Shifting Left for Early Detection
of Machine-Learning Bugs

Ben Liblit!, Linghui Luo?, Alejandro Molina®, Rajdeep Mukherjee®, Zachary

Patterson?, Goran Piskachev?, Martin Schif!, Omer Trippl, and Willem Visser!

1 Amazon Web Services, USA
2 Amazon Web Services, Germany
3 Amazon, USA
4 The University of Texas at Dallas, USA

Abstract. Computational notebooks are widely used for machine learning (ML).
However, notebooks raise new correctness concerns beyond those found in tradi-
tional programming environments. ML library APIs are easy to misuse, and the
notebook execution model raises entirely new problems concerning reproducibility.
It is common to use static analyses to detect bugs and enforce best practices in
software applications. However, when configured with new types of rules tailored
to notebooks, these analyses can also detect notebook-specific problems.

We present our initial efforts in understanding how static analysis for notebooks
differs from analysis of traditional application software. We created six new rules
for the CodeGuru Reviewer based on discussions with ML practitioners. We ran
the tool on close to 10,000 experimentation notebooks, resulting in an average of
approximately 1 finding per 7 notebooks. Approximately 60% of the findings that
we reviewed are real notebook defects[]

Keywords: Static analysis - Computational notebooks - Jupyter Notebook - Machine-
learning bugs - Bug finding - Machine learning - PyTorch - CodeGuru Reviewer

1 Introduction

Static program analysis is shifting left: providing recommendations as early as possible
in the software development life cycle. The earlier an issue is reported, the easier and
less costly it is to fix. Many off-the-shelf analysis engines now integrate seamlessly into
code reviews or builds, to good effect [3} [7].

Shifting left assumes a multi-stage process that culminates in deployed software.
However, work in machine learning (ML) may not fit this model. Data scientists
and ML experts often use computational notebooks for development, such as Jupyter
notebooks [[15]. Notebooks are iterative and interactive. A typical developer edits and
evaluates a notebook locally, until it produces an acceptable model, and only then sends
the notebook or model to the next stage of the development pipeline.

5 Due to confidentiality limitations, we cannot disclose the exact number of notebook files and
findings.

2 Liblit, Luo, Molina, Mukherjee, Patterson, Piskachev, Schif, Tripp, and Visser

In traditional enterprise software development, code is developed in small increments,
unit tested, and passed through code review, before running on real data. For a given
programming language, notebook developers invest more time into notebooks between
published revisions than traditional developers [11}[35]. Delayed feedback by human
colleagues means that notebook developers stand to benefit even more from automated
static analyses. However, false-positive rates must be low so as to not distract developers.

Notebooks also differ from enterprise software in that notebooks do not usually run in
production. Thus, many of the issues typically covered by static analysis, such as security
or resilience to untrusted inputs, are not interesting to notebook developers. Instead,
reproducibility is a much bigger problem [36]. Notebooks have certain features, like
out-of-order execution, which can harm reproducibility, and misuse of ML APIs, which
can lead to accidental modifications of trained models. Accidental model modifications
are a particular concern: such mistakes are difficult to notice, and may be cumbersome or
impossible to revert.

This paper presents our initial efforts in understanding how static analysis for
notebooks differs from analysis of traditional application software. To understand the
problem space, we conducted a pilot study by interviewing a group of ML practitioners at
Amazon. Based on discussions with them, we prioritized certain issues and implemented
six rules using the Python static analysis engine in CodeGuru Reviewer [21]. We report
on rule efficacy for a set of notebooks shared by Amazon developers. These six rules
produced an average of 1 finding per 7 notebooks on a total of nearly 10,000 notebook
files. We sampled a set of the findings to assess precision. Around 60% of these findings
are true positives: real notebook bugs. Our results motivate future research on how to
best integrate static analysis into the development workflow for computational notebooks,
and what type of rules provide the best value for notebook developers.

2 Background

To understand what types of issues are worth catching in notebooks, we interviewed
a group of five ML practitioners who come from different organizations in Amazon,
and occupy different roles. As we already hit saturation [12] after the fifth interview, we
did not interview more people. We asked about their habits when using notebooks and
issues they often encounter. Many practitioners mentioned the challenge of reproducing
results of notebooks when moving between different environments. Difficulties include
failure to understand the execution order of notebook cells, non-determinism of some
ML APIs, and losing track of dependencies. Practitioners told us that notebooks are
far from intuitive, as cells can be executed in arbitrary order. Errors often occur across
cells. Previous cells are often edited or even removed after execution. These changes
may break the intended functionality of following cells. Because data exploration usually
takes a long time, users often do not execute all cells after small changes. Thus, breaking
changes might be unnoticed until another person tries to rerun the notebook. Section 4.1
of this paper discusses two concrete issues that fall into this category and introduces our
approach to detect them with static analysis.

Misusing ML APIs can introduce other silent faults. Popular deep-learning libraries
such as PyTorch [22], Keras [3]], and TensorFlow [1]] greatly simplify the development

Shifting Left for Early Detection of Machine-Learning Bugs 3

of deep learning systems. However, due to high conceptual complexity of the field,
unclear documentation, and unintuitive APIs, users commonly misuse these libraries and
inadvertently inject faults during the development of deep-learning systems. Furthermore,
ML libraries are moving targets: different versions may require to different method calls,
produce different performances, or exhibit different functionality altogether.

To understand which misuses are prevalent across multiple versions of APIs and
that are useful to catch, we collected a list of known misuses from both scientific
literature [13| 23| 134 37]] and an internal survey. We asked several ML scientists
(different than the five we interviewed) at our company to rate usefulness in this list and
elaborate the reasons for their ratings. We prioritized certain issues from this list based
on practitioner interest (how many votes for useful) and technical feasibility. These issues
are silent at build and run time, of which a developer would not be aware, even after the
code is deployed. Section [4.2]introduce four rules designed for catching these issues.

3 Static Analysis Framework

Our analyses are built on the framework we developed for CodeGuru Reviewer [21]]. In
this section, we briefly introduce this framework.

3.1 Code Representation

Our analysis represents each program as a collection of per-function graphs called MU
graphs. A MU graph contains five kinds of nodes:

— Entry nodes represent the start of a function’s execution: one per MU graph.

— Exit nodes represent the end of a function’s execution: one per MU graph.

— Control nodes represent branched control flow, such as a conditional statement or
loop.

— Action nodes represent individual execution steps, such as multiplying two values or
calling a function.

— Data nodes represent local variables or synthetic temporary values within compound
expressions.

There are also several types of edges in MU graphs, denoted by their label:

— Control edges order execution among entry, exit, control, and action nodes. No data
node is ever the source or target of a control edge. Thus, discarding all data nodes
and non-control edges would reduce a MU graph to a traditional control-flow graph
(CFG).

— Data edges represent movement of data among control and action nodes, and are
further categorized as follows:

e Condition edges flow from a data node into a control node, representing the
information used to decide how execution continues.

e Definition edges flow from an action to a data node defined by that action.

e Parameter edges flow from a data node into an action node.

e Receiver edges flow from a data node into a method-calling action node. These
highlight the special role of implicit self or this arguments.

o Callee edges flow from a data node into a call action node, identifying the
function to be called.

4 Liblit, Luo, Molina, Mukherjee, Patterson, Piskachev, Schif, Tripp, and Visser

CustomRule rule = new CustomRule.Builder().withName("MathExp")
.withComment("For small floats *x’, the subtraction in "
+ "exp(x) - 1° can result in a loss of precision.")
withAllOf(
b -> b.withMethodCallFilter(".«math\\.exp")
.withDefinitionTransform()
.as("MathExpResult"),
b -> b.withConstantDataFilter("1").as("ConstantOne"))
.check()
.withActionFilter("-")
.withDirectDataFromldFilter("MathExpResult")
.withDirectDataFromldFilter("ConstantOne")
.build();

Fig. 1. GQL rule for identifying suboptimal use of the math.exp function.

3.2 Query Language

Directly analyzing MU graphs can be cumbersome, and can miss important reuse
opportunities. We therefore created an API, dubbed the Guru Query Language (GQL), to
enable encapsulation, optimization, and reuse of a wide variety of analysis constructs.
GQL is implemented as a Java library whose main interface with the analysis builder
is the CustomRule class. CustomRule instances are created using the fluent builder
pattern [9]], where builder calls correspond to reasoning steps in the rule. A rule object
can be evaluated at different scopes, from entire code bases to single functions. This is
an important source of flexibility, enabled by MU graphs and their support for partial
programs. Rule evaluation yields a RuleEvaluationResult for each function or method.
If rule evaluation fails, the RuleEvaluationResult includes rich diagnostic information
to support rule debugging.

To illustrate GQL syntax, Figure [I|shows a rule that identifies suboptimal use of the
math.exp function. Here is an example of what the rule checks for:

def foo():
import math
return math.exp(1e-10) - 1

Rule definition begins by setting the rule’s name and user-facing comment text. The
following steps, up to the check statement, are preconditions that the rule checks for.
Specifically, the withAllOf statement ensures that all the subrules nested within it evaluate
successfully, where these check for math.exp calls as well as the presence of the constant
value 1. The matches are stored into variables (or IDs), to enable downstream reuse
thereof, using the as operation. The actual check, or postcondition, is the rule section
after the check step. This rule’s postcondition establishes whether there is a subtraction
operation that the node defined by math.exp, along with the constant 1, flow into directly
(that is, without the mediation of any other action).

Shifting Left for Early Detection of Machine-Learning Bugs

[1lx=6 [1]x=6

[2ly=x+4 [4ly=x+4

[3]if x > 5: [B]if x > 5:
z=Yy z=Yy

else: else:

z=x+1 z=X+1

[4] print(z) [5] print(z)

output: z =10 output: z = ?

Fig. 2. Different execution orders result in different outputs.

4 Analysis Rules

In this section, we describe six analysis rules that we implemented using GQL.

4.1 Issues Specific to Computational Notebooks

Computational notebooks break some assumptions we may make when analyzing
traditional code. We introduce two kinds of notebook-specific issues and the rules that

we designed for catching them.

Invalid Execution Order: A notebook consists of a sequence
of cells; most cells contain either Markdown documentation or
code. Users can run individual cells as they wish. Thus, there
is no guarantee that code cells in a notebook run in linear order,
or even that linear order is intended. Cells with shared variables
can produce different results when running in different order,
as shown in Figure[2] Cell boundaries are marked with dotted
lines. At the beginning of each cell, a number in square brackets
[] shows the execution-order counter. These counters, stored
in the metadata of a notebook file, indicate the execution order
of the cells. On the left side of Figure[2] the cells were executed
in linear order, causing the final value of z to be 10. On the
right side of Figure[2] the execution order of the second and
third cells are flipped. Furthermore, we do not know which
code cell executed second in the right-side notebook, since
no cell is marked “[2]”. Perhaps the second-executed cell has
already been deleted, or perhaps some other cell was executed

_ CELL _EDGE_ (1)
X=6
_ CELL_EDGE__(3)
if x > 5:

z=y
else:

z=Xx+1
_ CELL_EDGE__(4)
y=x+4
_ CELL_EDGE__(5)
print(z)

Fig. 3. Converted
Python code in
execution order.

second, then re-executed (and therefore renumbered) later. This uncertainty causes the
final value of z to be under-determined. When y is assigned to z in the third cell, we can

6 Liblit, Luo, Molina, Mukherjee, Patterson, Piskachev, Schif, Tripp, and Visser

not assume that the definition of y is still x + 4. The recorded output for the right-side
notebook would be hard or impossible to reproduce.

To address such threats to reproducibility, we designed a rule that detects cases
where a used variable is not defined based on execution order. We leverage the execution
counter metadata stored in notebook files to reconstruct cell code to be executed in the
stored order. Specifically, we implemented a converter that converts notebook files into
Python scripts that retain the execution metadata. For the example above, the converted
Python script is presented in Figure[3| The _ CELL_EDGE___ function is defined to do
nothing, but represents a notebook cell edge. Our rule analyzes the converted Python
scripts, which contain cell code in the execution order as Figure 3] shows. It starts from
each variable use and searches backwards to determine whether that variable has been
defined previously.

Variable Redefinition: Poor readability is another com-
mon issue in computational notebooks. During explo-
ration, notebooks can easily get messy and difficult
to read. One bad coding practice is to reuse the same
variable name across multiple cells for different tasks. It
is common for users to unknowingly overwrite data that
is used across multiple cells. To address issues raised
due to variables with unclear scopes, we designed a
rule to detect a variable being defined with different Fig. 4. Usage of variable with
types (variables whose type is unknown are excluded) unclear scope.

in different cells, accompanied by usage in another cell

that does not contain another definition. This rule analyzes our Python representation of
notebooks by looking for calls to _ CELL_EDGE__. From there it identifies the type of
each variable in the cell and stores this information. If a variable is used in a cell that does
not define the variable, but the variable is defined in at least two other cells with different
types, that usage is marked as unclear. Figure @ shows an example of this bad practice.
The variable x is defined with two different types: str and int. For its usage in the third
cell, it is not clear which type of data is expected to be passed to the call do_something.
That depends on the execution order, where X can be either type in the third cell.

[?] x = "Hello World"

[?] do_something(x)

4.2 Misuses of Deep Learning Libraries

As mentioned in Section [2] many issues are introduced by misusing the APIs of deep
learning libraries. We introduce four representative misuses in PyTorch.

Missing zero_grad Call: Training of deep neural networks is based on iterative parameter
updates [4] based on gradients that are computed via back-propagation [17]. These
gradients are accumulated based on batches or mini-batches of stochastic samples of the
training data-set [30]. In PyTorch, the gradients accumulate automatically in the back-
propagation step of loss.backward, and developers must reset the gradient accumulation
by calling zero_grad beforehand as shown in Figure 5] However, if the zero_grad step
is omitted, then PyTorch would accumulate gradients indefinitely instead of updating
them in batches. This default accumulating behavior is convenient as it simplifies the

Shifting Left for Early Detection of Machine-Learning Bugs 7

Case 1
model.load_state_dict(torch.load("model.pth"))
predicted = model.evaluate_on(test_data)

Case 2
for batch_num in enumerate(dataloader):
model.train()
forward, backwards and optimization steps
if batch_num % 50 == 0:
precision, recall, f1 = model.evaluate_on(data, batch_size)

Case 3

model.train()

for ... # training loop

precision, recall, f1 = model.evaluate_on(data, batch_size)

Fig. 6. Three cases where eval should be called.

implementation of different batching approaches, but it is also easily forgotten. The
impact of this type of error strongly depends on the task at hand, e.g., training a network
from scratch would fail silently as the network would not learn properly and the developer
would simply notice that the model is not improving, costing time and computational
resources. A more severe case occurs when the task is refinement, i.e., optimizing a
previously trained model on new data. In this case the first few iterations might achieve
small improvements, but the network would simply not learn correctly. However, as the
network was already trained, it could still perform well enough to potentially confuse
the developer into thinking that things are in order, leading to invalid scientific results.
Therefore, we designed a rule to detect missing zero_grad calls in training loops that
invoke backward. The rule warns the users about the default accumulating behavior.

Missing eval Call: During the optimiza-

tion step of deep neural networks, de- for train, test in loader:

velopers often evaluate the predictive loss = metric(model(train), test)
performance of the model on both train- optimizer.zero_grad()

ing and test data. However, some layers loss.backward()

in a neural network may behave differ- optimizer.step()

ently depending on whether the network

is trained or evaluated. A Dropout [31] Fig. 5. Call zero_grad before backward.

layer disables different neurons during

training to help the network learn better, but at evaluation time, the complete network
is used to make predictions. Similarly, BatchNorm [14]] changes internal parameters
while training, but keeps parameters fixed during evaluation. To control this behavior,
PyTorch mandates explicit train and eval calls to denote the start of the training and
evaluation (also known as validation or testing) phases of a model, respectively. Using
these calls incorrectly can lead to silent failures. Consider a version of the code where
the developer forgets to call eval. In this case, the Dropout layers will indirectly change

8 Liblit, Luo, Molina, Mukherjee, Patterson, Piskachev, Schif, Tripp, and Visser

X, y = torch.rand(4), torch.rand(4) X, y = torch.rand(4), torch.rand(4)
x.add_(y) z = x.add_(y)
do_something(x) do_something(z)

Fig. 7. Left: compliant case. Right: non-compliant case.

the architecture of the network by activating and disabling different neurons. This would
make all predictions unstable, i.e., for the same input data, the network would make
different predictions when evaluated at different points in time. The BatchNorm layer
would cause even more harm, as the parameters of the layer would adapt according
to test data, leaking information from the test set into the model. This could mislead
developers and scientists into thinking that the model behaves better than it actually
does. We designed a rule to check whether eval is called (1) before testing a trained
model loaded from disk, (2) before validating a model during the training phase, and
(3) before testing a model directly after the training phase. Figure 6] gives examples of
these common cases. Our rule searches both intra- and inter-procedurally, as calls to eval
might be present inside the user-defined evaluate_on.

Use of Nondeterministic Algorithm: Reproducibility is a cornerstone of research in
ML. Therefore, deterministic results are important to understand the impact of different
configurations during the training and evaluation of neural networks [19]]. Unfortunately,
training and inference can be computationally expensive [28] and determinism is often
abandoned in favor of approximate but faster results. The default configuration of
PyTorch focuses on performance instead of determinism and provides some operations
without deterministic implementations. Nevertheless, the official PyTorch documentation
recommends limiting sources of nondeterministic behavior, and offers tips and APIs
to control and warn about uses of non-reproducible code. To raise awareness among
practitioners, we implemented a rule to check whether the non-deterministic version of
an API is used instead of a deterministic alternative.

Unintended In-place Operation: The practical size of a neural network is limited by
the available memory that stores the parameters and intermediate computation steps.
To reduce memory consumption, PyTorch supports in-place operations over tensors,
letting developers decide when to write results to existing memory instead of requiring
extra space. However, as In-place operations change the content of a given torch.Tensor
directly, they can cause loss of data if the operation is not intended. Figure[7|shows an
example where in both variants, x.add_(y) will change the value of x in-place. In the
right-side case, the return value of x.add_(y) is also explicitly assigned to a new variable
z, making z a redundant alias for x. This is likely a mistake: x was probably not intended
to be modified. Our rule catches torch.Tensor in-place operations that are then assigned
to variables.

5 Experimental Evaluation

We evaluated our rules on several hundred code repositories containing a total of
almost 10,000 experimentation notebook files (.ipynb) using PyTorch. The repositories

Shifting Left for Early Detection of Machine-Learning Bugs 9

Table 1. Experimental Results

Count of Findings

Rule Reported Reviewed TPs FPs Mixed Precision
Invalid Execution Order 81.3% 20 11 8 1 58%
Variable Redefinition 14.2% 20 6 13 1 33%
Missing eval Call 3.0% 26 18 5 3 75%
Use of Nondeterministic Algorithm 0.9% 8 7 1 0 88%
Missing zero_grad Call 0.5% 4 1 3 0 25%
Unintended In-place Operation 0.1% 1 1 0 0 100%

were selected at random, without any bias, and cover a variety of ML application
domains, including for example object recognition in images and videos, natural language
processing, concept learning, healthcare, and speech recognition. We applied our notebook
converter to these notebook files and analyzed the converted Python scripts. Since not all
notebook files have metadata with the execution counter, our notebook converter supports
two representations. One representation encodes the execution order as previously shown
in Figure [3| while the other simply lists all cells in linear order, i.e., the argument passed
to each _ CELL_EDGE__ call is simply the order of cell appearance in the notebook
file. The linear representation is sufficient for all rules except Invalid Execution Order.

Table [I] shows the results of our experiment. We drew a random sample out of the
overall findings pool to assess their correctness. The sample was drawn globally, and is
thus uneven across the different rules yet roughly correlated with their frequency. The
sampled findings were reviewed together with ML scientists. We use three ratings: “true
positive” (TP) for findings judged to be real defects; “false positive” (FP) for findings
judged to be harmless or correct code; and “mixed” for findings judged to be partially
true. We compute precision as:

TPs + Mixed/2
TPs + FPs + Mixed

Invalid Execution Order produced over 80% of the overall findings, followed by
Variable Redefinition with 14.2%. For both of these rules, we reviewed 20 of their
findings. The Invalid Execution Order finding rated as “mixed” is due to a call of the
form foo(a, b, c), where all three arguments were stated to use undefined variables but in
practice only some were undefined.

Unintended In-place Operation and Use of Nondeterministic Algorithm produced
few findings, but achieved high precision of 100% and 88%, respectively. The only
false positive is due to incomplete type information inferred by our Python front-end,
Pyright [20]. This limitation also caused 2 of the 3 false positives for Missing zero_grad
Call, as our rule uses type information to filter out training code using Apache MXNet [2].
MXNet automatically zeroes out gradients for users by default, so missing zero_grad is
usually not a problem there. Another false positive for this rule is due to a third-party
library API that calls zero_grad, but that was not available for analysis.

Missing eval Call achieves 78% precision. This rule produced 3% of the findings
with 5 false positives out of 26 findings that were reviewed. We rated 3 as mixed due to

Precision =

10 Liblit, Luo, Molina, Mukherjee, Patterson, Piskachev, Schif, Tripp, and Visser

incomplete code, i.e., the eval call is missing but other functions are invoked, not visible
to the analysis, that may perform this call. The most common finding pattern due to this
rule is case 1 from our example in Figure[6} a trained model loaded from disk is directly
applied to data without toggling the evaluation mode.

For Invalid Execution Order, all false positives are due to defective extraction of
Python code from notebooks. Our prototype notebook converter sometimes fails to
identify shell commands in notebook files, resulting in invalid lines of code in the
converted Python script. Apart from this technical issue, the precision of this rule is
actually quite high. We only have one finding where multiple variables at the same line
are deemed undefined, one of which being a false positive. We tally this finding as mixed
in Table

Variable Redefinition suffers from a high rate of false
positives, mostly because of special types in Python. One

example is the Any type [25]]. Pyright infers the return type [1]x = "abc”

of some library methods as Any, which is compatible with " "

every other type. Our rule does not consider this case. Thus, (2] if flag:

if a variable is typed as Any in one notebook cell but has a x=1

concrete type in another cell, Variable Redefinition raises a else: et
X =

warning. Union [24]] is another special type. A variable with
type Union[X, Y] can hold values of types X or Y. Consider X in
the example code in Figure([8] For cell [1], Pyright infers that x
has type str. However, for cell [2] Pyright infers that x has type
Unionlint, str]. Our rule considers str and Union[int, str] to be Fig.8. Code leading
distinct types, thus raising a warning. However, in our review to Union type.

we rated such findings as false positives, as these mixtures of

types appeared to be intentional in context. Lastly, we note the special Unbound type that
Pyright infers for a variable that has never been initialized. We did not treat Unbound in
any special way, which in turn caused some false positives. Future refinement of Variable
Redefinition will add custom handling for these special types.

[3] print(x)

6 Related Work

In this section, we discuss the most relevant related work to our work.

Challenges in ML code. Many studies have discussed challenges in ML code [6, |13} 23}
26,133]]. A large-scale study [6] shows a rapid evolution of the use of ML libraries among
GitHub projects. In this study, PyTorch is one of the most used libraries, which motivated
us to focus on it here. Humbatova et al. [[13]] proposed a hierarchical taxonomy of faults
in deep neural networks (DNN). Their list of faults is one of our sources for developing
analysis rules. Our four rules for API misuses can be categorized into four of the five
categories they identified: Model, Tenors, Training and API. Pimentel et al. [23]] analyzed
1.4 million notebooks with reproducibility issues, e.g., most notebooks do not use any
testing infrastructure and many notebooks have non-executed code cells, out-of-order
cells, and skips in the execution count which is a challenge for reproducibility. The
authors could execute only 24% of the notebooks and only 4% of them could reproduce

Shifting Left for Early Detection of Machine-Learning Bugs 11

the expected results. Quaranta [26]] identified this same problem. |(Quaranta also explored
how notebooks are used among different users and found out that the notebooks are used
in unstructured ways. These identified issues motivated us to develop rules targeting
reproducibility of notebooks (e.g., Invalid Execution Order, Use of Nondeterministic
Algorithm) and best practices (e.g., Variable Redefinition).

Static analyses for ML code. Some static analyses specifically target ML code [8, |10, |16}
38 138]]. Many of these deal with tensor shape in TensorFlow programs [8), 16} 18] 37].
Dolby et al. [8] introduced Ariadne as part of the WALA framework [29] to support
static analysis of Python. As these analyses were targeting old versions of TensorFlow,
they do not exist in code using more recent TensorFlow releases. Our early study on
versions of ML libraries also shows these problematic TensorFlow versions are rarely
used nowadays, whereas the misuses our rules address are prevalent across a wide range
of PyTorch versions including the latest releases.

Another line of static analysis work focuses on providing best practices for ML
practitioners. Wan et al. [34] studied 360 GitHub projects that use AWS Al or Google
Cloud AT and identifier different types of API misuses generalized into eight anti-patterns.
The authors implemented four different static checkers that can detect the anti-patterns.
Quaranta et al. [27] proposed Pynblint, a static analyzer for Python notebooks. Pynblint
performs a simple linter-based analysis to identify recommendations to the developer
based on a list of 17 best practices based on code-quality or driving a more reproducible
code. NBLyzer [32] is another static analyzer based on abstract interpretation for intra-cell
analyses. NBLyzer supports two analyses, a code impact analysis and a data leakage
analysis. Advanced by our analysis framework and the novel Python representation of
notebooks with retaining cell information and execution order, our rules are not only
inter-procedural but also inter-cell analyses.

7 Conclusion

This paper introduces our initial efforts to shift static analysis to the left for ML code.
In support of this goal, we identified common defects that arise when developing ML
models with computational notebooks. We showcased six analysis rules that catch both
notebook-specific issues and misuses of deep-learning libraries. Finding real bugs with
these rules on close to 10,000 experimentation notebooks demonstrates the value for ML
practitioners in providing support for best practices, reproducibility, as well as assurance
of scientific correctness. This motivates us to develop more rules in this space in the
future.

(1]

(2]

(3]

(7]

(8]

[9]

(10]

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.:
TensorFlow: Large-scale machine learning on heterogeneous systems (2015), URL
https://www.tensorflow.org/, software available from tensorflow.org
Apache: Apache MXNet (2022), URLhttps://mxnet.apache.org/versions/
1.9.1/

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros,
C., Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: Using
static analysis to find bugs in the real world. Commun. ACM 53(2), 66-75 (Feb
2010), ISSN 0001-0782, https://doi.org/10.1145/1646353.1646374, URL
https://doi.org/10.1145/1646353.1646374

Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge university
press (2004)

Chollet, F., et al.: Keras (2015), URL https://keras.1io

Dilhara, M., Ketkar, A., Dig, D.: Understanding software-2.0: A study of machine
learning library usage and evolution. ACM Trans. Softw. Eng. Methodol. 30(4) (jul
2021), ISSN 1049-331X, https://doi.org/10.1145/3453478, URL https!
//doi.org/10.1145/3453478

Distefano, D., Fahndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analyses
at Facebook. Commun. ACM 62(8), 62—70 (Jul 2019), ISSN 0001-0782, https:
//doi.org/10.1145/3338112, URL https://doi.org/10.1145/3338112
Dolby, J., Shinnar, A., Allain, A., Reinen, J.: Ariadne: Analysis for machine
learning programs. In: Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, p. 1-10, MAPL
2018, Association for Computing Machinery, New York, NY, USA (2018),
ISBN 9781450358347, https://doi.org/10.1145/3211346.3211349, URL
https://doi.org/10.1145/3211346.3211349

Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design patterns: Abstraction
and reuse of object-oriented design. In: Nierstrasz, O. (ed.) ECOOP’93 - Object-
Oriented Programming, 7th European Conference, Kaiserslautern, Germany, July
26-30, 1993, Proceedings, Lecture Notes in Computer Science, vol. 707, pp. 406—
431, Springer (1993), https://doi.org/10.1007/3-540-47910-4_21, URL
https://doi.org/10.1007/3-540-47910-4_21

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vecheyv,
M.: AI2: Safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3-18
(2018), https://doi.org/10.1109/SP.2018.00058

https://www.tensorflow.org/
https://mxnet.apache.org/versions/1.9.1/
https://mxnet.apache.org/versions/1.9.1/
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://keras.io
https://doi.org/10.1145/3453478
https://doi.org/10.1145/3453478
https://doi.org/10.1145/3453478
https://doi.org/10.1145/3453478
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058

(1]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

Shifting Left for Early Detection of Machine-Learning Bugs 13

Grotov, K., Titov, S., Sotnikov, V., Golubev, Y., Bryksin, T.: A large-scale com-
parison of Python code in Jupyter notebooks and scripts. In: Proceedings of
the 19th International Conference on Mining Software Repositories, p. 353-364,
MSR ’22, Association for Computing Machinery, New York, NY, USA (2022),
ISBN 9781450393034, https://doi.org/10.1145/3524842.3528447, URL
https://doi.org/10.1145/3524842.3528447

Guest, G., Bunce, A., Johnson, L.: How many interviews are enough? an experiment
with data saturation and variability. Field methods 18(1), 59-82 (2006)
Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A., Tonella,
P.: Taxonomy of real faults in deep learning systems. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, p. 1110-1121,
ICSE 20, Association for Computing Machinery, New York, NY, USA (2020),
ISBN 9781450371216, https://doi.org/10.1145/3377811.3380395, URL
https://doi.org/10.1145/3377811.3380395

Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning,
pp. 448-456, PMLR (2015)

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic,
1., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla,
S., Willing, C., development team, J.: Jupyter notebooks — a publishing format
for reproducible computational workflows. In: Loizides, F., Scmidt, B. (eds.)
Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp.
87-90, I0S Press (2016), URL https://eprints.soton.ac.uk/403913/
Lagouvardos, S., Dolby, J., Grech, N., Antoniadis, A., Smaragdakis, Y.: Static
Analysis of Shape in TensorFlow Programs. In: Hirschfeld, R., Pape, T. (eds.)
34th European Conference on Object-Oriented Programming (ECOOP 2020),
Leibniz International Proceedings in Informatics (LIPIcs), vol. 166, pp. 15:1—
15:29, Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany
(2020), ISBN 978-3-95977-154-2, ISSN 1868-8969, https://doi.org/10.
4230/LIPIcs.ECOOP.2020.15, URL https://drops.dagstuhl.de/opus/
volltexte/2020/13172

LeCun, Y., Touresky, D., Hinton, G., Sejnowski, T.: A theoretical framework for
back-propagation. In: Proceedings of the 1988 connectionist models summer school,
vol. 1, pp. 21-28 (1988)

Liu, C, Lu, J,, Li, G, Yuan, T, Li, L., Tan, F,, Yang, J., You, L., Xue, J.: Detecting
TensorFlow program bugs in real-world industrial environment. In: 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 55-66 (2021), https://doi.org/10.1109/ASE51524.2021.9678891
Madhyastha, P., Jain, R.: On model stability as a function of random seed. arXiv
preprint arXiv:1909.10447 (2019)

Microsoft: Pyright: Static type checker for Python (2022), URL https://github.
com/microsoft/pyright

Mukherjee, R., Tripp, O., Liblit, B., Wilson, M.: Static analysis for AWS best
practices in Python code. In: Ali, K., Vitek, J. (eds.) 36th European Conference on
Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany,
LIPIcs, vol. 222, pp. 14:1-14:28, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik

https://doi.org/10.1145/3524842.3528447
https://doi.org/10.1145/3524842.3528447
https://doi.org/10.1145/3524842.3528447
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/3377811.3380395
https://eprints.soton.ac.uk/403913/
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://drops.dagstuhl.de/opus/volltexte/2020/13172
https://drops.dagstuhl.de/opus/volltexte/2020/13172
https://doi.org/10.1109/ASE51524.2021.9678891
https://doi.org/10.1109/ASE51524.2021.9678891
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright

14 Liblit, Luo, Molina, Mukherjee, Patterson, Piskachev, Schif, Tripp, and Visser

(2022), https://doi.org/10.4230/LIPIcs.ECOOP.2022.14, URL https:
//doi.org/10.4230/LIPIcs.ECOOP.2022.14

[22] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T,
Lin, Z., Gimelshein, N., Antiga, L., et al.: PyTorch: An imperative style, high-
performance deep learning library. Advances in neural information processing
systems 32 (2019)

[23] Pimentel, J.a.F., Murta, L., Braganholo, V., Freire, J.: A large-scale study about
quality and reproducibility of Jupyter notebooks. In: Proceedings of the 16th
International Conference on Mining Software Repositories, p. 507-517, MSR
’19, IEEE Press (2019), https://doi.org/10.1109/MSR.2019.00077, URL
https://doi.org/10.1109/MSR.2019.00077

[24] Python Software Foundation: The Python standard library: typing — support for
type hints: typing.Union (2022), URL https://docs.python.org/3/library/
typing.html#typing.Union

[25] Python Software Foundation: The Python standard library: typing — support for
type hints: The Any type (2022), URL https://docs.python.org/3/library/
typing.html#the-any-type

[26] Quaranta, L.: Assessing the quality of computational notebooks for a frictionless tran-
sition from exploration to production. In: Proceedings of the ACM/IEEE 44th Inter-
national Conference on Software Engineering: Companion Proceedings, p. 256-260,
ICSE °22, Association for Computing Machinery, New York, NY, USA (2022),
ISBN 9781450392235, https://doi.org/10.1145/3510454.3517055, URL
https://doi.org/10.1145/3510454.3517055

[27] Quaranta, L., Calefato, F., Lanubile, F.: Pynblint: a static analyzer for Python
Jupyter notebooks. In: 2022 IEEE/ACM 1st International Conference on Al
Engineering — Software Engineering for AI (CAIN), pp. 48-49 (2022), https:
//doi.org/10.1145/3522664.3528612

[28] Rasley, J., Rajbhandari, S., Ruwase, O., He, Y.: Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters. In: Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 3505-3506 (2020)

[29] Research, I.: WALA: The T. J. Watson libraries for analysis (2022), URL https:
//github.com/wala/WALA

[30] Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

[31] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.: Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research 15(1), 1929-1958 (2014)

[32] Suboti¢, P., Miliki¢, L., Stoji¢, M.: A static analysis framework for data sci-
ence notebooks. In: Proceedings of the 44th International Conference on Soft-
ware Engineering: Software Engineering in Practice, p. 13-22, ICSE-SEIP
’22, Association for Computing Machinery, New York, NY, USA (2022),
ISBN 9781450392266, https://doi.org/10.1145/3510457.3513032, URL
https://doi.org/10.1145/3510457.3513032

https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#the-any-type
https://docs.python.org/3/library/typing.html#the-any-type
https://doi.org/10.1145/3510454.3517055
https://doi.org/10.1145/3510454.3517055
https://doi.org/10.1145/3510454.3517055
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
https://github.com/wala/WALA
https://github.com/wala/WALA
https://doi.org/10.1145/3510457.3513032
https://doi.org/10.1145/3510457.3513032
https://doi.org/10.1145/3510457.3513032

(33]

[34]

(35]

(36]

(37]

(38]

Shifting Left for Early Detection of Machine-Learning Bugs 15

Urban, C.: Static analysis of data science software. In: Chang, B.Y.E. (ed.) Static
Analysis, pp. 17-23, Springer International Publishing, Cham (2019), ISBN 978-3-
030-32304-2

Wan, C., Liu, S., Hoffmann, H., Maire, M., Lu, S.: Are machine learning cloud
APIs used correctly? In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pp. 125-137 (2021),https://doi.org/10.1109/
ICSE43902.2021.00024

Wan, Z., Xia, X., Lo, D., Murphy, G.C.: How does machine learning change
software development practices? IEEE Transactions on Software Engineering 47(9),
1857-1871 (2021), https://doi.org/10.1109/TSE.2019.2937083

Wang, J., Kuo, T.y., Li, L., Zeller, A.: Restoring reproducibility of Jupyter notebooks.
In: 2020 IEEE/ACM 42nd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 288-289 (2020)

Wu, D., Shen, B., Chen, Y., Jiang, H., Qiao, L.: Tensfa: Detecting and repairing
tensor shape faults in deep learning systems. In: 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE), pp. 11-21 (2021),
https://doi.org/10.1109/ISSRE52982.2021.00014

Zhang, Y., Ren, L., Chen, L., Xiong, Y., Cheung, S.C., Xie, T.: Detecting numerical
bugs in neural network architectures. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, p. 826-837, ESEC/FSE 2020, Association for
Computing Machinery, New York, NY, USA (2020), ISBN 9781450370431, https:
//doi.org/10.1145/3368089.3409720, URL https://doi.org/10.1145/
3368089.3409720

https://doi.org/10.1109/ICSE43902.2021.00024
https://doi.org/10.1109/ICSE43902.2021.00024
https://doi.org/10.1109/ICSE43902.2021.00024
https://doi.org/10.1109/ICSE43902.2021.00024
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/ISSRE52982.2021.00014
https://doi.org/10.1109/ISSRE52982.2021.00014
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3368089.3409720

	Shifting Left for Early Detection of Machine-Learning Bugs

