
2.3 Types of mapping between equivalent representations and
statement of the bijection lemma. 19
2.4 Extracted versions of mappings between equivalent represen-
tations. 21
2.5 A view type using dependent types. 22
2.6 The extracted version of a structural recursion principle for tf. 27
2.7 The extracted version of a unified structural recursion principle
forntree. 28
2.8 The extracted version of a mutually recursive structural recur-
sion principle forntree. L. 29
2.9 The extracted version of a mutually recursive structural recur-

sion principlefor tf. oo 0 0L 30

3.1 Possible combinations of hypotheses for a size function on nats

and the resulting extracted functions. Hypotheses incorporated

into the sum areinbold. 37
3.2 A proof-context for a node subgoal showing marker types. . . 39
3.3 A schematic illustrating the operation of constructing a disjunc-

tionof markedterms.o L oL 39
3.4 The dependencies between terms in the subgoal shown in Fig-

Ure 3.2, . o o e 41
3.5 A schematic of the operation of the fold_context tactic.. . . . 42
3.6 A schematic of the operation of the MatchTactic tactic. 43
3.7 TheMatchTactictactic.. 43

3.8 The fold_context tactic. 44

3.9

4.1

4.2

51

52

53
54
5.5
5.6
5.7
5.8

5.9
5.10
5.11

5.12

5.13
5.14

5.15

viii

The definition of the prod type. 46

The definition of the 1z type, a redefinition of the 1e type (Fig-
ure 5.2) that contains the size of any term. 51
A schematic of a proof of inequality showing the discriminating
function mapping objects in some type to types in Prop. 53

The definition of False, the simplest uninhabitable inductive

type.. . . . 59
The definition of 1e, the inductive type that defines the less

than or equal torelation. 60
Three ways of representing a proof that zero is less than two. . 60

A proof that zero is less than or equal to every natural number. 61
Formalization of well-foundedness in the Coq standard library. 62
The definition of Acc_rect in the Coq standard library. 63
A proof that True impliesFalse. 63
An example of a recursive function which is not strictly de-

creasing in its recursive argument. This function is permitted

because it terminates under a normal-order evaluation. 64
The structural recursion principle fornat. 66
An example of a Parameterized Context-Free Grammar (PCFG). 70
A derivation for the PCFG in Figure 5.10 where n = 2 and the

list of type parametersis{A,B}. 71
A tree representation of the PCFG in Figure 5.10. 71
A CFG corresponding to the PCFG in Figure 5.10. 72

A PDA which encodes the abstract LL parsing algorithm for
the CFG in Figure 5.13. The transition labels have the format
<tape>,<pop>;<push>., 72
A Parameterized Generating Pushdown Automaton(PGPDA)
which encodes the abstract generating algorithm for the PCFG
in Figure5.10. L 74

5.16 A CFG representation of the XML schema for a principle speci-
fication.
5.17 A schematic of the operation of the principle tactic.
5.18 A general recursion principle that dynamically computes a
proof that its argument is lower in a well-founded ordering.
5.19 A general recursion principle that makes use of a bound. . . .
5.20 An illustration of the use of a bounded recursion principle.
This function recursively applies its function argument, £, to
the set argument, s, until a fixed point is reached. The original
bound is the cardinality of the set. Applying f to s must reduce
the cardinality of the remaining set by at least one element. . .
5.21 A bounded general recursion principle for two mutually recur-
sivedatatypes. Lo
5.22 A definition of a tree datatype where every element in the tree
isnogreaterthann. L o 0oL
5.23 A definition of a tree datatype where the height of the tree is
partofthetype. oL
5.24 A bounded general recursion principle for two mutually recur-
sive datatypes where the measure is contained in the type. . .
5.25 A measure-based general recursion principle.
5.26 A recursion principle that make use of a general well-founded
relation. L
5.27 A fixed point combinator for two types.
5.28 The automatically generated recursion principle for ntree. . .
5.29 The recursion principle generated by the Scheme command for
ntree. A is the function parameter. P_ntree and P_nforest are
statements of conclusion. £_node, f_nil, and f_cons are principal

Premises.

6.1 The extracted version of a heterogeneous structural recursion

ix

77

79
83

87

principle forntree. Lo Lo Lo 103

6.2
6.3
6.4

6.5

6.6

6.7

6.8
6.9

6.10

7.1

7.2

7.3
7.4

7.5

7.6
7.7

7.8

The In functiononlists. 104
The Disjunct functiononlists. 105
The bijections among the sets of types, constructors, fixed point
functions, statements of conclusion and principal premises for

homogenous and heterogeneous structural recursion principles.108

A heterogeneous structural recursion principle for ntree. . . . 109
An AST showing the type of node and the body of the principal

premise application.. oL oo Lo 110
An AST showing the typeof £ node. 111
ASTnodelegend. 112

A schematic showing the synthesis of subtrees for the type of
the principal premise and its corresponding body from a type
term. ... 113
The Disjunct function forntree. 119

Subgoals resulting from application of ntree’s induction prin-

cple. 121
The definition of the case type. 123
A tagged structural recursion principle for ntree. 124

Subgoals resulting from application of ntree’s tagged struc-
tural induction principle. Note that each subgoal is identified
by a hypothesis with the appropriate dependently typed case

type. 125
An Ltac match expression illustrating matching of case hypothe-

SES. L .. e 125
A proposed extended syntax for matching cases. 126

The for_case tactic. ¢ captures the constructor which forms
part of the type of the case hypothesis. t is the tactic to execute
if the constructor is matched. 127
An Ltac match expression using for_case notation. 127

7.9 An extracted version of a tagged structural recursion principle
forntree. L
7.10 A function illustrating the elimination of case hypotheses by

inlining of the tagged structural recursion principle.

8.1 A definition of a dependently typed AND function. The first argu-
ment, n, indicates the number of bool arguments the function
should expect. The function is curried; the auxiliary genType
function calculates the type of the AND function from the first
argument. V is the variadic type. R is the return type of the
function. L o

8.2 Anillegal inductive definition. The genType invocation is harm-
less in itself but if Coq were to allow it a loophole would be
created through which it would be possible to construct non-
terminating computations.o L

8.3 The lambda-calculus withrecords.

8.4 The automatically generated structural recursion principle for

Xi

exp illustrating non-variadic interpretation of the 1ist datatype.136

8.5 An alternative way to express an arbitrary number of subex-
pressions with a mutually recursive datatype.
8.6 A structural recursion principle for exp consistent with the
variadic interpretationof 1ist.
8.7 The type of SubtermP e 1 for a list with n elements.
8.8 A definition of local closure that makes explicit use of list in-
clusion.
8.9 A definition of size_e showing use of fold_right for the record

8.10 Progress of subgoals after initial induction step.
8.11 An abstraction of the variadic computation in size_e.

8.12 Avariadic sublemma for the proof that size_e (g 3) = size_e

eforalle.

Xii

8.13 Rewrite rules for the conversion to a variadic statement of a

goal. f is the original function. f, is its variadic counterpart. P
isaproperty. o 147

8.14 The fusion property for the fold operation on lists. 148

8.15 A derivation for the body of f under assumptions about g and h.149

8.16 A script to build a variadic recursion principle for a definition

of the lambda-calculus with records. The script makes use of
the refine tactic. All holes are guaranteed to be filled in by the
Ltac tactic script variadic_for_type. 150

8.17 A representative lemma and its mechanically generated vari-

9.1
9.2
9.3

94

9.5

9.6
9.7

adic sublemma. The sublemma is placed before its lemma in

the development so that it can be used by automatic tactics. . . 152
The definition of the eventype. 163
A schematic of the effect of the inversion tactic. 163

A schematic of the effect of the inversion tactic when only one
subgoal does not lead to a contradiction. The goal correspond-
ing to the even_0 constructor is eliminated since the assumption
that S nis equal to 0 leads to a contradiction. 164
A schematic of the effect of the inversion tactic when the in-
verted term has the canonical form property. A new subgoal
is generated for every constructor of I. Every subgoal but that
corresponding to the kth constructor leads to a contradiction.
Recall that the inversion tactic cannot proceed when I is in Prop
and the goalisnot. 165
A schematic of the effect of the canonical_inversion tactic. The
automatically generated inversion sublemma is outlined in bold.167
A schematic of the operation of the canonical_inversion tactic. . 170
A schematic of the operation of the canonical_inversion tactic in

the case where H yields a contradiction. 172

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

Xiii

Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. 190
Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Nodes with identical depen-
dencies are coalesced. oL 192
Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Nodes with identical depen-
dentsarecoalesced. oL L 193
Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Nodes with identical depen-
dencies and dependents are coalesced. 195
Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Transitive edges have been
eliminated. o o o o 196
Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Non-transitive edges are
eliminated and nodes with identical dependencies and depen-
dents are coalesced. oL 197
Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Non-transitive edges are
eliminated and nodes with identical dependencies are coalesced.198
Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Nontransitive nodes are elim-

inated and nodes with identical dependents are coalesced. . . 199

POLYTYPIC PROVING
Anne Mulhern

Under the supervision of
Professor Charles Fischer
and
Assistant Professor Benjamin Liblit

At the University of Wisconsin-Madison

Formal methods are a class of techniques for automatically verifying soft-
ware correctness. They are a common topic in computer science research.
However, they are less well-known in software development and in un-
dergraduate computer science education.

As society’s reliance on software increases so does the potential severity
of the consequences of software failure. Formal methods are the surest
way of guaranteeing software correctness. Moreover, the study of formal
methods leads to better informal understanding of software correctness
and thus to better software.

Unfortunately, the study and use of formal methods can be difficult
and this impedes their adoption in software engineering and the computer
science curriculum. Coq is an automated proof-assistant for developing
certified programs and proofs. It is powerful and expressive and has been
used in a large variety of significant developments.

Experienced developers are accustomed to picking up new languages
rapidly. Unfortunately, it is difficult for a new user to learn the use of
any proof-assistant with anything like the same rapidity. Furthermore,
developers have become accustomed to sophisticated IDEs with tools
for refactoring and for auto-generating code. Very little such support is
available for proof-assistants. Coq suffers from both these drawbacks.

Our work addresses these problems in several ways. We provide two
alternative approaches that facilitate general induction and recursion. We

Xiv

demonstrate methods for enhancing structural recursion principles to
increase their generality and transparency. We demonstrate graphical
techniques for improved proof visualization and an impact analysis tool

for predicting the consequences of a proof refactoring.

Charles Fischer

XV

ABSTRACT

Formal methods are a class of techniques for automatically verifying soft-
ware correctness. They are a common topic in computer science research.
However, they are less well-known in software development and in un-
dergraduate computer science education.

As society’s reliance on software increases so does the potential severity
of the consequences of software failure. Formal methods are the surest
way of guaranteeing software correctness. Moreover, the study of formal
methods leads to better informal understanding of software correctness
and thus to better software.

Unfortunately, the study and use of formal methods can be difficult
and this impedes their adoption in software engineering and the computer
science curriculum. Coq is an automated proof-assistant for developing
certified programs and proofs. It is powerful and expressive and has been
used in a large variety of significant developments.

Experienced developers are accustomed to picking up new languages
rapidly. Unfortunately, it is difficult for a new user to learn the use of
any proof-assistant with anything like the same rapidity. Furthermore,
developers have become accustomed to sophisticated IDEs with tools
for refactoring and for auto-generating code. Very little such support is
available for proof-assistants. Coq suffers from both these drawbacks.

Our work addresses these problems in several ways. We provide two
alternative approaches that facilitate general induction and recursion. We
demonstrate methods for enhancing structural recursion principles to
increase their generality and transparency. We demonstrate graphical
techniques for improved proof visualization and an impact analysis tool

for predicting the consequences of a proof refactoring.

1 INTRODUCTION

1.1 Motivation

Automated theorem proving (Moore, 2004a) is a mature field of study
dating back to the 1950s. Over the last few decades numerous automated
theorem provers and proof assistants have been developed (Wiedijk, 2006).
They are used in industry to prove the correctness of critical software and
hardware (Moore, 1999, 2004b); they are used in mathematics to prove
significant theorems (Gonthier, 2005); they are used in computer science
to prove properties of programming languages and programs (Aydemir
et al., 2008; Chlipala, 2006, 2007a,b; Swords and Cook, 2006); they are
used in classes to teach logic and computer science (Asperti et al., 2005;
Mulhern, 2009; Pierce, 2008). Over the last couple of decades the use of
automated theorem provers and proof assistants has increased. More
and more, persons with less and less experience in automated theorem
proving are expected to make use of theorem provers and proof assistants.
The complexity of the projects which experts are addressing has increased.
It is desirable to make formal proving more accessible to the novice and
more efficient for the expert.

This situation mirrors that of programming. Experts now write much
larger and more ambitious programs than they were expected to con-
struct just a few decades ago. More and more novices enter introductory
programming courses. To assist the novice simpler or more helpful inte-
grated development environments (IDEs) have been developed (Barnes
and Kolling, 2006; Cross and Hendrix, 2007; Dann et al., 2008; Hasker,
1995; Resnick et al., 2009). Sophisticated and powerful IDEs and numerous
tools for software analysis (Anderson, 2004; Xu et al., 2009) have been
developed to assist the expert programmer.

Today there is an increasing need for proof engineering(Pons, 2000a;

Mulhern et al., 2006) and perhaps integrated proof environments (IPEs). A
few tools now exist to make proving more accessible to the novice (Bornat,
2005; Dillinger et al., 2007) and to make proving in certain domains easier
for the expert (Aydemir et al., 2009; Chlipala, 2010).

There are hundreds of programming languages in existence today;
many of these languages differ from each other in fundamental ways.
There are about twenty proof assistants and theorem provers in the world
today; almost every one is profoundly different from any other (Wiedijk,
2006). Thus, a technique that facilitates development with one proof
assistant might be entirely irrelevant to another.

Formal proof tools may be domain specific (Kalman, 2001) or they
may be quite general (Nipkow et al., 2002). They may be fully automatic,
in which case they are theorem provers. Alternatively, they may require
interactive assistance, in which case they are proof-assistants. Coq (The
Coq Development Team, 2008) is a general purpose proof-assistant that
makes explicit use of the Curry-Howard isomorphism. This important
result identifies proofs with programs (Wadler, 2000). A lemma is a type
in the input language of Coq, the Calculus of Co-inductive Construc-
tions(CoC) (Paulin-Mohring, 1993). A satisfactory proof of that lemma
is any program in the CoC that inhabits that type. Such programs are
generally large, complex, and uninteresting in themselves; the user builds
these proof-programs by judicious use of Coq’s automation and tactics
rather than by writing them out explicitly. A sequence of tactics is known
as a proof script.

Paradoxically, while these proof-programs are uninteresting in them-
selves the method of their construction is the subject of considerably re-
search. Different approaches are advanced by opposing camps (Bertot
and Casteran, 2004; Chlipala, 2009; Sozeau, 2007b). The development of
useful libraries and tactics for facilitating metatheoretic developments has
been ongoing for over half a decade (Aydemir et al., 2005) and the efforts

show no signs of abating (Aydemir et al., 2009). In practice, it should be
possible for the user to ignore the inner workings of all these techniques
just as it should be possible for a program developer to ignore the inner
workings of a compiler. Unfortunately, this is not the case. A developer
must consider the compiler only occasionally since compilers do, by and
large, generate semantically correct code. However, users of any of these
proof-assistant techniques must be aware of their principles at every step.

In developing a proof the user is likely to go through two stages. In the
first stage, the user does not know how to prove the desired goal. In this
stage, the user proceeds haphazardly. If the lemma she must prove is fairly
general, she may hypothesize that a proof already exists in Coq’s standard
libraries. In this case, she will attempt to use the auto tactic or some
of its more powerful variants which make use of a Prolog-like decision
procedure to solve the goal. Failing that, she will attempt to proceed by
structural induction on some term in the goal; once presented with the
resulting subgoals she will continue in much the same vein. Eventually,
the user will reach the second stage. By proceeding through the first stage,
she will have discovered the essential nature of the proof, at least for the
particular inductive definitions for which she has developed it. At the
second stage she will attempt to clean up the proof to make it more robust,
clearer, and simpler.

The tactics that Coq provides are eminently suitable for the first stage
of development. They are like probes; the user applies a tactic to a subgoal
and gets a response; a new subgoal that gives further information about
the nature of the proof. The tactics are less suitable for the second stage;
they are restricted in scope and the choice of the correct tactic is often
dependent on the intuition of the user. Although there are conflicting
approaches to proof development in Coq they are similar in that they rely
on sophisticated super-tactics. These tactics are meant to be deployed
after an initial induction step to completely solve all remaining goals. The

super-tactics are constructed by gluing together tactics using Coq’s Ltac
language (Delahaye, 2000). The proponents of different schools of proof
development all have different super-tactics. These are a wonderful time-
saver; unless they fail. When they do fail the user is likely to have no
intuition whatsoever as to the cause of the failure.

Much ingenuity has been spent in developing super-tactics and domain-
specific libraries for Coq. We address several obstacles to proof develop-
ment in Coq which have received little attention.

Our solutions are polytypic; that is they are generally applicable to in-
ductive definitions with any structure (Gibbons, 2007). Polytypic solutions
are valuable because they are generally applicable and because they are

robust to changes in the structure of the inductively defined types of the
CoC.

1.2 Generalizing General Induction

The CoC is a small language. Syntactically it is extraordinarily simple. On
the other hand its type-system is sophisticated enough to express quite
interesting properties. Due to its extraordinary simplicity the CoC itself
only includes one logical connective, implication. The connectives and and
or, for example, are defined in Coq’s standard libraries using the CoC’s
inductive datatypes which are analogous to the algebraic datatypes of ML
or Haskell. Because almost everything is inductively defined induction
and recursion are ubiquitous.

Coq provides an induction tactic. To use this tactic the user must prepare
the goal so that induction will yield the proper induction hypotheses. The
user then invokes the induction tactic passing the appropriate induction
variable as an argument. The induction tactic then applies the default
induction principle to the goal and the user is presented with subgoals, as

many as there are constructors for the corresponding inductive definition.

The default induction principle, which is generated automatically for
every inductive definition is a structural induction principle. Unfortu-
nately, structural induction is sometimes insufficient to prove a goal.

The quicksort algorithm (Hoare, 1962) is a familiar example of an algo-
rithm which cannot proceed by structural recursion. A quicksort imple-
mentation may be made extremely terse and may be written very rapidly
by an experienced ML programmer. However, in Coq, it is necessary to
prove that all functions terminate since a single non-terminating function
yields an inconsistent logic. A structural recursion principle is always
terminating but the quicksort algorithm cannot make use of structural
recursion over the list or array which contains the elements to be sorted.
Hence, it is necessary to make use of some general recursive approach.

The need for general recursion has been widely recognized and consid-
erable effort and ingenuity has been devoted to the development of general
induction and recursion techniques and supporting libraries (Balaa and
Bertot, 2000; Bove and Capretta, 2005; Charguéraud, 2009, 2010; Danielsson
and Altenkirch, 2009; Megacz, 2007; Sozeau, 2007b).

However, very little study has been devoted to making these techniques
programmatically accessible to a user or to generalizing these techniques
to proofs where the type of the term on which general induction is to be
performed is composed of several mutually inductive types. In Part I we
discuss some techniques to address these problems.

We provide a new tactic, principle, which populates the proof-context
with a requested general recursion principle. This tactic is suitable for
approaches to general recursion which makes use of recursion combina-
tors (Balaa and Bertot, 2000; Charguéraud, 2009).

We address the problem of mutually inductive types with two alterna-
tive approaches. The first, a dependent type transformation, is described
in Chapter 2. In this chapter, we demonstrate that a mutually inductive
datatype can be transformed to an equivalent simple inductive datatype

by a syntactic transformation obviating the need for a general recursion
principle for mutually inductive types. The second approach allows a
developer to specify the structure of a general recursion principle using a
Parameterized Context-free Grammar (PCFG). This technique is described
in Chapter 5. General recursion and induction techniques often rely on
measures which are a special case of uniform functions which we discuss in
Chapter 3 and Chapter 4.

1.3 Extending Structural Induction and

Recursion

Even where available Coq’s automatically generated structural induction
principles may be inadequate. In some cases there exist special vernacular
commands which can be used to automatically construct better induction
principles but in many cases there are none. Chlipala (Chlipala, 2009)
frequently eschews the use of the induction tactic in favor of using the refine
tactic to explicitly write out fixed point functions leaving holes for proof
terms that must be later filled in by automation.

Unfortunately, only an expert Coq developer can correctly predict
where the holes should be placed within the partial proof. A single mis-
placed hole will generally result in a bewildering type-error. Moreover,
this approach is extremely brittle. Should the inductive definition on
which the proof is based be changed every proof constructed in this way
must be edited. Software engineering principles suggest that rather than
distributing these changes throughout the code it is better to localize them
in a single place.

In Part II, we set out to address some of the defects in the autogenerated
structural induction and recursion principles. All structural induction
and recursion principles are homogeneous, i.e., the induction or recursion

principle applies only to a single type. In Chapter 6, we discuss how a

principle may be extended to include a parameter type. The induction
tactic replaces a single goal with multiple subgoals, one for each principal
premise of the principle. The subgoals themselves contain no indication of
the principal premise to which they correspond. In Chapter 7 we discuss
a simple extension to the automatically generated induction and recursion
principles so that the corresponding principal premise becomes part of
the proof-context. Variadic types are types with constructors that may
contain any number of arguments. Such types are necessary to express
certain concepts but are not available in the CoC. In Chapter 8 we discuss
a proof developer’s idiom for expressing variadic types and making use

of them in real developments.

1.4 Lemma Extraction and Proof Analysis

Lemma Extraction

Procedure extraction (Komondoor and Horwitz, 2000, 2003) is a source
code transformation which discovers selected statements within a proce-
dure and extracts these statements into a separate procedure. The moti-
vation for this transformation is code reuse and simplification of existing
code.

In Coq, the motivation for certain kinds of lemma extraction (Pons,
2000a) is much stronger. Certain expressions, if inlined within a larger
proof, will not be accepted by the type-checker. The very same expres-
sion, encapsulated within a lemma, and used in the same context, will be
accepted by the type-checker.

This odd situation arises due to the distinction between Prop and the
other sorts, i.e., Set and Type. To facilitate certified programming, Coq
has a mechanism which extracts a formal proof to source code in a target
language (Letouzey, 2003, 2004). This extraction mechanism elides expres-

sions with types in Prop but preserves expressions in Set and Type. The

user must put proofs of properties in Prop but specifications in Set or Type.
It is forbidden to deconstruct an expression with a type in Prop in order to
build an expression with a type in Set or Type.

For this reason, some match expressions in the CoC are forbidden
because the expression being matched has a type in Prop, but the type of
the match expression itself is not in Prop. Very commonly, however, the
expression being matched has the property that only one of the cases in the
match expression fails to yield a contradiction. In this case, it is possible to
extract the match expression into a function. Because the match expression
is concealed within the function Coq’s type-checker can be satisfied. The
result of the extracted function is exactly the additional hypotheses that
would be made available in the one case in the match expression that does
not lead to a contradiction.

In Chapter 9 we describe a tactic, canonical_inversion, that we have de-
veloped which automatically extracts a suitable lemma whenever possible
and applies it in the appropriate context. This tactic is strictly more power-
ful than the Coq inversion tactic that it supersedes. Our methods are novel;

we believe that they may be broadly applicable.

Proof Analysis

Coq’s support for tasks that are likely to be necessary during the hap-
hazard initial stage of development is exceptional. The user can query
loaded libraries using sophisticated pattern matching to discover lemmas
that appear relevant. On the other hand, support for examining proof
developments in the large or for anticipating the impact of a refactoring
step is non-existent.

For example, a lemma is transparently dependent (Bertot et al., 2000;
Pons et al., 1998) on an inductive definition if it contains a match expression
which matches some term in the type defined by that inductive definition.
The match expression itself has a type, which may also be defined using

an inductive definition. If the type of the match expression is in Prop then
the type of the expression matched must also be in Prop. If the inductive
definition that defines the type of the match expression is translated to Set
or Type the proof will be invalidated since expressions in Prop can not be
deconstructed to build expressions in Set or Type. Probably the inductive
definition that defines the type of the matched expression will also be
translated to Set to repair the proof. Of course, this can result in most or
all inductive definitions in a proof development being migrated from Prop
due to the transitive effects of the initial change.

It is difficult and time-consuming for the user to discover whether and
how other inductive definitions may be affected through these dependen-
cies. Most proofs are many orders of magnitude larger than the proof
scripts that generate them. The user may use Coq’s Print command to print
the body of each of her proofs. However, the bodies are very long and she
has no programmatic way to scour the text of the proofs to locate relevant
match expressions. Coq has a facility for generating an XML representation
of its compiled proof files (Asperti et al., 2004, 2000b,a, 2001; Sacerdoti
Coen, 2003). Unfortunately, the user experiences as much difficulty scour-
ing the XML files as she does scouring Coq’s text output. Under these
circumstances, iteratively changing the sorts of inductive definitions and
repeatedly re-running Coq to discover broken proof scripts may be the
most efficient way to discover these dependencies.

The information necessary to predict the impact of a translation from
Prop to another sort exists, however it is unavailable to the user. In Chap-
ter 10 we demonstrate a facility that makes this information readily avail-
able.

Our facility makes use of the XML representation of Coq develop-
ments. This XML representation is easily explored via XPATH queries.
We have shown that another use that can be made of this representation is

to examine the dependencies among individual lemmas in a given devel-

10

opment. We present a graphical representation of these dependencies and
show how further post-processing of the graphical structure may assist
the developer in partitioning the proof and the user in comprehending
the proof.

We have demonstrated that the XML representation of proofs accom-
modates a variety of analyses. In no case does implementing these analyses
require an expert understanding of the Coq system. We believe that fur-
ther exploration of this area may expose the opportunity for other useful
analyses and lead to further innovation.

11

Part 1

Generalizing General Induction

12

Induction is a fundamental proof technique; recursion a fundamental
programming technique. Because Coq makes explicit use of the Curry-
Howard isomorphism induction and recursion are the same. Convention-
ally, induction is used to describe the occurrence of a recursive function
which inhabits the sort Prop while recursion is used to describe the occur-
rence of a recursive function which inhabits the sort Set. In the first case
recursive functions are used to describe the construction of proofs; in the
second case recursive functions are used to describe the construction of
values. Otherwise, Coq makes no distinction among recursive functions.

In Cogq, all functions that cannot be shown to terminate under some
evaluation order are forbidden. If this were not the case, it would be
possible to derive a contradiction. Therefore, Coq must forbid terms that
do not have a normal form.

For every inductive definition Coq automatically generates structural
induction and recursion principles. Coq enforces the property that either
the inductive definition is uninhabitable or the principles are terminating.
Consequently, these principles can never result in a contradiction.

However, structural induction and recursion are often inadequate. Con-
sequently, many solutions to the problem of general recursion have been
put forward (Balaa and Bertot, 2000; Bove and Capretta, 2005; Charguéraud,
2009; Danielsson and Altenkirch, 2009; Megacz, 2007).

Coq provides tactical support for structural induction. The induction
tactic selects the appropriate automatically generated structural induction
or recursion principle and automatically applies it to the goal. No general
induction or recursion principle is made programmatically available to the
user in the same way as the structural induction and recursion principles.
Without a strong knowledge of the current literature on the subject the user
who must proceed by general induction is stymied. Moreover, general
induction solutions do not generally address the practical problem of
applying the solutions where the type of the induction term is mutually

13

inductive.

To address this problem we have implemented a tactic, principle, de-
scribed in Chapter 5, which autogenerates a recursion principle based on
arguments supplied by the user and inserts that recursion principle in
the proof-context. In this way, we give the user programmatic access to a
variety of the general recursion principles described in the literature.

We have remarked that the libraries and tactical support for many
general induction solutions do not offer any support for mutually inductive
datatypes. We provide two alternative solutions to this problem.

In Chapter 2 we describe a syntactic transformation from a mutually in-
ductive type to a simple inductive type that makes use of dependent types.
This transformation obviates the need for a general recursion principle
over mutually inductive types.

Many general recursion principles make use of a measure. Usually, the
measure is a special instance of a uniform function. Uniform functions
are functions which are generic in the sense that every constructor of
an inductive type is treated the same. A common example of a uniform
measure is a size function which counts the number of constructors in a
term. Uniform functions are common in many proof developments. In
Chapter 3 we describe an approach for autogenerating uniform functions
which is robust in the presence of changes to the definition of the inductive
type on which it is defined. In Chapter 4 we discuss measure functions
particularly.

An alternative approach to the problem of general recursion on mutu-
ally inductive types is described in Chapter 5. We define a specification
language for describing the overall form of a general recursion principle
and an algorithm for expanding a specification into a general recursion
principle for an inductive type with any number of mutually inductive

definitions.

14

2 A MUTUALLY INDUCTIVE TYPE AS A DEPENDENT TYPE

2.1 Introduction

Languages with algebraic types generally allow mutually inductive type
definitions. Figure 2.1(b) shows an O’Caml mutually inductive definition
for a type of trees and forests where forests are composed of trees and trees
of forests. This definition is extracted from a corresponding definition in
the CoC; Figure 2.1(a) shows the equivalent inductive definition. It is pos-
sible to transform such a type into an equivalent singly inductive type by
making use of dependent types. Figure 2.1(c) shows the equivalent singly
inductive type in the CoC. It is dependent on the simple type tf_enum,
also shown. It is easy to demonstrate, through an informal argument, that
such a transformation yields an equivalent type. In any particular case, it
is possible to formally demonstrate a bijection between the sets defined by
the equivalent types.

Figure 2.2 shows the relationships between the type ntree in Coq, the
type tf defined by the dependent type transformation and the extracted
O’Caml datatypes corresponding to both ntree and tf. Since the types
are defined in different languages it is impossible to formally define a
bijection. However, it is still possible to reason informally about the set of
objects which the different definitions define. Because dependent types
are elided by the extraction mechanism the extracted datatypes are in
general less precise than their corresponding CoC types, i.e., they define
supersets of the sets defined by the CoC types. Observe that the only
bijection in the figure is that between the two CoC datatypes. Since the
CoC definition of ntree made no use of dependent types there exists
an informal bijection between it and its corresponding extracted type.
However, in the general case the set it defines must be a subset of the set
defined by its extracted type. Since the CoC definition of tf is the result of

15

Inductive ntree (A : Set) : Set :=
node : A — nforest A —> ntree A
with nforest (A : Set) : Set :=
nil : nforest A
| cons : ntree A —> nforest A — nforest A
(a) A mutually inductive definition of trees and forests in the
CoC.

type ‘a ntree =

| Node of "a x ’'a nforest
and ‘a nforest =

| Nil

| Cons of ‘a ntree * 'a nforest
(b) The definition in Figure 2.1(a) extracted to

O’Caml.
Inductive tf_enum : Set :=
tf_tree : tf_enum
| tf_forest : tf_enum

Inductive tf (A : Set) : tf_enum —> Set :=
tf_node : A — tf A tf_forest —> tf A tf_tree
| tf_nil : tf A tf_forest
| tf_cons
tf A tf_tree —
tf A tf_forest —
tf A tf _forest
(c) The definition in Figure 2.1(a) transformed into an equivalent singly
inductive dependent type.

type tf_enum =
| Tf_ tree
| Tf_forest

type ‘a tf =

| Tf_node of "a x ’'a tf

| Tf_nil

| Tf_cons of ’a tf x ’a tf
(d) The definition in Figure 2.1(c) ex-
tracted to O’Caml.

Figure 2.1: Several definitions of trees and forests.

16

Extraction >

uonew.ojsuel] adA] juspuade(

Figure 2.2: Subset relationships of transformed and extracted types for
trees and forests.

the dependent type transformation it must always make use of dependent
types; its corresponding O’Caml type will always represent a superset of
the set it represents.

Because O’Caml does not allow dependent types the extracted type
corresponding to tf_enum is elided in the extracted version of tf. Fig-
ure 2.1(d) shows the result of extracting the dependently typed datatype.
Note that tf has no dependence on tf_enum. It is easy to see that the there
is no bijection between the two extracted datatypes; the set defined by
the extracted version of tf is strictly larger than the set defined by the

extracted version of ntree.

17

The contributions of this chapter are twofold. First, we demonstrate
that while expressing a mutually recursive type as a dependent type may
at first seem a retrograde step, the dependently typed representation has
advantages in the context of proof development. Second, we demonstrate
that the transformation can be done using a relatively simple, syntax-based
approach.

2.2 Theory of the Transformation

Demonstrating a Bijection

This transformation is only possible where the mutually recursive type is
homogeneous, i.e., where each component type has the same type. In the
example, ntree and nforest both had type Set — Set and so the whole
type is homogeneous. Had their types been different the single dependent
type would have been required to also have two different types, which is
impossible.

We give an informal argument to show that the result of the depen-
dent type transformation must always represent an equivalent inductive
datatype. We also describe how this can be proved formally within Coq

by defining inverse mappings.

Informal Presentation

We present an informal argument that the transformation yields a type
which represents an equivalent set. We define the depth of a term in the
usual way. We call the type on which the dependent type depends the
enum type.

The transformation yields several related bijections between the struc-

ture of the two representations.

18

* A bijection between constructors. In the ongoing example the bijec-

tion is {node <> tf_node, nil <+ tf _nil, cons <> tf_cons}.

* A bijection between types and enum constructors. In the ongoing
example the bijection is {ntree <+ tf_tree, nforest <> tf_forest}.

* A bijection between sets of constructors. Sets of constructors are
grouped according to the bijection between types and enum types.
In the ongoing example the bijection is {node <+ tf_node, {nil, cons}
<> {tf_nil, tf cons}}.

Our argument is by induction over sets of terms of depth at most
n. The base case is the set of terms of depth 1 in both representations.
Terms of depth 1 can be constructed only using nullary constructors; the
bijection between constructors implies a bijection between terms built of
nullary constructors. The induction step is from sets of terms of depth
at most 1 to sets of terms of depth at most n + 1. Terms of depth n + 1
can only be constructed by application of a constructor to at least one
term of depth n. We assume that there exists a bijection between the set
of all terms of depth n in the mutually inductive representation and in
the dependently typed representation. Moreover, the bijection only maps
terms with corresponding constructors. The arguments for constructors in
both representations are restricted to those in corresponding sets. Under

these assumptions the induction step is obvious if laborious.

Formal Presentation

To formally demonstrate a bijection in any particular case it is necessary
to define two total functions which can be proven to be inverses. We
show by an example on the equivalent representations of trees and forests
how this can be done. Figure 2.3 shows the type of the mapping from the
dependently typed representation to the mutually recursive representation

and of its inverse and the statement of the bijection lemma. The mapping

Q=
fun (A : Set) (x : tf_enum) =>
match x with
| tf_tree => ntree A
| tf_forest => nforest A
end
Set —> tf_enum —> Set
(a) A mapping from enum constructors
to types.

P =

fun (A : Set) (x : tf_enum) (_ : tf A x) => QA x
forall (A : Set) (x : tf_enum), tf A x — Set

(b) A mapping from elements in the dependent type to their correspond-

ing mutually inductive type.

ntree_or_nforest_of_ tf
forall (A : Set) (x : tf_enum) (t : tf A x),
PAxt
(c) A mapping from ntree to tf.

tf_of_ntree_or_nforest
forall (A : Set) (x : tf_enum), QA x — tf A x
(d) A mapping from tf to ntree.

bijection
forall (A : Set) (x : tf_enum) (t : tf A x),
t = tf_of_ntree_or_nforest A x
(ntree_or_nforest_of_tf A x t)
(e) The type of a proof that ntree_or_nforest_of_tf and
tf_of_ntree_or_nforest form a bijection.

19

Figure 2.3: Types of mapping between equivalent representations and

statement of the bijection lemma.

20

functions show an interesting use of dependent types. The return type
of ntree_or_nforest_of_tf is dependent on the value of the x argument;
while the type of an argument of tf_of_ntree_or_nforest is dependent
on the value of x. It is possible to define equivalent mappings in several
alternate ways; these definitions facilitate the proof of the bijection lemma
by forcing Coq’s type-checker to reduce the match expression.

Such a complicated type cannot be extracted to O’Caml. Figure 2.4
shows the extracted versions of the inverses. Note that both functions
depend on the type *a g which has the value __. This value represents a
type that cannot be translated into O’Caml’s non-dependent type system.
However, all uses of arguments of this type are proven safe by the Coq
system.

A Dependent Type Transformation as a View

A simpler dependent type transformation yields a view of the mutually
recursive type. Figure 2.5 shows the view type. Views were introduced
in Wadler (1987) as a way of allowing induction on an abstract type or of
allowing a different form of induction on a non-abstract type.

A view must be accompanied by an in function which constructs a
view from the underlying type and an out function which performs the
inverse operation. These functions are not recursive.

As a computation progresses, the mutually recursive datatype is trans-
ferred by stages to the view type using the in function. When a recursive
call is necessary the term in the view type is translated to the non-view
type using the out function.

The necessary calls to the in and out functions make structural recur-
sion impossible because it is not possible to demonstrate termination. In

Chapter 5 more general approaches to induction are discussed.

21

type 'a q = __
(@) A mapping
from enum
constructors to

types.

type ‘a p = 'aq
(b) A mapping from
elements in the depen-
dent type to their cor-
responding mutually
inductive type.

(xx val ntree_or_nforest_of_tf :
tf_enum —> ‘al tf —> ‘al p *x*)

let rec ntree_or_nforest_of_tf t = function
| Tf_node (a, tl) —
Obj.magic (Node (a,
(Obj.magic
(ntree_or_nforest_of_tf Tf_forest tl1))))
| Tf_nil — Obj.magic Nil
| Tf_cons (t1, t2) —
Obj . magic (Cons
((ODbj.magic
(ntree_or_nforest_of_tf Tf_tree tl1)),
(Obj.magic
(ntree_or_nforest_of_tf Tf_forest t2))))
(c) A mapping from ntree to tf.

(xx val tf_of_ntree_or_nforest
tf_enum —> ‘al g —> ‘al tf xx)

let tf_of_ntree_or_nforest x x0 =
match x with
| Tf_ tree —>
Obj.magic (fun x1 — tf_of_ntree x1) x0
| Tf_forest —
Obj.magic (fun x1 — tf_of_nforest x1) x0
(d) A mapping from tf to ntree.

Figure 2.4: Extracted versions of mappings between equivalent represen-
tations.

22

Inductive tf_view (A : Set) : tf_enum —> Set :=
tf_view_node : A — nforest A — tf view A tf_tree
| tf_view_nil : tf_view A tf_forest
| tf_view_cons :
ntree A —
nforest A —
tf_view A tf_forest

Figure 2.5: A view type using dependent types.

Use of Dependent Types in Programming Languages

Use of dependent types in programming languages has in general been
avoided because dependent types lead very rapidly to undecidability of
type checking, although several interesting prototype languages that do
make extensive use of dependent types are in development. A promising
avenue currently being explored is the use of subset types (Sozeau, 2007b)
where the domain over which the types may be defined is restricted as
with liquid types (Rondon et al., 2008) or the use of dependent types over
a restricted domain as in Dependent ML (Xi, 2003, 2007).

We suggest an approach inspired by liquid types for handling the
restricted set of dependently typed representations generated by our trans-
formation in a programming language. In this approach we restrict not the
domain but rather the form of types by restricting the use of subset types
to exactly the enum types. In every case, an enum type is composed only
of nullary constructors. Such types are actually simpler than the usual
restricted domains which in general include some numeric set to facilitate,
e.g., array bounds checking. We allow subset types to be defined only over

enum types. Thus, we allow types such as

{x : tf_enum & ((x = tf_tree) x tf A x)}

This type packages an argument of tf_enum a proof that this argument is
equal only to tf_tree and an argument in tf tf_tree in a single prod-

23

uct. A function which takes such an argument thus need only match the
constructors in type tf tf_tree.

Where it is necessary to perform a recursive computation over an
element subset types are not generally useful. In general, the result of a

recursive computation must include all types, i.e., must be

{x : tf_enum & ((x = tf_tree \/ x = tf_forest) * tf A x)}

which is the same as {x : tf_enum & tf A x}. However, O’Caml pro-
grammers are familiar with simple, non-recursive functions which extract
some part of an algebraic type. In this case, a type which indicates that
the constructors to be matched are only a subset of the constructors in the
entire type is valuable for optimization (Xi, 2003).

The development and implementation of such a type system is outside
the scope of this thesis. However as interest in automatically inferred
subset types and their uses continues to grow such an enhanced type
system is worth exploring.

2.3 Implementation of the Transformation

The dependent type transformation can be automated using a simple syn-
tactic approach and taking advantage of the bijections between syntactic
components of corresponding types described in Section 2.2.

The first bijection is one between constructors in the two types. Any
bijective mapping will do. It is necessary to make sure that the constructor
names in the dependently typed definition do not coincide with those in
any other definition, as the CoC shares the unique constructor restriction
with all the variants of ML.

The second bijection is between the types of the mutually inductive
representation and the constructors of the enum definition. Again, the
only restriction on the constructors is that they be unique.

24

The third bijection is between the sets to which constructors may be-
long. In Section 2.2 we identified these sets by their members; they can
also be identified by their type in the case of the mutually recursive rep-
resentation or by their enum constructor in the case of the dependently
typed representation.

Working from the leaves of inductive definitions to their roots, the

transformation is accomplished as follows.

type applications All designations of types are transformed to their ap-
propriate counterparts. In the example, nforest A must be trans-
formed to tf A tf_forest and ntree Atotf A tf_tree.

constructor names All constructors are transformed to their appropriate

counterparts. For example, node becomes tf_node.

constructor folding All constructor definitions are combined into the

body of a single inductive definition.

type annotations The type of the single inductive definition is changed

so that the first non-parameter type is the enum type.

type name The name of the inductive definition is changed to the desired

name for the dependently typed representation.

Our transformation uses ANTLR (Parr, 2007, 2010). ANTLR is a system
of domain specific languages and supporting libraries for building abstract
syntax trees from text, for inspecting and transforming them, and for pro-
ducing structured textual output. We transform the inductive definitions
using ANTLR tree matching patterns. Except for the transformation of the
type applications the implementation is relatively straightforward since
the transformation rules do not depend on the structural properties of the

inductive representation.

25

However, transforming the type applications requires taking into ac-
count the parameters of the inductive definition. Parameters are arguments
that may not change for different constructors. The enum argument must
be placed after the parameters but before any other arguments to the type
constructor in order to maintain the bijection between the two representa-
tions. A purely static tree pattern matcher is inadequate to the task. To
handle this we use a two phase approach. First we dynamically generate
the type application transformation grammar based on the number of pa-
rameters in the inductive type. Then we apply the static and dynamically
generated grammars to completely transform the type.

Every constructor in the enum type is nullary and the name of each
constructor is available. It is easily generated using a simple template
mechanism. Note that its sort is always Set, so that individual constructors

can be distinguished.

2.4 Structural Induction and Recursion

A dependent representation allows a more flexible approach to structural
induction and recursion than a mutually recursive representation. It is
possible to view a dependently typed representation as a homogeneous
term and also as a term that is partitioned by its enum type. The first
view is valuable where the result of the computation is dependent on the
structure of the term and not its type. The second approach is essential
where the result of the computation is dependent on the type of the term.
A mutually recursive representation only allows the second approach.
Our contribution in this section is two-fold. First, we identify what
structural induction principles are possible for the two equivalent repre-
sentations. Second, we describe the advantages of the structural induction
principles for a dependent representation over the principles for a mutually

recursive representation.

26

\ Unified
Mutually Recursive sum ntree nforest — Type
Dependently Typed | forall (t : tf_enum), tf t — Type

Table 2.1: Unified result types for equivalent types.

\ Discrete

ntree — Type

nforest — Type
forall (t : tf_enum), t = tf_tree — tf t — Type
forall (t : tf_enum), t = tf_forest — tf t — Type

Mutually Recursive

Dependently Typed

Table 2.2: Discrete result types for equivalent types.

Structural induction principles can differ in a number of ways. First,
the type of the result of the induction can be defined over each discrete

type or over the union of all types.

Unified Result versus. Discrete Result

The result of an induction principle may be defined over a unified type
or over the discrete types that make up the representation. In a mutually
inductive representation this requires using the sum type to unify the
component types. For a dependently typed representation this requires
universal quantification over the enum type. Table 2.1 shows the unified
types for both representations and Table 2.2 shows the discrete types for
both representations.

Discrete and unified representations of the result type are always in-
terconvertible. It is possible to combine the discrete representation to
make a unified representation; it is possible to decompose the unified
representation into the discrete representation.

27

(%% val tf_rect
("al — ’al tf — 'a2 — ’'a2) —> ‘a2 —
("al tf — ’"a2 — ’al tf — ’a2 — ’'a2) —
tf_enum —> ‘al tf —> ‘a2 xx)

let rec tf_rect f fO fl1 t = function
| Tf_node (a, tl1) — f a tl
(tf_rect f fO f1 Tf_forest t1)
| Tf_nil — f0
| Tf_cons (tl, t2) —
f1 t1 (tf_rect f fO f1 Tf_tree tl)
t2 (tf_rect f fO f1 Tf_forest t2)

Figure 2.6: The extracted version of a structural recursion principle for tf.

Unified Structural Induction

Where the inductive definition is expressed using dependent types a uni-
fied traversal, i.e., a traversal that does not take into account distinct types
but treats all constructors uniformly, is possible. In fact, this is exactly
the structural recursion principle Coq generates automatically from the
definition of tf. Figure 2.6 shows the extracted version of this recursion
principle; the syntactic structure is almost identical to that of the CoC
version. The result type of this recursion principle is also unified; discrete
result types would not ease development since the whole principle may
take an argument of any constructor, hence any type.

Because it is impossible to ignore the types to which constructors belong
in a mutually recursive representation a unified traversal is impossible.
This is not immediately obvious; a solution seems to be to define a struc-
tural recursion principle over the sum of the discrete types. However, such
a recursion principle cannot be proved to terminate. Figure 2.7 shows what
the extracted body of such a function must look like if it were possible
to define it in Coq. At each recursive call it is necessary to pack up the
subterms in a sum constructor; either Inl or Inr. This necessity violates the

syntactic constraint Coq enforces to ensure that every recursive function

28

(%% val ntree_rect
("al — ’al nforest — ’a2 — ’a2) — ‘a2 —
("al ntree — ’a2 — ’‘al nforest — ‘a2 —> ’‘a2) —
"al (sum ntree nforest) — ‘a2 xx)

let rec ntree_rect f fO fl1 = function
| Inl (Node (a, tl)) — f a tl
(ntree_rect f fO f1 (Inr tl))
| Inr (Nil) — f0
| Inr (Cons (t1, t2)) —
f1 t1 (ntree_rect f fO f1 (Inl t1))
t2 (ntree_rect f f0 f1 (Inr t1))

Figure 2.7: The extracted version of a unified structural recursion principle
for ntree.

is terminating. Thus, such a function is inadmissible and it is necessary to
fall back on some form of general recursion.

Unified structural induction is always possible in the dependently
typed representation and never possible in the mutually recursive rep-
resentation. This is a significant advantage of the dependently typed
representation.

With a unified structural recursion principle it is still possible to gener-
ate facts that are dependent on the enum type to which the constructor
belongs. For example, the mapping from elements in tf to elements in
ntree or nforest (Figures 2.3 and 2.4) is dependent on whether the con-
structor belongs in the set associated with tf_tree or tf_forest. The
function is easily constructed using the standard structural recursion prin-

ciple for tf, tf_rect (Figure 2.6).

Discrete Structural Induction

The only sort of induction principle available for a mutually recursive
type is discrete induction as unified structural induction is impossible.

This means that a separate mutually recursive principle must be defined

29

(xx val ntree_r
("al — ’al nforest — "a3 — 'a2) —> ‘a3 —>
("al ntree — ’a2 — ’‘al nforest —> ‘a3 — ’'a3) —
“al ntree —> ‘a2 xx)

let ntree_ r f f0 f1 n =
let rec f2 = function
| Node (a, nl) — f a nl (f3 nl)
and f3 = function

| Nil — f0
| Cons (nl, n2) — f1 nl (f2 nl) n2 (f3 n2)
in f2 n

Figure 2.8: The extracted version of a mutually recursive structural recur-
sion principle for ntree.

for every discrete type in the recursive type. Moreover, when proving by
reduction, it is essential that every principle is identical up to renaming,
otherwise reduced terms will appear unequal.

Figure 2.8 shows an extracted version of a mutually recursive structural
recursion principle. It has exactly the structure an O’Caml programmer
would be accustomed to.

A discrete structural recursion principle is also available for the depen-
dently typed representation. Figure 2.9 shows the extracted version of
such a principle. Note that both mutually recursive functions must match
all possible constructors. However, where a constructor does not actually
belong to the type the phrase assert false (x absurd case *) appears.
This indicates that this match has been proven to be impossible in Coq,

based on the dependent type of the constructor.

2.5 Effect of Representation on Extracted Code

In our discussion so far we have demonstrated that a dependently typed
representation has advantages over a mutually inductive representation

when developing proofs and program. On the other hand we have also

30

(%% val tf_tree_r
("al — ’al tf — 'a3 — 'a2) — 'a3—
("al tf — ’a2 — ’al tf — 'a3 — 'a3) —
“al tf — a2 xx)

let tf tree_r f fO f1 t0 =
let rec f2 = function
| Tf_ node (a, h) — f a h (f3 h)
| _ — assert false (x absurd case x)

and f3 = function
| Tf_node (a, h) —> assert false (x absurd case x)
| Tf_nil — f0
| Tf_cons (h’, h’’) — f1 h’ (f2 h’) h’’ (f3 h’’)
in f2 t0

Figure 2.9: The extracted version of a mutually recursive structural recur-
sion principle for tf.

shown that the extracted code has unusual and potentially awkward prop-
erties. For example, the extracted version of the ntree_or_nforest_of_tf
(Figure 2.4) function contains untypable parts inhabited by the Obj.magic
cast. The discrete traversal structural recursion principles for dependent
types (Figure 2.9) contain assertions in cases where a constructor is impos-
sible.

Two philosophical approaches to this situation are possible. In the first
place, one may condemn all uses of dependent types in programs. Some
users urge an approach where all programs are written in a subset of the
CoC which is shared with O’Caml. In this approach, dependent types
may appear only in ancillary proofs. Since they form a non-computational
part of the proof development they will always be elided by the extraction
mechanism and all extracted code will be typable by the O’Caml compiler.
An opposite approach, which also has its supporters, is to include the
specification of all programs within the type of the program. These two
opposing viewpoints are encapsulated in recent work on certified com-
pilers; the CompCert Project (Blazy et al., 2006; Leroy, 2006, 2009) which

31

takes the former approach and Chlipala’s certified compiler (Chlipala,
2007b) which takes the latter approach.

In our opinion either viewpoint is useful, so long as it is adhered
to consistently in any single development. However, we would like to
draw attention to an area of research that is consistently overlooked in the
literature. Coq’s extraction mechanism (Letouzey, 2004, 2008) is relatively

new. Research efforts relating to extraction have focused on

1. finding representations in Coq so that extracted code is cleaner, i.e.,
more parts of the program are identified as non-computational and
elided (Letouzey and Spitters, 2005)

2. substituting more efficient data structures for less efficient but more
functional data structures so long as the more efficient data structures
are observationally equivalent (Oury, 2003)

What has been consistently overlooked is the opportunity for optimization
of extracted code. Consider a module that makes use of a dependently
typed representation as in the ongoing example. Because compilation of
modules is modular the actual type can be hidden from external users
of the module. Therefore, there are plenty of opportunities for low-level
compiler optimizations within the module. For example, the Obj.magic
cast is proven to never fail. Such a cast can be elided in an optimizing
compiler that is aware that it cannot fail. A related approach is used in the
implementation of Java Generics where more sophisticated parameterized
types are elided during compilation but unnecessary casts are avoided in
the generated bytecode (Bracha, 2004; Naftalin and Wadler, 2006). Sim-
ilarly, where it has been proven that a particular constructor can never
be matched the compiler need not check for an assertion failure. Closed
polymorphic variants (Hickey, 2008) may represent another alternative
target for extraction. A closed polymorphic type is used to describe a type

consisting of a subset of the set of constructors belonging to a given type.

32

Clearly, this describes exactly the situation where the value of an enum
argument is known.

Recent work on an extraction to the Glasgow Haskell Compiler’s in-
termediate language(Nanevski et al., 2008) is promising. By an extraction
to the intermediate language type information outside the Haskell type
system can be preserved. However, the authors report that even their
extraction is still forced to discard type information which is inexpressible

in the intermediate language.

2.6 Conclusion

In this chapter we have demonstrated that every homogenous mutually
inductive datatype may be automatically transformed to an equivalent
dependent type with a single inductive definition. We have shown that
encoding an inductive definition via a dependent type has advantages
when the context is proof development. We have also shown that several
opportunities exist in the area of extraction. First, with the growing interest
in subset types it is likely that programming languages may be developed
that allow subset types of a restricted form, as with liquid types. In that
case, it could be possible to target the extraction to an enhanced version
of O’Caml that allows subset types. Second, where it has been proven
impossible in Coq for a particular constructor to be matched the O’Caml
compiler may take advantage of this information to generate optimized
code. Third, closed polymorphic variants represent an existing part of
the O’Caml type system which provides a promising target for extraction
of function types where the function type contains a dependent type

constructed using an enum type.

33

3 AUTOGENERATING UNIFORM FUNCTIONS

3.1 Introduction

The structural recursion principles discussed in previous chapters exist so
that a user can develop recursive functions and inductive proofs. Proofs
and specifications coexist in the CoC. However, the requirements for a
proof and a specification are very different.

A theorem is a type in the CoC; a proof object is any term in the CoC
that satisfies that type. The syntactic structure of the term is only important
in so far as a simpler term can be built more efficiently. Coq'’s facilities for
automatic proof search are appropriate for proof development since they
are type-directed.

On the other hand, the syntactic structure of specifications is important
and Coq’s automation facilities are not appropriate for the automatic
synthesis of specifications. For example, the function head defined on
lists has type

forall A : Type, list A — option A

There are an infinite number of functions on lists that satisfy this type.

However, the following function

head =
fun (A : Type) (1 : list A) =>
match 1 with
| List.nil => error
| x :: _ => value x
end
forall A : Type, list A — option A

implements what we intuitively believe to be the correct semantics, while

the function

34

head =
fun (A : Type) (1 : list A) => error
forall A : Type, list A — option A
does not. Each function can be constructed by a simple tactic script. An
automatic search is likely to prefer the second, incorrect, specification
since it is smaller.

Certain functions are uniform, i.e., they treat each constructor in the
same way. In these functions, the body of each principal premise can be
defined by the same generic function. In this chapter we demonstrate a
way to generate each principal premise automatically by a combination of
definitions and tactic scripts. Our approach is robust in that each principal
premise will be regenerated correctly even if the inductive definition that
defines the type of their argument is changed. Our technique is a novel,
tactical approach to datatype-generic programming (Gibbons, 2003, 2007;
Hinze et al., 2007; Jeuring and Plasmeijer, 2006).

3.2 Background

In many functions, the body of every principal premise corresponds to
some fold operation over the premise’s arguments. The list of arguments
is described by the regular expression ((ar)|a)* where a represents an
argument to the principal premise’s corresponding constructor and r
represents an optional return value associated with the preceding a. The
return value may be the result of a recursive call or it may be the result of
the application of a principal premise. For example, in Figure 7.3 the list of
arguments to the principal premise for the cons constructor matches the
string aarar. Itisimportant to note that the arguments are not syntactically
distinct. It is necessary to use semantic information to discover that, e.g.,
the last argument is a result argument.

Many general recursion principles rely on a measure, a function that

35

maps terms in an inductive definition to some other value. A familiar
measure is the number of constructors of the same type in a given term.
For each constructor, the body of the corresponding principal premise
must be

AL1 + fold (A acc.A e. if e matches r then ‘(e 4+ acc) else “acc) ‘01
For the Disjunct function (Figure 6.3) a similar expression
AL fold (A acc.A e. if e matches r then ‘(e V' acc) else ‘acc) ‘False 1

is appropriate. Note that in each example the parts of the computation
marked by a tick are suspended. The operation returns a term in the CoC
that evaluates to the desired result, not the result itself. We call fold’s first
argument the combine operation and the second the initial value.

Each fold operation is polytypic (Gibbons, 2003, 2007; Hinze et al., 2007;
Jeuring and Plasmeijer, 2006) in the sense that it is actually datatype-
generic. It is therefore reasonable to consider the entire operation of which
each fold operation is a component as datatype-generic since it is otherwise
only dependent on a structural recursion or induction principle which the
Coq system automatically synthesizes for every inductive datatype.

Polytypic specifications are robust in two ways. Being polytypic they
are applicable to any inductive datatype. The fold operation for the size
function is correct for a data structure such as an ntree and for a term in the
lambda-calculus. Moreover, they are robust to changes in the underlying
datatype for which they are defined.

However, Coq does not allow any facilities for reflecting directly on the
structure of functions, so it is not possible to specify these fold operations
explicitly. At first glance it might seem fairly easy to directly synthesize
the body of each principal premise from the specification of its type. How-
ever, this approach is beset with pitfalls. It is necessary to construct each

function from scratch, deducing the pattern of constructor arguments and

36

return values. As we have remarked, this cannot be done by a simple syn-
tactic approach but requires a semantic analysis of the recursion principle
of which the principal premise is an argument.

We propose instead a mixed approach based on an innovative use of
tactics. This approach takes advantage of facilities in the Ltac language
for interrogating the proof-context and for inferring the types of implicit
arguments. The key components of our approach are marker functions and
context folding, which we describe in Section 3.3 and Section 3.4 respectively.
We illustrate this approach using the example of the In function defined
on ntrees.

Our approach makes a large class of polytypic functions available to
the Coq developer. Some polytypic functions, e.g., measure functions
are so generally useful that it is desirable to make their construction an
integral part of Coq in the same that generation of equality functions has
been incorporated into the Coq system. For other less universally useful
functions the tactics and techniques we make available allow the user to

build their own polytypic functions with little difficulty.

3.3 Marker Functions

The purpose of a marker function is to distinguish arguments which are
the result of a recursive call or of the application of a principal premise
from other arguments that may be of the same type. For example, consider
constructing a measure function for elements of type nat. If the measure
function is just the number of constructors then the result of the function
will be one more than its argument. A function on nats that returns one
more than its argument is, of course, easily constructed by hand. However,
the goal is to construct this function automatically, using tactics, in a way
that is applicable to every inductive definition. The first step is to state the

goal:

37

H : nat
IHnat : nat

H : nat
IHnat : nat

H : nat
IHnat : nat

let rec size = function
10->80
1Sn0->S (n0 + (size n0))

let rec size = function
10->S0
1 S n0 -> S (size n0)

let rec size = function
10->S0
1Sn0->Sn0

overcounts number of
constructors by selecting both
hypotheses

correctly counts number of
constructors by selecting
recursion hypothesis only

undercounts number of
constructors by selecting
wrong hypothesis

Figure 3.1: Possible combinations of hypotheses for a size function on nats
and the resulting extracted functions. Hypotheses incorporated into the
sum are in bold.

nat — nat

That is, the user indicates to the system that a function from nat to nat
is desired. After applying the recursion principle for nat the user is pre-
sented with two subgoals. The second subgoal, corresponding to the S
constructor, is confusing. The context contains two hypotheses with type
nat. One of them is the result of the recursive call; the other the argument
to the S constructor. If both are combined, the resulting function will
overcount the number of constructors in the argument. If the second, but
not the first is used, the resulting function will undercount the number of
constructors. Figure 3.1 shows the three possible choices of hypotheses
and the resulting functions that may arise.

Coq has a mechanism for choosing the names of hypotheses based on
type information. In Figure 3.1 the result of the recursive call is IHnat.
This naming will certainly help a user to pick out the result of the inductive
hypothesis from the constructor argument. However, a tactic which relies
on a particular naming scheme to identify the results of recursive calls is
intolerably brittle.

The Coq system automatically reduces type terms to decide equality of
types. So while nat and P n are syntactically distinct terms the Coq type-

38

checker judges them equal if P n can be reduced to nat. On the other hand,
Coq will not automatically reduce an application unless such a reduction is
explicitly requested. This laziness on the part of Coq’s reduction engine is
desirable since it facilitates the application of general lemmas. Moreover, it
allows tactics to distinguish between the two equivalent, but syntactically
distinct, terms.

To obtain a marker function it is necessary to abstract over the argument,
yielding a function with the required return type. Thus, in the case of In,

the marker function, V, is just

fun (x : list A) => Prop

Thus, M 1 = Prop for any 1 and so the Coq type-checker identifies them.
However, the Ltac match statement is able to distinguish M 1 and Prop
since they are syntactically distinct.

A mutually inductive datatype or a proof that makes use of a heteroge-
neous induction principle will require more than one marker type. For
example, to define a function analogous to the In function for lists on
ntrees requires three marker functions, one for ntree, one for nforest,
and one for its argument elements. Each one of the marker functions has
the same return type, Prop.

Once the induction principle is applied the proof-context for each
subgoal is populated with marked terms. Figure 3.2 shows the subgoal
corresponding to the node constructor. Each hypothesis corresponds to an
argument to the principal premise. Two hypotheses are especially marked.
IHn is marked with the marker function P_A indicating that it is the result
of an application of the principal premise for A. IHnO is marked with the
marker function P_nforest indicating that is is the result of an application
of the fixed point function for nforest. The goal is marked with P_ntree
because it is the head type of the principal premise.

These marker functions are specified by the user. They need not be

respecified for such trivial changes as the addition or subtraction of a con-

39

H : case node
a:A

IHn: P _Aa

n : nforest A

IHnO : P_nforest n

P_ntree (node A an)

Figure 3.2: A proof-context for a node subgoal showing marker types.

H : case node

a:A filter map fold
IHn:P_Aa » IHn:P_Aa » f_AalHn

n : nforest A

IHNO : P_nforest n IHNO : P_nforest n f_nforest n IHNO

\J
‘fﬁAa IHn V f_nforest n IHNO ‘

reduction

IHn V IHNO

Figure 3.3: A schematic illustrating the operation of constructing a dis-
junction of marked terms.

structor, the rearrangement of a constructor’s arguments, or the reordering
of constructors.

The marker functions serve to identify the terms which must be in-
cluded in the disjunction. To gather the terms up requires an operation
shown schematically in Figure 3.3. First, a filter operation discards all
terms that are unmarked. Second, a map operation transforms the remain-
ing terms. The operation is marker dependent, so a different function is
applied to the marked term in each case. f_nforest is just the identity
function so f nforest n IHnO reduces to IHnO as does f_A. Third, the
mapped terms are folded into a single disjunction. The fourth step, re-
duction, shows the normal form of the disjunction. If the context were

available as a list of pairs of terms and types the entire operation would be

40

entirely simple and obvious. However, the Ltac language does not provide
any such view of the context. Instead, the user must rely on a tactic that
makes subtle use of Ltac’s pattern matching and exceptions to achieve the
intended result. We discuss how the operation described above can be

achieved in Section 3.4.

3.4 Context Folding

The components of the disjunction for any principal premise are easily
identified via marker functions. However, accumulating the required
disjunction is not straightforward. The Ltac language’s pattern matching
facilities are at the same time sophisticated and primitive. In particular,
there is no direct way to perform any sort of fold operation on the proof-
context. In the example in Figure 3.2 the appropriate term to satisfy the
goalis IHn V' IHnO. To construct the term it is necessary to locate both IHn
and IHnO by matching their types and to form the disjunction of the result
of the mapping operation on each. This task can only be done by matching
every term in the proof-context and investigating its type to determine if
it should be included in the disjunction and, if it should, composing it via
the or operator with the disjunction obtained so far.

Data structures implicitly assume that their elements are not interde-
pendent. The elements may have some relation, but they are not con-
structed from each other. A phone book can be modeled as a list since it
does not record, e.g., the family relationships among different elements in
the list but instead orders the elements lexicographically. A program is
modeled as an abstract syntax tree to encode the relationships between
different syntactic elements; a list is not adequate. A proof-context may
appear to be a list but the elements do in fact have dependencies. The
proof-context is not arbitrarily reorderable because one hypothesis may

be dependent on another. It is really an appropriate topological sort of a

41

O &\ /&

Figure 3.4: The dependencies between terms in the subgoal shown in
Figure 3.2.

directed acyclic graph where the edges represent dependencies between
terms. Figure 3.4 shows the dependence graph for the context in Figure 3.2.
The proof-context can be manipulated; but only in a restricted way. It may
only be reordered to another topological sort. Elements can be removed,
but only if they have no dependents. Thus, elements can be removed
starting at the bottom of the context and moving to the top but never in
the opposite order. Elements on which the statement of the goal depends
cannot be removed until the goal is satisfied.

A fold operation over elements with dependencies is sensible if the
component operation does not take into account the dependencies. For
example, a function that counts the elements in a list can be defined via
the fold function. Even if the elements are actually interdependent this
is irrelevant. The results of recursive calls and applications of principal
premises are, by definition, not interdependent. Thus, a fold operation
over these is sensible.

However, the implementation of the fold operation is constrained by
the dependencies between the terms and by the restrictions of the Ltac
language. It is not possible to remove a hypothesis once it has been encoun-
tered and the result of the map operation incorporated into the disjunction
since the hypothesis is required to solve the goal. It is not possible to
mark hypotheses as already visited so that they can be skipped. It is not

42

AccumTactic(V)

new hypothesis H?

MatchTactic(H)

exception

AccumTactic(R V V)

Return with V

Figure 3.5: A schematic of the operation of the fold_context tactic.

possible to select a hypothesis at a certain index, as is usual with lists. The
following is a description of the approach we are constrained to take.

Figure 3.5 shows the core structure of the fold_context tactic: AccumTactic.
It in turn relies on MatchTactic. Figure 3.6 depicts the operation of
MatchTactic; Figure 3.7 shows the corresponding Ltac source. The tactic
is very simple. If the type of the argument H is one of the marked types,
MatchTactic Hreturns the appropriate CoC term. If it is not one of the
marked types, MatchTactic throws an exception. In general, it is neces-
sary to have a version of MatchTactic for every uniform function. On the
other hand, once built it need not change for any minor alterations to the
inductive type like moving constructors, changing their arguments, and
so forth.

On the other hand, AccumTactic is a fully general tactic. In the dia-
gram, subterms are combined using the binary operator or, but this is
a local variable that is bound to or by the enclosing fold_context tactic.
Figure 3.8 shows the source of the fold_context tactic. The arguments op
and init are the combine function and the initial value respectively. m is
the match tactic.

AccumTactic matches hypotheses in order from most to least recent.

43

MatchTactic(H)

o Return with
T :=type of H fAHT
Return with
f_nforestH T

Return with
f_ntreeHT

T matches P_A?
F

Figure 3.6: A schematic of the operation of the MatchTactic tactic.

Ltac MatchTactic H :=
match type of H with

| P_nforest _ => constr:(f_nforest _ H)
| P_ntree _ => constr:(f_ntree _ H)

| PLA _ => constr:(f_A _ H)

| _ => fail 1

end.

Figure 3.7: The MatchTactic tactic.

Each hypothesis matched is passed as an argument to MatchTactic which
either returns a term in the CoC, R, or throws an exception. If it throws
an exception, AccumTactic proceeds to match a new, less fresh hypothesis.
If it returns R, AccumTactic checks if R already appears in the term that
represents the final result, V. If it does an exception is thrown and a new
hypothesis is matched. Otherwise, the new term, R V V is formed and
AccumTactic is recursively invoked on this term. When all hypotheses are

matched unsuccessfully either because they are uninteresting or because

44

Ltac fold_context op init m :=
let rec AccumTactic V :=
match goal with
| H: ?2T |— _ =>
let V. := mH in
match V with
| context [V'] => fail 1
| _ => let P := constr:(op V' V) in AccumTactic P
end
| _ =V
end
in
let Init := constr:(init) in
let L := gather Init in L.

Figure 3.8: The fold_context tactic.

they are already in the term AccumTactic returns with the final value.
The fold_context tactic binds init and op to its arguments and invokes
AccumTactic with init.

The fold_context tactic is considerably less efficient than the standard
fold operation on lists, which is O(n) where n is the length of the list. The
worst case is one where every hypothesis is interesting. This results in n
recursive calls of AccumTactic, one for each hypothesis. Since every recur-
sive call must check all hypotheses until encountering a new interesting
hypothesis there are “72 hypothesis processing steps in all. The best case is
one with no interesting hypotheses; this case requires only n hypothesis
processing steps.

To make use of the fold_context tactic the user must define some
simple functions and an appropriate MatchTactic. The number of lines
necessary is rather small and proportional to the number of types in the
inductive definition. The functions for the ntree example required about
nine lines of setup code.

While these nine lines are more than a user would require when initially

developing this function they are a small price to pay for a robust tactic

45

that does not require manual repair whenever the inductive definition is
changed.

If the user requires the order of the hypotheses in the context to corre-
spond to the order of the parameters in each principal premise she must
use the elim tactic, rather than the induction tactic. The induction tactic
may rearrange the hypotheses introduced into the context. The elim tactic
performs only the induction step leaving the user to introduce hypotheses
into the context or rearrange them as appropriate.

If a tagged structural recursion principle (Chapter 7) is used it is pos-
sible to insert a guard into the fold_context tactic. This guard detects
when the freshest case hypothesis is reached and immediately returns a

value. There is some gain in efficiency from this short-circuiting.

Variations

In some circumstances it is preferable to fold the context in reverse order,
i.e., from oldest to newest hypothesis rather than the default, which is
newest to oldest. For example, the map function requires the appropriate
constructor be applied to the arguments of the corresponding principal
premise in the order in which they appear. A fold_context_reverse
tactic can be constructed which matches the hypotheses from oldest to
newest rather than newest to oldest, the default.

The examples discussed so far all require that the fold operation be
over a homogeneous list. The elements in every disjunction required to
build the In function are in Prop; the elements in every sum required to
build the measure function are in nat. This convenient homogeneity does
not hold in all cases.

In general, it is possible to accumulate any list of heterogeneous terms
using the prod type shown in Figure 3.9. The unique constructor, pair,
combines two terms which may be of any type. Using this constructor in
place of the cons constructor and Empty_set in place of the nil constructor

46

Inductive prod (A B : Type) : Type :=
pair : A—> B —> A x B

Figure 3.9: The definition of the prod type.

it is possible to accumulate a term which is isomorphic to a heterogeneous
list structure.

Such a list may be postprocessed using the Ltac language in a variety
of ways. The disjunctions that comprise the In function can, for example,
be constructed by building a list using the pair constructor and post-
processing the resulting term, substituting an or constructor for every
pair constructor and False for Empty_set. Building a heterogeneous
list using pair and then post-processing the list using further scripts to
generate the desired term is a more general and less structured approach

than the homogeneous list technique.

3.5 Properties of the Initial Value

In all the examples in this chapter, the initial value supplied to the fold
operation has also been the identity for the combine function. This is
the typical case. In most cases it is desirable to simplify the body of the
principal premise, eliminating occurrences of the identity where possible.
We supply a tactic to simplify the term resulting from an application of

the fold_context tactic by applying the rules
e op id T=T
e opTid=T

in the usual recursive manner.
Because the CoC can express so many sorts of terms and properties the
meaning of identity changes based on the choice of the combine function.

In the In example in Section 3.3 and Section 3.4, the combine function

47

is or and the initial value is False. The domain of the or constructor is
any proposition. Thus, to prove that the initial value is the identity it is

necessary to prove:

forall (P : Prop), P \/ False <—> P

On the other hand, in the measure example the combine function is plus
and the initial value is 0. In that case, to prove that 0 is the identity it is

necessary to prove:

forall (n : nat), n + 0 = n

Because different properties need to be proved for different choices of the
combine function and initial value we rely on the user to make sure that

the initial value is actually an identity.

3.6 Conclusions and Related Work

With the tactics described in this chapter a user is able to construct any of
a large class of polytypic functions for a given inductive definition. The
advantage of our approach is that the tactics are robust to small changes
in the underlying inductive definitions, changes which would be likely to
cause less robust scripts to fail.

Use of the scripts conforms to a simple pattern. For example, the script
that builds an In function for ntrees and one that builds a size function
are only five lines long and differ by just a few characters. The script
to define a size function for 1ists differs from that for ntrees by about
twenty characters. The initial effort by the user is reasonable; the reward
for the effort is considerable whenever the user can expect to be changing
underlying inductive definitions or using the same function for many
different inductive definitions.

Aydemir et al. make use of a related accumulating technique for a

specific application to sets in their metatheoretic developments (Aydemir

48

et al., 2008). Their tactic is restricted in application and intended to be
used in an interactive setting to facilitate their co-finite quantification
techniques. It is our contribution to demonstrate that this approach is
extensible, generalizable, and useful in an automatic setting. Chlipala
discusses heterogeneous lists but does not consider a tactical approach to
their construction (Chlipala, 2009).

In this chapter we have described a general approach for building poly-
typic functions. Though lightweight, this approach is not fully automatic
since the user must specify some simple functions and follow an infor-
mal tactic pattern to set up automatic synthesis of the function. Certain
functions, particularly measure functions, are so generally useful that it is
worth the trouble to eliminate even this small overhead by automatically
generating the necessary functions and scripts. In Chapter 4 we discuss
measure functions generally.

Datatype-generic, i.e. polytypic programming, is an ongoing subject
of research (Gibbons and Paterson, 2009; Gibbons, 2007). Generic variants
of Haskell (Hinze et al., 2007) have been built and it has been demon-
strated that the existing features of Scala support generic programming
well (Oliveira and Gibbons, 2008). We have demonstrated a tactic-based
approach which is suitable for an automated proof-assistant with tactic
support. The approach we have presented requires some initial effort on
the part of the developer, who must specify a number of function defini-
tion and tactics as described in Section 3.3. We do not believe that this
is a fundamental weakness of our approach. The essential operation of
every uniform function can be expressed succinctly by a definition of the
arguments to the fold function. The definitions that the user is currently
required to specify by hand can certainly be automatically generated. We

believe that this would prove a suitable direction for further research.

49

4 AUTOGENERATING MEASURES

41 Introduction

Coq supports the automatic generation of a structural induction or recur-
sion principle for every inductive definition. Recently, a facility to add an
equality function and some related proofs for every inductive definition
has been made available. However, Coq continues to lack any facility for
automatically generating a measure for an inductive definition.

This is an unfortunate omission. In Chapter 5 we introduce several
general recursion principles which rely on a measure. A measure maps
objects from the domain of interest to another domain. Typically the other
domain is the natural numbers, nat in Coq. Since general recursion is so
frequently required and since a measure function is one of the essential
requirements of a large class of general recursion principles, measure
functions should be automatically available.

In this chapter we discuss properties of measures and restrictions on

the structure of measures.

4.2 Properties of Measures

The domain of a measure function may in general be quite complex. Coq’s
nat datatype, expressed according to the usual Peano definition of natural
numbers, is simple. Moreover, there is considerable tactical support for
reasoning about the natural numbers in the Coq standard library. Conse-
quently, nat is a convenient and natural choice for the range of a measure
function.

A measure may be opaque to the user or it may be transparent. When
the user has access to a datatype definition the measure itself is generally
transparent. However, Coq support a module system much like that of

50

ML. The module system intentionally hides the structure of underlying
data from users of a module. For example, Coq’s standard library provides
a collection of set modules. An appropriate measure in this case is the
cardinal function which the set modules must export. In this case, the
cardinal function itself is opaque to the user and the user must rely on
lemmas which the set modules also export to show necessary properties
of cardinal in using a general induction principle. An implementation
need only export a single fact, that the cardinality of the set is equal to
the length of the list of the elements in the set, but from that fact a host
of other facts can be derived. Within the module, however, the cardinal
function must be defined by some form of recursion; the lemmas that the
modules provide about induction are proved using recursion.

In the following sections we discuss some of the difficulties of defin-
ing an appropriate measure function. Our contribution in this section is
to expose and formalize the challenges that arise in the definition of a
measure function. In Section 4.2 we discuss the reasons why a measure
function may not be defined on a term with a type in Prop. In Section 4.2
we discuss the tradeoffs between two alternative definitions of a a mea-
sure function defined using structural recursion. The first alternative is
to define a mutually recursive function with as many distinct functions
as their are mutually inductive datatypes in the inductive definition. The
second alternative is to define a measure function with a single function;
the type of its parameter is the sum of the distinct types of the inductive

datatypes that make up the inductive definition.

Consequences of the Separation between Prop and Other
Sorts
To support Coq’s extraction mechanism a separation between Prop and

the other sorts is enforced. In particular, it is forbidden for any function to
deconstruct a term with a type in Prop in order to build a term in Set or

51

Inductive 1z (n : nat) : nat — nat — Prop :=
lzn : 1z nnl
| 1z_S : forall ms : nat, 1z nms — lz n (Sm) (S s)

Figure 4.1: The definition of the 1z type, a redefinition of the le type
(Figure 5.2) that contains the size of any term.

Type.
This rule does not forbid all functions from a type in Prop to a type

in any other sort. Such functions are allowed; informally, the restriction
only forbids deconstructing a proof of some fact in order to build a value.
If deconstructing a proof were allowed, the structure of the proof would
become part of the function’s result, and the distinction between proofs
and programs, necessary for the extraction mechanism, would be broken.

This restriction prevents a measure function defined by structural recur-
sion over the terms of the domain. Two ways of overcoming this restriction
immediately suggest themselves; it is our contribution to show that both
are impossible within the system and that the restriction cannot, in general,
be finessed.

Incorporating the Size of the Proof in the Type

The first approach is to change the types of proofs so that they contain an
additional term, their size. Figure 4.1 shows the 1z datatype, a redefinition
of the 1e datatype (Figure 5.2) that contains the size of any term. The third
argument is the size of the proof. A proof that n is less than or equal to n
is constructed using the 1z_n constructor and has size 1. A proof that n is

less than or equal to S n has the form

Iz_Sn (Sn) 2 (lz_n nn 1)

It is possible to define a measure function that returns the size; it does not
need to deconstruct the proof, only to extract the size of the proof from its

type.

52

One difficulty with this approach is that the size of the proof is now
part of its type. Functions which take a proof constructed using 1z as an

argument will require a universally quantified type, e.g.,

forall s, 1z 2 3 s

or will need to specify the size of a proof that 2 is less than or equal to 3,

e.g.
lz 2 3 2

It is impossible to construct an argument of the first type since the only
possible value for s in the example is 2. However, the two numbers to be
compared may be arbitrary natural numbers, represented only by variables,
e.g., x and y. In that case, the only way to specify the type completely is
to be aware of the relation between x, y and the size of the proof that x is
less than y. The expression for the size of such a proof constructed using
1zis S(y - x). However, if the size of a proof can be calculated from its
type then it is useless to include the size of a proof in its type.

In some cases it is possible to calculate the size of a proof from its type.
The previous example has shown that it is possible to define a measure
function on any proof constructed using le. This is a special case, as the
values in a dependent type may not always indicate the size of every proof
that inhabits the type. Thus, in general, it is impossible to encode the size
of a proof in its type.

Indiscriminability

The second approach is to define a type in Prop that is suitable for the
range of the measure function. For example, it is possible to define a type,
natP, that is isomorphic to nat but inhabits Prop. Since it is isomorphic

to nat it must share the properties of nat. However, elements with types

53

Prop

\
\
|
|
|
|
|
I

-_—— - e

Figure 4.2: A schematic of a proof of inequality showing the discriminating
function mapping objects in some type to types in Prop.

in Prop are indiscriminable, i.e., it is impossible to show that two elements
with the same type are not equal.

In Coq, the only way to prove that two objects are not equal is to prove
that the assumption of their equality proves False. A schematic of this
approach is shown in Figure 4.2. A discriminating function maps objects
in some type to types in Prop. Let x and y be two objects such that the
discriminating function maps x to the type True and y to the type False.
If x and y are equal it must be the case that True and False are equal.
Therefore, a proof of True, which can always be obtained, is also a proof
of False. Thus, from the hypothesis that two unequal objects are equal it
is always possible to prove False.

Unfortunately, due to the separation between Prop and the other sorts,
i.e., Set and Type the discriminating function is not accepted by Coq where

54

the domain of the function has a type in Prop. Crucially, True and False
are inductive definitions, i.e., they are types, not values. Therefore, it is
impossible for them to have types in Prop; in fact, they inhabit Prop. It is
impossible to write a discriminating function with the domain consisting
of a type in Prop and a range actually in Prop. Hence it is impossible to
distinguish between two objects of the same type if their type inhabits
Prop. Consequently, no object with a type in Prop is discriminable.
Indiscriminability prevents any proof by induction on the size of any
expression with a type in Prop. If it is impossible to build a desired proof

by structural induction this is a significant obstacle.

Proof-Irrelevance

Coq’s type-system prevents discriminating between two proofs of the
same type. Often, rather than discriminating between proofs, the user
would like two proofs of the same fact to be proven identical. For example,
the user may wish to show equality between two instances of a subset type
where the values are equal. A subset type is a way of packaging a type
and a predicate on that type. An inhabitant of a subset type is a witness
and a proof that the desired property holds for that witness.

The equality that is interesting is that between the values, not the
proofs. Concretely, let us assume the witness is an element of nat and the
predicate is that the element must be greater than zero. That is, we wish
to show the following goal.

forall (n : nat) HH : n > 0), exist n H = exist n H’

exist n Hand exist n H’ are elided by the extraction mechanism to the
identical terms n and n, so equality always holds in the extracted code. This
equality may be essential to the proof we are developing; it is desirable

that we can prove it in our development.

55

Unfortunately, we cannot without resorting to the axiom of proof-
irrelevance, which simply states that all proofs of the same property are
equal. This axiom is so generally useful that it is defined in the Logic
module of Coq’s standard library. Proof-irrelevance is an axiom, not a
lemma. It is impossible to prove in Coq partly because it is false. For
example, or_introl True I and or_intror True I are both proofs of
the property True V True. On the other hand, they are clearly different,
as the one is constructed from or_introl and the other from or_intror.
Clearly, if expressions with types in Prop were discriminable then it would
be possible to prove that the two expressions were different and at the
same time, using the axiom of proof-irrelevance, to prove that they were
equal. Thus, proof-discriminability and proof-irrelevance must be avoided
in the same proof development in order to prevent an inconsistent system.

To date, proof-irrelevance has prevailed over proof-discriminability. It
is included in the Coq standard library and made use of in many proof
developments. This seems ironic since proof-irrelevance is false and proof-
discriminability is true.

Recently, extensive support for Setoids (Barthe et al., 2003) has been
included in Coq. Setoids allow the user to define a setoid equality which is
not Leibniz equality over elements in a type. Extensive support for setoid
equality has been incorporated into tactics which make use of a definition
of equality. Setoid equality eliminates some of the motivation for proof-
irrelevance. For example, it is possible to define a setoid equality that
ignores the values of proofs in a subset type. In that case, the expression

exist n H = exist n H’

is automatically equal by the setoid equality and there is no need to make
use of a proof-irrelevance axiom. Unfortunately, it is still rather difficult
to work with setoids. Proof-irrelevance is a good deal simpler and thus

continues to be employed in many proofs.

56

Limited Proof-discriminability

Proof-irrelevance can be asserted with a single axiom. On the other hand,
any axiom of proof-discriminability is specific to a particular inductive
definition.

For example, suppose natP has two constructors, Op and Sp which are
isomorphic to the corresponding constructors in nat. In that case, one

proof-discriminability axiom must be provided. From the axiom

forall (n : natP), Sp n <> Op

it is possible to conclude, via the symmetry of equality, that

forall (n : natP), Op <> Sp n

With this axiom it is possible to re-prove all of the lemmas in the Peano
module in the Coq standard library for natP. We made use of the inequality
axiom in proving two facts, that Op is not equal to Sp n for any n, and that
n is not equal to Sp n for any n. All other facts were proved identically for
nat and natP. Of course, decidability of equality is easily proved.

The Coq standard libraries provide extensive further support for rea-
soning about nat since its properties are so useful. It would be desirable
to identify what properties of nat are most valuable for proving well-
foundedness of functions. Coq provides a few “power” tactics, e.g., omega,
which solve particular problems of arithmetic. It would be interesting to

see how these tactics can be adapted to natP.

Consequences of the Algebraic Representation of Sum

Types

In defining a measure function by structural recursion two alternatives
present themselves: a mutually recursive function with as many distinct
functions as there are distinct datatypes in the inductive definition or a

single function which takes the sum type of all datatypes as a parameter.

57

It is impossible to directly implement the latter approach without al-
ready possessing a general recursion principle for the inductive definition
for the reasons described in Section 2.4. For this reason, an equivalent
dependently typed representation of the inductive definition, as described
in Chapter 2, is sometimes preferable.

The alternative is to construct a measure using a discrete recursion
principle. Discrete recursion principles for mutually recursive types are
described in Section 2.4. A measure which takes a sum type as a parameter
may be defined as a wrapper function which deconstructs the sum type
until an appropriate ground type is reached and invokes the appropriate
one of the discretely typed mutually recursive functions.

4.3 Autogenerating Measures

The two obvious choices for a measure on any inductively defined term
are the size of a term, i.e., the number of its constructors, and the depth
of a term, i.e., the maximum number of constructors between the root of
the term and a leaf. Both measures are instance of the uniform functions
described in Chapter 3. Some uniform functions are well-defined only
over certain inductive types. For example, a function which calculates the
number of free variables in a term is only meaningful for a type which
defines the syntax of a language. Functions which calculate the size and
depth of a term are universally generic, i.e., they make sense for any
inductively defined type.

Such functions are amenable to construction by making use of the
approach described in Chapter 3. However, since they are so universally
applicable we believe that it would be better to generate them automatically
for every inductive definition in the same way that structural induction

principles and boolean equality functions are generated.

58

5 AUTOGENERATING GENERAL RECURSION PRINCIPLES

5.1 Motivation

In this chapter, we describe the principle tactic. This tactic populates the
proof-context with a general recursion or induction principle specified by
the user.

Furthermore, we have developed a language for specifying the general
structure of a general recursion or induction principle and an algorithm
for expanding the specification to generate a recursion principle for any
number of mutually inductive definitions. Consequently, the user may
obtain a general recursion principle that is applicable for an induction
term in a type defined by any number of mutually inductive types.

We believe that this tactic will be a great convenience to advanced
Coq users. It is certain, also, to make the learning curve less steep for
novice users. Further, we expect that it will provide a stepping stone
for researchers who wish to experiment with the automatic discovery of
useful induction principles (Bundy, 2001), either indirectly, by reducing
the currently very high cost of experimentation, or more directly, if our
specification language is able to serve as an intermediate target for their
efforts. We believe that in our own use of this tool we have been able to
expose commonalities and properties of different induction principles that
would otherwise have been only very dimly perceptible.

In Section 5.2 we discuss the problem of general induction and recur-
sion in more detail.

In Section 5.3 we discuss the structure of a language for specifying the
forms of general recursion principles. Our specification language is based
on Parameterized Context Free Grammars (PCFGs), our own invention.

In Section 5.4 we discuss the principle tactic algorithm. The algorithm

is unusual because it must make use of an external Python process and an

59

Inductive False : Prop :=

Figure 5.1: The definition of False, the simplest uninhabitable inductive
type.

external Coq process to synthesize the correct principle.

In Section 5.5 we categorize the different types of general recursion
principles that our tactic provides.

In Section 5.6 we describe a number of measure-based general induction
principles suitable for our specification language.

In Section 5.7 we describe an approach that makes use of a general
relation rather than specifying that the relation must be defined by a
measure.

In Section 5.8 we demonstrate an alternate approach.

In Section 5.9 we conclude our discussion of this topic.

5.2 Background

Inductive Definitions

In Coq, inductive definitions are the stuff of which finite proofs and values
are made. An inductive definition may be uninhabitable; False, defined
in Figure 5.1, is the most obvious example. Coq also allows co-inductive
definitions; these correspond to potentially infinite data structures. Coq
does not accept recursive functions on co-inductive values as, due to the
potentially infinite nature of these structures, such functions can always
be non-terminating.

In Cogq, the task of proving is the task of building inhabitants of in-
ductive datatypes or of demonstrating that inhabitants can be built by
constructing functions which type-check. When they are in the sort Prop,

inductive definitions constitute axioms, i.e., statements made without any

60

Inductive le (n : nat) : nat — Prop :=
len : n<=n
| le_.S : forall m : nat, n <=m —> n <= Sm

Figure 5.2: The definition of le, the inductive type that defines the less
than or equal to relation.

le.S 01 (le.S 0 0 (le_n 0))
(@) A Coq proof term.

apply le_n
FO<=0
apply le_S
FO<=1
_ applyleS
FO<=2
(b) A Gentzen style represen-
tation.

1 0<=0 applyle_n
2 0<=1 applyle S 1
3 0<=2 applyleS 2

(c) A Fitch style representation.

Figure 5.3: Three ways of representing a proof that zero is less than two.

proof. When they are in the sort Set inductive definitions are specifica-
tions of the structure of values. Figure 5.2 shows the definition of 1e, the
inductive type that defines the less than or equal to relation. Figure 5.3
shows three ways of representing a proof that zero is less than or equal to
two. They are interconvertible; we show the Gentzen style proof and the
Fitch style proof to explain the structure of the proof term.

A more useful proof is one that shows that zero is less than or equal
to all natural numbers. Figure 5.4 shows a proof of this fact as a Coq

term. Because the proof is about an infinite set, it must be inductive. The

61

good =
fix good (n : nat) : 0 <= n :=
match n as n0 return (0 <= n0) with
| 0 =>1le_n O
| S n0 => le_.S 0 n0 (good n0)
end

forall n : nat, 0 <= n

Figure 5.4: A proof that zero is less than or equal to every natural number.

application good 14 is a proof that 0 is less than or equal to 14. A proof
that 0 is less than or equal to 14 is not actually constructed. Instead, the
type-checker verifies that good 14 has the type 0 <= 14. It is possible to
show the Gentzen or Fitch style representation of such an inductive proof
as well. However, the fixed point function shows more clearly than either
alternate representation the meaning of the proof.

In the example in Figure 5.4 the proof is a proof by structural induction.
Structural induction is an instance of well-founded induction (Winskel,
1993) where the well-founded ordering, <, is the relation “is a subterm

of”

Well-founded Induction

A set is well-founded under a particular relation (Winskel, 1993), <, if the
relation allows no infinite descending chains. The well-founded induction

principle
Va, (Vb,b < a = Pb) = Pa

allows the user to make use of the hypothesis P b for any b that is below a
by the relation < in order to prove Pa.

In structural induction, the relation < is the relation “is a subterm of”.
This relation is automatically a well-founded relation since inductively

defined terms are always finite in Coq. Structural induction principles

62

Inductive Acc (A : Type) (R : A — A — Prop) (x : A)
: Prop :=
Acc_intro : (forall v : A, Ry x — Acc Ry) — Acc R x
(a) The definition of Acc.

well _founded =
fun (A : Type) (R : A —> A — Prop) =>
forall a : A, Acc R a
forall A : Type, (A —> A — Prop) —> Prop
(b) The definition of well_founded.

Figure 5.5: Formalization of well-foundedness in the Coq standard library.

always obey Coq’s restrictions to ensure termination. However, the relation
“is a subterm of” is very restrictive, i.e., the number of pairs in the relation
is relatively small compared to other well-founded relations. For example,
the relation “has fewer constructors than” includes all pairs in the “is a
subterm of” relation and, in general, infinitely many more. More general
forms of recursion make use of different and less restrictive definitions for
<.

Coq’s standard library provides a set of inductive definitions which
encode well-foundedness. The accessibility predicate, Acc (Figure 5.5) for-
malizes a notion of accessibility. A term is accessible by a relation R if all
terms that are below it by the relation are also accessible. The predicate
well_founded generalizes the accessibility property over all inhabitants of
a type. Because Acc is an inductive type, rather than a co-inductive type,
all its inhabitants must be finite. The finiteness of the proof term itself
ensures the well-foundedness of the relation.

General recursion principles may make explicit use of well-foundedness
by making use of structural induction on the proof of well-foundedness.
Figure 5.6 is the structural recursion principle for Acc. Acc_intro is the
unique constructor for Acc. Since Acc has just one constructor structural
recursion as well as structural induction is possible. Since Acc is in Prop it

63

Acc_rect =
fun (A : Type) (R : A — A — Prop)
(P : A — Type)
(f : forall x : A,
(forall y : A, Ry x —> Acc Ry) —
(forall' y : A, Ry x ->Py) > P x) =>
fix F (x : A) (a : Acc R x) {struct a}
P x :=
match a with
| Acc_intro a0 =>
f x a0 (fun (y : A) (r : Ry x) == F vy (a0 y 1))
end
forall (A : Type)
(R:A—> A — Prop)
(P : A — Type),
(forall x : A,
(forall y : A, Ry x —> Acc Ry) —
(forall y : A, Ry x >Py) > P x) —
forall x : A, Acc R x —> P x

Figure 5.6: The definition of Acc_rect in the Coq standard library.

bad =
fix bad (t : True) : False :=
match t with
| T => bad t
end
forall t : True, False

Figure 5.7: A proof that True implies False.

is elided by the extraction mechanism.

Non-termination

Figure 5.7 shows a recursive function that, if it were accepted by Coq,

would allow the user to prove that True, the always true proposition,

implies False, the never true proposition. This function is well-typed. It

can never “go wrong” in the standard type-theoretic sense.

However, if this function were accepted by Coq then the expression

64

loops =
fix loops (x : nat) : nat :=
(fun _ : nat => 0) (loops x)

: nat — nat

Figure 5.8: An example of a recursive function which is not strictly de-
creasing in its recursive argument. This function is permitted because it
terminates under a normal-order evaluation.

bad I would have the type False. This follows from the usual rules for
function application, since bad has type True -> False and I is the unique
nullary constructor for True. bad I would then constitute a proof of False.
From False it is always possible to prove any fact. Consequently, if it were
possible for Coq to accept a function like that in Figure 5.7 it would be
unusable as a theorem prover.

Therefore, Coq must forbid terms that do not have a normal form by
means of some additional restrictions. Since termination is, in general,
undecidable Coq must forbid some functions that are terminating as well
as all functions that are non-terminating.

Coq’s termination checks take into account evaluation order (Char-
guéraud, 2010). If it can be shown that, under normal-order evaluation,
a recursive call will never be evaluated then there are no restrictions on
the form of the recursive call. For example, Figure 5.8 shows a function
definition that terminates immediately if the outermost function applica-
tion is evaluated first, but diverges if the recursive call is evaluated first.
The form of the recursive call is considered immaterial and is therefore
not restricted.

However, if the recursive call will certainly be evaluated then Coq
requires that the recursive call be on a subterm of its recursive argument.
In the example in Figure 5.7, there is no evaluation order under which the
recursive call, bad t, will not be evaluated. Consequently, the recursive

call is forbidden since t is not a subterm of the original argument.

65

It should be noted that the exceptions to the requirement that every
recursive call be on a subterm leads to some surprising properties. Naively,
a user would expect that all extracted code would be terminating. But
the O’Caml extracted version of the function in Figure 5.8 is actually non-
terminating since O’Caml evaluates its arguments eagerly. Moreover, it is
possible to specify evaluation order when evaluating terms in Coq itself.
The current version of Coq crashes when requested to evaluate the 1oops

function eagerly.

General Induction

Due to the restrictions to enforce termination of all recursive programs and
the reliance on inductive types to express structures and proofs structural
induction is the only form of induction which is an intrinsic part of Coq.
When it is defined every inductive type is automatically associated with
an induction principle. The induction principle is a higher order function
that abstracts the structural induction portion of the recursively defined
proof in Figure 5.4. Figure 5.9 shows the structural recursion principle for
nat, the inductive definition which corresponds to the natural numbers.
The arguments f and £0 are the principal premises of the function. f is the
base case; £0 the inductive step.

Unfortunately, it may be impossible to prove a desired result via struc-
tural induction. The insertion sort algorithm is an inefficient sorting al-
gorithm which can be implemented by structural recursion on lists. An
empty list is sorted, and a non-empty list can be sorted by inserting the
head of the list into the sorted tail of the list. On the other hand, the quick-
sort algorithm (Hoare, 1962) is an excellent example of a simple algorithm
that cannot make use of structural recursion. In the quicksort algorithm,
the list is split on each side of a pivot. Each sublist is smaller than its parent
list and the algorithm is guaranteed to terminate. However, it is necessary

to make use of some form of general recursion since the pivot is not in

66

nat_rect =
fun (P : nat — Type)

(f : PO

(f0 : forall n : nat, Pn —> P (S n)) =>
fix F (n : nat) : P n :=

match n as n0 return (P n0) with

| 0 => f
| S n0 => f0 n0 (F n0)
end

forall P : nat — Type,

PO —

(forall n : nat, Pn — P (S n)) —
forall n : nat, P n

Figure 5.9: The structural recursion principle for nat.

general located between the head and the tail of the list but may split the
list at any point.

That structural induction is not always adequate is a well-recognized
problem and various original and diverse proposals for general induction
have been proposed (Balaa and Bertot, 2000; Bove and Capretta, 2005;
Charguéraud, 2009; Danielsson and Altenkirch, 2009; Megacz, 2007). They
all have merit and every one of them should be as accessible to a user
of the Coq system as are structural induction and recursion principles.
It is unfortunate that none of them are. Our principle tactic addresses
this problem by providing a specification language for general induction
and recursion principles. These principles are fixed point combinators that

incorporate termination proofs.

Fixed Point Combinators

A fixed point combinator, fix, is a higher order function that, given a functional,
F, is able to build a recursive function, f. fix satisfies the formula

f=fixF = fx = Ffx

67

which permits equational reasoning by a one step unfolding of fix.

It is a well-known result that fix is easily defined in the untyped lambda-
calculus but that it is impossible to construct a well-typed definition for
a fixed point combinator in the simply typed lambda-calculus (Pierce,
2002). If it were possible to construct such a function then the simply
typed lambda-calculus would allow non-terminating functions. How-
ever, the simply typed lambda-calculus is, in fact, strongly normalizing, i.e.,
evaluation will eventually reach a normal form under any reduction order.

Clearly, the CoC is not strongly normalizing. In Figure 5.8 we have
demonstrated a function that will terminate under one evaluation order
but not under another. However, the CoC must be weakly normalizing, i.e.,
must terminate under some evaluation order, in order to be consistent.

Approaches to general recursion are varied. However, a significant
subset of these approaches can be classified as the discovery of a fixed
point combinator that builds a recursive function from a functional while
simultaneously constructing a proof of termination. Such combinators
are known as general recursion principles. Our work builds on these
efforts by demonstrating a facility for generalizing these terminating fixed
point combinators to multiple, mutually recursive, recursion principles by

means of a general specification language.

Principle Specifications

Each recursion principle requires a principle specification that designates,
in a general way, the form that the principle must follow. General recursion
principles are not obvious or easily discovered; every form differs from
other forms in significant ways (Balaa and Bertot, 2000; Charguéraud,
2009).

Any inductive datatype may contain several mutually inductive defini-
tions. The greatest difficulty in specifying the general form of a principle is

in specifying how the principle varies as the number of mutually inductive

68

datatypes for which the principle is required varies.

Consider the structural recursion principle, Acc_rect, originally de-
scribed by Balaa and Bertot and defined in the Coq standard library (Fig-
ure 5.6) (Balaa and Bertot, 2000). Acc_rect is a fixed point combinator.
The argument, £, is a functional. Note that the functional has a rather
lengthy type. Most of the type is involved not with the actual result of the
fixed point function but rather with the proof of termination.

Disregard the actual meaning of the principle and consider the type, A,
over which it is parameterized. A can be any type, including the sum of all
the inductive datatypes in a mutually inductive definition. If it is the sum,
however, R, P, and f must necessarily be quite complicated as each must
deconstruct the elements in the sum type into their individual parts. If it
is not a sum type, then it is only effective for an inductive definition with
just a single inductive datatype. While inductive definitions with just one
inductive datatype are typical in simple developments more advanced
developments are likely to require mutually inductive datatypes. Conse-
quently, the problem of mutually inductive datatypes must be confronted
if more complex developments are to made accessible.

In Section 5.3 we describe our language for specifying the general

structure of recursion principles.

5.3 Specification Language

Our observation is that the general induction and recursion principles can
have a somewhat fractal-like quality. Each principle may be decomposed
into parts which have an identical syntactic structure but vary in the
names of particular variables. Each part will vary its structure in a regular
way which is dependent upon the number of inductive datatypes in the
definition.

We have defined a language which allows the user to indicate the over-

69

all form of an inductive datatype and also how it varies both in structure
and in the names of identifiers.

Our language resembles a context-free grammar (CFG) as it includes
the concept of productions, i.e., the replacement of non-terminals with
terminals. However, it is also parameterized on the number of inductive
datatypes. Moreover, terminals may be subscripted to associate them with
their proper inductive datatype. These two things must be achieved by
the language specification itself.

Parameterized Context-Free Grammars

A CFG is defined by the following four components: (Fischer et al., 2010)

A finite terminal alphabet, £

A finite non-terminal alphabet, N

A start symbol, S, in N

A finite set of productions, P

Every CFG defines a context-free language (CFL) which is the set of all
sequences of terminals that can be generated by the CFG. In specifying an
induction principle the user must construct a CFG that defines a singleton
set, the form of the principle for a single inductive definition.

It is never necessary to use the full power of a CFG in order to define a
singleton set. If the CFG defines a singleton set then the entire CFG can
be rewritten as a single production where the left-hand side is the start
symbol and the right-hand side is the unique element in the language. The
annotations that the user adds to the CFG are significant; they lose their
meaning if the CFG is transformed so that it has only one production.

The user annotates the productions in the grammar to define the way

in which subterms of the principle are duplicated and altered so that a

70

S — agb
X = xYy
Y — Zpoaq

Figure 5.10: An example of a Parameterized Context-Free Grammar
(PCFG).

principle may be built for any number of inductive definitions. These
annotations to the original grammar allow the user to define a language
of an infinite number of principles, all similar in structure to the principle

for a single inductive definition.

Cloning

For this purpose, we annotate the CFG to show where cloning occurs. A
non-terminal on the right-hand side of a production may be distinguished
by a bar above the symbol, e.g., S — aA. This symbol indicates that the
non-terminal must be cloned n times, where n is the numeric parameter
of the grammar. Every terminal may have a subscript, which is an index
into a list of type parameters. We call a CFG that may be annotated in
this way a parameterized context-free grammar (PCFG). The grammar in
Figure 5.10 is an example of such a PCFG.

The clones are syntactically identical but semantically distinct. Ter-
minals in the clones have different subscripts. Each clone is assigned a
type parameter. The type parameters are drawn from an ordered list of
n type parameters. Every terminal’s subscript is an index into the list of
parameters for the non-terminal on the left-hand side of the production
which produces the terminal. Figure 5.11 shows the derivation of the
resulting string where n is 2 and the list of parameters is {A, B}. At the
first step the S is expanded. The resulting sentential form contains two X’s,
one corresponding to the type parameter A and the other corresponding
to the type parameter B. At the second step, each X is expanded. The list

71

S = aX*XBPb
= ax YA YBA Y x YABYBE Yy
= AXZaA QA ZB QA YXZa Qg Z AB Y

Figure 5.11: A derivation for the PCFG in Figure 5.10 where n = 2 and the
list of type parameters is {A, B}.

a{x{zoa1}y}b
Figure 5.12: A tree representation of the PCFG in Figure 5.10.

of parameters for each Y is extended by an additional parameter. At the
third step, each Y is expanded to a pair of terminals, za. z’s index is 0, so
the zeroth parameter is selected from each Y’s list of parameters; a’s index
is 1, so the first parameter is selected.

An alternate specification of the grammar in Figure 5.10 is given in
Figure 5.12. Each non-terminal appears only once in the right-hand side
of a production and is the left-hand side of only one production. Con-
sequently, the grammar may be depicted as a tree, where the right-hand
side of each production is shown at the location where the left-hand side
of each production appears. The bars which indicate that a non-terminal
must be cloned are nested as well.

Parameterized Pushdown Automata
Pushdown Automata as Language Generators

There exists a transformation from any CFG to an equivalent pushdown
automaton (PDA) (Linz, 2006) that encodes an abstraction of the LL pars-
ing algorithm (Fischer et al., 2010) for that CFG. The purpose of a parser
is to recognize members of the language defined by its grammar. How-
ever, a parser can also be viewed as a generator. Figure 5.13 is the CFG
corresponding to the PCFG of Figure 5.10. Figure 5.14 is the PDA which

72

S — aXb
X = xYy
Y — za

Figure 5.13: A CFG corresponding to the PCFG in Figure 5.10.

<
N
©

A
A
A

, X
.S
X,
Y
z,
a,
b,

OO N< X «- ..

ARt IO RGN

> > > > >«
o<

Figure 5.14: A PDA which encodes the abstract LL parsing algorithm
for the CFG in Figure 5.13. The transition labels have the format
<tape>,<pop>;<push>.

encodes the abstract LL parsing algorithm for this CFG. The transition
labels of the PDA have the following format: the symbols on the left of the
comma are the symbols to be read off the tape; the symbols on the right
of the comma indicate the operations to be performed on the stack. The
symbol on the left of the semi-colon indicates the symbol or sequence of
symbols to pop off the stack, on the right of the semi-colon are the symbols
to push on the stack. The special symbol, Z, is used to indicate the bottom
of the stack, and A means the empty string.

Due to the special properties of the grammar the PDA is deterministic;
it recognizes the singleton set of the language specified by the grammar.

The reader can see that it may also be viewed as a generator of the

73

language. Instead of matching tokens on an input tape it can write them to
an output tape. In this interpretation the symbol on the left of the comma
is a symbol to be written to the tape, rather than read from the tape. In
the example in Figure 5.14 the transition labeled b, b; A indicates that if a
b appears on the stack then it may be written to the tape. Similarly, the
transition labeled A, Y; za indicates that if a Y is on the top of the stack it
may be popped and an a and then a z may be pushed on to the stack while
nothing is written to the tape.

Parameterized Generating Pushdown Automata

A PCFG may be transformed into an equivalent PDA in the same manner
as a CFG is transformed. The rules which govern the execution of the
PDA must be altered to accommodate cloning. We call a PDA which is
executed according to this extended set of rules a parameterized generating
pushdown automaton (PGPDA).

The execution of the PGPDA is parameterized on n, which must be
at least 1. Let I be a list of of n distinct identifiers. I, indicate the xth
identifier for any 1 < x < n.

The stack of the PGPDA is augmented so that each element on the stack
is a pair. The first elements of the pair is a terminal or a non-terminal as in
a PDA. The second element of the pair is a stack of identifiers. Figure 5.15
shows the PGPDA corresponding to the PDA of Figure 5.14.

In the transition from state 0 to state 1 in Figure 5.14 the label indicates
that the bottom symbol, Z, is popped off the stack. Then it is immediately
pushed on the stack followed by S, the start symbol of the grammar. In the
corresponding PGPDA a pair is pushed onto the stack, the start symbol
and an empty stack.

A, S; aXb is a transition label of the PDA in Figure 5.14.

MAS, sth{a, stiX, [I; : st]}.. . {X, [I,, : sti{Db, st}

74

ALY, st} {z, st} {a, st}
AL X, st} {x, st}{Y, [I; : st} {Y, I, 2 st} {y, st}
AL {S, sty {a, sth{X, [I; : st]}..{X, [I, : st} {b, st}

o N X
oo N< X
> > > > >

Figure 5.15: A Parameterized Generating Pushdown Automaton(PGPDA)
which encodes the abstract generating algorithm for the PCFG in Fig-
ure 5.10.

is the corresponding transition label for the PGPDA of Figure 5.15.

This transition label encodes the following rule: If S is on the stack
it, and its identifier stack, must be popped, and the following must be
pushed onto the stack.

¢ The pair, {b, st}, i.e, the symbol b and the stack associated with S

* n pairs of X and an identifier stack. Each identifier stack has a
different identifier pushed on the top of the identifier stack associated
with S. The identifiers occur in order; 1,, is the first identifier to be

pushed on the stack, I is the last.

* The pair, {a, st}, i.e., the symbol a and the stack associated with S.

Practical Specifications

A CFG is a mathematical representation of a concept which finds a practical

use in parser generators. In the same way, a PCFG is the mathematical

75

principle — (fragment|template)x
fragment — TEMPLATE
template — delimiter(templatelfragment)x

Figure 5.16: A CFG representation of the XML schema for a principle
specification.

representation of a concept which find practical use in our specification
language and principle generators.

We have chosen an XML representation for our specification. The spec-
ification of the XML representation is quite simple and is defined by the
grammar in Figure 5.16. This specification allows the user to define a CFG
corresponding to the desired principle in the nested fashion illustrated
in Figure 5.12. A template is a clone non-terminal while a fragment is an
uncloned non-terminal in the grammar. principle corresponds to the start
symbolin the grammar. The single terminal in the grammar is TEMPLATE.
This is a Cheetah (Orr and Rudd, 2005) template string which is filled in
appropriately as the derivation is built.

Since it uses templates the representation of the principle is text-based.
The alternative is to use some encoding of the abstract syntax tree of
an inductive definition in the Calculus of Co-inductive Constructions
(CoC). Both are possible and we first explored the alternative approach.
However, the alternative approach is less readable and requires the writer
of the specification to have a strong knowledge of the abstract syntax
corresponding to the concrete syntax to which a normal user is accustomed.
Consequently, we believe that the first approach is more accessible and is
more likely to gain favor with users.

The algorithm used to construct the principle is that described in Sec-
tion 5.3. It is implemented in the Python language as Cheetah (Orr and
Rudd, 2005) is a Python based template engine. Terminals, i.e., Chee-
tah templates are filled in using the identifier stack associated with the

76

enclosing fragment.

5.4 The principle algorithm

The principle tactic makes innovative use of the external tactic. This tactic
allows the Coq engine to interact with the external environment by invok-
ing an external process and passing arguments to the external process in
an XML format. The external tactic itself is responsible for packaging Coq
terms in XML format suitable for transmission to the external process and
for unpacking XML objects into Coq terms. The external process receives
the XML formatted data on standard input and returns its response as XML
formatted data on standard output which the external tactic consumes.
Figure 5.17 illustrates the principle tactic. The dotted rectangles with
rounded corners represent Coq processes. The primary Coq process is
the process which is computing the proof and for which the induction or
recursion principle is required. The secondary Coq process’ sole purpose
is to transform the generated principle from a Coq vernacular format into
an equivalent XML format which can be accepted by the external tactic.
Dashed arrows indicate the flow of control from one process to another,
solid arrows indicate the flow of data from one process to another, and
double-headed solid arrows indicate the transfer of data via input and
output streams. Squashed rectangles group and serve to further explain
the origins of some data. The principle tactic itself is a mediator between the
external tactic and the primary Coq process. On being invoked, it marshals
its arguments and passes them to the external tactic. These arguments
designate the form or principle desired, whether it should be suitable
for Prop, Set, or Type, and the number of mutually recursive inductive
definitions for which it is to be constructed. The external tactic marshals
these arguments into an XML format and conveys them to the principle

generator.

Primary
Coq
Process

principle tactic

external tactic

\
\

I arguments
passed by
external
tactic to
external
processes

—_—-

Principle
Identifier

Target

Number of
Mutually
Inductive

Definitions

- e e - - -

Figure 5.17: A schematic of the operation of the principle tactic.

argument
received by
external
tactic from
external
processes

filtered

-

Principle
Generator

Principle
Specification

Designated
by
Principle
Identifier

- - — -

Filtering
Process

-

(@)
o
e}
Nccccmc———at

..............

- P

-~

Induction or \

Recursion
Principle
as Coq
Vernacular
File

77

78

The principle generator unmarshals the arguments and uses the prin-
ciple identifier to choose among available principle specifications and
generate the requested induction principle which it prints to a temporary
Coq vernacular file. The secondary Coq process transforms the vernacular
file to an XML representation. This XML representation is pruned by the
filtering process, so that only the body of the principle is returned to the
external tactic. The external tactic unmarshals the body and the principle
tactic inserts the principle in the proof-context.

5.5 Types of General Recursion Principles

All principles make use of well-founded induction in some way. The most
direct approach is to do structural induction on a proof that some term
is accessible under the chosen well-founded relation. Consequently, the
proof of accessibility must be larger than the maximum number of steps
required for termination of the function. For example, suppose the well-
founded relation is the less than relation on the natural numbers. For a
natural number, n, the proof of accessibility must have n constructors.

An alternate approach is to use a bound. In this approach, induction or
recursion is performed on the bound rather than on the actual induction
term. The induction or recursion principle may still be general or it may
be the structural induction or recursion principle for the type of the bound.
Of course, the number of recursive calls required by the algorithm must
be less than the number of recursive calls on the bound. The most typical
case is to use a measure which bounds the term by, e.g., the number of
its constructors or its maximum depth. We discuss the specification and
types of bounded recursion principles in Section 5.6.

An orthogonal concern is where the burden of proving that the recur-
sive argument is really lower than the previous argument in the well-

founded ordering rests. There are two approaches. In the approach

79

fixwf =
fun (A : Type) (B : iType) (F : (A — B) — A — B)
(R:A—>A—> bool) W: wfR) (x : A) =>
Acc_rect (fun _ : A => B)
(fun (x0 : A)
(_ : forall y : A,
(fun yO x1 : A => R y0 x1 = true) y x0 —
Acc (fun y0 x1 : A => R y0 x1 = true) y)
(H : forall y : A,
(fun y0 x1 : A => R y0 x1 = true) y x0 —
(fun _ : A => obj_typ B) y) =>
let f :=
fun y : A =
match Sumbool. sumbool_of_bool (R y x0) with
| left r =>Hyr
| right _ => arbitrary
end in
F f x0) W x)
: forall (A : Type) (B : iType),
((A—> B) > A — B) —
forall R : A —> A — bool,
wf R — forall x : A, (fun _ : A => obj_typ B) x

Figure 5.18: A general recursion principle that dynamically computes a
proof that its argument is lower in a well-founded ordering.

of Balaa and Bertot, illustrated by the example in Figure 5.6, the burden
rests on the user of the principle (Balaa and Bertot, 2000). The functional
that the user supplies cannot make use of the hypothesis

forall y : A, Ry x >Py

without supplying the proof that R y x holds.

Charguéreaud’s recursion principle (Charguéraud, 2009) resembles
more closely the classic fixed point combinators. Consequently we call it
the explicit combinator approach. This approach places the burden of the
proof on the recursion principle itself. Since the body of the functional
is unknown the proof must be calculated dynamically by the principle.
Figure 5.18 is an example of this approach. Here, the expression

80

sumbool_of_bool (R y x)

calculates either a proof that y is below x in the relation R or a proof that
is not. If y is below x, it supplies the proof in the expression £ y H.If y
is not below x, it returns an arbitrary value, designated by the keyword
arbitrary. For this reason, it is necessary that the type, B, of arbitrary
be inhabitable so that the default can be supplied. Note that fixwf invokes
the recursion principle for Acc, Acc_rect.

Generally speaking, the user wishes to prove that the arbitrary value
is not returned. This is the same as proving that the fixed point equation
holds, regardless of the value of the argument. The proof that the equation

holds makes use of a contraction condition
VXflfz, (Vy, RUX = fly = ny) => Fle — Fsz

If this condition is satisfied then the fixed point equation may be used to
rewrite fx to Ffx.

The approach of Balaa and Bertot places a burden on the developer
since she must supply proofs that recursive arguments are decreasing.
However, the Program tactic (Sozeau, 2007b,a) includes many tactics which
are able to automatically satisfy the proof obligations.

Charguéreaud’s approach suffers from a similar drawback. A greater
part of the burden of the proof is assumed by the accompanying libraries.
However, the user must still demonstrate that the contraction condition is
satisfied by the functional in order to show that the function terminates
normally. Because this approach depends on the approach of Balaa and
Bertot we focus on their approach in the next few sections. In Sections 5.6
and 5.7 we discuss several general recursion principles to show their va-
riety and to demonstrate the versatility of our specification language. In

Section 5.8 we discuss explicit combinators.

81

5.6 Recursion Principles with Measures

Bounded Recursion

All induction in Coq is fundamentally structural induction. Where struc-
tural induction on the objects in the domain of interest is impossible it
may be useful to transfer the structural induction to another domain.

Bounded recursion is a primitive form of general recursion familiar from
mathematics. In this approach to general recursion a bound is chosen.
A measure function (Section 4.2) that maps objects from the domain of
interest to the natural numbers is defined. The value of the measure is
shown to remain below the bound which itself decreases at every recursive
call.

This approach is likely to be the approach that first suggests itself to
the user when structural recursion fails. Moreover, it has a very useful
property that it shares with its less primitive relative, measure-based recur-
sion (Section 5.6); it maps objects which may belong to several mutually
recursive datatypes to the homogeneous space of the nat datatype.

This mapping is a great convenience. If a well-founded relation must
be defined directly on a number of mutually recursive datatypes the com-
plexity of the relation is proportional to the square of their number. In
contrast, a measure defined as a mutually recursive function is only linear

in the number of mutually recursive datatypes.
Structure and Restrictions

Measures

In Chapter 4 we discuss some restrictions on measures and their properties.
In the following discussion we assume that the measure’s range is in nat.
This is by far the most natural approach because the Coq standard library

includes considerable support for reasoning about nats.

82

The measure is not restricted to a function which just describes the size
of a term. Such a function is easily produced automatically and where
the structure of an inductive definition is available will often be the most
natural choice. However, Coq incorporates a module system much like
that of ML. In the module system, the structure of a type is likely to be
hidden from external users of the module. In this case, the measure must
be obtained from the module’s functions. The most obvious example is the
Coq standard library’s collection of set modules. These modules define
a cardinal function which yields the number of elements in a set. The
cardinal function is an excellent measure function for defining bounded

recursion over sets.

Structure of a Function which Implements Bounded Recursion

A function that implements bounded recursion must take at least two
arguments: a nat, n that acts as a bound and the object of interest. The
function is structurally recursive on the bound; the object of interest is
carried along at each step. To justify each recursive call it is necessary to
show that the value of the measure is bounded by n. Figure 5.19 shows the
recursion principle for this recursion technique for an inductive definition
with just one inductive datatype.The formal statement of the structure of
this principle is one of the contributions of our work. To use the principle

it is necessary to define:

A the inductive type for which the recursion principle is desired
m_A a measure function

P_A a function that yields the result type (which may be dependent)

F_A aproof that it is impossible for the measure of any term in A to be less

than or equal to 0

83

fun (A : Type) (mA : A — nat) (P_LA : A — Type)
(F_A : forall x : A, mA x <= 0 — False)
(S_A : forall (n : nat) (x : A),
(forall y : A, mAy <=n—>PAy) —
mA x <= S n—>PA x) =>
fix Rec. A (n : nat) (x : A) {struct n}
mA X <=n —>PA x :=
match n as n0 return (m A x <= n0 — P_A x) with
| 0 =>fun H : m A x <= 0 => False_rect (P_A x) (F_A x H)
| Sn0 => fun H: mA x <= S n0 => S_A n0 x (Rec_A n0) H
end
forall (A : Type) (mA : A — nat) (P_LA : A — Type),
(forall x : A, mA x <= 0 — False) —>
(forall (n : nat) (x : A),
(forall y : A, mAy <=n—>PAy) —
mA x <=Sn—>PA x) —>
forall (n : nat) (x : A), mA x <= n — P_A x
(a) The principle.

(xx val rec_A
("al —> nat) —> (nat —> "al —> ('al — __ —> 'a2) —> __
—> a2) —> nat —> ‘al —> ‘a2 xx)

let rec rec A mAs Anx =
match n with
| O —> assert false (x absurd case x)
| S n0 — s_A n0 x (fun x0 _ — rec_A mA s_A n0 x0) __
(b) The principle extracted to O’Caml.

Figure 5.19: A general recursion principle that makes use of a bound.

S_A the recursive step, i.e., a proof that if P_A holds for every term with
measure less than or equal to n it holds for any term with size less

than orequalto S n

The principle is structurally recursive on n rather than on x although
the result of the function, P_A x is dependent on x and entirely unrelated
to n. This is strikingly evident in the extracted version of the function

where the only match expression is a match on the bound.

84

(% val ¢ : Mt ->Mt) > Mt —> Mt xx)

let g f s =
let rec fO n s0 =
match n with
| O — f s0
| S n0 —
let z = f s0 in
(match Dep.equal z s0 with
| Left —> z
| Right — f0 n0 z)
in f0O (M.cardinal s) s

Figure 5.20: An illustration of the use of a bounded recursion principle.
This function recursively applies its function argument, f, to the set argu-
ment, s, until a fixed point is reached. The original bound is the cardinality
of the set. Applying f to s must reduce the cardinality of the remaining
set by at least one element.

S_A (s_A in the extracted version) is itself a function and is likely to
contain its own match expression which deconstructs the argument, x.
Figure 5.20 shows the extracted version of a function that recursively
applies its argument, £, to a set, s, until s reaches a fixed point.

The outermost case statement in £0 matches the argument n, an upper
bound on the cardinality of the set. This obscures the true purpose of the
function; n was introduced solely to prove termination. It would be much
better if only the innermost case statement appeared.

Using the propositional version of nat, natP, would certainly not solve
the problem. It is impossible to deconstruct an element in natP, which is

in Prop, to form an element in M. t, which is in Set.

Specification

The specification of the principle is as described in Section 5.3 and requires
just 38 lines. Figure 5.21 shows the same autogenerated principle for two

mutually recursive datatypes. The additional arguments to the principle

85

fun (A B : Type) (mA : A — nat) (mB : B — nat)
(PA : A — Type) (P_.B : B — Type)
(F_A : forall x A : A, m A x A <= 0 — False)
(F_B : forall x B : B, m B x_ B <= 0 —> False)
(S_A : forall (n : nat) (x A : A),
(forall y A : A, mAy A <=n—>PAyA) —
(forall y B : B, mBy B <=n—> P_B yB) —
mA X A <=Sn—>PAxA)
(S_B : forall (n : nat) (x_B : B),
(forall y A : A, mAy A <=n-—>PAyA) —
(forall y B : B, mBy B <=n-—>PByB) —
mB x B <=Sn-—>P_B x B) =>
fix Rec. A (n : nat) (x_A : A) {struct n}
mA XA <=n—>PA xA :=
match n as n0 return (M A x A <= n0 —> P_A x A) with
| 0 => fun H: mA x A <=0 =>
False_rect (P_A x_A) (F_A x_A H)
| SnO0 => fun H : m A x A <= S n0 =>
S_A n0 x A (Rec_A n0) (Rec_B n0) H
end
with Rec_B (n : nat) (x_B : B) {struct n}
mB x B <=n-—>P_B x B :=
match n as n0 return (m B x_B <= n0 — P_B x_B) with
| 0 =>fun H: mB x B <= 0 =>
False_rect (P_B x_B) (F_B x_B H)
| SnO => fun H: mB x B <= S n0 =>
S_B n0 x_ B (Rec_A n0) (Rec_B n0) H
end for Rec_A
forall (AB : Type) (mA : A — nat)
(mB : B — nat) (PLA : A — Type)
(P_B : B — Type),
(forall x A : A, mA x A <= 0 — False) —
(forall x_ B : B, mB x_ B <= 0 —> False) —>
(forall (n : nat) (x_ A : A),
(forall y A : A, mAy A <=n—>PAyA) —
(forall y B : B, mBy B <=n—> P_ByB) —
mA XA <=Sn—>PAxA) —
(forall (n : nat) (x_B : B),
(forall y A : A, mAy A <=n—>PAyA) —
(forall y B : B, mBy B <=n—> PByB) —
mB x B <= S n-—>PB xB) —
forall (n : nat) (xA : A), mA x A <=n — P_A x A

Figure 5.21: A bounded general recursion principle for two mutually
recursive datatypes.

86

are B, m_B, P_B, F_B, and S_B and must be defined in the same way as the
corresponding arguments for the A type. The reader will observe that a
principle for even as many as two mutually recursive datatypes is lengthy
and would doubtless prefer that it be autogenerated. It is also obvious
that the principle does have the fractal-like quality that makes it amenable
to autogeneration using PGPDAs.

Discussion

In this section we have described a primitive form of general recursion,
bounded recursion. While primitive, it is a form of recursion that is intu-
itive to a student of mathematics. Like measure-based recursion it allows
reasoning about the homogeneous space of the type of the measure’s
domain rather than the in general, heterogeneous space of an inductive
definition which may include a number of inductive datatypes. However,
extracted code does not elide the bound. Consequently, the bound appears
in an extracted function, which is undesirable since it is not an essential
part of the computation but only used to prove termination.

We have shown that our specification language is expressive enough to
describe the overall structure of bounded recursion and to allow a bounded
recursion principle to be autogenerated for any number of mutually in-
ductive definitions. We have constructed a general recursion principle for

bounded recursion.

Bounded Recursion With a Dependent Measure

The CoC has a particularly rich type-system. It incorporates dependent
types (Altenkirch et al., 2005), i.e., types which include values. In some
cases the value is a constant parameter. Figure 5.22 shows the definition
of a tree structure where every value in the tree is bounded. When the

value is a constant, the general bounded recursion principle described

87

Inductive ltree (n : nat) : Set :=
Ileaf : ltree n
| Inode :

forall p : nat,
p <= n —> ltree n — Itree n — ltree n

Figure 5.22: A definition of a tree datatype where every element in the
tree is no greater than n.

Inductive htree (A : Set) : nat — Set :=
| hleaf : A — htree A 1
| hnode : A —
forall n : nat,
htree A n — htree A n — htree A (S n)

Figure 5.23: A definition of a tree datatype where the height of the tree is
part of the type.

in Section 5.6 is suitable. All constant parameters may be defined using
Coq’s sectioning mechanism; by this means they are made implicit and
do not need to be included explicitly in the recursion principle.

In general, however, the value may vary. Figure 5.23 show the definition
of a tree structure where the height of the tree is part of the type. One
of the most usual uses of dependent types is to include within the type
of a data structure such as a list or a tree some measure of its size. We
show that it is possible to write a general bounded recursion principle
that uses the size information incorporated in such a dependent type as
a measure. Figure 5.24 shows our recursion principle for two mutually
recursive datatypes.

We discuss only the arguments for the A type; the arguments for the B
type are defined in the same way. To use the principle it is necessary to

define for each inductive definition:

A the result type of the inductive type for which the recursion principle is
desired

fun (A B : nat — Type) (P_A : forall x : nat, A x — Type)

(P_B : forall x : nat, B x — Type)

(F_A : forall x : nat, A x —> x <= 0 — False)
(F_B : forall x : nat, B x —> x <= 0 — False)
(S_A : forall (n x : nat) (x A : A x),

(forall (y : nat) (y_ A : Ay), y <=n —

(forall (y : nat) (y.B : By), y <= n —

Xx <= S n—>PA x xA)

(S_B : forall (n x : nat) (x_B : B x),

(forall (y : nat) (y_ A : Ay), y <= n —

(forall (y : nat) (y_.B : By), y <= n —

Xx <= Sn—> PB x x_B) =>

fix Rec. A (n x : nat) (x_A : A x) {struct n}
x <=n—>PA x x A :=
match n as n0 return (x <= n0 — P_A x x_A) with
| 0 =>fun H : x <= 0 =>

False_rect (P_A x x_A) (F_A x x_A H)

| Sn0 => fun H : x <= S n0 =>
S_A n0 x x_ A (Rec_A n0) (Rec_B n0) H
end
with Rec_B (n x : nat) (x_B : B x) {struct n}
x <=n-—>PB x xB :=
match n as n0 return (x <= n0 —> P_B x x_B) with
| 0 => fun H : x <= 0 =>
False_rect (P_B x x_B) (F_B x x_B H)
| Sn0O => fun H: x <= S n0 =>

S B n0 x x_ B (Rec_A n0) (Rec_B n0) H

end for Rec_A
forall (A B : nat — Type)

(P_A : forall x : nat, A x — Type)

(P_B : forall x : nat, B x — Type),
(forall x : nat, A x — x <= 0 — False) —
(forall x : nat, B x — x <= 0 — False) —
(forall (n x : nat) (x A : A x),

(forall (y : nat) (y_ A : Ay), y <=n — P_
(forall (y : nat) (y.B : By), y <=n — P_

Xx <=5n—>PAxxA) —
(forall (n x : nat) (x_B : B x),

(forall (y : nat) (y. A : Ay), y <=n — P_
(forall (y : nat) (y.B : By), y <=n — P_

x <=Sn—PB x x_B) —

iE
W >

i
w >
<< <

forall (n x : nat) (xA : Ax), x <=n —> P A x x A

88

y_A) —
y_B) —
y_A) —
y_B) —
_A) —
_B) —
_A) —
y_B) —

Figure 5.24: A bounded general recursion principle for two mutually
recursive datatypes where the measure is contained in the type.

89

P_A a function that yields the result type (which may be dependent)

F_A a proof that it is impossible for the measure of any term to be less
than or equal to 0

S_A the recursive step, i.e., a proof that if P_A holds for every term with
measure less than or equal to n it holds for any term with size less
than orequalto S n

To our knowledge this is the first description of a bounded general
recursion principle which takes advantage of dependent types which

themselves contain a measure.

Measure-based General Induction

Measure-based general recursion is similar to bounded recursion (Sec-
tion 5.6), however, the bound is implicit instead of explicit. Figure 5.25 is a
measure-based adaptation of the approach of Balaa and Bertot.

Like bounded-recursion measure-based recursion is powerful because
it collapses the space of multiple mutually inductive datatypes into the
space of a single inductive datatype. The more general approach is to
define a well-founded relation between every pair of the mutually induc-
tive datatypes that make up an inductive definition. This can be bur-
densome to the programmer where there are many mutually inductive
datatypes. Using measure-based recursion the developer can make use
of the well-founded relation between the elements in the range of the

measure function.

fun (A B : Type) (mA : A — nat) (mB : B — nat)
(PA : A — Type) (P_.B : B — Type)
(F_A : forall x A : A,
(forall y A : A, mAy A <mAXxA —> PAyA) —
(forall y B : B, mBy B <mAXxXxA — PByB
P_A x_A)
(F_B : forall x_B : B,
(forall y A : A, mAy A <mBxB —> PA
(forall y B : B, mB y B mB x B —> P B
P_.B x_B) =>
fix Rec_A (x_A : A) (r_A : Acc 1t (mA x_ A)) {struct r_A}
PA XA =
F A x A
(fun (y_ A : A) (HA : mAy A <mA xA) =
Rec_A y_ A (Acc_inv r A (mA y_A) HA))
(fun (y_B : B) (HB : mB y_.B < mA x A) =>
Rec_B y_B (Acc_inv r A (m_B y_B) H_B))
with Rec_B (x_B : B) (r_B : Acc It (mB x_B)) {struct r_B}
PB xB :=
F_.B x_B
(fun (y_ A : A) (HA : mAy A <mB x_B) =
Rec_A y_A (Acc_inv r_ B (m_,A y_A) HA))
(fun (y_B : B) (HB : mB y. B < mB x_B) =
Rec_B y_B (Acc_inv r_ B (m B y_B) H_B))
for Rec A
forall (AB : Type) (mA : A — nat)
(mB : B — nat) (P_A : A — Type)
(P_B : B — Type),
(forall x_A : A,
(forall y A : A, mAy A <mAXxA —>PAyA) —
(forall y B : B, mBy B <mAxA — PByB) —
P_A x A) —
(forall x_B : B,
(forall y A : A, mAy A <mBxB —>PAyA) —
(forall y B : B, mBy B <mBxB —>PByB) —
P_B x B) —
forall x A : A, Acc It (mA x A) — P_A x A

Figure 5.25: A measure-based general recursion principle.

91

5.7 Recursion Principles Using a General

Relation

All of the examples in Section 5.6 are specific examples of recursion in
which the well-founded relation is defined by means of a measure. There
is considerably support for measure-based general recursion in the Coq
standard library and measure-based recursion is often preferred. In some
cases, the user may prefer to explicitly define a well-founded relation rather
than make use of a measure. Figure 5.26 shows a recursion principle
appropriate for this case. The principle difference between recursion
principles that rely on a general relation and measure-based principles
is that, whereas the measure must be divided into multiple recursive
components, one for each mutually inductive type, the relation must make
use of sum types. In the example, the type of the relation is

A+B-—>A+ B — Prop

Every use of the relation must then form the correct type from the ground
type using the inl and inr constructors of the type. To accommodate
this necessity the grammar in Figure 5.16 is extended with an additional
coercion terminal. The coercion tag identifies variables which must be
coerced to the correct sum type and the necessary expression is generated
programmatically.

5.8 Recursion Principles as Explicit

Combinators

The explicit combinator approach produces recursion principles with a struc-
ture that more closely resembles that of the classic fixed point combinators
of the untyped lambda calculus. However, it is necessary to supply an
arbitrary value of the correct type. Consequently, their use is restricted

92

fun (A B : Type) (P_LA : A — Type) (P_B : B — Type)
(R:A+B-—>A+ B — Prop)
(F_A : forall x A : A,
(forall y_ A : A,
R (inl B y_A) (inl B xA) —> P.A y A) —
(forall y_B : B,
R (inr A y_B) (inl B x A) — P_B y_B) —
P_A x_A)
(F_B : forall x_B : B,
(forall y_ A : A,
R (inl B y_A) (inr A x B) —> P.A y A) —
(forall y_B : B,
R (inr A y_B) (inr A x B) — P_B y_ B) —
P_B x_B) =>
fix Rec. A (x A : A) (r_A : Acc R (inl B x_A)) {struct r_A}
PAXxA :=
F A x A
(fun (y_A : A) (HA : R (inl B y_A) (inl B x_A)) =>
Rec_A y_A (Acc_inv r_A (inl B y_A) HA))
(fun (y_B : B) (HB : R (inr A y_B) (inl B x A)) =>
Rec_B y_B (Acc_inv r A (inr A y_B) H_B))
with Rec_B (x_B : B) (r_B : Acc R (inr A x_B)) {struct r_B}
P_B x_B :=
F_B x_B
(fun (y_A : A) (HA : R (inl B y_A) (inr A x_B)) =
Rec_A y_A (Acc_inv r_B (inl B y_A) HA))
(fun (y_B : B) (HB : R (inr A y_B) (inr A x_B)) =>
Rec_B y_B (Acc_inv r_B (inr A y_B) H_B))
for Rec A
forall (A B : Type) (P_LA : A — Type)
(PB : B —> Type) (R: A+ B —> A+ B — Prop),
(forall x A : A,
(forall y_ A : A,
R (inl B y_A) (inl B x A) —> P_ A y A) —
(forall y_B : B,
R (inr A y_B) (inl B x A) — P_B y_.B) —> P_A x A) —
(forall x_B : B,
(forall y_A : A,
R (inl B y_A) (inr A x B) —> P Ay A) —
(forall y_B : B,
R (inr A y_B) (inr A x B) — P_B y_.B) — P_B x_B) —
forall x A : A, Acc R (inl B x A) —> P_A x_A

Figure 5.26: A recursion principle that make use of a general well-founded
relation.

93

to the definition of functions that have a simple result type, since it is
impossible to construct an arbitrary value for a dependently typed result.

Figure 5.27 shows a recursion principle for a mutually inductive type
with two types. Note that the combinator is complicated by the necessity
that R, the relation, be over a some type, but that each functional be for a
single type. It is not itself recursive, the recursion is contained in the call
to Acc_rect.

For each combinator it is also necessary to prove that the fixed point
equation holds. Let F; and F, be the two functionals. Then f; = fix2 F; F,
and f, = fix2 F, Fy. It is necessary to show that fix = F;f;f; and f, = F>fif;
if the appropriate contraction condition holds,

Existing proofs of the fixed point equation for combinators for simple
types have been constructed using fairly lengthy tactic scripts composed
of powerful tactics. We suspect that it will take considerable study to find
a way to automatically generate such proofs for automatically constructed
combinators for multiple mutually inductive types and that this is a useful
direction for future work.

The combinators that are constructed by this method are, in general,
not suitable for use by the induction tactic. They are more appropriate
for explicitly defining recursive specifications (Charguéraud, 2009). A
Combinator directive which allows the user to define and name combinators
for mutually recursive types, akin to the Scheme command for specifying
structural induction principles would be desirable.

5.9 Discussion and Related Work

In this chapter we have demonstrated a facility for specifying the struc-
ture of a provably terminating fixed point combinator, i.e. general recur-
sion principle, so that the principle appropriate for a term that inhabits

a type defined by any number of mutually inductive datatypes can be

fun (Z : Type) (arbitrary : Z) (A B : Type)
(R:A+B—>A+ B — Prop)
(R_dec : forall mn : A+ B, {Rmn} + {~ Rm n})
(FA : A—>2Z2) —> (B—>272) > A — Z)
(FB: A—>2)—> (B—>272) —>B—>127) (x : A+ B)
(Wf : well_founded R) =>
Acc_rect (fun _ : A + B => Z)
(fun (x0 : A + B)
(_ : forall y : A+ B, Ry x0 — Acc R y)
(H: forall y : A + B,
Ry x0 — (fun
match x0 with
| inl x_A =>
F_A
(fun y_ A : A =>
match R_dec (inl B y_A) x0 with
| left r == H (inl B y_A) r
| right _ => arbitrary
end)
(fun y_ B : B =>
match R_dec (inr A y_B) x0 with
| left r = H (inr A y_B) r
| right _ => arbitrary
end) x_A
| inr x_B =>
F_B
(fun y_ A : A =>
match R_dec (inl B y_A) x0 with
| left r = H (inl B y_A) r
| right _ => arbitrary
end)
(fun y_B : B =>
match R_dec (inr A y_B) x0 with
| left r = H (inr A y_B) r

Il
\

:A+B=>72)y)

| right _ => arbitrary
end) x_B
end) (Wf x)
: forall Z : Type,

Z —>

forall (AB : Type) (R : A+ B —> A + B — Prop),
(forall mn : A+ B, {(Rmn} + {~ Rmn}) —
((A—>Z) - (B—>2Z) > A—>Z7Z) —

((A—>Z2) - (B—>2Z2Z) - B —> Z) —>
forall x : A + B,

well_founded R — (fun _ : A+ B => Z) x

Figure 5.27: A fixed point combinator for two types.

95

automatically generated. We have constructed a tactic that populates the
proof-context with the appropriate general recursion principle.

We believe that our facility would be invaluable for gathering together
the variety of general recursion principles that have been developed for
the Coq proof-assistant and making them all equally accessible to the user.
To our knowledge, ours is the first specification language or tactic of its
kind.

Our specification approach is suitable for general recursion strategies
based on the construction of provably terminating fixed point combinators.
Other strategies (Bove and Capretta, 2005; Megacz, 2007) are computation
specific, i.e., the recursion strategy must be redeveloped for every compu-
tation and are consequently less general. Our specification is unsuitable
and unnecessary for these strategies.

The strategy of Bove and Capretta involves constructing an inductive
type which has a strong correspondence to the desired computation and is
strictly larger than the number of steps required by the computation (Bove
and Capretta, 2005). The structural induction or recursion principle of the
synthesized type becomes the core of the computation and thus there is
no necessity for a general recursion principle

Megacz has developed an approach to general recursion which makes
use of a co-inductive computation monad (Megacz, 2007). The return type
of the user-specified function is the computation monad which has a result
of the desired type. The computation monad is a co-inductive type, i.e., it
is a type that allows infinite terms. If the user is able to supply an inductive
term that bounds the length of the computation then the computation is
terminating.

Both strategies are interesting and potentially valuable. The strategy
of Bove et al. is subject to the usual difficulties with extraction since the
synthesized type must not be in Prop if the result of the computation is
not in Prop. The synthesized type will not be elided by the extraction

96

mechanism unless the whole term is elided. Megacz’s strategy is novel
and appears more compatible with the extraction mechanism.

The Program tactic (Sozeau, 2007b,a) and its associated libraries is based
on a fixed point combinator approach and makes use of the general tech-
nique of Balaa and Bertot. While our approach exposes the structure of a
general recursion principle, the Program tactic hides the structure of the
principle exposing only the computational parts of recursion and not the
proof of termination. All parts of the termination proof are expressed
in terms of subset types, i.e., types where the general type of the term is
modified by a predicate which restricts the terms which actually inhabit
the type. The subset types are not visible in the specification. The Program
tactic automatically synthesizes the necessary predicates to form the sub-
set types and presents any lemmas that cannot be automatically satisfied
by the associated tactics to the user.

The Program tactic is not applicable in the case of mutually inductive
definitions. We believe that this is not a fundamental restriction but rather
due to an implementation decision. We believe that the Program tactic and
our specification tools could be combined to make a more general and
powerful tactic that is not restricted to a single general recursion principle
and to types that are not mutually inductive.

Part 11

Extending Structural Induction

and Recursion

97

98

ntree_rect =
fun (A : Set) (P : ntree A — Type)
(f : forall (a : A) (n : nforest A), P (node A a n))
(n : ntree A) =>
match n as n0 return (P n0) with
| node x x0 => f x x0
end
forall (A : Set) (P : ntree A — Type),
(forall (a : A) (n : nforest A), P (node A a n)) —
forall n : ntree A, P n

Figure 5.28: The automatically generated recursion principle for ntree.

Induction is fundamental to proof development in Coq. The induction
tactic’s basic function is application of the appropriate induction or recur-
sion principle to the current goal; it also performs some preprocessing of
the current goal and some postprocessing of generated subgoals. Variants
of the induction tactic allow the user to specify alternate induction prin-
ciples. The default principle is the one that Coq automatically generates
when processing an inductive definition.

No facilities exist in Coq for generating alternate principles. Even the
default autogenerated recursion principle is usually not the one that is
desired when the definition is mutually inductive. Figure 5.28 shows
the default structural recursion principle generated by Coq for ntree.
Although ntree and nforest are mutually inductive the default recursion
principles generated for ntree and nforest are not mutually recursive.

To obtain a mutually recursive induction principle the user must make
use of the Scheme command. Figure 5.29 shows the mutually recursive

principle obtained by the command

Scheme ntree_r := Induction for ntree Sort Type with

nforest_r := Induction for nforest Sort Type.

The fundamental difference between the default principle and that
generated by the Scheme command is that the default principle’s unique

99

ntree_r =
fun (A : Set)
(P_ntree : ntree A — Type)
(P_nforest : nforest A — Type)
(f_node : forall (a : A) (n : nforest A),
P_nforest n — P_ntree (node A a n))
(f_nil : P_nforest (nil A))
(f_cons : forall n : ntree A,
P_ntree n —
forall n0 : nforest A, P_nforest n0 —
P_nforest (cons A n n0)) =>
fix F_ntree (n : ntree A) : P_ntree n :=
match n as n0 return (P_ntree n0) with
| node a n0 => f_node a n0 (F_nforest n0)
end
with F_nforest (n : nforest A) : P_nforest n :=
match n as n0 return (P_nforest n0) with
| nil => f_nil
| cons n0 nl => f_cons n0 (F_ntree n0) nl (F_nforest nl)
end
for F_ntree
: forall (A : Set) (P_ntree : ntree A — Type)
(P_nforest : nforest A — Type),
(forall (a : A) (n : nforest A),
P_nforest n —> P_ntree (node A a n)) —
P_nforest (nil A) —
(forall n : ntree A,
P_ntree n —
forall n0 : nforest A, P_nforest n0 —
P_nforest (cons A n n0)) —
forall n : ntree A, P_ntree n

Figure 5.29: The recursion principle generated by the Scheme command for
ntree. A is the function parameter. P_ntree and P_nforest are statements
of conclusion. £_node, f_nil, and f_cons are principal premises.

100

principal premise, £, does not provide the user with any useful induction
hypothesis to build the induction step. In fact, the default principle is not
even a fixed point. To prove any fact about ntrees the user must prove
that a fact holds for any ntree constructed from a node constructor. Since
that is every ntree the default recursion principle is worthless.

This situation has two unfortunate drawbacks. First, the novice user
will learn to use the induction tactic without understanding its underlying
mechanism. When the autogenerated recursion principle is inadequate,
which will always happen with a mutually inductive definition, the novice
user is stymied. Second, even a knowledgeable user will prefer to use the
default principle whenever it is adequate, since it is the only one that is
automatically generated. All other principles the user must write out and
update whenever the inductive definition is changed. This preference is
likely to constrain the user to prefer a less general solution that can be
implemented automatically to a more general solution that requires more
labor.

We argue that, rather than restricting the user to a single default in-
duction principle, it is better to supply the user with a family of principles
appropriate to different tasks and the means of specifying the default
principle for the particular task at hand. This will assist the novice user by
making clear the functionality of the induction tactic and the importance
of choosing the correct principle. It will assist the more advanced user by
reducing the labor of constructing and maintaining an alternate recursion
principle as the inductive definition for which the principle is defined
evolves.

The structural induction or recursion principle generated automati-
cally by Coq is always homogeneous, i.e, it encodes an inductive definition
over objects of one type. This is true regardless of whether it is gener-
ated as a side-effect of processing its inductive definition or explicitly via

the Scheme command. For example, the structural recursion principle for

101

ntree, ntree_r (Figure 5.29) encodes an inductive definition exclusively
over elements constructed from ntree and nforest constructors. A ho-
mogeneous principle has the basic syntactic structure from which other
principles can be syntactically derived.

In Chapter 6 we describe a syntactic transformation from the automati-
cally generated homogeneous structural recursion principle to a hetero-
geneous structural recursion principle. This transformation is applicable
when the inductive definition is parameterized. We show that the hetero-
geneous principle allows the user to generalize the property of inclusion
in a list to any element-wise property over lists. We demonstrate that most
properties of inclusion that are proved in the List module of the Coq
standard library can be generalized analogously.

In Chapter 7 we address a different problem. When a user makes use
of a structural recursion principle a new subgoal is generated, one for
every constructor in the type of the induction term. There is no informa-
tion within each subgoal to indicate which constructor each new subgoal
corresponds to. Consequently, a user or an automated tactic must rely
on a mapping between the position of the subgoal and the location of
the constructor within the inductive definition of the type. The user is
likely to become confused while automated tactics are likely to fail if the
position of a constructor within the inductive definition is changed. We
propose extending structural induction and recursion principles with a
case hypothesis which allows the user and automated tactics to identify
the case to which every subgoal corresponds.

The CoC does not allow dependently typed variadic types. Conse-
quently, it is necessary to use a 1ist to specify a variadic type for a con-
structor in an inductive definition. However, Coq does not place a variadic
interpretation on 1ist when it is used in this way. Instead, it treats the list
as opaque and consequently generates a structural induction or recursion

principle which is in general useless because it contains no induction hy-

102

pothesis for the variadic portions of the type. In Chapter 8 we introduce a
programmer’s idiom for expressing variadic types via the 1ist type. We
demonstrate a tactic that can automatically generate the variadic portions
of any recursion principle. We describe an experiment which demon-
strates that variadic structural recursion principles can be employed in a
disciplined development with minimal readjustment.

In this section we demonstrate three useful extensions to the structural
recursion principles that Coq automatically generates. We envision a more
powerful version of Coq's induction tactic, like the principle tactic described
in Chapter 5, that allows the user to specify the extension or combination of
extensions desired. We believe that such an extensions to Coq’s automatic
facilities for structural recursion will facilitate development in Coq by
experts and novices alike.

103

6 HETEROGENEOUS STRUCTURAL RECURSION

6.1 Introduction

In this chapter, we discuss the synthesis and use of a heterogeneous struc-
tural principle from a homogeneous structural principle.

A heterogeneous form of structural recursion is possible where the
inductive definition is parameterized. ntree is parameterized on A, the
type of the elements of a tree and hence of the elements of the trees in
a forest (Figure 2.1(a)). Figure 6.1 shows the extracted version of such a
heterogeneous structural recursion principle. Note that the only difference
between this recursion principle and the less general principle for ntree in
Figure 5.29 is the £0 call, which produces a value for a, the node’s element.
Of course, where £0 is the identity, the heterogeneous recursion principle
of Figure 6.1 reduces to the homogeneous principle of Figure 5.29.

The heterogeneous recursion principle is useful where it is desired to
abstract a property or computation over the elements in the tree. Consider
a function that calculates the number of elements in a tree. The number

(xx val ntree_rect_het
("al — ’al nforest — ‘a2 —> ‘a4 — ’a3) —
‘a4 — (’al ntree — ‘a3 — ’‘al nforest —>
‘a4 — ‘a4) — ('al — 'a2) — ’‘al ntree —>
"a3 xx)

let ntree_rect_het f1 f2 f3 f0 n =
let rec f = function
| Node (a, nl) — f1 a nl (f0 a) (f4 nl)

and f4 = function

| Nil — f2

| Cons (nl, n2) — f3 nl (f nl) n2 (f4 n2)
in f n

Figure 6.1: The extracted version of a heterogeneous structural recursion
principle for ntree.

104

In =
fun (A : Type) (a : A) (1 : list A) =>
list_rect (fun _ : list A => Prop) False

(fun (b : A) (_ : list A) (H: Prop) => a =b \/ H) 1
forall A : Type, A — list A — Prop
(a) With invocation of structural recursion principle

In =
fun (A : Type) (a : A) =>
fix In (1 : list A) {struct 1} : Prop :=
match 1 with
| nil => False
| b :: m=>Db=a\/ Inm
end
forall A : Type, A — list A — Prop
(b) With structural recursion principle inlined

Figure 6.2: The In function on lists.

of elements can be defined in many ways. For example, suppose that A is
nat. In that case, it may be reasonable to let £0 be

fun (n : nat) => 1

so that each natural number is viewed as a single element. On the other
hand, suppose that A is 1ist nat. In that case, it may be reasonable to let
£0 be a recursive function that calculates the number of elements in the
list.

Another instructive example is the function In over lists shown in
Figure 6.2. Note that the proposition, a = b must be asserted explicitly in
the second principal premise since 1ist_rect is a homogeneous structural
recursion principle. In is a recursive function that computes a proposition
from a list argument. The proposition can be proved exactly when the

element a is in the list 1. For example, assume 1 is
2 :: 3 :: nil

Then In 4 1is

105

Disjunct =
fun (A : Type) (P.A : A — Prop) =>
fix Disjunct (1 : list A) : Prop :=
match 1 with
| nil => False
| cons bm=> P A b \/ Disjunct m
end
forall A : Type, (A — Prop) — list A — Prop

Figure 6.3: The Disjunct function on lists.

2 =4\/ (3 =4 \/ False)

which it is clearly impossible to prove. Similarly, In 2 1is

2 =21\/ (3 =2\/ False)

which can certainly be proved. The definition of In is accompanied by
many ancillary proofs since containment in a list is an essential property
of a list. Unfortunately, this definition of In assumes that A is both the
type of the element being searched for and the type of the elements in the
list and so do all the ancillary proofs. So, if 1 is instead

(2::3::nil):: nil

it is impossible to search for 2 within the list.
The proposition a = b could be abstracted if the structural recursion
principle were heterogeneous yielding the function Disjunct (Figure 6.3)

which is more generally useful than the In function. For example,
Disjunct (In 2) ((2::3::nil)::nil)
evaluates to

(2 =2 \/ 3 =2\/ False) \/ False

which is obviously provable.

106

In the rest of the chapter we discuss our mechanism for generating
heterogeneous structural recursion principles. We demonstrate the utility
of heterogeneous principles by showing that they can be used to construct
a Disjunct function which generalizes an In function in a valuable way.
We show that many properties of In proved in the List module can be
generalized and that this generalization makes a module more useful to
external users. We also demonstrate that such a generalization is applicable

to other data structures.

6.2 Implementation

Inductive definitions in the CoC can be sophisticated. Structural induction
principles are correspondingly complex. Rather than re-implement the
work required to generate these principles we make use of a source-to-
source translation.

We assume that the source of the inductive definition has a canonical
form; in particular, the universal quantification constructor is used only

when an argument name is needed. For example, the types

forall (t : ntree bool), nat

and

ntree bool —> nat

are identical. The second form is the canonical form; since the identifier t
is not used in the result type, i.e., nat, it is unnecessary and the equivalent
expression that uses the arrow constructor is preferred.

The transformation has two principle components: adding additional
parameters to the list of conclusions and principal premises and modify-
ing existing principal premises and function bodies to make use of the
additional parameters.

107

Identifying Syntactic Elements

To perform a transformation on the structural recursion principle it is
necessary to be able to identify and group syntactic elements. Figure 5.29
shows the homogeneous principle for ntree. By convention the arguments

to the recursion principle are assembled in the following order:
parameters these may have any type

statements of conclusion the head type of every statement of conclusion

is a sort, i.e., Prop, Set, or Type

principal premises the head type of every principal premise is an appli-

cation of a statement of conclusion

Thus, every principal premise can be identified by its type. By examining
the head type of every principal premise it is possible to extract the name
of every statement of conclusion. By this, every argument to the recursion

principle can be placed in its correct category.

Adding Parameters

The syntactic structure of a homogeneous structural recursion principle
includes several significant bijections. These are represented graphically in
Figure 6.4. The names in the sets in Figure 6.4 identify the corresponding
terms in Figure 5.29. Every type has a corresponding conclusion and
every constructor has a corresponding principal premise. The type of the
statement of conclusion and principal premise is always the same. The
statement of conclusion is always a simple function from the parameter
type to the appropriate sort. The principal premise is always a function
from the parameter type to the conclusion.

Figure 6.4(b) shows graphically the bijections in a heterogeneous struc-
tural recursion principle. Note that the set of parameters plays a role in

108

Fixed Point Function Bodies
{F_ntree,F_nforest}
Types Statements of Conclusion
{ ntree, nforest} {P_ntree, P_nforest}
Constructors Principle Premises
{node, nil, cons} {f_node, f_nil, f_cons}

(a) Homogeneous structural recursion principle

Fixed Point Function Bodies
{F_ntree,F_nforest}

Statements of Conclusion
{P_ntree, P_nforest,P_A}

Types

{ ntree, nforest}

Parameters
{a}
Constructors
{node, nil, cons}

(b) Heterogeneous structural recursion principle

Principle Premises
{f_node, £ _nil,
f cons, f A}

Figure 6.4: The bijections among the sets of types, constructors, fixed point
functions, statements of conclusion and principal premises for homoge-
nous and heterogeneous structural recursion principles.

the bijections for a heterogeneous recursion principle. There is a bijection
between the set of principal premises and the union of the set of construc-
tors and parameters and between the set of statements of conclusion and
the union of the set of types and the set of parameters. Figure 6.5 shows
the corresponding heterogeneous recursion principle. The additional
conclusions and principal premises are inserted last to facilitate currying.

Transforming Principal Premises and Function Bodies

The type of a principal premise is synthesized from the type of its corre-
sponding constructor by a simple syntactic approach. Figure 6.6 shows
the abstract syntax tree (AST) for the type of node and for the body of the
invocation of the principal premise in the appropriate case of the match

expression. The labels next to nodes in the type diagram are the pattern

109

ntree_r_het =
fun (A : Set) (P_ntree : ntree A — Type)
(P_nforest : nforest A — Type)
(P_LA : A — Type)
(f_node : forall (a : A) (n : nforest A),
P_A a —> P_nforest n —> P_ntree (node A a n))
(f_nil : P_nforest (nil A))
(f_cons : forall n : ntree A,
P_ntree n —
forall n0 : nforest A, P_nforest n0 —
P_nforest (cons A n n0))
(f_A : forall a : A, P.A a) =>
fix F_ntree (n : ntree A) : P_ntree n :=
match n as n0 return (P_ntree n0) with
| node a n0 => f_node a (f_A a) n0 (F_nforest n0)
end
with F_nforest (n : nforest A) : P_nforest n :=
match n as n0 return (P_nforest n0) with
| nil => f_nil
| cons n0 nl => f cons n0 (F_ntree n0) nl (F_nforest nl)
end
for F_ntree
forall (A : Set) (P_ntree : ntree A — Type)
(P_nforest : nforest A — Type)
(PLA : A — Type),
(forall a : A,
PAa—
forall n : nforest A,
P_nforest n — P_ntree (node A a n)) —
P_nforest (nil A) —
(forall n : ntree A,
P _ntree n —
forall n0 : nforest A, P_nforest n0 —
P_nforest (cons A n n0))
(forall a : A, PA a) —
forall n : ntree A, P_ntree n

Figure 6.5: A heterogeneous structural recursion principle for ntree.

110

Type of node

Result for node A

A @ F nforest e

Figure 6.6: An AST showing the type of node and the body of the principal
premise application.

111

Type of £ node

Figure 6.7: An AST showing the type of f_node.

variables bound in a match statement and used in the body. Figure 6.7
shows the AST for the type of the principal premise for node. Figure 6.8
gives the meaning of the different shapes used in the diagrams. Types or
values that are added by our transformation are shaded.

Although the synthesized type may be quite complex its skeleton is
easily discovered from the skeleton of the constructor’s type. The type

112

Variable
Application
Quantifier

A Arrow
Constructor

‘ Statement of Conclusion

Principal Premise

F nforest Fixed Point

Figure 6.8: AST node legend.

synthesis algorithm travels along the spine of the constructor’s type syn-
thesizing subtrees from each left child. Each constructor on the spine is
either a universal quantification constructor or an arrow constructor.

If it is a universal quantification constructor then its bound variable
must be used later in the type. The bound variable can never be the sole
argument to a function; it may be one of several arguments where the
principle argument’s value depends on it. Hence the constructor and its

left subtree are copied without change to the synthesized type.

113

Subterm of the Type of the Principal Premise

® A\ A
AN

@G

Result Type

A

Corresponding Subterm for the Body

/&\
S oK A
/@ @

Result

Figure 6.9: A schematic showing the synthesis of subtrees for the type of
the principal premise and its corresponding body from a type term.

If it is an arrow constructor then a new subtree must be constructed.
Figure 6.9 shows the construction. t is anew name for the argument of type
T. It is bound using the universal quantification constructor. The bound
value is used to construct the result type, the triangle labeled “Result Type”
in the figure.

In general, a result type may be quite complex. However, if the bound

114

value is a parameter, the result type is P_T t where P_T is the appropriate
statement of conclusion for the type T. This simple result type is the one
shown inside the triangle in the figure. The incoming and outgoing arrows
show where the subtree is connected to its enclosing type. The right child
of the innermost arrow type is treated differently; the generated subtree is
the result of applying the appropriate statement of conclusion to a term
synthesized from the appropriate constructor.

The body of the application of the principal premise is synthesized in
a related fashion. The term already constructed is applied to the match
variable, t, and then to the result of a function call, the triangle labeled
“Result” in the figure. As before, an actual result term may be quite com-
plex. However, where t is a parameter the result is always the application
of the principal premise for T to the bound variable. This simple term is
the one shown inside the triangle in the figure and corresponds to the
result type above.

If T is a parameter the shaded portions are omitted in the homogeneous
principle but must be included in the heterogeneous principle.

A constructor’s type determines the shape of the AST for the type
of the corresponding principal premise and for its application for both
homogeneous and heterogeneous principles. Thus, for any constructor, it
is possible to define a transformation from a homogeneous to a heteroge-
neous form. We implement the transformation as a two-phase, tree-to-tree
transformation using ANTLR (Parr, 2007, 2010). In the first phase, the
inductive definition is read and the appropriate tree matching grammar is
generated via ANTLR templates. In the second phase, the homogeneous
structural recursion principle is parsed and the generated tree matching
grammar is applied yielding the transformed, heterogeneous structural

recursion principle.

115

6.3 Generalized Properties over Lists

An examination of the lemmas proved about In in the List module shows
that most of the proofs are not about inclusion specifically but rather
about any property composed from a disjunction of a property over the
individual elements of a list. Generally speaking, inclusion is not the
only property on lists that it may be desirable to prove. Numerous other
properties can be expressed via a disjunction of an element-wise property.
We argue that since this is in fact the case it is better to state the more
abstract property and prove more general lemmas thereby making these
more general lemmas available to users of the module.

This generalization makes use of the Disjunct function (Figure 6.3)
which generalizes the structure of the In function. Note thatin thenil case
the Disjunct function returns False. The False proposition can never be
proved. This is the correct choice for a property over lists defined by the
disjunction of an element-wise property. It requires that a proof be found
for at least one element in the list. If there are no elements in the list, then
the property cannot hold. In our revised version of the List module In is
defined in terms of the Disjunct function.

Our contribution in this section is to demonstrate how readily lemmas
about In can be abstracted to more general lemmas. We thereby demon-
strate that these lemmas have nothing to do with the semantics of In but
are exclusively about its structure. We also point out a few cases where
the lemmas cannot be abstracted; in these cases the semantics of In is an
essential part of the lemma.

We have generalized and re-proved every lemma about In which re-
quires a simple substitution of the general property P_A for equality. In
most cases, reproving the lemmas was simple though tedious, merely re-
quiring small syntactic changes to the proof scripts. In general, the overall
structure of the ungeneralized and generalized proofs was identical.

In the following, we give several examples of lemmas about In that we

116

generalized. For example, the statement

forall (A : Type) (a : A) (1 : list A), In a (a :: 1)

becomes

forall (a : A) (1 : list A), PA a —D (a :: 1)

where P_A is

fun (x : A) => x = a

and D is

Disjunct A P_A

The property of equality to a, implicitly invoked by the repeated use of
the variable a, is abstracted to the general property P_A and the disjunction
of that property over every element of the list, i.e., D. In a similar vein, the

statement

In a nil — False

can be generalized to

D nil — False

Since both In a nil and D nil evaluate to False the conclusion follows
immediately. An arbitrary disjunctive property is preserved across list
operations like reversal and permutation; we generalized lemmas about
the rev function and the Permutation predicate with little difficulty.

Some operations, like map, require enriching the specification of some
other player. For example,

forall (A B : Type) (f : A — B)
(I : list A) (x : A),
In x 1 — In (f x) (map f 1)

117

requires that the specification of f be enriched. That is, if it can be shown
that f yields a result for which P_B holds whenever it takes an argument

for which P_A holds then it is possible to generalize the above statement to

forall (A B : Type) (f : A — B)
(P.A : A— Prop) (P_.B : B — Prop),
(forall a : A, PA a —> P_B (f a)) —
forall 1 : list A, DAl — DB (map f 1)
whereD_A and D_B are Disjunct A P_A and Disjunct B P_B respectively.
IfP_Ais

fun (a : A) => a = x

and P _Bis

fun (b : B) => b = f (x)

the generalized version is equivalent to the original.

A few lemmas about In resist generalization in this way. However
these lemmas are specifically about list inclusion. For example the NoDup
predicate holds exactly when there are no duplicates in a list. So the lemma
relating NoDup to In

forall (A : Type) (x : A) (1 : list A),
(In x 1 — False) — NoDup 1 — NoDup (x :: 1)

is not generalizable. Similarly

forall (A : Type) (n : nat) (I : list A) (d : A),
{In (nth n1d) 1} + {nthnld-=d}
which states that the function nth returns an element actually in the list or
else the default is about inclusion and therefore cannot be generalized.
In this section we have demonstrated that almost all the lemmas about
In in the List module of the Coq standard library can be generalized to

any disjunctive property over lists and that of these lemmas many can be

118

generalized and re-proved without any large changes. We believe that the
List module would be significantly more valuable if these lemmas had

been stated and proved in their more general form.

Other Data Structures

Many lemmas about the In property over lists can be generalized to any
disjunctive property. The In property can be defined just as readily over
data structures other than lists. It follows that the In property can be
abstracted to a more general property. Figure 6.10 shows two equivalent
versions of the Disjunct function for ntree. The top version is that con-
structed from the heterogeneous recursion principle. The bottom version
is the same, except that the recursion principle has been inlined. Inspection
of the principal premises in the first version shows that each is constructed
by forming the disjunction of the results of all recursive calls and also of
invocations of P_A just as with the version of Disjunct for lists. We argue
that there should exist facilities for automatically generating the Disjunct
function for any datatype. We discuss general techniques for making use
of the heterogeneous structural recursion principle to automatically build

Disjunct in Chapter 3.

6.4 Conclusions and Related Work

In this chapter we have demonstrated that a heterogeneous structural
recursion principle can be automatically synthesized from an inductive
definition just as a homogeneous principle can. We have demonstrated its
utility by showing that it can be used to express properties and functions
which take into account terms which are not in the type for which the
recursion principle is constructed. A particularly powerful example is the
In predicate on lists. We have shown that most lemmas about In defined

in the List module are not about inclusion of an element in a list; but hold

119

Disjunct =
fun (A : Set) (P.A : A — Prop) =>
ntree_rect_het A (fun _ : A => Prop) (fun _ : ntree A => Prop)
(fun _ : nforest A => Prop)
(fun (_ : A) (_ : nforest A) (X X0 : Prop) => X \/ XO0)
False
(fun (_ : ntree A) (X : Prop) (_ : nforest A) (X0 : Prop) =>
X \/ X0)

(fun a : A => P_A a)
forall A : Set, (A — Prop) — ntree A — Prop
(a) With invocation of heterogeneous structural recursion principle

Disjunct =
fun (A : Set) (PLA : A — Prop) =>
fix F (n : ntree A) : Prop :=
match n with
| node a n0 => P_A a \/ FO n0
end
with FO (n : nforest A) : Prop :=
match n with
| nil => False
| cons n0 nl => F n0 \/ FO nl
end
for F
forall A : Set, (A — Prop) — ntree A — Prop
(b) With heterogeneous structural recursion principle inlined

Figure 6.10: The Disjunct function for ntree.

about any property defined as the disjunction of an element-wise property.
We have argued that a version of the List module that proved these more
general properties would be more valuable to a client of the module. We
have further shown that the In predicate can be defined over other data
structures by means of a heterogeneous structural recursion principle. We
argue that it is in general desirable to generalize the In predicate and the
lemmas about it to a more general Disjunct predicate.

Setoids (Barthe et al., 2003) are a way of defining an equivalence relation
in Coq where an equality relation does not exist. If an equivalence relation
is defined as a setoid Coq allows identity elimination even where terms

120

are not equal. The List module has been rewritten as SetoidList where
all lemmas which include equality have been redefined to make use of

setoid equality. For example,

forall (A : Type) (a : A) (1 : list A), In a (a :: 1)

has been redefined as

forall 1 xy, eqA xy —> InA x 1 — InA y 1

where equality has been rewritten to a setoid equality, i.e., eqA.

This rewriting is another kind of abstraction and thus has a similar-
ity to the work presented in this chapter. However, the motivation and
consequences are very different. The setoid rewrite relies on the exten-
sive changes to Coq’s substitution and rewriting mechanism which allow
the user to take advantage of a setoid equality in the absence of Leibniz
equality. The work presented in this chapter demonstrates that equality
of any sort is not fundamental to many of the lemmas about In and that a
user of the module would prefer that these lemmas be generalized. The
contributions are entirely orthogonal. In fact, had the List module been
originally written in the more general fashion that we recommend the
rewriting work for SetoidList would not have been so extensive as all
properties about Disjunct would continue to hold and properties specifi-
cally about In would simply have required specializing Disjunct with a
function constructed from the setoid equality rather than the more basic

Leibniz equality.

121

7 TAGGED STRUCTURAL RECURSION

7.1 Introduction

In Chapter 6 we discussed a transformation on structural recursion princi-
ples to increase their generality. In this chapter, we discuss a transformation
to make them more informative.

Figure 5.29 shows the structure of a homogeneous structural recursion
principle for ntree (Figure 2.1(a)). Application of the induction princi-
ple results in the generation of three subgoals (Figure 7.1), one for each
principal premise. In many cases, the choice of tactics is dependent on
the principal premise’s constructor. However, the proof-context fails to
indicate what constructor each subgoal corresponds to.

The subgoals are always ordered in the same order as the principal
premises are ordered in the induction principle which is the same order
as the constructors occur in the inductive definition. For that reason the
tactic language, Ltac (Delahaye, 2000), has a “General Sequence” operator
which allows the user to specify a tactic for each subgoal resulting from

the previous application of a tactic. The tactic expression

tacy; [tacy|...|tacn]

HO : ntree nat
a: nat n0 : nforest nat
n : nforest A [Hntree : goal
[Hntree : goal IHntreeO : goal
goal goal goal
(a) Subgoal (b) Subgoal (c) Subgoal

Figure 7.1: Subgoals resulting from application of ntree’s induction prin-
ciple.

122

causes tacy to be executed on the current subgoal; tac, is applied to the
first subgoal generated, tac, to the second subgoal and so forth through
the nth subgoal. Tactics composed from this operator are brittle since they
are dependent on the order and number of subgoals generated by the prior
tactic. If the inductive definition is changed the tactic may fail. Alterna-
tively, tacy, may be made stronger by some addition to a hints database or
other change so that it eliminates one subgoal. In that case, the succeeding
list of tactics will fail since the number of subgoals on which they must
operate does not match the number of tactics. Additionally, a user may
become confused as to which principal premise she is endeavoring to
satisfy.

We propose to alter the structural recursion principle so that each prin-
cipal premise includes a tag term indicating its corresponding constructor.
We also show how the “General Sequence” Ltac operator may be replaced
by an Ltac match statement wherever it immediately follows an induction
step thereby yielding more robust tactic scripts.

We expect that the introduction of the tag term in each principal
premise will allow the construction of more robust tactics and reduce

user frustration and confusion.

7.2 Structure and Use of the Tagged Structural

Recursion Principle

Structure

Our goal is to tag every proof-context with its corresponding case. To
achieve this, every principal premise must be transformed so that its first
parameter is a tag indicating the associated constructor or type to which it
corresponds. This tag is in Prop so that it can be elided by the extraction

mechanism. Figure 7.2 shows a suitable inductive definition, case. case

123

Inductive case : forall A : Type, A — Prop :=
Case : forall (A : Type) (a : A), case a

Figure 7.2: The definition of the case type.

has just one constructor which can be used to instantiate a proof of case for
any type and value. Figure 7.3 shows a tagged version of the heterogeneous
structural recursion principle for ntree. Note that the first parameter of
every principal premise is a value in type case. In each case, the type is
dependent upon the constructor. The appropriate values are constructed
anonymously where required in the body of each function.

The induction principle can be used in the normal way using the in-
duction tactic. It will always insert an additional hypothesis in the proof-
context of type case. This hypothesis can be used by an Ltac tactic script
to decide the appropriate action.

Figure 7.4 shows subgoals introduced by a tagged structural recursion
principle. Each subgoal is clearly marked by its case tag, shown in bold.

Making Use of case Hypotheses in Tactic Scripts

case hypotheses are not expected to play an active part in the proof, i.e., no
case hypothesis is a necessary premise for any conclusion. Their purpose
is solely to guide a tactic script in selecting the correct tactic to apply based
on the particular principal premise that is being proved.

The Ltac tactic language includes a match expression which allows the
user to pattern match against the proof-context. Figure 7.5 is a simple
Ltac tactic expression which matches the most recently generated case
hypothesis and prints the matched value.

Although the Ltac match expression superficially resembles a CoC or
O’Caml match expression it has a very different semantics. If a particular
case fails, either because there was no match or because the associated

tactic failed backtracking will occur. Alternate matches for the same pat-

124

ntree_tag =
fun (A : Set) (P : ntree A — Type)

(PO : nforest A — Type)

(f : case node —>
forall (a : A) (n : nforest A),
PO n — P (node A a n))

(f0 : case nil — PO (nil A))

(f1 : case cons —>
forall n : ntree A,
Pn—

forall n0 : nforest A, PO n0 — PO (cons A n n0)) =>

fix F (n : ntree A) : P n :=

match n as n0 return (P n0) with

| node a n0 => f (Case node) a n0 (FO nO)

end
with FO (n : nforest A) : PO n :=

match n as n0 return (PO n0) with

| nil => f0 (Case nil)

| cons n0 nl => f1 (Case cons) n0 (F n0) nl (FO nl)

end

for F
forall (A : Set) (P : ntree A — Type)

(PO : nforest A — Type),
(case node —>

forall (a : A) (n : nforest A),
PO n — P (node A a n)) —
(case nil — PO (nil A)) —
(case cons —>

forall n : ntree A,

Pn—
forall n0 : nforest A, PO n0 — PO (cons An n0)) —

forall n : ntree A, P n

Figure 7.3: A tagged structural recursion principle for ntree.

125

H : case cons
H : case node HO : ntree nat
a: nat n0 : nforest nat
n : nforest A [Hntree : goal
[Hntree : goal H : case nil IHntreeO : goal
goal goal goal
(a) Subgoal (b) Subgoal (c) Subgoal

Figure 7.4: Subgoals resulting from application of ntree’s tagged struc-
tural induction principle. Note that each subgoal is identified by a hypoth-
esis with the appropriate dependently typed case type.

match goal with

| T : case ?¢c |— _ =>
match ¢ with
| node |— _ => first [idtac "node" | fail 2]
| nil |— _ => first [idtac "nil" | fail 2]
| cons |— _ => first [idtac "cons" | fail 2]
| _ => fail 2 "Unexpected case"
end

end

Figure 7.5: An Ltac match expression illustrating matching of case hypothe-
ses.

tern will be sought and the associated tactic will be retried. Matches are
by default tried in order from freshest to least fresh. If all matches fail,
execution will proceed to the next pattern.

In this context, backtracking is actually undesirable. The goal is to
match the freshest case hypothesis and apply the appropriate tactic. Should
the freshest case hypothesis correspond to a constructor for which there
is no associated action then the entire tactic should fail immediately. The
desired semantics is achieved through careful placement of exceptions,
i.e., invocations of the fail tactic.

The fail tactic takes a natural number argument. The default value is 0,

126

match case with

| node => idtac "node"

| nil => idtac "nil"

| cons => idtac "cons"

| _ => fail 1 "Unexpected case"
end

Figure 7.6: A proposed extended syntax for matching cases.

which allows all backtracking. A value of 1 terminates all backtracking
within the nearest enclosing match expression. The value is decremented
as match expressions are exited. Thus, the choice of 2 terminates all back-
tracking with the tactic in Figure 7.5.

The nested match expressions are necessary to achieve the desired
semantics. A single match expression could not prevent backtracking and
rematching a less fresh case hypothesis.

The match expression in Figure 7.5 follows a simple tactic pattern. If
the syntax of the Ltac tactic language were sufficiently extensible it would
be possible to define a new syntax for this tactic pattern and make use of
it as in Figure 7.6. In this example, all the repeated elements of the design
pattern have been elided, leaving only the semantics that a user must
specity. This match expression is distinguished from the one in Figure 7.5
by its use of the keyword case instead of goal. Unfortunately, the Ltac
tactic language is not so extensible; it allows abbreviations for syntactic
fragments only.

We can address part of this problem by introducing new syntax for
each case in the match statement. Figure 7.7 shows a simple tactic abbre-
viation that allows the user to specify the action for each case. The tactic
in Figure 7.8 which makes use of the for_case notation defined in Fig-
ure 7.7 and the Ltac first tactical, is semantically equivalent to the tactic
in Figure 7.5 The for_case notation makes the purpose and semantics of
the tactic more clear. The ordering of the arguments to the first tactic is

127

Tactic Notation "for_case" constr(c) "do" tactic(t) :=
match goal with
| T : case ?2C |— _ =>
match C with
| ¢ => first [t | fail 2]
| _ => fail 2
end
end

Figure 7.7: The for_case tactic. ¢ captures the constructor which forms
part of the type of the case hypothesis. t is the tactic to execute if the
constructor is matched.

first [for_case node do (idtac "node") |
for_case nil do (idtac "nil") |
for_case cons do (idtac "cons")]

Figure 7.8: An Ltac match expression using for_case notation.

irrelevant and the entire tactic will fail if none of the cases are matched.
Tagged structural recursion principles and the for_case tactic notation
can facilitate proof development and comprehension. First, by matching
against cases, reliance on the order in which constructors occur in an
inductive definition becomes entirely unnecessary. Second, a tactic which
matches cases can be made to always fail if a particular case is not found.
This means that the location of the error in the script is precisely identified.
Third, the user may make use of the tactic to progressively refine a
super tactic. For example, initially the user may find that Coq’s standard
automation is able to discharge several subgoals. Only a few may require
special handling. The user may wish to defer discovering the necessary
automation that will prove these subgoals while focusing on some other
aspect of the proof, temporarily including the necessary tactic scripts to
solve each recalcitrant subgoal. These scripts serve as a record of each
subgoal’s solution and a useful reference when returning to the same
proof to consider how to improve and generalize the whole tactic. If this

128

refactoring is successful the user may then use the untagged structural
recursion principle as the context information which the case hypotheses

provide has been made unnecessary.

Excluding the case hypothesis from the resulting proof

It is not the intention that the user should actually incorporate a case
hypothesis into the final proof. The only appearance of the case hypothesis
within the generated code should be restricted to the tagged structural
recursion principle.

Since the case hypothesis has the same status as any other hypothesis
it is impossible to prevent the user somehow making use of it in a proof.
However, the case type is so simple as to be almost meaningless, and is in
that respect just like the True type which is easily constructed, is useless
as a hypothesis, and immediately provable as a goal.

The for_case tactic notation that we have supplied does not pass the
value of the matched constructor to the selected tactic. This is deliber-
ate, since the tactic is not supposed to make use of the value it matches.

However, the constructor, being a constant, is always available .

7.3 Implementation

We implement the construction of a tagged structural recursion principle
via a syntactic source-to-source transformation. We interpose the appro-
priate case hypothesis as the first argument of each principal premise.
The hypothesis is easily constructed by applying the unique constructor
for case, Case, to the constructor for the match case.

It is necessary to change the type of each principal premise to corre-
spond with the change of its use. However, the type of each argument of
every principal premise is known, so that the Coq type-inference engine

is able to reconstruct the type of each principal premise without having to

129

(%% val ntree_tag
(__ — ’'al — ’al nforest — "a3 — ’'a2) —>
(. —> "a3) —> (__ — ’"al ntree —> ‘a2 — ’al
nforest — ‘a3 — ‘a3) — ’‘al ntree —> ‘a2 xx)

let ntree_tag f f0O fl n =

let rec f2 = function

| Node (a, nl) — f __ a nl (f3 nl)
and f3 = function

| Nil — f0 __

| Cons (nl, n2) —

f1 __ nl (f2 nl) n2 (f3 n2)

in f2 n

Figure 7.9: An extracted version of a tagged structural recursion principle
for ntree.

fall back on user supplied annotations. The output stage of our transfor-
mation simply strips all types from the function header, leaving only the

parameter names.

7.4 Results of Extraction and Evaluation

Figure 7.9 shows the extracted version of the tagged structural recursion
principle. The first argument to every principal premise has type __. Simi-
larly, the first argument passed to each principal premise is __. case isin
Prop, so it should be entirely elided by the extraction mechanism. Unfortu-
nately, due to technical reasons it remains as an anonymous placeholder.

However, since it is unused in proofs it is discarded even by the Coq
evaluation mechanism. Figure 7.10 shows a function that calculates the
number of elements in an ntree. The recursion principle has been inlined

and each case hypothesis has been removed.

130

fun H : ntree A =>

(fix F (n : ntree A) : nat :=
match n with
| node _ n0 => 1 + FO n0
end

with FO (n : nforest A) : nat :=
match n with
| nil => 0
| cons n0 nl => FO nl + F n0
end

for F) H

: ntree A — nat

Figure 7.10: A function illustrating the elimination of case hypotheses by
inlining of the tagged structural recursion principle.

7.5 Conclusion and Related Work

Coq includes a number of other tactics besides the induction tactic which
generate a partial match expression. The inversion tactic, described in
Chapter 9 is one such. The case tactic is similar to the induction tactic
except that it provides no induction hypothesis within the proof-context.
Neither of these tactics makes use of the structural recursion principle.
However, since a case hypothesis can always be satisfied it would be
relatively easy to extend these tactics to introduce the appropriate case
hypotheses in the generated subgoals.

Aydemir et al. included a small set of tactics for annotating proof-
contexts with their corresponding case to accompany one version of their
library for supporting metatheoretic reasoning (Aydemir et al., 2008). This
library is based on the Case tactic which assert an equality fact and intro-
duces that fact into the proof-context. However, the Case tactic is used
after the fact; the user may make use of the tactic to, in effect, attach a label
to the current subgoal. The tactic itself gives no guarantee that the label is
the correct one.

The developers suggest that the tactic be incorporated into a labeling

131

tactic as in the following brief tactic script.
induction n; [Case 0 | Case S].

If n is a nat the usual induction step is performed and the first subgoal,
which corresponds to the 0 constructor is annotated with a label for 0 while
the second subgoal, which corresponds to the S constructor, is annotated
with a label for S.

This approach is inferior to ours in two ways. First, the script shown
above may be used to do induction on a term of any type. For example, if
nisalist instead of a nat then the induction step will occur as before, the
nil case be annotated with 0 and the cons case with S. In our approach
the labels are part of the structural recursion principle. So long as our algo-
rithm transforms the structural recursion principle correctly then incorrect
labels cannot be generated. Second, the script is brittle. The definition
of Peano numbers is stable but other inductive definitions are likely to
change during development. In that case a script that makes use of the Case
tactic in the same way as in the example must be updated whenever its
corresponding inductive definition is changed. Since our transformation
of the structural recursion principle is automatic our approach is more
robust.

Asperti et al. have proposed a new type for tactics (Asperti et al., 2009).
Lacking from their type is any way to explicitly provide case information.
However, their type explicitly maintains the structure of a partial proof as
each tactic is executed. It is possible that their type could be expanded to
include the case context. Alternatively, it may be possible to discover the
case context by inspection of the partial proof term. These approaches are
heavyweight, requiring alteration of fundamental aspects of the Matita
proof engine. Our solution is a robust and lightweight alternative to these

approaches.

132

8 VARIADIC TYPES

8.1 Introduction

Variadic Functions

Many languages allow variadic functions, i.e., functions that take an arbi-
trary number of arguments. The family of printf functions in C (Kernighan
and Ritchie, 1988) are an instance of a dependently typed variadic func-
tion; the number of arguments depends on the value of the format string
argument. Because dependent types are a fundamental part of the CoC
functions where the number of subsequent arguments is dependent on
the value of a previous argument are easily defined (Weirich and Casingh-
ino, 2010). In this, the CoC is unlike its programming language relatives
ML and Haskell, which, lacking dependent types, are not variadic in this
way (Blume et al., 2008) and more like recently developed dependently
typed programming languages such as Agda (Bove et al., 2009) and Epi-
gram (Chapman et al., 2006).

In Java, an ellipsis is used to indicate an arbitrary number of argu-
ments (Naftalin and Wadler, 2006) of one type. The ellipsis is syntactic
sugar for an array of elements. This approach is easily expressed in the
CoC using parameterized lists or arrays.

Constructors of an inductive definition in the CoC are both functions
and tags. When applied to an argument they serve as functions; when
used in a match expression they serve as tags that discriminate between
the different inhabitants of their type. The S constructor of the natural

numbers illustrates these different uses. In the context of the statement

SO+0

the S constructor is a function which takes an argument of type nat and
returns a value tagged with S. In the context of the match expression

133

genType =

fun (V : Type) (R : Type) =>

fix F (n : nat) : Type :=
match n with

| 0 =>R
| S n0 ==V — F n0
end

: nat — Type

(a) Definition of genType

AND =
fix F (n : nat) : genType bool bool n :=
match n as n0 return (genType bool bool n0) with
| 0 => false
| S n0 => fun x : bool => if x then G n0 else F n0
end
with G (n : nat) : genType n :=
match n as n0 return (genType bool bool n0) with
| 0 => true
| S n0 => fun _ : bool => G n0
end
for F
(b) Definition of AND

Figure 8.1: A definition of a dependently typed AND function. The first
argument, n, indicates the number of bool arguments the function should
expect. The function is curried; the auxiliary genType function calculates
the type of the AND function from the first argument. V is the variadic type.
R is the return type of the function.

match n with S => 1 | O => O end

S is a tag that distinguishes terms in nat constructed using the S function
from terms in nat constructed using the nullary 0 function.

As an example of a dependently typed function, we define the function
AND that takes any number of bools and returns the conjunction of all of
them. Figure 8.1 shows the function, AND, and its type generating function,

genType. The expression

AND 2 false false

134

Inductive illegal : Set :=
| Illegal : forall n, genType illegal illegal n

Figure 8.2: Anillegal inductive definition. The genType invocation is harm-
less in itself but if Coq were to allow it a loophole would be created through
which it would be possible to construct non-terminating computations.

evaluates to false while the expression

AND 2 true

evaluates to the function

fun _ : bool => true

and the expression

AND 1 true false

is ill-typed.

Because constructors are a special kind of function that builds data
it is forbidden to make them recursively dependently typed. Figure 8.2
shows an illegally defined inductive type. The type illegal is passed as
an argument to the the genType function. If this were accepted by Coq,
such terms as

Illegal 2 (Illegal 0) (Illegal O0)

would be acceptable. Clearly, the definition is harmless in this case. But,
if it were allowed the Coq system would be unable to prevent certain
inductive definitions that could lead to non-terminating computations
and thereby introduce inconsistency into the system. Consequently, to
define a constructor with a variadic recursive type it is necessary to use
a list in a way analogous to the implementation of variadic functions in
Java.

135

Inductive exp : Set :=
var : atom —> exp
var_ind : atom —> exp
abs : exp — exp

|

|

| app : exp —> exp —> exp
| record : list exp —> exp

Figure 8.3: The lambda-calculus with records.

The variadic interpretation of the 1ist type constructor overloads its
default interpretation, that of a data structure. When defining a function,
the user may choose the interpretation that is correct. However, structural
recursion principles are defined automatically. Without guidance Coq
will use the default interpretation. The principle will be useless where the
variadic interpretation is intended.

The fundamental problem that needs to be resolved is the confusion
between the two meanings of the use of the 1ist datatype. The interpre-
tation the Coq system puts on the use of list is “a list data structure”;
the structural recursion principle it generates is the correct one for that
interpretation. We present an alterative structural recursion principle
appropriate to the variadic interpretation of 1ist. We describe how such
a principle can be generated from the principle that Coq automatically
generates. We describe a case study that demonstrates that the use of the
principle need not require significant changes to the underlying tactical
infrastructure. Our experiments indicate that integrating first-class vari-
adic types and appropriate structural recursion principles into Coq would
facilitate proof development.

The Default Interpretation of 1ist

Figure 8.3 is an inductive definition of the syntactic structure of the un-
typed lambda-calculus. The last constructor, record, defines a record ex-

pression as a list of expressions. The intuitive notion of a record (Pierce,

136

exp_rect =

fun (P_exp : exp —> Type)
(f_var : forall n : atom, P_exp (var n))
(f_var_ind : forall n : atom, P_exp (var_ind n))

(f_abs : forall e : exp, P_exp e — P_exp (abs e))
(f_app : forall e : exp,
P_exp e —
forall e0 : exp, P_exp e0 — P_exp (app e €0))
(f_record : forall 1 : list exp, P_exp (record 1)) =>
fix F_exp (e : exp) : P_exp e :=
match e as e0 return (P_exp e0) with
| var n => f_var n
| var_ind n => f_var_ind n
| abs e0 => f_abs e0 (F_exp e0)
| app €0 el => f_app e0 (F_exp e0) el (F_exp el)
| record 1 => f_record 1
end

Figure 8.4: The automatically generated structural recursion principle for
exp illustrating non-variadic interpretation of the 1ist datatype.

2002) is fundamentally but subtly different; a record is an expression con-
taining any number of subexpressions. The example requires a variadic
interpretation of 1list.

However, since there is no way to indicate that the intended meaning
is variadic Coq generates a structural recursion principle appropriate
to the interpretation of 1ist as a data structure. Figure 8.4 shows the
principle Coq automatically generates. The principal premises and terms
for the record case are identical in structure to those for the var and
var_ind case. There is no recursive call in the corresponding result for the
match expression; none of these principal premises contains an inductive
hypothesis.

This is consistent with the interpretation of 1ist as a data structure.
However, it is unsuitable for the variadic interpretation. It is impossible to
make use of this recursion principle to build any of the function or proofs
that one would naturally desire to build.

137

For example, consider a function that calculates the number of free
variables in an expression. This is a uniform function like those discussed
in Chapter 3. The function that describes the fold operation is

AL fold (A acc.A e. if e matches r then ‘(e U acc) else ‘acc) ‘0 1

However, if the recursion principle in Figure 8.4 is used the resulting sub-
goal for record is the useless subgoal containing just a single hypothesis
with type 1ist exp. A useful subgoal would contain as many additional
hypotheses as there are are elements in the list, each one representing
the result of the application of the fixed point function to an element in
the list. Without these additional hypotheses it is impossible to calculate
the number of free variables in the record. An analogous situation holds
for every proof of any property and for any specification on expressions
which uses the automatically generated recursion or induction principles.

The addition of records to a specification of the lambda-calculus ought
to be a simple problem. Records are a fairly simple theoretical notion; they
can easily be viewed as generalization of products (Pierce, 2002). Products
are easily represented in Coq because the number of arguments is the
constant two. The extension to records has proven difficult. It is notable
that publicized solutions to the POPLmark challenge (Aydemir et al., 2005)
are not readily extensible to any syntactic form which may contain an
unbounded number of elements. Examples and corresponding solutions
to this problem are noticeably absent from published results of formal
proofs using the Coq proof assistant.

The accepted workaround is to make use of a mutually recursive
datatype as in Figure 8.5. This approach obscures the intended variadic
meaning and adds additional overhead due to the use of the mutually
recursive definition. The second problem could be ameliorated by trans-
forming the mutually inductive type to a single dependent type as de-
scribed in Chapter 2. However, the intended variadic use would be as

obscure in the dependent type as in the original mutually recursive type.

138

Inductive exp : Set :=
var : atom —> exp
var_ind : atom —> exp
abs : exp — exp
app : exp —> exp —> exp

record : explist — exp
explistnil : explist

|
|
|
|
with explist : Set :=
|
| explistcons : exp —> explist — explist

Figure 8.5: An alternative way to express an arbitrary number of subex-
pressions with a mutually recursive datatype.

In the rest of the chapter we demonstrate an alternate approach. Rather
than deform our inductive definition so that the automatically generated
structural recursion principle is useful we keep the most natural inductive
definition that Coq allows and modify the structural recursion principle
so that it is appropriate to the variadic interpretation of 1ist.

8.2 Structure of the Recursion Principle

The structural recursion principle shown in Figure 8.6 is appropriate to the
variadic interpretation. The text in italics indicates the additional terms
that must be added to the principle to make it appropriate to the variadic

interpretation of 1ist. f_record takes an additional variadic hypothesis,

forall e : exp, SubtermT e 1 — P_exp e

The variadic hypothesis defines the type of a function that demonstrates
that for any expression, e, in the record, P_exp e holds. The body of
the variadic function is supplied in the body of the structural recursion
principle.

We make use of two functions, SubtermP and SubtermT, to define the
type of the variadic function. SubtermP is identical to the In function

over lists (Figure 6.2). SubtermT is similar, but makes use of the sumor

139

exp_rect =

fun (P_exp : exp —> Type)
(f_var : forall n : atom, P_exp (var n))
(f_var_ind : forall n : atom, P_exp (var_ind n))

(f_abs : forall e : exp, P_exp e — P_exp (abs e))
(f_app : forall e : exp,
P_exp e —
forall e0 : exp, P_exp e0 — P_exp (app e e0))
(f_record : forall 1 : list exp,
(forall e : exp, SubtermT e I —> P_exp e) —>
P_exp (record 1)) =>
fix F_exp (e : exp) : P_exp e :=
match e as e0 return (P_exp e0) with
| var n => f_var n
| var_ind n => f_var_ind n
| abs e0 => f_abs e0 (F_exp e0)
| app e0 el => f app e0 (F_exp e0) el (F_exp el)
| record 1 =>
f _record 1
(fun e0 : exp =>
(fix F (I0 : list exp) : SubtermT e0 10 —> P_exp e0 :=

match
10 as I1 return (SubtermT e0 11 —> P_exp e0)
with
| nil =>
fun H : SubtermT e0 nil => False_rect (P_exp e0) H
| h 0 t =>

fun H : SubtermT e0 (h :: t) =>
match H with
| inleft HO => F t HO
| inright HO =>
eq_rect_r (fun el : exp => P_exp el)
(F_exp h) HO

end

end) [)

end

Figure 8.6: A structural recursion principle for exp consistent with the
variadic interpretation of 1ist.

140

Figure 8.7: The type of SubtermP e 1 for a list with n elements.

type instead of the or type. The types are isomorphic in structure but
have different kinds. sumor is appropriate for recursion principles since it
inhabits Type; or is appropriate for induction principles since it inhabits
Prop.

Figure 8.7 shows the type that SubtermP e 1 builds as well as three
possible inhabitants of that type. The dashed lines in each figure indicate
an elided portion of the term. There are as many possible inhabitants of
the type as there are elements in the list. Each inhabitant corresponds
to a particular element in the list. Each contains one proof of equality
between e and one element in the list. The lines between the subterms of
the type and each inhabitant of the type indicate which proof of equality
it contains. The variadic function must recursively deconstruct this term
until it discovers the equality proof at its core. It then applies F_exp to
the appropriate element of the list. Because the value of SubtermP e 1is
dependent on 1 the variadic function must proceed by structural recursion

over 1,

141

Inductive lc_e : exp — Prop :=
lc_e_var : forall x,

lc_e (var x)

| Ic_e_abs : forall e,
(forall x : atom, lc_e (open_ex (var x) e)) —
Ic_e (abs e)

| lc_e_app : forall e el,
lc_e e —
lc_e el —
lc_e (app e el)

| lc_e_record : forall 1,
(forall e, SubtermP e 1 — lc_e e) —>
Ic_e (record 1)

Figure 8.8: A definition of local closure that makes explicit use of list
inclusion.

8.3 Use of a Variadic Type

Defining Properties and Functions on Variadic Types

A variadic type makes use of the 1ist constructor under a variadic inter-
pretation. Consequently, when defining properties on a variadic type it is
necessary to make use of list inclusion. Figure 8.8 shows the definition of
local closure (Aydemir et al., 2008) for the definition of exp in Figure 8.3.
An app is locally closed if its subexpressions are locally closed. The same

is true for a record; the hypothesis

forall e, SubtermP e 1 —> lc_e e

expresses the fact that all subexpressions of record must be locally closed.
Since lc_e is in Prop, SubtermP, which is an alias for the List . In function
(Figure 6.2), is used instead of SubtermT.

Similarly, in defining recursive functions on a variadic type it is neces-
sary to proceed by recursion over the list of subterms. Figure 8.9 shows
the definition of a function that counts the number of constructors in an

expression. fold_subterms is an alias for the fold_right function defined

142

size_e =
fix size_e (e : exp) : nat :=
match e with
| var _ => 1
var_ind _ => 1

|
| abs el => 1 + size_e el
| app el e2 => 1 + size_e el + size_e e2
| record 1 =>

1+

fold_subterms

(fun (x : exp) (acc : atom) => size_e x + acc) 0 1
end

Figure 8.9: A definition of size_e showing use of fold_right for the
record case.

in the List module of the Coq standard library. This function is identical
in structure to the canonical fold operation on lists.

Many functional language programmers have been taught to prefer
the complementary left fold operation due to its greater efficiency. The
canonical fold operation is superior in the variadic context because a single
recursive call exposes an operation on the first element in the list allowing
a proof by induction to proceed naturally.

Proving with Variadic Types

A strategy for making relatively robust proof developments is to divide a
development into lemmas such that each lemma can be proved in three
stages:

* setup
¢ induction
e automation

Coq’s Ltac language allows the user to define some very general tactics.
However, these tactics can also prove brittle and are hard to maintain. In

143

general, the proof script is more robust if the automation consists solely
of decomposition into distinct cases and repeated uses of modus ponens
using lemmas drawn from an appropriately constructed hint database.
A variadic term includes a nested term, the 1ist of subterms. To tra-
verse this 1ist requires an additional induction step. Consequently it may
seem that the use of a variadic type and the appropriate structural recur-
sion principle will necessarily break the relatively robust tactic strategy
we have described since it will require two induction steps within a single
lemma. We will show that, by the automatic construction of sublemmas
appropriate to the variadic use of list, this necessity can be avoided.

Example

Consider a proof of

forall (e : exp), size_e (g e) = size_e e

size_eis defined in Figure 8.9. It is not necessary to know the definition of
g only that it makes use of a fold operation over the subexpressions of the
record constructor and that it does not change the number of constructors
in its argument.

Proceeding by induction on e the user is presented with five subgoals,
one for each constructor. Figure 8.10 shows the subgoals for the app con-
structor and for the record constructor. To save space, s is used as an
abbreviation for size_e and fold as an abbreviation for fold_right. At
stage 1 the subgoals are exactly as they have been left by application of
the induction principle. The context for the app constructor contains two
induction hypotheses, one for each subexpression. Since the record con-
structor contains any number of hypotheses the context includes a single
induction hypothesis that covers all subterms. The goals are identical in

structure.

144

Stage 1
app subgoal record subgoal
el :exp
e2: exp
IHel:s(gel)=sel 1: list exp
IHe2: s (ge2)=se2 IHel : forall e, SubtermP el->s(ge)=se
s (g (app el e2)) =s (app el €2) s (g (record 1)) = s (record 1)
Stage 2
app subgoal record subgoal
el:exp
e2: exp 1: list exp

IHel:s(gel)=sel

THe2: s (g €2) = s €2 IHel : forall e, SubtermP el->s(ge)=se

fold (fun x. funa=>s(gx)+a)0l=

s(gel)+s(ge2)=sel +se fold (fun x. funa=>sx+a)01l

Figure 8.10: Progress of subgoals after initial induction step.

The goals at stage 2 have been modified by computation using Coq’s
internal engine. They are now very different in character. In both cases,
the constructor has disappeared because one step of computation moves
the s and g calls below each constructor. However, the goal corresponding
to app has been thoroughly simplified and a simple substitution using
the equality hypotheses in the context will complete the proof. The goal
corresponding to record has been simplified by a fusion transformation
(Section 8.3) but the goal term is hidden in a the fold operation. No direct
application of the equality hypothesis in the context will solve the goal.

The record subgoal is obviously true to anyone familiar with the fold
operation. Another induction step, this time on 1, will solve the goal. This
additional induction step is awkward. The user is forced to stage a second
induction step at some ideal point after the original induction step when
the subgoal has been transformed so that it is in a state where induction
will succeed. Ideally, the necessary induction step should be abstracted

145

size_e_variadic =

fun (f : exp — nat) (1 : list exp) =>

fold_subterms (fun (x : exp) (acc : nat) => f x + acc) 0 1
(exp —> nat) — list exp —> nat

size_e =
fix size_e (e : exp) : nat :=
match e with
| var _ => 1
var_ind _ => 1

|
| abs el => 1 + size_e el
| app el e2 => 1 + size_e el + size_e e2
| record 1 => 1 + size_e_variadic size_e 1
end

. exp —> nat

Figure 8.11: An abstraction of the variadic computation in size_e.

into its own lemma.

Abstracting Computation on a Variadic Type

The first step in this abstraction is to observe that computation over the
variadic portion of a term can be abstracted. For example, the function
size_e (Figure 8.9) adds the result of its recursive arguments in every
context. If the definition of exp were extended with another variadic
constructor the computation over its 1ist argument would be almost
certainly identical. The size_e function can be restated in terms of the
abstracted function. Figure 8.11 shows the abstracted version. Note that
they are not mutually recursive. size_e_variadic expects a function

parameter, £. The function that is passed as an argument is size_e.

Abstracting Proofs on a Variadic Type

It is clearly possible to abstract the computation on the variadic portion

of a term so that it can be defined before the recursive computation over

146

forall 1,
(forall e,
SubtermP e 1 —
size_e (g e) = size_e e) —>

(size_e_variadic size_e (g_variadic g 1) =
size_e_variadic size_e 1

Figure 8.12: A variadic sublemma for the proof that size_e (g 3) =
size_e eforalle.

the whole term. The same approach can be applied to the statements of
lemmas for the variadic portion of a type.
Continuing with our ongoing example, we wish to abstract the goal

forall(e: exp), size_e (g e)=size_e e

so that it expresses an appropriate sublemma that will encapsulate the
induction step over the variadic portion of any term in the exp type. Just
as with the abstraction of size_e the sublemma must take an argument
which represents the abstracted lemma. The type of the sublemma is
shown in Figure 8.12. The head type is a restatement of the goal in terms
of the variadic operations. The first argument, 1, is the list of subterms. The
second argument is a restatement of the original goal with the additional
hypothesis that every term must be in 1. This additional hypothesis is
necessary to preserve well-foundedness. This sublemma is provable by
induction on 1 followed by the same automation that proves the original
lemma. Once proved, this sublemma can be inserted into the hint database
and is thus available to the automation step used to prove the original
lemma.

To restate the goal in terms of the variadic operations it is necessary to
discover the inductive variable. In the example there is only one variable,
e. However, in general, there may be many variables, most of which are
held constant. The goal must be abstracted over the inductive variable.
Wherever the inductive variable appears its enclosing context must be

147

fle—1] = [fer £,f1]
Ple—1] = [Pe+ Ve,ecl— Pe]

Figure 8.13: Rewrite rules for the conversion to a variadic statement of
a goal. f is the original function. f, is its variadic counterpart. P is a

property.

transformed so that it is appropriate to a 1ist rather than the original
type. Figure 8.13 shows the appropriate transformations. e and 1 represent
arguments of the base type and of the variadic type respectively. fis a
function which takes an argument of the base type. f_v is the correspond-
ing variadic function. P is a property of the base type. The transformation
is in general recursive; for example, the term P(fe) may be rewritten to
P(f,fl) and then to Ve, e € (f,fl) — Pe.

It is obvious that the term Ve,e € (f,fl) — Pe is equivalent to the
term Ve,e € 1 — P(fl) which is more amenable to automation. The
terms are equivalent, but they are not equal. Since they are equivalent the
more complex term can always be replaced by the simpler term regardless
of whether the term is a hypothesis or a conclusion. Since they are not
equal, the lemma that states their equivalence is not compatible with Coq’s
rewriting mechanism. Since the lemma is parameterized on P the lemma
cannot be inserted into Coq’s hints database. Consequently, it is necessary
to write a specialized tactic to make use of the lemma.

This restriction exposes a weakness not in the technique but in Coq’s
automation facilities. We expect that in a future version of Coq the rewrit-
ing mechanisms will be enhanced to make use of equivalences as well as

of equalities.

The Fusion Property

The fusion property (Figure 8.14) defines the conditions that must hold so

that the composition of an arbitrary function and a fold operation can be

148

hw = v
higxy) = fx(hy)
Figure 8.14: The fusion property for the fold operation on lists.

= h-(foldgw) = foldfv

rewritten as a single fold operation (Hutton, 1999). The fusion property is
easily proved by induction. Many standard functions on lists, e.g. map,
can be defined in terms of the fold function. Consequently, the fusion
property is very useful for proving properties of these functions.

A proof of the fusion property is not useful as a rewriting mechanism
since the value of f cannot be calculated directly from the conditions. The
following assumptions restrict the generality of the fusion property and

make it more useful for rewriting in the variadic context.

h is itself a fold operation This situation arises quite naturally when cal-
culating the result of the composition of several functions on an
expression.

the structure of g is known The expected implementation of g under the
variadic interpretation is Ax.Aa.(sx) :: a where s corresponds to some

function defined recursively over all elements.

Under these assumptions the fusion property defines f. Figure 8.15 shows
the derivation of a less general property that is useful as a rewrite rule. f is
shown to be equal to Ax.Aa.h (s x) a. Under this assumption, a consequence
of the assumptions about g and h the conclusion of the fusion property
can be rewritten as

(fold hv) - (fold (Ax.Aa.(s x) :: a) w) = fold (Ax.Aa.h (s x) a) v

A rewrite rule can be applied to a goal with the same form as the left hand
side of the equation without difficulty, since all variables on the right hand
side of the equation occur on the left hand side. An application of this
rewrite rule leaves the premises

149

h(gxy) =fx(hy)
Rule: g — Ax.Aa.(s x) = a
= h((sx):y)=~fx(hy)
Rule: h — fold hv
= foldhv((sx):y)=~fx(foldhvy)
Rule: by evaluation
= h(sx)(foldhvy)="fx(foldhvy)
Rule: by abstraction
= h(sx)(foldhvy) = (Ax.Aa.h (s x) a) x (fold hvy)

Figure 8.15: A derivation for the body of f under assumptions about g and
h.

fold hvw = v
foldhv ((sx)5y) = h(sx)(foldhvy))

which follow easily. The example in Figure 8.10 is an illustration of the

application of this less general fusion property.

8.4 Implementation

The recursion principle itself can be synthesized from the default recursion
principle by a combination of syntactic transformations from the automati-
cally generated induction principle and tactics. Every use of a variadic list
is identified in the automatically generated principle by the star alias. For
every occurrence of star in the type of a principal premise an additional
parameter must be added to specify that the required property holds for

every item in the list. For exp that parameter is

forall e : exp, SubtermT e 1 — P_exp e

for a recursion principle and

forall e : exp, SubtermP e 1 — P_exp e

150

refine (
fun P_exp f_var f_var_ind f_abs f_app f_record =>
fix F_exp (e : exp) : P_exp e :=
match e as e0 return (P_exp e0) with
| var n => f_var n
| var_ind n => f_var_ind n
| abs e0 => f_abs e0 (F_exp e0)
| app e0 el => f app e0 (F_exp e0) el (F_exp el)
| record 1 => f_record 1 _
end);
variadic_for_type F_exp

Figure 8.16: A script to build a variadic recursion principle for a definition
of the lambda-calculus with records. The script makes use of the refine
tactic. All holes are guaranteed to be filled in by the Ltac tactic script
variadic_for_type.

for an induction principle. All parameters must follow the same overall
pattern. If the type of the elements of the list is dependent then P_exp
must take additional arguments. However, the names of these arguments
can be extracted from the specification of the type of the elements of star.

Figure 8.6 shows the body of the variadic recursion principle. The
function which inhabits the additional parameter is recursive and compli-
cated. However, because it has a regular structure it is easily constructed
by a tactic. Our approach makes use of the refine tactic, which allows
the user to specify a partial term in the CoC where dashes represent the
parts of the term that must be filled in by tactics executed subsequently.
The preliminary step is to modify the body of the recursion principle so
that dashes are introduced wherever an additional parameter has been
introduced into a principal premise and to apply this modified body to
the goal using the refine tactic. Figure 8.16 shows the script which builds
the principle. variadic_for_type is an Ltac tactic script which constructs

a term that inhabits the type

forall e : exp, SubtermT e 1 — P_exp e

151

Because this function has a regular structure it is possible to write a simple

tactic that will complete any recursion principle constructed in this way.

8.5 Experimental Results

We experimented with the principle by extending an example associated
with Aydemir et al. (2009) to include a record datatype. Our goal was to
discover how difficult it was to make use of a variadic principle in this
context. We hoped that the addition of a record type and the use of a
variadic recursion principle would not require significant changes to the
tactic scripts that made up the development.

The development has three parts. The first part is a default solver
consisting of about 150 lines of tactics. The solver uses generally applicable
tactics to simplify the goal and solve subgoals. It makes use of Coq’s auto
tactic, which implements a Prolog-like decision procedure, to solve any
remaining subgoals. The final step is domain-specific since the databases
on which auto relies are filled with lemmas from the development. The
second part is a set of libraries that support the locally-nameless encoding
of variables (Aydemir et al., 2008). The third part is an application which
generates definitions, lemmas, and tactic scripts based on a specification
of the syntax of the language for which the lemmas are defined. The
relationship of these definitions, lemmas, and scripts to the syntax of the
language are embedded in the application. The tactic scripts are intended
to be small and general; most tactic scripts commence with an induction
step and the remaining subgoals are solved by the default solver of the
first part. The application is accompanied by several test languages.

We modified a test language to include a record type and thus to require
a variadic recursion principle. Our experiment would have been a failure
if it had proved necessary to substantially change the existing tactic scripts

to accommodate the variadic recursion principle.

152

Lemma size_e_close_ex_rec_mutual_variadic
forall 1,
(forall e x n,
SubtermP e 1 —
size_e (close_ex_rec n x e) = size_e e) —>
(forall x n,
size_e_variadic size_e
(close_ex_rec_variadic (close_ex_rec n x) 1) =
size_e_variadic size_e 1).
Proof.
induction 1; default_simp_variadic.

Qed.

(a) The variadic sublemma.

Lemma size_e_close_ex_rec_mutual
(forall e x n,
size_e (close_ex_rec n x e) = size_e e).
Proof.
apply_mutual_ind exp_mutind;
default_simp.

Qed.

(b) The original lemma.

Figure 8.17: A representative lemma and its mechanically generated vari-
adic sublemma. The sublemma is placed before its lemma in the develop-
ment so that it can be used by automatic tactics.

The development for the original test language contained 93 lemmas.
Of these, none had to be substantially altered to accommodate the vari-
adic recursion principle. In 28 cases it was necessary to add a variadic
sublemma. Each sublemma was mechanically generated by hand using
the method described in Section 8.3 and easily solved using the default
solver. Figure 8.17 shows an original lemma and its corresponding sub-
lemma generated in this way. The variadic sublemma makes use of a tactic,
default_simp_variadic. This tactic is the same as the the default_simp
tactic except that it includes some instructions to explicitly unfold the
definitions of variadic functions.

One lemma required a sublemma of an unusual kind. We discuss this

153

lemma further in Section 8.6.

As a further test, we modified the language again, adding a constructor
that took two arguments: a variadic use of list and a single additional
argument in exp. Our experiment would have been a failure if we had
found that we had to modify any of the tactic scripts from the previous
experiment in any way; we did not. Our experiment exposed a small bug
in the original scripts which we fixed in both versions.

Finally, we reverted all previous definitions to their original form, but
left all lemmas and tactic scripts the same as in our first experiment and
second experiment. Our experiment would have been a failure if any of
the tactic scripts had failed. None did, indicating that any minor changes
we had made to the tactic scripts and the presence of the 28 variadic

sublemmas were benign.

8.6 Restrictions on the Use of Variadic Types

Autogenerating Uniform Variadic Functions

The size_e function (Figure 8.9) is an example of a uniform function. It
would be desirable to show that the technique for generating uniform func-
tions described in Chapter 3 is easily extended to variadic types. It is not;
however this is due not to a weakness of our technique but rather to Coq’s
too stringent syntactic rules for ensuring termination. This unfortunate
situation could be obviated by making variadic types in Coq first-class.
The compose argument of the fold_right function takes an element
of the list argument and the value accumulated so far and returns a new
value. However, the signature of the compose function does not include
the fact that its element argument is in the list to which fold_right is
applied. This fact is certainly implicit in the specification of fold_right
as the compose function is never applied to elements in some other list or

arbitrary elements that happen to have the same type as the list elements.

154

The technique for autogenerating uniform functions makes use of a
recursion step which proceeds by application of the appropriate recursion
principle (Figure 8.6). The application of this principle generates the
hypothesis

forall e : exp, SubtermT e I — P_exp e

where 1 is the list of subexpressions of the record constructor. This hy-
pothesis is incompatible with the fold_right function, since its signature
explicitly includes the fact that its argument is in the list.

It is necessary to define a more precise version of fold_right with a
compose argument that is restricted so that it applies only to the elements
in the list. This restricted version of fold_right is compatible with the
hypothesis generated by the variadic recursion principle. It has the same
structure as the canonical fold_right function; the extracted versions
of the functions are identical modulo eta-conversion and reordering of
function arguments. Since Coq accepts the canonical version in the context
of the size_e function it should accept the more restricted version. Unfor-
tunately, it rejects the restricted version, because it is unable to perform
the necessary eta-conversions to expose the simple recursive structure.
Consequently, the technique described in Chapter 3 is ineffective; it may
become effective in later versions of Coq if the syntactic restrictions that
ensure termination are refined appropriately.

This problem could be eliminated by making variadic types first-class
since it arises due to the explicit inclusion phrase in the hypothesis which

first-class variadic types make unnecessary.

Extending Properties of Binary Functions to their Variadic

Counterparts

The size_e function is uniform. Proven properties relating the natural

numbers are easily applied to the non-variadic parts of the size_e function.

155

For example, the property

le_plus_l: forall nm : nat, n <=n +m

is easily used to show that the size of the left hand expression in an app
expression is necessarily less than or equal to the size of the whole app
expression.

A proof that the size of any expression in a variadic list is necessarily
less than or equal to the size of the whole list does not follow so automati-
cally due to the need to perform induction over the elements of the list. We
are not suggesting that such a proof is difficult to construct, the problem
is that it is not available without extra work by the developer.

We suggest that a valuable extension of the current work would be to
automatically discover necessary lemmas based on the structure of the
compose argument to each function in a way analogous to the approach

describe in Section 8.3. In the case of size_e the compose argument is

fun x => fun acc => (size_e x) + acc

The essential composition operation is done by the plus operator. If we
search for already existing lemmas about plus we will immediately dis-
cover the lemma le_plus_l shown above. An informal argument for the
synthesis of a lemma regarding variadic lists is as follows.

n + mis an expression joined by a plus. Therefore, it corresponds to
the result of applying the size_e function to a variadic list of expression,
which we call 1. On the other hand, n appears on the left hand side of
the inequality alone, i.e., not in a plus expression. Therefore, n represents
a single expression, which we call e. Since it also appears in the plus
expression we include the hypothesis SubtermP e 1,i.e., e is some element
of 1. From these observations we conclude that

156

forall 1,
(forall e,
SubtermP e 1 —
size_e e <= size_e_variadic size_e 1)

is a useful lemma that we may wish to include in our development. In fact,
this is the one not wholly mechanical lemma that we needed to include in
the experiment described in Section 8.5.

8.7 Conclusion and Related Work

Our main contribution is the observation that the variadic use of the
list type is distinct from its use as a data structure. These distinct uses
require different structural recursion principles. Coq provides a recursion
principle appropriate for the data structure interpretation; we describe
the structure, construction, and use of a recursion principle appropriate
to the variadic interpretation.

We have conducted a case study, demonstrating that the use of the
variadic structural recursion principle can be integrated easily and me-
chanically into an existing corpus of proof developments.

Unlike variadic functions, variadic constructors are virtually undis-
cussed in the literature. Recent work (Petit, 2009) gives a formal theoretical
treatment. Coq requires that its proof language have certain properties,
i.e., weak normalization, in order to ensure consistency. The preliminary
results indicate that an extension of the polymorphic lambda-calculus
with variadic constructors preserves the desired properties.

An implementation of variadic constructors must necessarily deal with
the practical problems of matching an unbounded number of fields. Oper-
ations which distinguish among the individual fields must be prohibited,
since it is unknown at compile time how many fields are matched. Con-

sequently, the implementation itself is likely to store the matched fields

157

in an array or list and to perform operations using list functions like map
and fold. We expect that eventually variadic constructors will appear in
high-level languages that make use of algebraic types. In the meantime,
however, the programmer or proof developer must continue to encode
variadic constructors by overloading the meaning of list in the way we
have described in this chapter.

We have described a number of restrictions and difficulties in the use
of the variadic principle in Section 8.6. We believe that the restrictions
we have discovered should guide the language designer in integrating
variadic types into an existing language for a proof assistant. It would be
desirable if both of the main difficulties we have described in Section 8.6

were obviated by the language design itself.

158

Part 111

Lemma Extraction and Proof

Analysis

159

Certified programs require more skill to develop than uncertified pro-
grams and the process is generally more time-consuming. It is generally
far more difficult to understand the purpose and intended use of the lem-
mas in a proof development than it is to understand the purpose and
intended use of, e.g., the methods that a Java class provides. It is necessary
to use automation to prove all but the simplest and smallest lemmas. The
automation may be implemented by means of sophisticated Ltac scripts or
by making use of Coq’s internal proof-search mechanisms. In either case,
it is very difficult to predict the proof that results.

Coq exports compiled proofs in an XML format. Matita, a more recently
developed proof-assistant, maintains the proofs it compiles in the same
XML format. It is possible for both proof-assistants to share the same
format since they both make use of the CoC.

Proofs in the XML format can be inspected by means of standard XML
tools like XPATH. Such tools have the advantage that they are not closely
tied to the implementation of either proof-assistant.

In Chapter 9 we describe the canonical_inversion tactic. This tactic is
strictly more powerful than Coq’s inversion tactic and can be used as a drop-
in replacement. The canonical_inversion tactic generates an anonymous
inversion lemma and memoizes it in Coq’s XML format so that it may be
reused later.

In Chapter 10 we present two tools that also make use of the XML
format. The first tool is an impact analysis tool. To our knowledge it is the
first impact analysis tool for the Coq system. The second tool is a tool for
visualizing the structure of a module by a graphical representation of the
dependencies between lemmas and definitions.

All the work described in this chapter makes use of the external XML
representation for compiled proofs. In this way, we demonstrate that it is
possible to construct useful tools that are not wholly tied to the implemen-

tation of any proof-assistant. The canonical_inversion tactic automatically

160

generates lemmas which are stored in the XML format. This approach
is particularly well adapted for use in Matita, which has considerable in-
frastructure for automatically managing an indexed database of compiled

proofs and definitions.

161

O CANONICAL INVERSION

The separation between Prop and Set makes it impossible to deconstruct
an object in sort Prop to build an object in sort Set. The inversion tactic,
which extends the more primitive case tactic by deriving contradictions in
as many subcases as possible, is therefore inapplicable in this situation.
We have implemented a more powerful tactic, canonical_inversion. The
canonical_inversion tactic advances a proof in the same way as the inversion

tactic but succeeds in contexts where the inversion tactic fails.

9.1 Introduction

Coq’s inversion tactic (The Coq Development Team, 2008) implements the
intuitive notion of a proof by cases. Given a hypothesis, it decomposes
the current goal into as many subgoals as there are ways to prove the
hypothesis. If each subgoal is proved, then the current goal is proved.

Proofs and proof objects in Coq are specified in the CoC(Calculus of
Co-inductive Constructions) (Paulin-Mohring, 1993). The CoC maintains
multiple sorts in order to support Coq’s extraction mechanism (Letouzey,
2003, 2008). Types in the sort Prop define properties and are elided by
the extraction mechanism while types in the other sorts are retained by
the extraction mechanism. Consequently, a term with a type in Prop can
not be decomposed to form a term with a type in any other sort. Coq’s
type-checker forbids a match expression where the matched expression has
a type in Prop but the type of the match expression itself is in some other
sort. If such a match expression were allowed it would create a paradoxical
situation; the structure of a term retained by the extraction mechanism
would be dependent on the structure of a term elided by the extraction
mechanism.

The inversion tactic works by constructing a partial match expression and

162

automatically completing some of the generated subgoals. Consequently
it always fails when its hypothesis is in Prop but the goal is in another sort.

Where the hypothesis has a canonical form, i.e., its constructor is entirely
determined by its type, it should succeed, regardless of the sorts of the
hypothesis and the goal.

In the following we describe a situation using the familiar definition
of evenness of natural numbers in which the inversion tactic fails. In this
situation, the evenness hypothesis has a canonical form, and it would
be correct for the inversion tactic to succeed. We describe an algorithm
for a strictly more powerful tactic, canonical_inversion, which will always
succeed in the case where an hypothesis has a canonical form. We make
use of a novel sandboxing technique in the algorithm. The sandbox is a
subgoal within the proof that is not an essential part of the proof, but
rather a way to explore the possibility of generating a particular lemma.
It should be elided in a declarative representation of the proof (Kaliszyk
and Wiedijk, 2009; Sacerdoti Coen, 2010).

Asperti et al. describe a new type for tactics which allows more flexi-
bility than the LCF type (Asperti et al., 2009). This type does not account
for sandbox subgoals which should be removed once they have served
their purpose. However, we suspect that the type could be augmented to

accommodate sandbox subgoals.

Example

Let us assume that we have some hypothesis, H, which is a proof that some
number, n, is even. The definition of even in the Coq standard library is
shown in Figure 9.1. From our hypothesis we wish to prove some goal
and it turns out that we must proceed by dividing the proof into different
cases corresponding to the several possible ways in which even n can be
proved. We naturally make use of the inversion tactic, which extends the

more primitive case tactic by deriving contradictions in as many subcases

163

Inductive even : nat — Prop :=
even_O : even 0
| even_S : forall n : nat, odd n — even (S n)

with odd : nat — Prop :=
odd_S : forall n : nat, even n — odd (S n)

Figure 9.1: The definition of the even type.

n : nat

H:evenn

HO :n =0 ©ven-©

n : nat :
<goal>

H:evenn
. inversion H
no:nat ©ven-S

HO : odd nO
H1:n=Sn0

<goal>

<goal>

<goal>

Figure 9.2: A schematic of the effect of the inversion tactic.

as possible. Figure 9.2 shows the effect of the inversion tactic. Two subgoals,
corresponding to the two constructors even_0 and even_S are generated.
To prove the goal for the whole proof it is necessary to prove the goal
in the context of each subgoal. Each newly generated subgoal contains
the premises required to build a proof that n is even using its associated
constructor.

However, suppose that the goal must be proved not for an arbitrary
number n but for some number that is known to have the form S n. Fig-

ure 9.3 shows the effect of the inversion tactic in this case. The hypothesis

164

n : nat
H:evenn
even_O

HO:Sn=0
n : nat + |

<goal>
H:even (Sn) 9
. | inversion H > n0 :nat even-S
’ HO : odd nO
<goal>

H1:Sn=Sn0

<goal>

<goal>

Figure 9.3: A schematic of the effect of the inversion tactic when only one
subgoal does not lead to a contradiction. The goal corresponding to the
even_0 constructor is eliminated since the assumption that S n is equal to
0 leads to a contradiction.

that S nis equal to 0 leads to an immediate contradiction. Consequently,
the subgoal corresponding to even_0 is immediately proved by the in-
version tactic. The subgoal corresponding to the constructor even_S is
the only subgoal remaining. Because all but one subgoal is eliminated it
is possible to conclude from the original hypothesis H the two premises
corresponding to the even_S constructor, that the fresh variable, n0, is odd,
and that S n0isequal to S n.

Figure 9.4 shows an abstract representation of the effect of the inversion
tactic. H, which inhabits some inductive type I is inverted yielding n
subgoals corresponding to I’s n constructors. In this case, all subgoals
lead to a contradiction except for the kth subgoal.

When I is in Prop and the goal is not the inversion tactic will fail because

165

HO : hO lo

inversion H >

<goal>

<goal>

<goal>

Figure 9.4: A schematic of the effect of the inversion tactic when the inverted
term has the canonical form property. A new subgoal is generated for
every constructor of I. Every subgoal but that corresponding to the kth
constructor leads to a contradiction. Recall that the inversion tactic cannot
proceed when I is in Prop and the goal is not.

166

it must decompose the hypothesis into cases and this is forbidden when
building a goal that is not in Prop. This is an unnecessary restriction when
only one subgoal is possible. In that case, it is possible to encapsulate the
inversion in a sublemma. For the proof shown in Figure 9.3 the sublemma

must have the form

forall n, even (S n) — forall n0, Sn =S5 n0 —> odd n0
or, simplifying the equality,
forall n, even (S n) — odd n

The deconstruction of the even (S n) hypothesis occurs within the sub-
lemma. Since both the hypothesis and the conclusion are in the same sort,
this decomposition is permitted.

The result type of such a lemma is, in general, a conjunction of types.
This conjunction may always be decomposed into its individual terms,
regardless of the sort of the goal.

Canonical form property

If the type of a term fully determines the constructor for the term then
it is said to possess the canonical form property. In that case, our canoni-
cal_inversion tactic will always succeed. All terms in the and type have the
canonical form property since and has only the unique constructor conj.
Other terms, particularly those that inhabit dependent types like 1c_e, are
also likely to have the canonical form property.

However, whether or not a term has the canonical form property is
dependent not only on its type but also on how precisely its arguments
are known. For example, the term 1c_e e for any e does not have the
canonical form property. e might be any expression, so the proof of local

closure might be constructed from any of the three constructors for 1c_e.

167

HO : hO I0

T 1
I H H | - |
canonical mvers:or(1>] _I_k_ + _1___|_r] o1

<goal> HO : ho I

ho for I,

ho for I,

HO : ho for |,

<goal>

Figure 9.5: A schematic of the effect of the canonical_inversion tactic. The
automatically generated inversion sublemma is outlined in bold.

Figure 9.5 shows the effect of our canonical_inversion tactic in the case
where the inverted term possesses the canonical form property. The canoni-
cal_inversion tactic automatically constructs the necessary inversion lemma,
outlined in bold, and applies it to generate the appropriate inversion
hypothesis. Because the match expression is encapsulated, the canoni-
cal_inversion tactic can proceed regardless of the sort of the goal. Note that
the subgoal generated by the canonical_inversion tactic is identical to the
one that would be generated by the inversion tactic (Figure 9.4) if it were

168

able to succeed, even though it does not occupy the same position among
the generated subgoals.

Currently, to achieve the effect of the canonical_inversion tactic the user
must manually define a sublemma for every term that she anticipates in-
verting and which possesses the canonical form property. This is certainly
tedious. Moreover it is brittle; should the inductive definition for which
the lemmas have been constructed be altered then so must the lemmas
themselves be altered. In contrast, the canonical_inversion tactic allows
the user to automatically construct the necessary sublemmas whenever
possible. It may be seamlessly substituted for the inversion tactic; it is

strictly more powerful.

9.2 The canonical_inversion algorithm

The canonical_inversion tactic is an extension of the inversion tactic. In fact,
it always attempts the inversion tactic; and only if that tactic fails does it
attempt to build the necessary sublemma.

Should the inversion tactic fail the canonical_inversion tactic proceeds to
attempt to build an anonymous sublemma of the correct type. Where the
inductive definition is a canonical form it will always succeed. However, it
can discover this only by exploratory tests as the structure of the inductive
definition is not available to the Ltac language. For this reason, it builds a
proof sandbox in which to run these tests. Figure 9.6 is a diagram of the
tactic. Each box represents a subgoal. The goal, G, appears below the
bar, while the proof-context is above. H is the hypothesis to be inverted.
We assume that T, the type of H is in Prop while G, the proof goal, is not
in Prop. Only relevant hypotheses are shown in the diagram. The solid
arrow shows the new subgoal produced by the canonical_inversion tactic.
The dotted arrows show occurrences of subgoal generation during the

execution of the tactic. The dashed arrows show how information flows

169

from the sandbox to the main part of the proof to complete the inversion.

A proof sandbox can be made easily by asserting the intention to prove
True. True is always provable; moreover, since it is a proposition a proof
of True will be elided in any extracted code. By this assertion (Marker
1) the current goal is split into two subgoals; the first subgoal has all the
hypotheses of the original goal but a goal of True, the second subgoal
has all the hypotheses of the original goal as well as the new hypothesis,
True, and a goal identical to that of the original goal. Clearly, including
a hypothesis of True in the proof-context does not substantially change
the goal; as nothing can be deduced from True. Thus the second subgoal
is, in all important respects, identical to the original goal; removing the
hypothesis True (Marker 5) simply tidies up the subgoal. The first subgoal
is our sandbox.

Following this step, the proof-context of the sandbox is cleared of all
hypotheses except the hypothesis to be inverted (Marker 2). Note that
the hypothesis to be inverted may be dependently typed; any hypotheses
on which it depends must also remain in the subgoal. The hypothesis is
then inverted using the inversion tactic (Marker 3). The inversion tactic will
always make progress, since the goal, True, is in Prop. The application of
the inversion tactic may result in zero, one, or more remaining subgoals.

If there is more than one remaining subgoal then the inductive defini-
tion does not have the canonical form property. The only thing to do is
clean up the sandbox and allow the tactic to fail, yielding an error indicat-
ing that the inductive definition is unsuitable. This cleanup procedure is
not shown in the diagram.

If there is just one remaining subgoal then it is certain that the inductive
definition has the canonical form property. In that case, the proof-context
will have been populated with new hypotheses. The conjunction of these
new hypotheses is exactly the result type of the sublemma to be be con-
structed, while the type of the original hypothesis is exactly the parameter

170

H:T
CANONICAL INVERSION G
/’—"_"'_""_""""""""@""_—::‘ T
/ SANDBOX COMPUTATIONS _ .~ assert True
/ -
/ it P N '
1 4 P \
F “ \ y
1 ’ \
1 ! \
1 I’ \\
/ | H:T \ H:T \
1 ” \\ \
! \ H': True \
1 1

__remove irrelevant hypotheses >
y ' ®

H:T _remove hypothesis True >

\
\
1 1
@ True H G |
' \
' \
! \
' '
1
1

C eIiminateimpo;siblesubgoals >

\

True \ : '

y [. 1

1 1

_decompose into cases > \ 4 '
! |

\ |

|

® [Rhs i
many subgoals ! :
i i
1 1

i G i

1 1

1 1

i . i

1

H:T C -
1

H:T > .
H":T" /: I/ assert T'AT" \\

! ' T
True ') . [\
[' | .. \
@ Y | ‘: &)y O \
assert T'AT" I] B \
while simultaneously i ',’)
] removing from context | [[|
| ! P P ! CLTOA T I
| jm————— < 9 | \ i HiTaT)
! 1
VoL AU TRy 0 v marm
| AR ;
Vo H:T 1 JHETA ¥ \
\ \ ! | / \
Vo oy TAT" / True Y N)
Vo N m—m—— ~ = ———————-
NN ~ — — o

rest of proof

Figure 9.6: A schematic of the operation of the canonical_inversion tactic.

171

type. It only remains to construct a proof of the sublemma.

The tactic does that by asserting the intention to prove the result type
from the original hypothesis. This is easily done by removing the hy-
potheses generated by the inversion tactic from the proof-context in the
sandbox and asserting their conjunction (Marker 4). The sandbox is itself
duplicated by this action, splitting into two sandboxes, both of which can
certainly be proved. The first sandbox has only the original hypothesis in
its proof-context; the goal is the conjunction of the new hypotheses gener-
ated by the inversion tactic. We can use the abstract tactic to simultaneously
prove the goal and retain the generated proof. This proof is exactly the
sublemma we sought in the first place.

It only remains to return to the original goal, sublemma in hand (Marker
6), and introduce the conclusion of the sublemma into the proof-context.
This is easily accomplished by asserting the intention to prove the subgoal
(Marker 7). This splits the goal in the same way as the assertion at Marker 1;
this time, the goal of the first subgoal is the conclusion of our synthesized
sublemma. The first subgoal is immediately proved by applying our
sublemma (Marker 8).

We are left with just one subgoal; the proof-context of our original goal
has been extended with the new hypotheses generated by the inversion
lemma (Marker 9). This is exactly the subgoal that would have resulted
from the direct application of the inversion tactic if the goal, G, had been
in Prop or if the type of the hypothesis, T had not been in Prop.

When H is an impossible hypothesis

It may be the case that inverting the hypothesis H would yield no subgoals,
i.e., the inversion tactic would derive a contradiction from every subgoal.
If that is the case, then the goal can be eliminated entirely. Our canoni-
cal_inversion tactic explores this special case first; before investigating the
more general case described above.

172

H:T
_______________ CANONICAL INVERSION ______ G
© ..o
/ SANDBOX COMPUTATIONS . - - N
’ e e dmmdm—pa=Z___ \
7 , .- hd SN _—— = b = -\
— ® K y v

K ’ N | \ \

1 [\ [
! / H:T ‘\\l H:T | !
1 1 1
! ! ‘l‘ H': False [
‘| |’ ‘] [l

1
I i False G !
! ! ©) N ,I '
|] ' : N e e = = - |
! 1 1
\ ' _remove irrelevant hypotheses > | !
1 | ' ! 1
\ | r= - - ! 1
Ll e) :‘ /
Voo I fH:T / !
\ \ | ! i
\ \ | | ! 1
\ \ \ False /)
! !/ /

~—— - -

Figure 9.7: A schematic of the operation of the canonical_inversion tactic in
the case where H yields a contradiction.

Figure 9.7 is a diagram of this portion of the tactic. Here, we begin
by asserting the intention to prove a contradiction (Marker 1). As in
the more general portion of the tactic, we clear the generated subgoal of
irrelevant hypotheses. If we succeed in proving a contradiction (Marker
3) the subgoal in the sandbox disappears leaving only the right hand
subgoal (Marker 4) which differs from the original goal only in that the
proof-context has been extended with the hypothesis False. False, like
and, has the canonical form property; in fact, it has zero constructors. We
may invert the hypothesis H" and the subgoal is eliminated.

9.3 Memoization

Creation of the sandbox and exploration of the resulting subgoal consumes

resources. However, once the sublemma has been constructed through

173

sandboxing and exploration it may be reused in any similar situation.

The canonical_inversion tactic has been extended with a memoizing
capability. To memoize the sublemma we take advantage of Coq’s external
tactic which allows Coq to make external calls via an XML encoding.
The canonical_inversion tactic communicates with an external database via
the external tactic retrieving the appropriate sublemma if it has already
been inserted the database and exploring via the sandbox only when a
sublemma does not already exist.

The sublemma has no free variables. The task of marshalling the
sublemma from its CoC form to an XML representation to send it to the
database and unmarshaling it when it is extracted from the database
and inserted into an ongoing proof presents little theoretical difficulty.
Much more difficult is the question of how to index the sublemma within
the database so that it can be extracted. Indexing on the name of the
variable being inverted is manifestly useless. However, indexing on the
type presents problems as well. Many types will contain variable names
and these names are in general going to differ in different proof-contexts.
We are really interested in indexing each sublemma so that we can retrieve
the appropriate lemma regardless of superficial changes in variable names.

There are no facilities within the Ltac language to canonicalize terms in
the CoC. It is, of course, possible to construct a facility to canonicalize the
terms using facilities external to Coq. However, this would be a kind of
reimplementation of a small portion of the Coq engine; we are philosoph-
ically opposed to this, preferring to leverage existing Coq facilities. For
this reason, we index on the exact text of the type in XML format. This is
useful in the particular case where a user must rerun a proof; perhaps to
replay a tactic for proof understanding. In that case, the type of the proof
to be inverted is quite likely to have the same textual representation and
an advantage is gained from memoization.

By rerunning the identical proof twice the user may avoid sandboxing

174

entirely, taking complete advantage of memoization. On the first pass,
since the sublemmas have not been constructed, each use of the canoni-
cal_inversion tactic may require a sandbox. On the second pass, all sub-
lemmas will have been memoized and can be used directly in each proof
without any sandboxing. Thus, by using two passes, a proof optimization
may be achieved without any additional user intervention.

Extending tactics to allow memoization

We have proposed an external form of memoization. The advantage of
this approach is that it does not require any change to the existing Coq
infrastructure. However, we believe that our canonical_inversion tactic
would be more powerful and useful if it were able to make use of an
internal memoization facility.

Tactics in Cogq, like auto, which implement a Prolog-like decision pro-
cedure, have an extended syntax which allows the user to specify a list of
databases containing lemmas to be used in proof search. We believe that
the canonical_inversion tactic could be usefully extended with the same
facility. Unlike the auto tactic and all other tactics in Coq which make
use of hints databases, the canonical_inversion tactic should insert into as
well as retrieve lemmas from the specified databases. Thus, on a previous
execution of the tactic, it might make use of the sandbox to build the type
and body of the appropriate lemma and insert it into the specified hints
database, while on a subsequent execution it might simply look up the
lemma in the database and make full use of Coq’s automation facilities in
choosing the correct lemma.

Matita (Asperti et al., 2006, 2007; Sacerdoti Coen et al., 2007) is a proof-
assistant which resembles Coq to an unusually large degree as it is based on
the CoC and makes explicit use of the Curry-Howard isomorphism. Unlike
Coq, Matita places considerable emphasis on automatic management
and regeneration of libraries, tracking dependencies and regenerating

175

lemmas that have been invalidated by a change in some definition (Asperti
et al.,, 2004). In Coq, definitions are only available to the user if they
have been explicitly included in the development. In Matita, however, the
development environment maintains a database of all definitions that have
ever been included during any development. If the user wishes to make
use of a module in the current development then she must still explicitly
include the module in her development. However, if she wishes to search
for a definition that matches some criterion the search will not be limited
to those module that she has explicitly loaded. Another interesting aspect
of Matita is that lemma names are required to bear a relationship to their
type (Asperti et al., 2007).

Consequently, we believe that Matita is better able to support the form
of internal memoization that we suggest. We propose that it extend its
current system so that it is able to maintain a database of tactic-generated
lemmas as well as of lemmas explicitly defined by the user. We propose
the generation of pseudo-modules for these lemmas so that Matita can
maintain dependencies between definitions in the identical manner that it
uses for explicitly defined lemmas. In keeping with Matita’s requirement
for theorem names that bear a relationship to their types we suggest that
the module names bear a relationship to their generating tactic.

Memoizing in other contexts

The canonical_inversion tactic fails when the hypothesis to be inverted does
not have the canonical form property or when the inversion tactic would
itself fail. The reader may wonder why it is not useful to build sublemmas
in the case where a term lacks the canonical form property. It is certainly
possible to build such a sublemma; the return type must be a disjunction
of conjunctions with one subterm for every subgoal that the inversion
tactic failed to eliminate. The or type lacks any canonical form; thus it is

impossible to decompose a disjunction into subterms wherever the goal

176

is not in Prop. Consequently, the result of application of the sublemma
must be impossible to decompose in exactly the same situations where
the inversion tactic would be unable to proceed. To allow such sublemmas
would not advance the current goal of strengthening and improving the
inversion tactic.

The memoization that we have described constitutes a user-assisted
form of procedure extraction (Komondoor and Horwitz, 2000, 2003), which
is a recognized goal of software engineering. We would hesitate to main-
tain that it is only the inversion tactic that can make use of memoization.
The ingenuity of tactic developers is likely to discover existing tactics or to
invent new ones where memoization of automatically generated lemmas
is appropriate. The introduction of a memoizing capability into an exist-
ing proof-assistant as described in Section 9.3 is likely to precipitate the

development of such tactics.

9.4 Discussion

We have implemented the canonical_inversion tactic, which is strictly more
powerful than the inversion tactic. We have made use of the Ltac tactic
language in a novel way. To our knowledge, the use of sandboxing and of
memoization in Coq are both original with us.

The tactic is always correct because it use the Ltac tactic language to
generate sublemmas which are checked by the Coq type-checker. It may
fail if it is impossible to construct the necessary sublemmas. Consider
the following scenario. The user has defined an inductive definition and
written multiple proofs using the canonical_inversion tactic all of which
succeed. Subsequently, the user changes the inductive definition and the
canonical_inversion tactic fails. This can have but one cause; the user has
changed the inductive definition so that inverted terms no longer have the

canonical form property they had previously. Thus, our canonical_inversion

177

tactic provides the user with useful feedback, i.e., an indication that the
user has broken a property that most likely is intended to hold.

Coq provides a command, Derive Inversion, for deriving specialized
inversion lemmas (The Coq Development Team, 2008). The primary mo-
tivation is one of efficiency since inversion lemmas can be substantial.
The command fails when the term to be inverted is in Prop and the result
type is in any other sort in the same way and for the same reason that
the inversion tactic fails. We propose that the Derive Inversion command
be made stronger so that it succeeds where the canonical_inversion tactic
succeeds.

The algorithm implemented is certainly intricate; however we believe
that it will remain useable through multiple versions of Coq since it relies
solely on an interface to the Coq engine rather than on details of its imple-
mentation. Asperti et al. propose a new type for tactics to address some
of the limitations of the LCF tactic type (Asperti et al., 2009). The sandbox
which we make use of in our algorithm represents a different kind of
subgoal which the type does not allow for. We believe that this type could
be adapted to allow sandbox goals. Moreover, we believe that the new
type for tactics could reduce the complexity of the currently implemented
algorithm.

Our database-based memoization is a restricted substitute for memo-
ization implemented within the system. Tactics which implement an auto-
matic proof search in Coq, e.g., auto, may specify a list of hint databases
which contain lemmas to be tried during proof search. The syntax of
the canonical _inversion tactic could be extended to allow specifying hints
databases in the same way. Unlike the auto tactic, however, the canoni-
cal_inversion tactic would insert as well as look up lemmas. The proof-
assistant Matita (Asperti et al., 2006, 2007; Sacerdoti Coen et al., 2007) has
extensive support for managing the dependencies between definitions. We

believe that it could be extended with facilities for a general memoization

178

capability and that lemmas generated as a side effect of tactic execution

could coexist with lemmas explicitly asserted and proved by the user.

179

10 PROOF ANALYSIS

10.1 Introduction

Tools for software analysis (Anderson, 2004; Anderson and Teitelbaum,
2001) and for automated software refactoring (Fowler, 1999; Opdyke, 1992)
have been available for many years. Similar tools for Coq (Bertot et al.,
2000; Pons et al., 1998; Pons, 1997, 1999, 2000b,a, 2002), though developed
in the last decade, have not endured to the present version.

This is unfortunate. As proofs grow larger and more ubiquitous the
need for such tools will only increase. We believe that these tools have
failed to endure in some cases because they were too specific and in other
cases because they were too general. Moreover, the tools were closely
coupled to Coq’s internal representation and rapidly became obsolete as
Coq evolved.

We propose two tools that suffer from none of these problems. Neither
tool will be rendered obsolete by a new version since each makes use of
Coq’s XML extraction facility (Asperti et al., 2004, 2000b,a, 2001; Sacerdoti
Coen, 2003) which remains relatively stable between versions.

The first tool is an impact analysis tool (Arnold, 1996). Such tools are
familiar in an object-oriented setting (Ren et al., 2005; Ryder and Tip, 2001)
where dynamic dispatch makes the effect of modifying a class hierarchy
difficult to predict. In programs in object-oriented languages changes
in one part of a program may have significant non-local effects. It may
be the case in some version of a program that only objects of a certain
class can reach a certain method call-site. A developer may modify the
program so that in the new version objects of a different class now flow to
the method call-site. Due to virtual method invocation, a different method
may be invoked at the call-site, causing the behavior of the program to

change in unanticipated ways. An impact analysis tool for object-oriented

180

languages makes use of static and dynamic analyses to infer the often
widely distributed affects of what may appear to be a minor code change.

The type-system of the CoC includes the sorts Prop, Set, and Type. In-
ductive definitions in Set, e.g., nat represent values, those in Prop, e.g.,
even, represent properties of values. The type-system prevents decon-
structing a term with a type in Prop to build a term with a type in Set. In
Coq, a superficially benign change in the sort of an inductive datatype
may make a previously well-typed proof development ill-typed. A naive
developer might expect that if the name and type of every constructor
of every inductive type remains the same and if the syntactic structure
of every proof remains the same then every proof should type-check as
before. However, when the sort of an inductive definition is transferred
from Prop to Set some match expressions may become ill-typed because
they now deconstruct a term in Prop to build a term in Set or Type. These
match expressions are often hidden in large and complex proof terms and
are virtually invisible.

Our tool allows the user to predict the effect on an existing proof
development of transferring an inductive definition from Prop to Set or Type.
It discovers match expressions that will become ill-typed if the inductive
definition in question is transferred from Prop to another sort. Furthermore,
it identifies the dependencies between inductive types that result in the
ill-typing and the proof terms that contain those dependencies.

The second tool is a comprehension tool. It is generally the case that
a particular module is constructed using tactics. Lemmas defined earlier
in the module may be used in lemmas defined later in the module. The
developer makes use of Coq’s automation facilities to apply the correct
lemmas to complete the proof. Unlike a developer in a standard program-
ming language, she has no knowledge of which functions are applied in
what contexts in the final proof. The user of such a module is likely to

be oblivious to the dependencies between lemmas and may fail to under-

181

stand the purpose of certain lemmas. We study graphical methods to help
the developer and user of the module understand the hidden structure of
modules both for better comprehension and to assist modular compilation.

Both tools make use of Coq’s XML extraction mechanism. The ex-
traction mechanism was developed for use in the HELM project at the
University of Bologna. The general purpose of the HELM project (As-
perti et al., 2004, 2001; Sacerdoti Coen, 2003) is to serve as a searchable
repository for formal proofs developed in any theorem prover or proof-
assistant. Every proof-assistant and automated theorem prover has a
different representation and often a different underlying logic (Wiedijk,
2006). Consequently, a proof extracted from Coq and a proof of the same
fact extracted from another theorem prover may have profoundly different
XML representations. Automatic transformation to a declarative specifica-
tion (Sacerdoti Coen, 2010) may demonstrate that the proofs are logically
similar or expose their fundamental logical differences.

It is our insight that the XML representation of a Coq proof develop-
ment can serve as a substrate for proof analysis. Proof terms in an XML
format are easily inspected using standard tools such as XPATH. Since
the syntax of the CoC is quite simple it is fairly straightforward to devise
XPATH queries which extract important facts about the relationships be-
tween different parts of a proof. By making use of the XML representation
of proof developments the analysis can be be uncoupled from Coq'’s inter-
nal representation. The tools described in this chapter are just two possible
analyses that can be performed on the XML representation of a Coq proof
development.

Besides the relatively loose coupling to the Coq implementation each
tool has another advantage. Our impact analysis tool is more specific than
preceding tools; it addresses a precisely defined problem that faces any
developer who has discovered a need to change the sort of an existing
inductive definition. Our second tool is more general; unlike tools such

182

as the Interactive Derivation Tool (Trac et al., 2007) which allows users to
navigate a single proof analyzing dependencies in detail our tool allows
users to see at a glance the dependencies between many lemmas (Ball and
Eick, 1996).

Matita (Asperti et al., 2006, 2007) is a recently developed proof-assistant
with a strong resemblance to Coq. It makes explicit use of the Curry-
Howard isomorphism and is based on the CoC(Calculus of Co-inductive
Constructions) (Paulin-Mohring, 1993). Unlike Coq, which only produces
an XML representation of terms when explicitly requested, Matita per-
forms an extraction to an XML representation as a side-effect of compila-
tion. Because the underlying language of proof-terms is almost the same
the techniques described in this chapter should be easily adapted to use
with Matita.

10.2 Impact Analysis

Introduction

Software refactoring (Fowler, 1999; Opdyke, 1992) is a well-established
field of study. Modern IDEs incorporate powerful refactoring tools (Dig
et al., 2007; Tip et al., 2004, 2003). No such tools exist for Coq or, to our
knowledge, any other theorem prover or proof assistant.

Our tool predicts the impact of transferring an inductive datatype from
Prop to Set or Type. If one inductive datatype is translated from Prop to Set
or Type then it may be necessary to translate other inductive datatypes that
depend on it to Set or Type as well. The impact may be transitive, forcing a
migration of many inductive datatypes from Prop.

In general, inductive datatypes inhabit Prop if they represent properties
rather than computational content. However, a developer may consider
transferring an inductive definition to Set or Type for a number of reasons.

For example, the automatically generated recursion principle associated

183

with the inductive definition may be especially convenient; it is for this
reason that the inductive definition that defines local closure is in Set in
Aydemir et al. (2009) rather than Prop as in Aydemir et al. (2008).

Dependencies between inductive datatypes are generated by match
expressions. If I is the type of the expression matched and] is the type of
the match expression then | depends on I. If | is transferred from Prop to
Set or Type then the proof will be untypable unless I is in Set or Type. If I
inhabits Prop then it must be transferred to Set or Type.

Currently, to discover these dependencies a developer must transfer an
inductive definition from Prop and then rerun proof scripts to see whether
or not a dependency exists. If a dependency does exist, the script will
break. A novice developer may be stymied by this problem; an experienced
developer will understand the difficulty. However, the only remedy is to
transfer the inductive definition that caused the script to break from Prop
to another sort. This may happen many times as the developer iteratively
migrates one inductive definition after another from Prop.

The remedy is to identify these dependencies and their causes and
thereby estimate the impact of the change before implementing it. We
do this by exploring the bodies of proofs in a development, identifying
dependencies between inductive definitions. To our knowledge, ours is
the first tool to analyze and automatically predict the impact of any change

in a Coq development.

Implementation

The dependencies we have discussed are caused solely by match expres-
sions. In theory, the task is simply to find all match expressions. If every
match expression in a proof term, T, has a type constructed from the in-
ductive definition | and its expression has a type constructed from the
inductive definition I then we can store the triple, (J,[,T), indicating that
I depends on | through the lemma T. The developer can then search the

184

database of dependencies to identify triples where | is the inductive def-
inition that she wishes to translate. If she discovers some triple where I
is in Prop then she will know that she must either transfer I from Prop or
jettison the proof T which contains the dependency.

However, proof terms contain function calls which may themselves
contain match expressions. Induction and recursion principles are all
functions of this type and they are ubiquitous. No XML query is powerful
enough to identify these functions, dynamically inline them, and discover
if a dependency exists.

The obvious solution to this problem is to inline all functions. This
approach is impracticable due to the large size of Coq proofs. It may take
as much as half an hour to extract a single proof with all functions inlined
to an XML format. Moreover, we have observed that the XML extraction
mechanism is likely to reach machine-imposed limits in far less than half
an hour.

The only practical solution is to inline only those functions that are
relevant. Consequently, the whole strategy must change. Rather than
find all pairs, we consider a strategy where we investigate queries about
dependencies between just two inductive definitions. We anticipate that
the user will select some inductive definition | which she wishes to change
and will construct a query to discover whether there is a dependency
between it and some likely inductive definition I.

The first task is therefore to locate all functions that deconstruct expres-
sions in I. To locate the functions we examine the bodies of every expression
in a development. Every match expression is identified in the extracted
XML by the MUTCASE tag; the type of the matched expression is identified
by the uriType attribute. Thus every function or lemma that has a body
where the uriType attribute corresponds to I can be easily identified. It is
often the case that there are only a handful of such functions.

Every identified function must be inlined in the body of every lemma

185

in which it appears. This also presents a challenge. In general, Coq expects
that all lemmas will be terminated by the vernacular command Qed. This
command renders the body of each lemma opaque, i.e., it is impossible to
perform any reductions within the body of the lemma or to replace the
occurrence of the lemma with its body in any other proof. Making proofs
opaque enforces proof-irrelevance and allows more efficient automation.

Clearly, delta-reduction, i.e., inlining of functions is exactly the op-
eration necessary for the analysis. To make this possible, we terminate
every lemma in the original development with the vernacular command
Defined rather than Qed making each lemma transparent. Delta-reductions
are performed within the body of the lemma as appropriate. The depen-
dency analysis is performed on the XML representation extracted from
the reduced versions of the lemmas.

The dependency analysis locates all match expressions with a type in
] where the matched expression has a type in I and reports the lemma
where the dependency exists. If a dependency does exist between | and
I the developer may search for an additional dependency between I and
some other inductive definition.

We implemented our analysis in Python and stored our results in an
SQLITE database making use of existing Python libraries for constructing
and executing XPATH and SQL queries. Our analysis takes about fifteen
minutes on a moderately sized development with about one hundred
lemmas. We believe that our analysis is linear in the size of proof terms and
expect that it will scale well to larger developments. Since dependencies
are recorded in an SQLITE database queries do not need to be rerun unless
the development is changed.

Discussion and Related Work

We have presented the task of finding dependencies as an iterative pro-
cedure. However, it is only the practical limits of the Coq extraction

186

mechanism and memory that force us to constrain our approach in this
way. Consequently, other approaches that do not place too great a strain
on the extraction mechanism are just as good.

For example, the developer may really be interested in the dependen-
cies among a small set of inductive definitions. The algorithm can be
adapted easily to inline all functions with match expressions where the
matched expression has the type of any of the inductive definitions the
developer is interested in. The analysis that discovers the dependencies
can analyze all match expressions with a type in any of these interesting
definitions.

Our algorithm is sound, but not complete. Any dependency that it
identifies is a real dependency; however, it may not identify all dependen-
cies. The analysis is hampered by the CoC’s sophisticated type system
which makes it possible to compute types from values. If the function that
computes a type is itself a fixed-point function on a term that may be of
unbounded size no reduction step can yield the result type. Consequently,
our analysis will not discover dependencies where the types are generated
in this way.

Our analysis is still valuable. The recursive calculation of types from
values is part of a particular proof style which is enthusiastically embraced
by some and sedulously avoided by others. Our analysis will be most
effective for those in the latter group. If our algorithm is able to iden-
tify just one dependency among several this information is still valuable;
the developer is made aware that she must either change the sort of the
dependent inductive definition or omit the lemma which contains the
dependency.

Pons et. al (Pons et al., 1998; Bertot et al., 2000) formalized the distinc-
tion between transparent and opaque dependencies. A transparent depen-
dency is one which arises through a proof term; an opaque dependency
is one which arises through the statement of a proof. The dependen-

187

cies identified by our analysis are all transparent dependencies. It is our
own observation that when changing the sort of an inductive definition
transparent dependencies must be considered.

Pons et al. developed some tools to graphically represent the depen-
dencies between lemmas. Unfortunately, these tools have been rendered
obsolete by newer versions of Coq. Moreover, the tools they developed
were not as focused on a particular application as our impact analysis tool
but rather required the user to navigate an often large and complicated
graphical representation.

Matita includes a mechanism for invalidating and regenerating lem-
mas when a definition is changed (Asperti et al., 2007). Such an automatic
mechanism is also potentially awkward as the user may inadvertently trig-
ger a massive invalidation by an apparently innocuous change. We believe
that our tool could nicely supplement Matita’s invalidation mechanism
by warning a user when they are about to make changes that are likely to
have a global effect.

10.3 Proof Segmentation

Introduction

In a sophisticated development which makes extensive use of automation
the dependencies between lemmas may be only imperfectly understood
by the developer and nearly invisible to the user of a module. For the
developer this inhibits modular compilation; for the user it limits proof
comprehension.

Almost all languages today make use of modular compilation. A large
development is separated into individual files. Each file contains a logically
coherent subpart of the entire development. Often, the interface and the
implementation are distinguished. If the implementation remains true

to the interface parts of the development that depend on the changed

188

implementation do not need to be recompiled.

Coq developments are not as modular. Partly this is because Coq is
a proof-assistant. In languages like O’Caml the top-level and the com-
piler are largely separate; in Coq the compiler is simply a wrapper for
the top-level. Coq does not make use of interface files. If an implementa-
tion is changed everything that depends on the implementation must be
recompiled regardless of whether the interface has changed.

Frequently, a developer may wish to tinker with some lemma in a
tile. If the lemma is toward the end of the file she will have to compile
all lemmas before the one in which she is interested. CoqIDE facilitates
interaction, allowing a user to back up in a file or advance to a point
of interest. However, even this can be quite cumbersome since the Coq
interpreter must preserve state. Moving back just one line in CoqIDE may
take considerable time.

Standard build tools like make and ant operate at the file level. A file is
recompiled if the files on which it depends are newer. This coarse granu-
larity is reasonable for a standard programming language. A disciplined
programmer places logically separate components in separate files and
the benefits of modular compilation are realized.

In automated theorem proving, however, there is a mismatch between
the logical size and the compilation time. While a compiler for a standard
programming language must compile only source code a proof assistant
like Coq must often do time consuming proof search and build very large
proof terms. The ratio of compile time to text size is much greater for a
proof assistant than for a standard compiler. Consequently, it is desirable
to subdivide a logical development into smaller parts that can be compiled
separately. Since the bodies of proofs are really large and may contain
many implicit dependencies on other proofs this is a difficult task.

It is relatively easy to extract the dependencies between lemmas from
Coq’s XML representation. However, if the file truly does form a logical

189

unit a graph of these dependencies is likely to be large and confusing with
many interconnected nodes. The graph alone cannot assist the developer
to decide how to separate the file into compilable units.

Often a single file will contain a number of core definitions that are
not dependent on anything else in the file. Simple lemmas that define
simple properties about the core definitions will follow. More sophisticated
lemmas make use of the simpler lemmas and so forth.

If this stratification exists, it is possible to discover it by post-processing
the dependence graph, merging nodes with identical out-edges. This
approach can decrease the number of distinct nodes by an order of mag-
nitude and expose the stratified structure. The developer can make use
of this simplified graph to subdivide a single logical unit into multiple
compilation units.

The same graph can assist a user of the module to comprehend its
overall structure. Because it encodes the stratified structure of the module
the user is able to single out fundamental definitions, simple lemmas, and

super lemmas that connect many parts of the development.

Implementation

A simple set of XPATH queries identifies all constant names, i.e., lemmas
or functions, in any function body. This information is easily output in the
dot format (Gansner and North, 2000), suitable for display. However, in
its unmodified form the graphical representation is too complex to convey
much information for all but the simplest developments. Figure 10.1 shows
a graph of the dependencies in a development associated with Aydemir
etal. (2009). The whole graph is large and complicated. The representative
graph detail shows a mess of intersecting lines. The graph does not convey
the overall structure of the module at all.

We have implemented an algorithm to coalesce nodes in the graph
that have identical dependencies. Figure 10.2 shows the graph that results

190

(a) All Dependencies

degree_ex_close_ex degree_ex_open_ex
T

degree_ex_close_ex_rec degree_ex_open_t

ex_close_ex_rec_mutual close_ex_rec_inj_mutual degree_ex_open_e»

(b) Detail (relative scale 24:1)

Figure 10.1: Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus.

191

from applying our algorithm to the graph in Figure 10.1. The graph is still
large but its complexity is greatly reduced and its overall structure is now
apparent. The single node at the very bottom contains all fundamental
definitions, i.e. definitions that do not depend on any other definitions in
the module. It is easy to identify the set of simple lemmas of basic facts
about the fundamental definitions and so forth.

About thirty lemmas have dependencies that make them unique. These
lemmas are the most powerful and most interesting. This interestingness
is not made obvious from the complexity of the tactic scripts. For example,
lc_e_abs_exists is a proof that if the body of a lambda-calculus term
is locally closed under a certain operation, then so is the whole term.
The tactic script is a single line. The simplified graph shows that this is
a significant theorem. No other theorem depends on it; so clearly the
intention is to expose it to users of the library. It depends on several other
unmergeable lemmas. By singling out significant lemmas our tool can
assist the user in making use of the module. She is less likely to needlessly
make use of simpler lemmas to re-prove a more complicated lemma that
the module already makes available to her.

The simplified graph also allows a developer to divide the logically
coherent development into smaller parts more suitable for modular compi-
lation. Each of the supernodes has a set of very simple dependencies. Each
of these nodes could be placed in a single compilation unit and thereby
be recompiled only when the compilation units on which it depends are
recompiled. This can make for a significant time savings; even the simple
language examples distributed with the abstracting syntax development
take several minutes to compile.

We implemented our node coalescing algorithm in JGraphT, an open
source Java graphical library. Our algorithm iteratively identifies and coa-
lesces pairs of nodes with identical dependencies. It is non-deterministic

since it may identify pairs in any order but it will always converge to the

193

=

Figure 10.3: Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Nodes with identical dependents are
coalesced.

same solution regardless of the order in which nodes are coalesced.

Discussion and Related Work

In the graph in Figure 10.2 nodes are coalesced if they depend on the same
nodes. The node at the bottom, with no outgoing edges, represents all
definitions that do not depend on any other definitions in the module.
Figure 10.3 shows a graph derived from the same development where
nodes have been coalesced if they are depended on by the same nodes.
The node at the top, with no incoming edges, represents all definitions
that are not depended on by any other definitions in the module. We
anticipate that such a graph would be useful in the situation where a
developer realizes that there is a general lemma which subsumes a number
of previous lemmas that she has proved and used in her development.
She may wish to recompile her development to discover whether the new

general lemma is substituted for the set of less general lemmas. If her

194

changes have been successful she will observe that the general lemma is
depended on by many other lemmas but that the less general lemmas it
replaced are unused and have therefore migrated to the top node.

It is possible to combine the two coalescing strategies so that nodes are
coalesced if their dependents are the same or if the nodes they depend
on are the same. However, this computation will converge to different
solutions depending on the order in which nodes are coalesced. Figure 10.4
shows the outcome of two executions of an algorithm which coalesces
nodes using both criteria. The graphs are distinct but similar and retain
much of the structure of the graph in Figures 10.2 and 10.3.

Pons et al. (Bertot et al., 2000; Pons et al., 1998; Pons, 1997, 1999, 2000b,a,
2002) examined a number of graphical proof visualization techniques.
Unfortunately, these tools were closely tied to the Coq implementation.
Without the time to build a strong user community they were made obso-
lete by the next version of Coq.

Pons also experimented with reducing a graph by omitting explicit
dependencies that were also transitive. This reduced the edges in the
graph and made the graph appear less busy. We have implemented the
same procedure (Figure 10.5) and have found that, while the graph does
appear less cluttered, the overall structure of the module remains unclear.
Coalescing graph nodes to show the stratified structure of a development
is entirely our own idea.

We have experimented with coalescing the nodes of a graph with all
transitive edges eliminated. Figure 10.6 shows the result of coalescing
the graph in Figure 10.5 based on shared dependents and dependencies.
Figure 10.7 shows the result of coalescing according to shared dependen-
cies and Figure 10.8 shows the result of coalescing according to shared
dependents. The reader will observe that the structure of the graphs is
quite similar to the corresponding graphs with transitive edges shown
in Figures 10.4, 10.2 and 10.3 respectively. The moiré effect is lessened

195

(a) One execution

(b) Another execution

Figure 10.4: Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Nodes with identical dependencies and
dependents are coalesced.

196

Figure 10.5: Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Transitive edges have been eliminated.

and many of the edges between the nodes at the top and at the bottom of
graph have disappeared entirely.

Matita (Asperti et al., 2007) makes use of dependency information in
invalidation and regeneration of lemmas. While its invalidation mecha-
nism is fine grained, operating at the level of individual definitions, its
regeneration mechanism is much coarser, operating at the level of indi-
vidual files. At this time, it does not display dependency information,
or make use of the information to suggest possible segmentation of files.
Thus it is likely to pay the same costs of regeneration as Coq and to reap
similar benefits from decomposition of a development into smaller files.

Ball and Eick experimented with visualizations for software engineer-
ing (Ball and Eick, 1996). Mulhern et al. suggested related visualizations
for proof engineering (Mulhern et al., 2006). Sacerdoti Coen developed a
facility for extracting declarative specifications of a proof from the proof
terms generated by Coq (Sacerdoti Coen, 2010).

10.4 Conclusion

In this chapter we have demonstrated an impact analysis tool and a com-
prehension tool. Both are novel in that they make use of Coq’s XML
representation as a basis for the analysis rather than relying on Coq’s
internal representations. We thereby illustrate that the barriers to this
analysis are not too high. Rather than requiring understanding of Coq’s
internal structure these analyses require the ability to construct XPATH

197

100

\KKK\G J

(b) Another execution

Figure 10.6: Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Non-transitive edges are eliminated and
nodes with identical dependencies and dependents are coalesced.

198

Figure 10.7: Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Non-transitive edges are eliminated and
nodes with identical dependencies are coalesced.

199

Figure 10.8: Dependencies among lemmas in a metatheoretic development
for the untyped lambda-calculus. Nontransitive nodes are eliminated and
nodes with identical dependents are coalesced.

queries and to be able to relate the extracted XML to the actual structure
of proof terms. Of course, the second task is difficult, however it is made
easier by the CoC’s simple syntax and by the ease with which diagnostic
XPATH queries can be constructed.

Coq’s user community has grown in the last ten years. The use of
automation has grown much more sophisticated and developments are
larger. There is increasing need for tools for proof comprehension. By
making use of the XML representation of Coq terms we show that such
tools can be developed by someone who is not closely associated with the
Coq development team and that they can be robust to changes in Coq’s
implementation. Our analyses address current problems. We believe that

we have demonstrated that ordinary users can develop tools to address the

200

problems with which they are confronted; problems which the developers
of Coq may not have anticipated.

We anticipate a powerful IDE where our impact analysis tool is run
automatically when the sort of an inductive definition is changed from
Prop to another sort in order to predict the necessary changes. We have
pointed out that the graph constructed from all dependencies between
lemmas is really too complicated for a human being to understand. On
the other hand, a sophisticated compiler could make use of this structure
by separately compiling every lemma.

Matita tracks dependencies between lemmas, invalidating and regen-
erating lemmas as appropriate. We anticipate that a tool for more precise
analysis of dependencies may be useful in evolving its regeneration mech-
anism. The current mechanism relies entirely on re-running scripts. In
some cases it might be preferable to operate directly on the proof-object
originally generated by the script, making modifications as suggested by
Mulhern (Mulhern, 2006).

More philosophically, we note that both our tools are made necessary in
part by Coq’s awkward dual role. We have pointed out that Coq’s facilities
for interactive theorem proving are highly developed. However, Coq’s
batch compilation is just a wrapper around its interactive component.
A tremendous amount of ingenuity has gone into working within the
existing framework to make proofs more modular, more fully automatic,
and more regular. We hope for an eventual paradigm change; where batch
compilation is facilitated by much more sophisticated tools. We believe
that the tools we have developed may prove useful in facilitating this
change.

201

Part IV

Conclusion

202

11 CONCLUSION

Formal methods (Hoare, 1969) for the specification and verification of
programs have been in existence for several decades. Automated theorem
proving (Moore, 2004a) , one part of formal methods, is just as old.

However, while the academic community continues to refine and im-
prove formal methods, their use is still not widely known in the software
engineering community nor is exposure to formal methods a common
experience for students in a computer science curriculum.

This situation must be remedied. The complexity of software continues
to grow, as does our reliance on it. The gap between formal methods in
academia and in the worlds of software engineering and of computer
science education is likely to have increasingly deleterious consequences.

Our thesis works addresses this problem by seeking to make working
with the automated proof-assistant Coq less difficult both for the novice
and for the experienced user.

11.1 Generalizing General Induction and

Recursion

We go about this in several ways. First, we address the problem of general
induction and recursion. In many cases, structural induction or recursion
is insufficient for the particular specification or proof required. A familiar
example is the quicksort algorithm (Hoare, 1962). This algorithm is indeed
recursive, but rather than working recursively on the subparts of a list,
i.e., its head and tail, it divides the list into two sublists around a pivot
element. Developing a specification of the quicksort algorithm in Coq
requires some expertise since the developer must make use of general

recursion to prove that the specification is terminating.

203

This problem is well known. Consequently, much effort has been
directed toward developing novel approaches to general induction and re-
cursion. To our knowledge, however, only our work addresses the specific
problem of induction and recursion over CoC terms defined using types
with mutually inductive definitions. Many introductory examples will not
require such definitions. However, more advanced developments, e.g., real
compilers, certainly do. We present two mutually exclusive approaches to
the problem of general recursion on mutually inductive datatypes. The
tirst approach is to eliminate mutually inductive datatypes by convert-
ing any such type to a dependently typed definition. This approach is
described in Chapter 2. Alternatively, we provide a facility that allows a
developer to specify the general structure of a general induction or recur-
sion principle and a tactic that allows the user to request an automatically
generated principle suitable for the number of mutually inductive types
that the induction term inhabits. This work is described in Chapter 5.
Many general induction principles make use of a measure. We discuss the
structure and domain of measures more fully in Chapter 4. Measures are
an example of a particular form of recursively defined function that we
call uniform functions. We discuss ways to automatically generate such

functions in Chapter 3.

11.2 Extending Structural Induction and

Recursion

The automatically generated structural induction and recursion principles

that Coq provides are themselves sometimes inadequate.

204

Heterogeneous Structural Recursion

Coq’s automatically generated recursion principles are homogeneous, that
is they allow induction only over elements of a single type. It is often
desirable to perform induction over a structure composed of elements of
several types. In Chapter 6 we discuss how a heterogeneous principle may
be constructed from a homogeneous principle and demonstrate how it
can be used to generalize the lemmas about the 1ist type that are defined
in the Coq List module.

Tagged Structural Recursion

Moreover, the principles contain no information that allows the user or a
tactic to identify the principal premise or constructor to which the current
subgoal corresponds. We show how each principal premise can be aug-
mented with an irrefutable case hypothesis. This allows the user to orient
herself within the proof and allows automatic tactics to proceed based on

the case to which the subgoal corresponds.

Variadic Types

The CoC does not allow the specification of variadic constructors, i.e.,
constructors which may take any number of arguments, by means of de-
pendent types. Instead the user must make use of the 1ist datatype for
this purpose. Coq’s automatically generated structural recursion principle
does not place a variadic interpretation on the 1ist type constructor. In-
stead, the 1ist argument is treated as opaque. Consequently, the principal
premise for that constructor is in general unsatisfiable since it provides no
inductive hypothesis.

In Chapter 8 we discuss the automatic generation of a structural recur-
sion principle that puts a variadic interpretation on the 1ist type when

that interpretation is specified by the special alias for 1ist, star. We

205

demonstrate a tactic that will always succeed in constructing the variadic
portions of the structural recursion principle. We demonstrate that, in
spite of the fact that it incorporates nested recursion, a variadic principle

works very well within a real development.

11.3 Lemma Extraction and Proof Analysis

Lemma Extraction

Coq's inversion tactic fails when the hypothesis to be inverted is in Prop
but the goal is in some other sort. We show that if the hypothesis has a
canonical form, i.e., its structure is determined by its type, that this restric-
tion is unnecessary. In this case, it is possible to hide the inversion step
within an automatically generated sublemma. Our canonical_inversion tac-
tic makes use of a sandboxing technique to discover whether the canonical
form property holds and, if so, to automatically generate the necessary
sublemma. This tactic is strictly stronger than the inversion tactic and can

be used as a drop in replacement for that tactic.

Proof Analysis

We make use of Coq’s XML extraction facility to develop what is, to our
knowledge, the first ever impact analysis for Coq. This analysis identi-
fies match expression dependencies where the transfer of an inductive
definition from Prop to another sort will break a proof development.

We make use of the same XML extraction facility to build graphical
representations for the dependencies in a proof development. We show
that we can post-process the graphs to expose important aspects of the
structure of a proof development. This structure can assist a developer

to separate a proof into smaller, more rapidly compiled components. It

206

can assist a user to understand the overall structure of the development as
well as the purpose of individual lemmas.

Our impact analysis tool and our dependency analysis tool were both
generated entirely from Coq’s XML representation of proofs. Conse-
quently, neither has a strong dependence on Coq’s implementation and
each is likely to survive through multiple Coq versions.

11.4 Coq and Matita

Coq is a well-established proof-assistant. Consequently, it has both the
flaws and strengths of software project that has been undergoing constant
development for over a decade. While it is very powerful it contains many
oddities and some conflicting features and work-arounds.

Matita is a much newer proof-assistant being developed at the Univer-
sity of Bologna. It resembles Coq quite closely as it it also makes explicit
use of the Curry-Howard isomorphism and its proof language is a variant
of the CoC. However, since it is much newer, its design remains more
flexible than that of Coq. Our approaches are suitable for Coq but may be
more easily adopted by this newer, more adaptable, proof-assistant.

207

Part V

References

208

REFERENCES

Altenkirch, Thorsten, Conor McBride, and James McKinna. 2005. Why

dependent types matter. Manuscript, available online.

Anderson, Paul. 2004. CodeSurfer/Path Inspector. In ICSM "04: Proceed-
ings of the 20th IEEE International Conference on Software Maintenance, 508.
Washington, DC, USA: IEEE Computer Society.

Anderson, Paul, and Tim Teitelbaum. 2001. Software inspection using
Codesurfer. In WISE "01: Proceedings of the Workshop on Inspection in

Software Engineering. Paris, France.

Arnold, Robert S. 1996. Software change impact analysis. Los Alamitos, CA,
USA: IEEE Computer Society Press.

Asperti, Andrea, Herman Geuvers, Iris Loeb, Lionel Elie Mamane, and
Claudio Sacerdoti Coen. 2005. An interactive algebra course with for-
malised proofs and definitions. In MKM ’05: Revised Selected Papers from
the 4th International Conference on Mathematical Knowledge Management, ed.
Michael Kohlhase, vol. 3863 of Lecture Notes in Computer Science, 315-329.
Springer.

Asperti, Andrea, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi,
and Stefano Zacchiroli. 2004. A content based mathematical search en-
gine: Whelp. In TYPES ’04: Revised Selected Papers from the International
Workshop on Types for Proofs and Programs, ed. Jean-Christophe Filliatre,
Christine Paulin-Mohring, and Benjamin Werner, vol. 3839 of Lecture
Notes in Computer Science, 17-32. Jouy-en-Josas, France: Springer.

Asperti, Andrea, Luca Padovani, Claudio Sacerdoti Coen, and Irene
Schena. 2000a. Towards a library of formal mathematics. In TPHOLs
"00: Panel session of the 13th International Conference on Theorem Proving in
Higher Order Logics. London, UK.

209

.2000b. XML, stylesheets and the re-mathematization of formal
content. In Proceedings of Extreme Markup Languages 2001 Conference, 3.

.2001. HELM and the semantic math-web. In TPHOLs "01: Pro-
ceedings of the 14th International Conference on Theorem Proving in Higher

Order Logics, 59-74. London, UK: Springer-Verlag.

Asperti, Andrea, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico
Tassi. 2009. A new type for tactics. Tech. Rep. UBLCS-2009-14, University

of Bologna.

Asperti, Andrea, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Za-
cchiroli. 2006. Crafting a proof assistant. In TYPES "06: Proceeding of
the International Workshop on Types for Proofs and Programs, ed. Thorsten
Altenkirch and Conor McBride, vol. 4502 of Lecture Notes in Computer
Science, 18-32. Springer.

.2007. User interaction with the Matita proof assistant. Journal of
Automated Reasoning 39(2):109-139.

Aydemir, Brian, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack,
and Stephanie Weirich. 2008. Engineering formal metatheory. In POPL
"08: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 3—-15. New York, NY, USA: ACM.

Aydemir, Brian, Stephanie Weirich, and Steve Zdancewic. 2009. Abstract-
ing syntax. Tech. Rep. MS-CIS-09-06, University of Pennsylvania.

Aydemir, Brian E., Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey
Washburn, Stephanie Weirich, and Steve Zdancewic. 2005. Mechanized
metatheory for the masses: The POPLmark Challenge. In TPHOLs "05:

Proceedings of the 18th International Conference on Theorem Proving in Higher

210

Order Logics, ed. Joe Hurd and Thomas F. Melham, vol. 3603 of Lecture
Notes in Computer Science. Oxford, UK: Springer.

Balaa, Antonia, and Yves Bertot. 2000. Fix-point equations for well-
founded recursion in type theory. In TPHOLs ‘00: Proceedings of the
13th International Conference on Theorem Proving in Higher Order Logics,
1-16. London, UK: Springer-Verlag.

Ball, Thomas, and Stephen G. Eick. 1996. Software visualization in the
large. IEEE Computer 29(4):33—43.

Barnes, David J., and Michael Kolling. 2006. Objects first with Java: A
practical introduction using Blue]. 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc.

Barthe, Gilles, Venanzio Capretta, and Olivier Pons. 2003. Setoids in type
theory. Journal of Functional Programming 13(2):261-293.

Bertot, Yves, and Pierre Casteran. 2004. Interactive theorem proving and
program development : Coq’art: The calculus of inductive constructions, vol.
XXV of Texts in Theoretical Computer Science. Springer.

Bertot, Yves, Olivier Pons, and Loic Pottier. 2000. Dependency graphs for
interactive theorem provers. Tech. Rep. RR-4052, INRIA.

Blazy, Sandrine, Zaynah Dargaye, and Xavier Leroy. 2006. Formal ver-
ification of a C compiler front-end. In FM '06: Proceedings of the 14th
International Symposium on Formal Methods, ed. Jayadev Misra, Tobias Nip-
kow, and Emil Sekerinski, vol. 4085 of Lecture Notes in Computer Science,
460—-475. Hamilton, Canada: Springer.

Blume, Matthias, Michael Rainey, and John Reppy. 2008. Calling variadic
functions from a strongly-typed language. In ML "08: Proceedings of the
2008 ACM SIGPLAN Workshop on ML, 47-58. New York, NY, USA: ACM.

211

Bornat, Richard. 2005. Proof and disproof in formal logic: An introduction for
programmers. Oxford Texts in Logic, Oxford University Press, USA.

Bove, Ana, and Venanzio Capretta. 2005. Modelling general recursion in
type theory. Mathematical Structures in Computer Science 15(4):671-708.

Bove, Ana, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda —
a functional language with dependent types. In TPHOLSs "09: Proceedings
of the 22nd International Conference on Theorem Proving in Higher Order

Logics, 73-78. Berlin, Heidelberg: Springer-Verlag.
Bracha, Gilad. 2004. Generics in the Java programming language.

Bundy, Alan. 2001. The automation of proof by mathematical induction.
In Handbook of Automated Reasoning, ed. John Alan Robinson and Andrei
Voronkov, 845-911. Elsevier and MIT Press.

Chapman, James, Thorsten Altenkirch, and Conor McBride. 2006. Epi-
gram reloaded: A standalone typechecker for ETT. In Trends in functional
programming, ed. Marko van Eekelen. Intellect.

Charguéraud, Arthur. 2009. Proof pearl: A practical
fixed point combinator for type theory. Unpublished.
http://arthur.chargueraud.org/research /2009 /fixwt/.

. 2010. The optimal fixed point combinator. In ITP "10: Proceedings
of the International Conference on Interactive Theorem Proving. To appear.
http://arthur.chargueraud.org/research /2010/fix/.

Chlipala, Adam. 2006. Modular development of certified program ver-
ifiers with a proof assistant. In ICFP '06: Proceedings of the 11th ACM
SIGPLAN International Conference on Functional Programming, 160-171.
New York, NY, USA: ACM.

212

.2007a. A certified type-preserving compiler from lambda calculus
to assembly language. In PLDI "07: Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation, 54—65.
New York, NY, USA: ACM.

. 2007b. Implementing certified programming language tools in
dependent type theory. Ph.D. thesis, EECS Department, University of
California, Berkeley.

. 2009. Certified programming with dependent types. http://
adam.chlipala.net/cpdt/.

.2010. A verified compiler for an impure functional language. In
POPL "10: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, 93-106. New York, NY, USA:
ACM.

Cross, James H., and T. Dean Hendrix. 2007. jGRASP: an integrated
development environment with visualizations for teaching Java in CS1,
CS2, and beyond. Journal of Computing in Small Colleges 23(2):170-172.

Danielsson, Nils Anders, and Thorsten Altenkirch. 2009. Mixing induc-
tion and coinduction. http://www.cs.nott.ac.uk/~nad/publications/

danielsson-altenkirch-mixing.html.

Dann, Wanda P., Stephen Cooper, and Randy Pausch. 2008. Learning to
program with Alice. Upper Saddle River, NJ, USA: Prentice Hall Press.

Delahaye, David. 2000. A tactic language for the system Coq. In LPAR "00:
Proceedings of the 7th International Conference on Logic for Programming and
Automated Reasoning, ed. Michel Parigot and Andrei Voronkov, vol. 1955
of Lecture Notes in Computer Science /Lecture Notes in Artificial Intelligence,

85-95. Reunion Island, France: Springer.

http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/
http://www.cs.nott.ac.uk/~nad/publications/danielsson-altenkirch-mixing.html
http://www.cs.nott.ac.uk/~nad/publications/danielsson-altenkirch-mixing.html

213

Dig, Danny, Ralph Johnson, Frank Tip, Oege de Moor, Jan Becicka,
William G. Griswold, and Markus Keller. 2007. Refactoring tools. In
ECOOP Workshops, ed. Michael Cebulla, vol. 4906 of Lecture Notes in Com-
puter Science, 193-202. Springer.

Dillinger, Peter C., Panagiotis Manolios, Daron Vroon, and J. Strother
Moore. 2007. ACL2s: The ACL2 sedan. In UITP '06: Proceedings of the
7th Workshop on User Interfaces for Theorem Provers, ed. Serge Autexier and
Christoph Benzmtiller, vol. 174 of Electronic Notes in Theoretical Computer
Science, 3-18. Seattle, Washington: The 2006 Federated Logic Conference.

Fischer, Charles, Richard LeBlanc, and Ronald Cytron. 2010. Crafting a
compiler. Addison Wesley.

Fowler, Martin. 1999. Refactoring: Improving the design of existing code.
Boston, MA, USA: Addison-Wesley.

Gansner, Emden R., and Stephen C. North. 2000. An open graph visu-
alization system and its applications to software engineering. Software:
Practice and Experience 30(11):1203-1233.

Gibbons, Jeremy. 2003. Origami programming. In The fun of program-
ming, ed. Jeremy Gibbons and Oege de Moor, 41-60. Cornerstones in

Computing, Palgrave.

.2007. Datatype-generic programming. In SSDGP "06: Revised Lec-
tures from the International Spring School on Datatype-Generic Programming,
ed. Roland Backhouse, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring,
vol. 4719 of Lecture Notes in Computer Science. Nottingham, UK: Springer.

Gibbons, Jeremy, and Ross Paterson. 2009. Parametric datatype-genericity.
In WGP "09: Proceedings of the 2009 ACM SIGPLAN Workshop on Generic
Programming, 85-93. New York, NY, USA: ACM.

214

Gonthier, Georges. 2005. A computer-checked proof of the Four Color

Theorem.

Hasker, Robert W. 1995. The replay of program derivations. Ph.D. thesis,
University of Illinois at Urbana-Champaign, Champaign, IL, USA.

Hickey, Jason. 2008. Introduction to Objective Caml. Cambridge University
Press. Forthcoming. An older version of the book is available at http:

//files.metaprl.org/doc/ocaml-book.pdf.

Hinze, Ralf, Johan Jeuring, and Andres L6h. 2007. Comparing approaches
to generic programming. In SSDGP "06: Revised Lectures from the Inter-
national Spring School on Datatype-Generic Programming, ed. Roland Back-
house, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, vol. 4719 of Lecture
Notes in Computer Science. Nottingham, UK: Springer.

Hoare, C. A. R. 1962. Quicksort. The Computer Journal 5(1):10-15.

.1969. An axiomatic basis for computer programming. Communi-
cations of the ACM 12(10):576-580.

Hutton, Graham. 1999. A tutorial on the universality and expressiveness
of fold. Journal of Functional Programming 9(4):355-372.

Jeuring, Johan, and Rinus Plasmeijer. 2006. Generic programming for soft-
ware evolution. Tech. Rep. UU-CS-2006-024, Department of Information

and Computing Sciences, Utrecht University.

Kaliszyk, Cezary, and Freek Wiedijk. 2009. Merging procedural and
declarative proof. TYPES '08: Revised Selected Papers from the Proceedings
of the 8th International Workshop on Types for Proofs and Programs 203-219.

Kalman, John Arnold. 2001. Automated reasoning with Otter. Rinton Press,
Incorporated.

http://files.metaprl.org/doc/ocaml-book.pdf
http://files.metaprl.org/doc/ocaml-book.pdf

215

Kernighan, Brian W., and Dennis M. Ritchie. 1988. The C programming

language. Prentice Hall Professional Technical Reference.

Komondoor, Raghavan, and Susan Horwitz. 2000. Semantics-preserving
procedure extraction. In POPL "00: Proceedings of the 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 155-169. New
York, NY, USA: ACM.

.2003. Effective, automatic procedure extraction. In IWPC "03: Pro-
ceedings of the 11th IEEE International Workshop on Program Comprehension,
33. Washington, DC, USA: IEEE Computer Society.

Leroy, Xavier. 2006. Formal certification of a compiler back-end, or: pro-
gramming a compiler with a proof assistant. In POPL "06: Proceedings of
the 33rd ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, 42-54. Charleston, SC: ACM Press.

. 2009. Formal verification of a realistic compiler. Communications
of the ACM 52(7):107-115.

Letouzey, P. 2004. Programmation fonctionnelle certifiée — I'extraction de
programmes dans l’assistant Coq. Ph.D. thesis, Université Paris-Sud.

.2008. Coq extraction, an overview. In Logic and Theory of Algo-
rithms, Fourth Conference on Computability in Europe, CiE 2008, ed. A. Beck-
mann, C. Dimitracopoulos, and B. Lowe, vol. 5028 of Lecture Notes in
Computer Science. Athens, Greece: Springer-Verlag.

Letouzey, Pierre. 2003. A new extraction for Coq. In TYPES "02: Proceed-
ing of the 2nd International Workshop on Types for Proofs and Programs, ed.
Herman Geuvers and Freek Wiedijk, vol. 2646 of Lecture Notes in Computer
Science. Berg en Dal, The Netherlands: Springer-Verlag.

Letouzey, Pierre, and Bas Spitters. 2005. Implicit and noncomputational
arguments using monads. Tech. Rep., HAL-CCSD.

216

Linz, Peter. 2006. An introduction to formal languages and automata. 4th ed.
Jones and Bartlett Publishers.

Megacz, Adam. 2007. A coinductive monad for prop-bounded recursion.
In PLPV “07: Proceedings of the 2nd Workshop on Programming Languages
Meets Program Verification, 11-20. New York, NY, USA: ACM.

Moore,]. Strother. 1999. Proving theorems about Java-like byte code. In
Correct System Design, Recent Insight and Advances, (to Hans Langmaack on
the occasion of his retirement from his professorship at the University of Kiel),
139-162. Springer-Verlag.

Moore,] Strother. 2004a. How to prove theorems formally. http://www.

cs.utexas.edu/~moore/publications/how-to-prove-thms/main.ps.

Moore, J. Strother. 2004b. On the adoption of formal methods by industry:
The ACL2 experience. In ICFEM '04: Proceeding of the 6th International
Conference on Formal Methods and Software Engineering, ed. Jim Davies, Wol-
fram Schulte, and Michael Barnett, vol. 3308 of Lecture Notes in Computer
Science, 13. Springer.

Mulhern, Anne. 2006. Proof weaving. In WMM ’06: Proceedings of the
1st Informal ACM SIGPLAN Workshop on Mechanizing Metatheory. Port-
land, Oregon: The Eleventh ACM SIGPLAN International Conference on

Functional Programming.

. 2009. Coq talks lecture notes. http://www.cs.wisc.edu/
~mulhern/coqtalks.

Mulhern, Anne, Charles Fischer, and Ben Liblit. 2006. Tool support for
proof engineering. In UITP '06: Proceedings of the 7th Workshop on User In-
terfaces for Theorem Provers, ed. Serge Autexier and Christoph Benzmidiller.
The 2006 Federated Logic Conference, Seattle, Washington: Electronic
Notes in Theoretical Computer Science.

http://www.cs.utexas.edu/~moore/publications/how-to-prove-thms/main.ps
http://www.cs.utexas.edu/~moore/publications/how-to-prove-thms/main.ps
http://www.cs.wisc.edu/~mulhern/coqtalks
http://www.cs.wisc.edu/~mulhern/coqtalks

217

Naftalin, Maurice, and Philip Wadler. 2006. Java generics and collections.
O’Reilly Media, Inc.

Nanevski, Aleksandar, Greg Morrisett, Avraham Shinnar, Paul Govereau,
and Lars Birkedal. 2008. Ynot: Reasoning with the awkward squad. In
ICFP "08: Proceedings of the 13th ACM SIGPLAN International Conference

on Functional Programming. Victoria, British Columbia.

Nipkow, Tobias, L. C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL:
A proof assistant for higher-order logic. Lecture Notes in Computer Science
2283, Springer.

Oliveira, Bruno C.d.S., and Jeremy Gibbons. 2008. Scala for generic
programmers. In WGP "08: Proceedings of the ACM SIGPLAN Workshop on
Generic Programming, 25-36. New York, NY, USA: ACM.

Opdyke, William F. 1992. Refactoring object-oriented frameworks. Ph.D.
thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

Orr, Mike, and Travis Rudd. 2005. The Cheetah users’ guide, release 0.9.17rc1.

Oury, Nicolas. 2003. Observational equivalence and program extraction
in the Coq proof assistant. In TLCA "03: Proceedings of the International
Conference on Typed Lambda Calculi and Applications, ed. Martin Hofmann,
vol. 2701 of Lecture Notes in Computer Science, 271-285. Valencia, Spain:
Springer-Verlag.

Parr, Terence. 2007. The definitive ANTLR reference: Building domain-specific
languages. Pragmatic Bookshelf.

. 2010. Language implementation patterns: Create your own domain-
specific and general programming languages. The Pragmatic Bookshelf.

Paulin-Mohring, Christine. 1993. Inductive definitions in the system
Coq - rules and properties. In TLCA "93: Proceedings of the International

218

Conference on Typed Lambda Calculi and Applications, 328-345. London, UK:
Springer-Verlag.

Petit, Barbara. 2009. A polymorphic type system for the lambda-calculus
with constructors. In TLCA “09: Proceedings of the 9th International Confer-
ence on Typed Lambda Calculi and Applications, 234-248. Berlin, Heidelberg:
Springer-Verlag.

Pierce, Benjamin C. 2002. Types and programming languages. MIT Press.

. 2008. Using a proof assistant to teach programming language
foundations, or, Lambda, the ultimate TA. White paper.

Pons, Olivier. 1997. Undoing and managing a proof. In UITP "97: Electronic
Proceedings of the 3rd Workshop on User Interfaces for Theorem Provers. Sophia-

Antipolis, France.

. 1999. Conception et réalisation d’outils d’aide au développement
de grosses théories dans les systemes de preuves interactifs. Ph.D. thesis,
Conservatoire National des Arts et Métiers.

. 2000a. Proof engineering. Rapport de Recherche, aboratoire
CEDRIC-CNRAM.

. 2000b. Proof generalization and proof reuse. In Supplementary
Proceedings of the 13th International Conference on Theorem Proving in Higher
Order Logics: Poster session TPHOLs00, ed.]J. Harrison M. Aagaard and
T. Schubert. Portland U.S.: Oregon Graduate Institute Technical Report
CSE 00-009.

.2002. Generalization in type theory based proof assistants. In
TYPES '00: Selected Papers from the 1st International Workshop on Types for
Proofs and Programs, 217-232. London, UK: Springer-Verlag.

219

Pons, Olivier, Yves Bertot, and Laurence Rideau. 1998. Notions of depen-
dency in proof assistants. In UITP "98: Electronic Proceedings of the 4th
Workshop on User Interfaces for Theorem Provers. Sophia-Antipolis, France.

Ren, Xiaoxia, Barbara G. Ryder, Maximilian Stoerzer, and Frank Tip. 2005.
Chianti: a change impact analysis tool for Java programs. In ICSE "05:
Proceedings of the 27th International Conference on Software Engineering, 664—
665. New York, NY, USA: ACM.

Resnick, Mitchel, John Maloney, Andrés Monroy-Herndndez, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum,
Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch: Program-
ming for all. Communications of the ACM 52(11):60-67.

Rondon, Patrick M., Ming Kawaguci, and Ranjit Jhala. 2008. Liquid
types. In PLDI '08: Proceedings of the 2008 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 159-169. New York, NY,
USA: ACM.

Ryder, Barbara G., and Frank Tip. 2001. Change impact analysis for
object-oriented programs. In PASTE '01: Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, 46-53. New York, NY, USA: ACM.

Sacerdoti Coen, Claudio. 2003. From proof-assistants to distributed
libraries of mathematics: Tips and pitfalls. In MKM "03: Proceedings of the
2nd International Conference on Mathematical Knowledge Management, ed.
Andrea Asperti, Bruno Buchberger, and James H. Davenport, vol. 2594 of
Lecture Notes in Computer Science, 30—44. Springer.

. 2010. Declarative representation of proof terms. Journal of Auto-
mated Reasoning 44(1-2):25-52.

220

Sacerdoti Coen, Claudio, Enrico Tassi, and Stefano Zacchiroli. 2007. Tiny-
cals: Step by step tacticals. In UITP "06: Proceedings of the 7th Workshop
on User Interfaces for Theorem Provers, ed. Serge Autexier and Christoph
Benzmiiller, vol. 174 of Electronic Notes in Theoretical Computer Science,
125-142. Seattle, Washington: The 2006 Federated Logic Conference.

Sozeau, Matthieu. 2007a. Program-ing finger trees in Coq. In ICFP "07:
Proceedings of the 12th ACM SIGPLAN International Conference on Functional
Programming, 13-24. New York, NY, USA: ACM.

.2007b. Subset coercions in Coq. In TYPES’06: Selected Papers from
the 6th International Workshop on Types for Proofs and Programs, vol. 4502 of
Lecture Notes in Computer Science, 237-252. Nottingham, UK: Springer.

Swords, Sol, and William R. Cook. 2006. Soundness of the simply typed
lambda calculus in ACL2. In ACL2 06: Proceedings of the Sixth International
Workshop on the ACL2 Theorem Prover and its Applications, 35-39. New York,
NY, USA: ACM Press.

The Coq Development Team. 2008. The Coq proof assistant reference manual,

version 8.2.

Tip, Frank, Robert Fuhrer, Julian Dolby, and Adam Kiezun. 2004. Refac-
toring techniques for migrating applications to generic Java container
classes. IBM Research Report RC 23238, IBM T.]. Watson Research Center,
Yorktown Heights, NY, USA.

Tip, Frank, Adam Kiezun, and Dirk Baumer. 2003. Refactoring for gen-
eralization using type constraints. In OOPSLA "03: Proceedings of the
18th Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, 13-26. Anaheim, CA, USA.

Trac, Steven, Yury Puzis, and Geoff Sutcliffe. 2007. An interactive deriva-
tion viewer. In UITP '06: Proceedings of the 7th Workshop on User Interfaces

221

for Theorem Provers, ed. Serge Autexier and Christoph Benzmiiller, vol. 174
of Electronic Notes in Theoretical Computer Science, 109-123. The 2006 Feder-
ated Logic Conferences, Seattle, Washington: Elsevier Science Publishers
B. V.

Wadler, P. 1987. Views: a way for pattern matching to cohabit with data
abstraction. In POPL '87: Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, 307-313. New York,
NY, USA: ACM.

Wadler, Philip. 2000. Proofs are programs: 19th century logic and 21st
century computing. Report, Avaya Labs.

Weirich, Stephanie, and Chris Casinghino. 2010. Arity-generic datatype-
generic programming. In PLPV “10: Proceedings of the 4th Workshop on
Programming Languages Meets Program Verification. Madrid, Spain.

Wiedijk, Freek. 2006. The seventeen provers of the world: Foreword by Dana S.
Scott (Lecture Notes in Computer Science / Lecture Notes in Artificial Intelli-
gence). Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Winskel, Glynn. 1993. The formal semantics of programming languages: an
introduction. Cambridge, MA, USA: MIT Press.

Xi, Hongwei. 2003. Dependently typed pattern matching. In Proceedings
of Simposio Brasileiro de Linguagens de Programacao, 149-165. Ouro Preto,

Brazil.

. 2007. Dependent ML: an approach to practical programming
with dependent types. Journal of Functional Programming 17(2):215-286.

Xu, Guoging, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary
Sevitsky. 2009. Go with the flow: profiling copies to find runtime bloat. In
PLDI09: Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 419-430. New York, NY, USA: ACM.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Generalizing General Induction
	Extending Structural Induction and Recursion
	Lemma Extraction and Proof Analysis

	Generalizing General Induction
	A Mutually Inductive Type as a Dependent Type
	Introduction
	Theory of the Transformation
	Implementation of the Transformation
	Structural Induction and Recursion
	Effect of Representation on Extracted Code
	Conclusion

	Autogenerating Uniform Functions
	Introduction
	Background
	Marker Functions
	Context Folding
	Properties of the Initial Value
	Conclusions and Related Work

	Autogenerating Measures
	Introduction
	Properties of Measures
	Autogenerating Measures

	Autogenerating General Recursion Principles
	Motivation
	Background
	Specification Language
	The principle algorithm
	Types of General Recursion Principles
	Recursion Principles with Measures
	Recursion Principles Using a General Relation
	Recursion Principles as Explicit Combinators
	Discussion and Related Work

	Extending Structural Induction and Recursion
	Heterogeneous Structural Recursion
	Introduction
	Implementation
	Generalized Properties over Lists
	Conclusions and Related Work

	Tagged Structural Recursion
	Introduction
	Structure and Use of the Tagged Structural Recursion Principle
	Implementation
	Results of Extraction and Evaluation
	Conclusion and Related Work

	Variadic Types
	Introduction
	Structure of the Recursion Principle
	Use of a Variadic Type
	Implementation
	Experimental Results
	Restrictions on the Use of Variadic Types
	Conclusion and Related Work

	Lemma Extraction and Proof Analysis
	Canonical Inversion
	Introduction
	The canonical_inversion algorithm
	Memoization
	Discussion

	Proof Analysis
	Introduction
	Impact Analysis
	Proof Segmentation
	Conclusion

	Conclusion
	Conclusion
	Generalizing General Induction and Recursion
	Extending Structural Induction and Recursion
	Lemma Extraction and Proof Analysis
	Coq and Matita

	References
	References

