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Abstract. Statistical debugging uses machine learning to model program fail-
ures and help identify root causes of bugs. We approach this task using a novel
Delta-Latent-Dirichlet-Allocation model. We model execution traces attributed
to failed runs of a program as being generated by two types of latent topics: nor-
mal usage topics and bug topics. Execution traces attributed to successful runs of
the same program, however, are modeled by usage topics only. Joint modeling of
both kinds of traces allows us to identify weak bug topics that would otherwise
remain undetected. We perform model inference with collapsed Gibbs sampling.
In quantitative evaluations on four real programs, our model produces bug topics
highly correlated to the true bugs, as measured by the Rand index. Qualitative
evaluation by domain experts suggests that our model outperforms existing sta-
tistical methods for bug cause identification, and may help support other software
tasks not addressed by earlier models.

1 Introduction

We all depend on buggy software. Computers and computer failures are inescapable
features of modern life. As software grows ever more complex and more dynamic, per-
fectly predicting the (mis)behavior of a software application becomes impossible both
in theory and in practice. Therefore, we see increasing interest in statistical debugging:
the use of statistical machine learning to support debugging. Statistical methods can
cope with uncertain and incomplete information while still providing best-effort clues
about the causes of software failure. In particular, one can collect examples of suc-
cessful and failed (e.g., crashed) program runs, then use machine learning techniques
to identify those software actions which are strongly associated with program failure.
Our goal is not to predict whether a run succeeded or failed, but to identify potentially
multiple types of bugs in the program.

In contrast with earlier work [1–8] we approach this task using latent topic models.
These models, such as probabilistic Latent Semantic Analysis [9] and Latent Dirichlet
Allocation (LDA [10]), have been successfully applied to model natural language doc-
uments [11], images [12] and so on. The contribution of the present work is two-fold:

1. To the best of our knowledge, our work is the first to apply latent topic models
to debugging. We employ a novel variant of the LDA model. Each run of a program
yields a record of its execution behavior. This record is our document; the words in the
document are the events that have been recorded. We describe these records in greater
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detail in section 2. We assume that there are multiple hidden bug topics, each with its
own multinomial word distribution. The record for each failed run consists partly of
words generated from a mixture of the bug topics. The task is to automatically infer the
bug topics and mixing weights from multiple runs of the program. We would prefer that
bug topics and bug causes had a one-to-one correspondence. This is not a property that
our analysis guarantees, but we have found that in practice it is likely.

2. Our latent topic model, Delta Latent Dirichlet Allocation (∆LDA), can identify
weak bug topics from strong interference, while existing latent topic models cannot. In
statistical debugging, our primary interest is in the bug topics. For example, a particular
bug might trigger a specific segment of code, and produce the corresponding words.
However, in a typical run such bug word patterns are overwhelmed by much stronger
usage word patterns (e.g., code to open a file or to print a page), which are executed
more frequently and produce more words. As shown in the literature [8] as well as
in our experiments, many standard models are confused by usage patterns and cannot
identify bug topics satisfactorily. We explicitly model both bug topics and usage topics
on a collection of reports from both failed and successful runs. ∆LDA models successful
runs using only usage topics, and failed runs with both usage and bug topics. Thus, the
bug topics are forced to explain the differences between successful runs and failed runs,
hence the name ∆LDA.

We review concepts of statistical debugging in section 2, present the ∆LDA model
and its collapsed Gibbs sampling inference procedure in section 3, and demonstrate its
effectiveness for debugging with both a synthetic example and four real programs, i.e.,
exif, grep, gzip, and moss, in section 4. For the task of helping humans identify root
causes of bugs, our ∆LDA model performs as well or better than the best previously-
proposed statistical methods. Furthermore, it supports related debugging tasks not con-
templated by prior work. These benefits are all built upon a single integrated model with
a coherent interpretation in both machine-learning and software-engineering terms.

2 Cooperative Bug Isolation

The Cooperative Bug Isolation Project (CBI) is an ongoing effort to enlist large user
communities to isolate and ultimately repair the causes of software bugs [13]. Statistical
debugging is a critical component of CBI as it allows us to cope with unreliable and
incomplete information about failures in deployed software systems. In this section
we briefly review the CBI approach and infrastructure to show how it maps software
behavior into a document-and-word model suitable for latent topic analysis.

The data for CBI analysis consists of reports generated by instrumented versions of
software applications. The code inserted by the CBI instrumentor passively logs many
program-internal events of potential interest to bug-hunting software engineers while
the software application is being executed. Interesting events may include the direction
taken when a branch (if statement) is executed, whether a function call returns a nega-
tive, zero, or positive result, the presence of unusual floating-point values, and so forth.
Via the instrumentation, each run of a program generates a sequence of recorded events.
This sequence is the “document”; the recorded events are the “word tokens”. The set of



all possible events that can be recorded by the instrumentation code corresponds to the
set of “word types”.

Instrumentation code is distributed throughout the source code of a program. Even
a medium-sized program can have hundreds of thousands of instrumentation points
(word types); a single event (word token) may occur millions of times during a single
run. For reasons of performance, scalability, and user privacy, we cannot record every
event. Instead, events are sparsely sampled during each run. A typical sampling rate is
1/100, meaning each event has only a 1/100 chance of being observed and recorded each
time it occurs. More sophisticated instrumentation can adapt the sampling rate to the
expected number of occurrences of a given event, sampling rare events at a higher rate
and common events at a lower rate, and thereby increasing the probability that a rare
event will be recorded if it occurs. A second practical measure is to discard all event
ordering information, and instead report the number of times an event was recorded. A
single run, then, results in a single fixed-length vector of event counts, called a feedback
report. The data in any single feedback report is an incomplete but unbiased random
sample of the behavior during that run. In machine-learning terms, a feedback report is
a “bag of words” representation of the document generated by a run.

Feedback reports are collected centrally for aggregation and analysis. Reports may
come from real users participating in the ongoing CBI public deployment [14] or may
be produced in-house with fixed or randomly-generated test suites. Each feedback re-
port carries one additional piece of information: an outcome flag recording whether this
run succeeded or failed. In the simplest case, all fatal software crashes might be consid-
ered “failures” and all non-crashing runs considered “successes.” More sophisticated
flagging strategies such as comparing program output against that of a known-good
reference implementation may also be used.

For any program of non-trivial complexity, we must further assume that there are an
unknown number of latent bugs. Because instrumentation is so broad, we must assume
that the vast majority of program events are not directly connected to any given bug.
Thus, the bug “signal” is both noisy due to sparse sampling and weak relative to the
majority non-buggy behavior of the program.

The statistical debugging challenge, then, is as follows. Given a large collection
of feedback reports of a program, where each report is flagged according to whether
the run succeeded or failed, and where there may be a number of bugs, i.e., causes for
failure, distinguish among these causes of failure, identify events that contributed to
a failure and are connected with its underlying cause, and use this information to help
support the debugging process in particular and software understanding more broadly.

3 The ∆LDA Model

Standard LDA [10] models a single document collection. For example, when applied
to a collection of failed runs only, standard LDA is likely to recover stronger usage
patterns rather than generally weaker bug patterns. In contrast, ∆LDA models a mixed
collection of successful and failed runs. We reserve extra bug topics for failed runs in
order to capture the weaker bug patterns. By explicitly modeling successful vs. failed
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Fig. 1: The ∆LDA model

runs, and usage vs. bug topics, ∆LDA is able to recover the weak bug topics more
clearly. The ∆LDA model (Figure 1) has the following major components:

(i) There are Nu usage topics φu, and Nb bug topics φb. These are sampled from two
Dirichlet distributions: φu ∼ Dir(βu), φb ∼ Dir(βb). We distinguish βu and βb (instead
of a single β) to facilitate the incorporation of certain types of domain knowledge. For
example, if we believe that some parts of the software are more error-prone (e.g., less
tested) than others, then the bug topics may focus more on the corresponding words.

(ii) There are a total of D documents. Each document has an observed outcome flag
o ∈ {s, f } for successful and failed run, respectively. These D documents constitute the
mixed collection of successful and failed runs.

(iii) Each document is generated as a “bag of words” by a mixture of the Nu + Nb

topics. The mixing weight θ is sampled from one of two Dirichlet distributions αs or
α f , depending on the outcome flag o: θ ∼ Dir(αo). In the simplest case, the elements in
αs that correspond to bug topics are set to zero, ensuring that any successful run will not
use any bug topic1. By contrast, all the elements of α f are greater than zero, allowing
failed runs to use both usage and bug topics.

(iv) The rest of the model is identical to LDA: for each of the Nd word positions
in the document, one samples a topic index z ∼ Multi(θ), z ∈ {1, . . . ,Nu + Nb}, and
produces a word w ∼ Multi(φz).

The ∆LDA model thus specifies the conditional probability p(w|o, βu, βb, αs, α f ),
where we use bold face to denote sequences of variables. Omitting hyperparameters for
notational simplicity, this can be computed as p(w|o) =

∑
z p(w|z)p(z|o), where

p(w|z) =
Nu+Nb∏

i

∫
p(φi|β

u, βb)
W∏
j

φi j
ni

j dφi (1)

p(z|o) =
D∏
d

∫
p(θd |od, α

s, α f )
Nu+Nb∏

i

θdi
nd

i dθd . (2)

Here W is the vocabulary size, ni
j is the number of times word-type j is assigned to

topic i, and nd
i is the number of times topic i occurs in document d. Also, φi j is the

probability of word j being generated by topic i and θdi is the probability of using topic
i in document d.

1 It is straightforward to allow small but non-zero bug topic weights for successful runs. This is
useful if we believe some runs were affected by bugs but did not fail.



3.1 Inference

We are interested in the hidden variables z, θ, φ. We can draw z samples from the pos-
terior p(z|w, o) using Markov Chain Monte Carlo (MCMC). In particular, we use col-
lapsed Gibbs sampling [11], drawing from p(zk = i|z−k,w, o) for each site k in sequence.
This inference procedure is linear in the number of samples taken, the total number of
topics used, and the size of the corpus. Since

p(zk = i|z−k,w, o) =
p(zk = i, z−k,w|o)∑
i′ p(zk = i′, z−k,w|o)

, (3)

the site conditionals can be computed from the joint p(z,w|o) = p(z|o)p(w|z), as given
in (1) and (2). The Dirichlet priors can then be integrated out (“collapsed”) in (1) and
(2), resulting in the following multivariate Pólya distributions:

p(w|z) =
Nu+Nb∏
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 Γ(
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Here ni
∗ is the count of all words assigned to topic i, and nd

∗ is the count of all words
contained in document d. βi

j is the hyperparameter associated with word j in topic i,
where βi is βu if i is a usage topic and βb if it is a bug topic. αod

i is the hyperparameter
associated with topic i for outcome flag value od. Rearranging (4) and (5) yields

p(zk = i|z−k,w, o) ∝

 ni
−k, jk
+ βi

jk

ni
−k,∗ +

∑W
j′ β

i
j′


 ndk

−k,i + α
ok
i

ndk
−k,∗ +

∑Nu+Nb
i′ αok

i′

 . (6)

In this equation, all “n−k” are counts excluding the word or topic assignment at position
k. Also, jk is the word at position k, dk is the document containing position k, and ok

is the outcome flag associated with dk. This equation allows us to perform collapsed
Gibbs sampling efficiently using easily obtainable count values. Note that for topics i
such that αok

i = 0, the count nd
−k,i is also 0, meaning that topic i will never be assigned

to this word.
After the MCMC chain mixes, we can use a single sample from the posterior

p(z|w, o) to estimate φi, the multinomial over words for topic i, and θd, the topic mixture
weights for document d:

φ̂i j =
ni

j + β
i
j

ni
∗ +
∑W

j′ β
i
j′

(7) θ̂di =
nd

i + α
od
i

nd
∗ +
∑Nu+Nb

i′ αod
i′
. (8)

We use domain expert knowledge to set the hyperparameters αs, α f , βu, βb, as well
as the number of usage and bug topics Nu, Nb. Hyperparameter values used are not spe-
cially fitted to our data and should perform well in a variety of situations. Alternatively,
these values could be estimated from the data using Bayesian model evidence maxi-
mization. This involves finding the values which maximizes the evidence, p(w|o). In
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Fig. 2: A toy example showing ∆LDA’s ability to recover weak bug topics. (a) Truth: 8 usage
topics and 3 bug topics; (b) Example success (left) and failure (right) documents; (c) ∆LDA
successfully recovers the usage and bug topics; (d) Standard LDA cannot recover or identify bug
topics.

particular, the Gibbs sampling technique employed by our model allows the convenient
estimation of the evidence by importance sampling, using z samples drawn from our
MCMC chain [15].

4 Experiments

4.1 A Toy Example

We first use a toy dataset to demonstrate ∆LDA’s ability to identify bug topics. The
vocabulary consists of 25 pixels in a 5-by-5 grid. We use 8 usage topics and 3 bug
topics as in Figure 2(a). Each of the 8 usage topics corresponds to a uniform distri-
bution over a 2-pixel wide horizontal or vertical bar. Each of the 3 bug topics corre-
sponds to a uniform distribution over the pixels in a small “x”. In all diagrams, each
image also has a 1-pixel black frame for visibility, which does not correspond to any
vocabulary word. We generate 2000 documents of length 100 with these topics ac-
cording to the procedure described in Section 3. Half of the documents are “successful
runs” and the other half “failed runs.” For the topic mixture hyperparameters, we use
αs = [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0] and α f = [1, 1, 1, 1, 1, 1, 1, 1, 0.1, 0.1, 0.1]. This means
that the bug topics are never present in the od = s (successful) documents, and tend to
be only weakly present in the od = f (failed) documents. Some example documents
from this generated corpus are shown in Figure 2(b).

We then run ∆LDA and standard LDA [11, using code at http://psiexp.ss.
uci.edu/research/programs_data/toolbox.htm] on the toy dataset. In order to
give standard LDA the best chance of identifying the bug topics, it is run on od = f
documents only2, using 11 topics. ∆LDA is run on all documents, using 8 usage topics
and 3 bug topics. ∆LDA is supplied with the true α vectors used to generate the data,
but the standard LDA implementation used in this experiment only allows a symmetric
α hyperparameter (where all values in the α vector have the same value). Therefore we
supply the standard LDA model with the symmetric hyperparameter α = 1. Further
experiments (not shown here) using a different implementation of standard LDA and
the true α f vector achieve similar results. Both models use the same symmetric hyper-
parameter β = 1 (which is not actually used to generate the data because the topics
are fixed). Both MCMC chains are run for 2000 full samples, after which φ and θ are
estimated from the final sample as described above.

2 Additional experiments (not shown here) validate the intuition that the inclusion of od = s
documents does not improve the recovery of bug topics with standard LDA.



Table 1: General information about test programs.

Runs Topics

Program Lines of Code Bugs Successful Failing Word Types Usage Bug

exif [16] 10,611 2 352 30 20 7 2
grep [17, 18] 15,721 2 609 200 2,071 5 2
gzip [17, 18] 8,960 2 29 186 3,929 5 2
moss [19] 35,223 8 1,727 1,228 1,982 14 8

The estimated topics for ∆LDA are shown in Figure 2(c), and the estimated topics
for standard LDA are shown in Figure 2(d). ∆LDA is able to recover the true underlying
usage and bug topics quite cleanly. On the other hand, standard LDA is unable to sepa-
rate and identify bug topics, either mixing them with usage topics or simply duplicating
usage topics. The toy example clearly shows the superiority of ∆LDA over standard
LDA in this setting.

4.2 Real Programs

While ∆LDA performs well on our toy example, real programs are orders of magni-
tude more complex. We have applied ∆LDA to CBI feedback reports from four buggy
C programs, details of which appear in Table 1. Bugs are naturally-occurring (exif),
hand-seeded (grep, gzip), or both (moss). All four programs are in use by real users or
are directly derived from real-world code. Test inputs are randomly-generated among
reasonable inputs for each program, and “failure” is defined as crashing or producing
output different from a known-correct reference implementation. Hand-coded “bug or-
acles” provide ground truth as to which bugs were actually triggered in any given run.
For our experiments on grep and gzip we used test suites supplied by the SIR reposi-
tory developers [18]. For exif and moss tests were generated using randomly selected
command line flags and inputs. Feedback data is non-uniformly sampled during pro-
gram execution as in prior work [5].

For these experiments, all hyperparameters used are symmetric, and the same hyper-
parameter settings are used for all programs. We set βu = βb = 0.1, and nonzero entries
of αs = α f = 0.5 to encourage sparsity. The number of topics for each program are cho-
sen according to domain expert advice. The number of bug topics Nb for each program
is set equal to the number of distinct bugs known to be manifested in our dataset, with
the goal of characterizing each bug with a single topic. The number of usage topics Nu

for each program is chosen to approximately correspond to the number of different pro-
gram use cases. For example, exif uses seven different mutually-exclusive command
line flags, each of which corresponds to a different program operation. Therefore, it is
natural to model the program usage patterns with seven different usage topics. Table 1
gives the number of usage and bug topics used for each program. For all programs, the
Gibbs chain is run for 2000 iterations before estimating φ and θ. For the largest dataset,
moss, the inference step took less than one hour to run on a desktop workstation.



Where possible, we compare ∆LDA results with corresponding measures from two
earlier statistical debugging techniques. PLDI05 refers to earlier work by Liblit et al.
[5] that uses an iterative process of selecting and eliminating top-ranked predicates un-
til all failures are explained. The approach bears some resemblance to likelihood ratio
testing and biased minimum-set cover problems, but is somewhat ad hoc and highly
specialized for debugging. ICML06 refers to earlier work by Zheng et al. [8] that takes
inspiration from bi-clustering algorithms. This approach uses graphical models to esti-
mate complete (non-sampled) counts, then applies an iterative collective voting scheme
followed by a simple clustering pass to identify and report likely bug causes.

Bug Topic Analysis on θ. We show that ∆LDA is capable of recovering bug topics
that correlates well with the underlying software bugs. Note that each failed run’s Nb

bug topic elements in θ, which we call θb, can be viewed as a low-dimensional bug
representation of failed runs. We plot the failed runs in this θb space for the programs in
Figure 3(a-d), where we use different symbols to mark the failed runs by their ground
truth bug types. In the case of moss, we project the 8-dimensional θb space down to 3
dimensions for visualization using Principal Component Analysis. The plots show that
actual bug types tend to cluster along the axes of θb, which means that often a ∆LDA bug
topic maps to a unique actual bug type. Multi-bug runs exhibit multiple high-weight θb

components, which is consistent with this mapping between bug topics and actual bugs.
This observation could be used to focus debugging efforts on single-bug runs.

Figure 3(e) compares the quality of clusterings given by ∆LDA to those of the other
analyses. For each analysis we compute the Rand index [20] of a clustering based on
that analysis with respect to the ground truth (determined by our oracle). A Rand index
of 1 indicates that the clustering is identical to the ground truth; lower indices indicate
worse agreement. For ∆LDA, we assign a failed run to cluster i if its bug topic i has the
largest θi among all bug topics. Other clustering methods are possible and may produce
better clusters. No method dominates, but ∆LDA consistently performs well.

Bug Topic Analysis on φ. We now discuss how to extract ranked lists of suspect words
(potentially buggy program behaviors) for each bug topic. We qualitatively evaluate
the usefulness of these lists in finding root causes of bugs, both for ∆LDA and for
PLDI05 and ICML06. Overall, we find that ∆LDA and PLDI05 perform equally well,
with ∆LDA resting on a stronger mathematical foundation and potentially supporting a
wider variety of other important tasks.

The parameter φ itself specifies p(w|z). But a word w may have a large p(w|z) simply
because it is a frequent word in all topics. We instead examine p(z|w) which is easily
obtained from φ using Bayes rule. Furthermore, we define a confidence score S i j =

mink,i p(z = i|w = j) − p(z = k|w = j). For each topic, z = i, we present words ranked
by their score, S i j. If S i j is less than zero, indicating that word j is more predictive of
some other topic, we do not present the word at all. On the other hand, if S i j is high,
then we consider that word j is a suspect word and a likely cause of the bug explained
by topic i.

In lieu of formal human-subject studies, which are outside the scope of this pa-
per, we informally assess the expected usefulness of these suspect-word lists to a bug-
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∆LDA ICML06 PLDI05

exif 1.00 0.88 1.00
grep 0.97 0.71 0.77
gzip 0.89 1.00 1.00
moss 0.93 0.93 0.96

(e) Rand index

Fig. 3: ∆LDA recovers bug topics that highly correlate with actual software bugs

hunting programmer. We compare ∆LDA results with analogous lists built using the
PLDI05 and ICML06 algorithms mentioned earlier.

For exif, the two ∆LDA bug topics cleanly separate the two bugs. Each topic’s
list of suspect words is short (4 and 6 items) but relevant. For one of the bugs, this
list includes a clear “smoking gun” that immediately reveals the root cause; the other
bug topic includes less direct secondary effects of the root problem. PLDI05 performs
well for both exif bugs. However, while ∆LDA’s word list is naturally restricted to
words for which S i j > 0, PLDI05 has no intuitive cut-off point. Thus, PLDI05’s lists
include all words under analysis (19 for exif) and risk overwhelming programmers
with irrelevant information. In our subjective experience, if the first five or ten items in a
“suspect program behaviors” list are not immediately understandable, the programmer
is unlikely to search further. ICML06 struggles with this as well. If clustering is not
used, ICML06 reports all 19 words without good separation into bug-specific groups. If
clustering is used, ICML06 offers a short 3-item list that describes one bug three times
and omits the other bug entirely.
moss results vary in quality from bug to bug. Overall, we find that most ∆LDA bug

topics correspond directly to individual moss bugs, and that highly-suspect words for
each of these topics often identify either primary “smoking gun” causes for failure or
else closely related secondary effects of the initial misbehavior. PLDI05 performs better



than ∆LDA for some bugs and worse for others, with each analysis identifying at least
one smoking gun that the other misses. ICML06 with clustering produces identifies the
smoking gun for one bug that both ∆LDA and PLDI05 miss. However, ICML06 reports
thirty clusters while there are only eight actual moss bugs: several bugs are split among
multiple clusters and therefore presented redundantly.
grep and gzip results are equivocal. ICML06 identifies an informative precondi-

tion for one grep bug, though not the smoking gun. Otherwise, all three algorithms
identify words that are strongly associated with bugs but which do not immediately
reveal any bugs’ root causes. These algorithms do not truly model causality, and there-
fore it is not surprising that root causes may be difficult to recover. Furthermore, in some
cases, no smoking guns were actually among the words instrumented and considered by
the models. We feel that all three models perform as well as can be reasonably expected
given the less-than-ideal raw data.

Overall, we find that the PLDI05 and ∆LDA approaches perform roughly equally
well in guiding humans to the root causes of bugs. However, PLDI05 is highly spe-
cialized and somewhat difficult to reason about formally. For example, whereas ∆LDA
ranks words using conditional probabilities, PLDI05 computes multi-factor harmonic
mean scores that, while about as effective, have no simple interpretation either in ma-
chine learning terms or as quantitative measures of expected program behavior. ∆LDA
has, we assert, a stronger mathematical foundation and potentially broader applicability
to problems in other domains (see section 5).

Furthermore, even within the domain of statistical debugging, components of an
∆LDA model can be used to support other important software engineering tasks not
contemplated by earlier approaches. Suppose, for example, that one’s task is to fix the
bug associated with a particular bug topic, and that a repeatable test suite is available.
In that case, one would prefer to investigate runs where the weight for that bug topic is
very high compared to the weight for all other bug topics, as those runs would be likely
to be the most pure embodiments of the bug. For another example, prior work has shown
how to automatically construct extended paths through multiple suspect program points
[21]; ∆LDA offers a model whereby the aggregate scores along such paths can be given
a sensible probabilistic interpretation. While we have not yet explored these alternate
uses in detail, they hint at the power of a statistical debugging approach that is both
well-founded in theory and highly effective in practice.

Usage Topic Analysis Information gleaned from usage topics might support a variety
of software engineering tasks. To characterize a usage topic, we examine the words that
have the highest probability conditioned on that topic. Each word is associated with the
source code immediately adjacent to its instrumentation point. We find that in many
cases usage topics correspond to distinct usage modes of the program.

We describe gzip in detail, since the DEFLATE algorithm which it implements is in
the public domain and likely to be familiar to many in the machine learning community.
Recall that the DEFLATE algorithm consists of two steps, duplicate string elimination
and bit reduction using Huffman coding.

For each usage topic there is a small number of highly probable words and a much
larger number that are significantly less probable. The most probable word by far in



topic 1 is associated with an inner loop in longest_match(), the underlying proce-
dure in the duplicate string elimination step of the algorithm. We infer that topic 1
is highly associated with this step. We expect runs with a high p(z = 1|d) value to
use the algorithm which finds the most redundant strings and does the best compres-
sion at the expense of running more slowly; this is the case. There are about twenty
highly probable words in topic 2; all are associated with command line handling or exit
clean-up code. In runs where p(z = 2|d) is relatively high no compression occurred;
instead, for example, a help message or version message was requested. Of the twenty
most probable words in topic 3, several are associated with longest_match(), several
with compress_block(), and several with deflate_fast(). We infer that this usage
topic is associated with the fast deflation algorithm which does only very simple dupli-
cate string elimination. In the runs where p(z = 3|d) is highest, gzip was invoked with
a flag explicitly calling for the fast algorithm. The modes associated with topics 4 and
5 are less pronounced. Topic 4 seems to capture output activity, as it includes a highly
probable word in in write_buf() as well as a few highly probable words associated
with the duplicate string elimination algorithm. Topic 5 seems to capture the bit reduc-
tion mode, as words in updcrc(), a utility function used for shifting bits, are by far the
most probable.

5 Conclusions and Discussion

Software continues to be released with bugs, and end users suffer the consequences.
However, statistical models applied to instrumented feedback data can help program-
mers repair problems. ∆LDA shows promise as a statistical model with both strong
empirical results and a sound mathematical foundation. Some future directions have
been suggested earlier, such as incorporating domain knowledge into the Dirichlet hy-
perparameters or automatically identifying the number of bugs. Another direction is
to endow ∆LDA with more complex topic structure similar to Hierarchical LDA [22],
which arranges topics in a tree. However, Hierarchical LDA provides no mechanism
for document-level control (the outcome flag) on topic availability. Other modifications
to the model could exploit some of the interesting structure inherent in this problem
domain, such as the static program graph.

Note that ∆LDA need not be restricted to statistical debugging. For example, ∆LDA
may be applied to text sentiment analysis [23] to distinguish “subjective sentiment
topics” (e.g., positive or negative opinions, the equivalent of bug topics) from much
stronger “objective content topics” (in the movie domain these are movie plots, actor
biographies etc., the equivalent of usage topics). For the movie domain, the mixed doc-
ument collection may consist of user-posted movie reviews (which contain both senti-
ment and content topics), and formal movie summaries (which contain mostly objective
contents).
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