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Abstract. Program coverage customization selectively adds instrumentation to a compiled 
computer program so that a limited amount of directly observed data can be used to infer 
other program coverage information after a run. A good instrumentation plan can reduce 
run-time overheads while still giving software developers the information they need. Unfor-
tunately, optimal coverage planning is NP-hard, limiting either the quality of heuristic plans 
or the sizes of programs that can be instrumented optimally. We exploit the monotonicity 
property of feasible instrumentations to formulate this problem as an intraprocedural set 
covering problem. Our formulation has an exponential number of constraints, and we design 
a polynomial-time separation algorithm to incrementally add the necessary subset of these 
inequalities. Our approach reduces expected run-time probing costs compared with existing 
methods, offers a guarantee of the optimality of the instrumentation, and has compilation- 
time overhead suitable for wide practical use.
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1. Introduction
For a run of a computer program, program coverage data indicate which parts of the program were executed on that par-
ticular run. Program coverage data are vital for many areas of software development. Classically, developers use pro-
gram coverage data during program testing, but it has recently also found use in other areas, such as postmortem 
program analysis (Nishimatsu et al. 1999, Ohmann and Liblit 2017, Ohmann et al. 2017) and fault localization (Sante-
lices et al. 2009, Liblit 2014). Developers and tools gather coverage data for different program points. For example, state-
ment coverage measures which statements ran, whereas function coverage provides the set of functions that executed. 
Obtaining coverage data for a program requires placing and monitoring probes at locations within the code. These 
activities incur run-time overhead, so authors have studied efficient mechanisms for placing probes within the code.

In some contexts, developers are interested in counts of executed statements. Prior work has optimized probe 
placement in this scenario, including classic work by Knuth and Stevenson (Knuth and Stevenson 1973, Knuth 
1968). Ball and Larus (1994) generalized various problems of optimal counting probe placement for statements 
and/or edges, and more recent work applies similar ideas to other contexts like call tracing (Reiss and Renieris 
2001, Dallmeier et al. 2005, Wu et al. 2016).

Coverage data are binarized if the data are reported as “covered” or “uncovered” for each point rather than a 
count of executions for that point. Binarized probes are significantly less expensive in terms of runtime overhead. 
In the case of binarized coverage, Agrawal (1994, 1999) uses “superblocks” formed from sets of related basic blocks 
via dominance relations to optimize binarized coverage probe placements. Others (Tikir and Hollingsworth 2002, 
Misurda et al. 2005, Chilakamarri and Elbaum 2006, Misurda et al. 2011, Kasikci et al. 2014, Pankumhang and 

21 

INFORMS JOURNAL ON COMPUTING 
Vol. 36, No. 1, January–February 2024, pp. 21–38 

ISSN 1091-9856 (print), ISSN 1526-5528 (online) https://pubsonline.informs.org/journal/ijoc 

mailto:michini@wisc.edu
https://orcid.org/0000-0002-4717-816X
mailto:pohmann001@csbsju.edu
https://orcid.org/0000-0002-7670-7374
mailto:liblit@acm.org
https://orcid.org/0000-0002-2245-2839
mailto:linderoth@wisc.edu
https://orcid.org/0000-0003-4442-3059
https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0349
https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0349
https://github.com/INFORMSJoC/2021.0349
https://github.com/INFORMSJoC/2021.0349
https://informsjoc.github.io/
https://informsjoc.github.io/


Rutherford 2015) make gathering program coverage more efficient by dynamically removing a probe after it is 
already observed “covered” in an execution.

Ohmann et al. (2016b) first introduced the customized coverage probing problem, which calls for an optimal placement 
of probes (i.e., observation points) in a program’s code to gather binarized statement or branch coverage for a given 
set of important program points. For customized coverage probing, the focus is on instrumentation for deployed 
applications, where performance is important, and the software is partially tested. In this scenario, full coverage data 
are often unnecessary or too expensive to gather. In practice, developers may want coverage data only for untested 
code (Pavlopoulou and Young 1999, Orso et al. 2002) or for specific program points such as call sites (Nishimatsu et al. 
1999, Ohmann and Liblit 2013). This problem statement, originally given by Ohmann et al. (2016b), allows the user to 
specify both this desired set of program points and instrumentable points that can be probed. Noninstrumentable points 
may include, for example, performance- or security-sensitive code regions. An optimal solution to the customized cov-
erage probing problem minimizes the run-time cost of probes while guaranteeing run-time coverage data for the 
desired set of program points without placing probes in the noninstrumentable regions.

After proving that the customized coverage probing problem is NP-hard, Ohmann et al. (2016b) proposed multi-
ple solutions that vary in their efficiency and optimality guarantee. However, these prior approaches were unsatis-
factory in that they were either heuristic with no guarantees of optimality, or optimal in theory but prohibitively 
inefficient in practice. In this paper, we present a new integer programming approach for computing optimal intra-
procedural solutions to the customized coverage probing problem. The key ingredients of the approach are a new 
set-covering based model combined with branch-and-cut (Mitchell 2002). Compared with existing exact algo-
rithms, our approach finds optimal probe placements orders of magnitude faster. Even compared with previous 
heuristic methods that do not provide an optimality guarantee, our exact algorithm typically finds probe place-
ments roughly five times faster. With the new ability to determine optimal instrumentation for many programs, 
we are for the first time able to mathematically demonstrate that previously obtained heuristic optimization plans 
were of high quality, while in some cases improving on previously best-known coverage plans.

Our primary contributions in this work are the following: 
• We formulate the customized coverage probing problem as a set covering problem.
• The integer programming formulation may have an exponential number of constraints, but we develop an 

efficient separation algorithm that, given a candidate solution, either affirms that the solution satisfies all the origi-
nal constraints or finds a counterexample. The counterexample is a constraint of the optimization problem that is 
violated by the candidate solution, which is then added to the model, and the process repeats.
• We formally prove the correctness of the separation algorithm. The proof is based on a characterization of fea-

sible instrumentation plans in terms of forbidden graph structures.
• We show that our separation algorithm’s complexity is polynomial in the size of the input program.
• We evaluate our new approach against the prior approaches of Ohmann et al. (2016b). In addition to a guaran-

tee of finding the optimal solution, we find that the optimal solution does indeed reduce expected run-time probing 
costs in many cases. Furthermore, the compilation-time overhead of our technique makes it suitable for wider prac-
tical use than existing methods.

This paper is organized as follows. Section 2 defines the customized coverage probing problem from Ohmann 
et al. (2016b), provides several examples that emphasize the combinatorial nature of the problem, and briefly 
recounts prior state-of-the-art approaches implemented by Ohmann et al. (2016b). Section 3 describes our new 
approach that relies on an integer programming formulation of the problem. We evaluate our techniques in Sec-
tion 4, especially with respect to the prior results of Ohmann et al. (2016b), and Section 5 concludes.

2. Problem and Background
Notation used for this section and the remainder of the paper is summarized in Table 1 for convenience.

The goal of the customized coverage probing problem is to find an optimal instrumentation plan to gather cus-
tomized statement coverage of a computer program. A set of desired program points is specified, for which cover-
age data must be available on any run of the computer program. We are also given a set of locations where we are 
allowed to insert probes, each having a certain instrumentation cost. An optimal solution is a minimum cost set of 
probes, placed at a subset of potential locations, such that coverage data for all desired program points can be 
determined based only on the coverage data at the probe set of locations.

2.1. Input
A control flow graph (CFG) is a graph representation of all paths that may be traversed through a computer program 
during its execution. The nodes of a CFG are basic blocks, pieces of computer code that do not contain jumps or 
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jump targets. Edges of the CFG are used to represent the jumps possible in the control flow logic of the program. 
The CFG is a key ingredient of many compiler optimization and statis program analysis tools.

An instance of the customized coverage probing problem is defined with the following input: 
• The CFG of a single function, which is a directed graph G � (V, E). We assume that G has no parallel arcs.
• An entry node, s ∈ V, with in-degree 0.
• A set T ⊆ V of exit or termination nodes of the CFG. The set T may include program locations for premature ter-

mination, such as via an assertion failure or program exception.
• A subset I ⊆ V of nodes that can be probed, (instrumented).
• For each u ∈ I, cu > 0 is the cost of instrumenting u.
• The subset D ⊆ V of desired nodes.
A path is a sequence of nodes 〈u0, u1, : : : , uk〉 such that ei � (ui�1, ui) ∈ E ∀i ∈ {1, 2, : : : , k}. A path may be composed 

of a single node. A path starting at u ∈ V and ending at v ∈ V is called a uv-path. A cycle is a closed path, that is, a 
path 〈u0, u1, : : : , uk〉 such that u0 � uk. A path is simple if it does not contain repeated nodes, so a simple path contains 
no cycles. In general, we do not assume paths to be simple. For a path, p, V(p) denotes the set of nodes traversed 
along p.

Definition 1. Let t ∈ T. Two st-paths p1 and p2 are D-equivalent if they traverse the same set of desired nodes; that 
is, V(p1) ∩D � V(p2) ∩D.

Two D-equivalent st-paths can traverse the nodes in D in different orders or a different number of times.

2.2. Problem Definition
In our setting, two executions of a program are represented as two st paths in the associated CFG, where t ∈ T. We 
want to instrument a subset C of nodes in I such that, whenever two paths traverse the same nodes in C, they also 
traverse the same nodes in D.

Definition 2. A coverage set of D is a set of nodes C ⊆ I such that, for all t ∈ T and for all pairs of st paths p1 and p2, 
we have that if V(p1) ∩ C � V(p2) ∩ C, then V(p1) ∩D � V(p2) ∩D, that is, p1 and p2 are D-equivalent.

Thus, if S ⊆ I is not a coverage set, then there exists t ∈ T and two st paths, p1 and p2, such that 
V(p1) ∩ S � V(p2) ∩ S, but p1 and p2 are not D-equivalent.

The customized coverage probing problem asks to determine a coverage set of minimum cost. That is, an optimal 
solution C is a subset of I that is a coverage set of D and where 

P
u∈Ccu is minimized.

2.3. Examples
We introduce three (running) examples to elucidate the concept of a coverage set. Consider the CFGs in Figure 1. 
Suppose that, in each graph, the only desired node is 4 (i.e., D � {4}) and that all nodes can be instrumented (i.e., 
I � V). In each graph, the path p1 traverses 4, whereas the path p2 does not. Thus, in each case, p1 and p2 are not 
D-equivalent. The paths p1 and p2 need not be simple.

Table 1. Notation Reference

Notation Meaning

G � (V, E) Directed graph with node set V and arc set E
s Entry node
T Set of exit nodes
D Set of desired nodes
I Set of instrumentable nodes
cu Cost of instrumenting u ∈ I
(u, v) Arc directed from node u to node v
〈u0, u1, : : : , uk〉 A path traversing nodes u0, u1, : : : , uk
V(p) Set of nodes (without repetitions) traversed along path p
A∆B � (A \B) ∪ (B \A) Symmetric difference between sets A and B
q1 ◦ q2 The uw-path obtained by composing the uv-path q1 and the vw-path q2

Puv
d Set of all uv-paths that do not traverse d

Vuv
d Set of all the nodes that belong to some path in Puv

d

VβTd �
S

t∈TVβtd Set of all the nodes that belong to some path in Pβtd for all t ∈ T
G \ d Subgraph of G obtained by deleting node d from G,

Together with all the arcs incident to it
V+d (u) Set of all the nodes that can be reached from u in G \ d
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Example 1. In the CFG in Figure 1(a), define the paths p1 and p2 as

p1 � 〈s, 1, 2, 3, 4, 5, 6, 7, t〉
p2 � 〈s, 1, 2, 8, 6, 7, t〉, 

and the set
S � {s, 1, 2, 6, 7, t}:

It is easy to check that S is not a coverage set. In fact, p1 and p2 traverse the same nodes of S, but they are not D- 
equivalent. No subset of S is a coverage set.

Conversely, {3}, {4}, {5} and {8} are coverage sets because any two paths that differ on whether they traverse 
{4} must also differ on whether they traverse {3}, {4}, {5}, and {8}. Moreover, any superset of {3}, {4}, {5}, or {8}
is a coverage set.

Example 2. Consider the CFG in Figure 1(b), and note that it differs from the one in Figure 1(a) only by the pres-
ence of node 9 and the arcs {(7, 9), (9, 1)}. Define the nonsimple paths p1 and p2 as

p1 � 〈s, 1, 2, 3, 4, 5, 6, 7, 9, 1, 2, 8, 6, 7, t〉
p2 � 〈s, 1, 2, 8, 6, 7, 9, 1, 2, 8, 6, 7, t〉:

In this case, {8} is not a coverage set because both p1 and p2 traverse {8}. In fact, it can be checked that no subset of
S � {s, 1, 2, 6, 7, 8, 9, t}

is a coverage set.
Conversely, {3}, {4}, and {5} are coverage sets because any two paths that differ on whether they traverse {4}

must also differ on whether they traverse {3}, {4} and {5}. Moreover, any superset of {3}, {4}, or {5} is also a cov-
erage set.

Example 3. Consider the CFG in Figure 1(c), and note that it differs from the one in Figure 1(a) only by the pres-
ence of nodes {9, 10, 11} and the arcs {(7, 11), (11, 8), (3, 10), (10, 1)}. Define the paths p1 and p2 as

p1 � 〈s, 1, 2, 3, 10, 1, 2, 4, 5, 6, 7, 11, 8, 6, 7, t〉
p2 � 〈s, 1, 2, 3, 10, 1, 2, 9, 8, 6, 7, 11, 8, 6, 7, t〉:

Figure 1. (Color online) CFGs for Examples 1, 2, and 3

(a) (b)

(c)

Note. Unless otherwise stated, we assume D � {4} and I � V.
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In this case, {3} and {8} are not coverage sets because both p1 and p2 traverse {3, 8}. In fact, no subset of

S � {s, 1, 2, 3, 6, 7, 8, 10, 11, t}

is a coverage set.
Conversely, {4}, {5}, and {9} are coverage sets because any two paths that differ on whether they traverse {4}

must also differ on whether they traverse {4}, {5}, and {9}, and any superset of {4}, {5}, or {9} is a coverage set.

2.4. Previous Solution Approaches
Ohmann et al. (2016b) establish that the customized coverage probing problem is NP-hard and offer three 
approaches for its solution. The first approach is a generalization of the approaches described by Agrawal (1999) 
and Tikir and Hollingsworth (2005) for placing probes to ensure complete program coverage. The approach aggre-
gates program basic blocks into “superblocks” and uses dominator relationships between these superblocks to 
incrementally place probes so that at completion all nodes in the desired set D are covered. This “bottom-up” 
approach offers no guarantee about the optimality of the coverage set created, and Ohmann et al. (2016b) show in 
practice that the coverage sets found by this method may have significantly higher instrumentation costs than cov-
erage sets found by other algorithms. We do not consider or compare against the “bottom-up” approach in this 
work.

A second “top-down” approach is somewhat more sophisticated, and, empirically, it finds coverage sets of 
higher quality. Although unstated, the approach relies crucially on the following monotonicity property of cover-
age sets, which is evident in the examples in Section 2.3.

Property 1 (Monotonicity). If C is a coverage set and C ⊆ C′ ⊆ I, then C′ is also a coverage set.

Thus, we have the notion of a minimal coverage set.

Definition 3. A coverage set C′ is minimal if there is no smaller coverage set C with C ⊂ C′. Equivalently, for each 
v ∈ C′, C′ \ {v} is not a coverage set.

Example 2 (Continued). For the CFG in Figure 1(b), and inputs T � {t}, I � V and D � {4}, the minimal coverage 
sets are {3}, {4}, and {5}. Any strict superset of these sets is a coverage set but not a minimal coverage set.

The second approach in Ohmann et al. (2016b) uses the monotonicity property to find a minimal coverage set. 
The top-down approach begins with the coverage set S � I, a coverage set by assumption, and iteratively 
attempts to remove each node, s ∈ S. If S \ {s} is still a coverage set of D, a smaller coverage set has been found, 
and the process is repeated. If S \ {s} is not a coverage set of D, the method attempts to remove a different node 
from S. Once the method attempts and fails to remove each node from the current coverage set S, then by Defini-
tion 3, S is a minimal coverage set of D.

At each major iteration of this method, the process must check whether S \ {s} is a coverage set of D for each 
s ∈ S. To check if a particular set is, in fact, a coverage set of D, Ohmann et al. (2016b) propose an approach based 
on a characterization of coverage sets in terms of ambiguous triangles. The high-level idea is pictured in Figure 2.

In brief, the goal is to find a pair of st paths in G, with t ∈ T, that traverse exactly the same instrumented nodes 
but such that only one of the paths traverses a desired node d ∈D, whereas the other does not. If there exists an 
ambiguous triangle with respect to the current set of instrumented nodes, then the current instrumentation is not 
a coverage set. It is possible to find an ambiguous triangle, or conclude that no such triangle exists, in polynomial 
time in the size of the graph G. We discuss our own use of ambiguous triangles in Section 3.2.

The notion of a minimal coverage set in Definition 3 is with respect to set inclusion. Conversely, the customized 
coverage probing problem asks to determine a coverage set of minimum cost. Although a minimum-cost coverage 
set must be minimal, the converse is not necessarily true. For example, in the CFG from Figure 1(c), the coverage 
set {4} is minimal. However, if node costs are based on the expected execution frequency of each basic block, the 
coverage set {9} may have lower cost, depending on the weighting of the branch at node 2. Thus, although the 

Figure 2. (Color online) Ambiguous Triangle 
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second approach will find a coverage set that is locally optimal, it cannot guarantee finding a globally optimal cover-
age set of minimum cost.

The final approach proposed by Ohmann et al. (2016b) is a mixed integer linear programming (MILP) formula-
tion that can guarantee finding a coverage set of minimum cost. As an exact method that relies on integer linear 
programming, their approach is related to ours. However, the formulation by Ohmann et al. (2016b) uses a 
network-flow-based characterization of the paths in the definition of an ambiguous triangle and effectively con-
siders all acyclic paths through G. Instead, as described in Section 3, our formulation crucially relies on the mono-
tonicity property stated previously. We exploit this property to model the customized coverage probing problem 
as a set covering problem, a well-studied optimization problem with a rich combinatorial structure. We leave out 
a complete description of this network flow-based integer programming formulation here, and interested readers 
may consult the technical report Ohmann et al. (2016a) to see the mathematical details. In Section 4, we compare 
these two exact methods for customized coverage instrumentation.

3. Approach
In this section, we present a new integer programming approach to calculate an exact solution to the customized 
coverage probing problem. Given two sets A and B, we denote by A ∆ B their symmetric difference that is defined as 
A ∆ B � (A \B) ∪ (B \A).

3.1. Set-Covering Formulation
First, we provide an alternative definition of a coverage set that will be useful to derive the constraints of our 
formulation.

Proposition 1. The set C ⊆ I is a coverage set of D if and only if for all t ∈ T and for any two st paths p1 and p2, we have 
that if (V(p1)∆V(p2)) ∩D ≠ ∅, then (V(p1)∆V(p2)) ∩ C ≠ ∅.

Proof. Follows directly from the contrapositive of Definition 2: C ⊆ I is a coverage set if and only if for all t ∈ T 
and for any two st paths p1 and p2, we have that if V(p1) ∩D ≠ V(p2) ∩D, then V(p1) ∩ C ≠ V(p2) ∩ C. The defini-
tion of symmetric difference implies that for three sets A, B, and C, we have that A ∩ C � B ∩ C if and only if 
(A∆B) ∩ C � ∅; thus, the statement follows. w

Proposition 1 implies that if two st paths are not D-equivalent, then in the symmetric difference of the paths’ ver-
tex sets, we must probe at least one vertex. We can use this insight to formulate the customized coverage probing 
problem as the following binary integer linear program, denoted by (SC).

min
X

u∈I
cuxu (SC.1) 

s:t:
X

u∈(V(p1)∆V(p2))

xu ≥ 1 t ∈ T, (p1, p2) not D-equivalent st-paths, (SC.2) 

xu ∈ {0, 1} u ∈ I: (SC.3) 

We have one binary decision variable for each node in u ∈ I, and the binary vectors that satisfy all the constraints 
(SC.2) correspond precisely to the characteristic vectors of the coverage sets of D. Moreover, the value of the objec-
tive function (SC.1) in a feasible solution represents the instrumentation cost of the corresponding coverage set, 
which we wish to minimize. Note that (SC) is infeasible if and only if I is not a coverage set.

Finally, we remark that the number of constraints (SC.2) can be exponential in |V | and |E | . Because it is compu-
tationally prohibitive to include all such constraints in (SC), we will describe in Section 3.2 a separation algorithm for 
this set of constraints, and the constraints will be added in an iterative manner (Mitchell 2002).

The separation algorithm receives in input a vector x ∈ [0, 1]I, and it either states that x satisfies all the constraints 
(SC.2), or it returns a constraint of type (SC.2) that is violated by x. In particular, if x is binary and is the characteris-
tic vector of S ⊆ I, then the separation algorithm either states that S is a coverage set, or it returns a constraint of 
type (SC.2) that is violated by S. Our algorithms initially generates a (limited) pool of constraints of type (SC.2), 
and it solves a relaxation of (SC) including only this subset of constraints. Then, the algorithm iteratively adds 
more constraint of type (SC.2) to the relaxation by calling the separation algorithm, until all constraints (SC.2) are 
satisfied by the optimal solution of the relaxation. Computationally, the potential advantage of this approach lies 
in the fact that, at each iteration, the relaxation of (SC) has only few constraints, and thus it can be solved faster. 
Moreover, we will show that the separation algorithm runs in polynomial time and that it can be implemented by 
a sequence of shortest path computations.
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The optimization problem (SC) falls in the class of set covering problems, that is, problems of the form

min{c′x : Ax ≥ 1, x ∈ {0, 1}n}, 

where A is a m × n matrix having entries equal either to zero or one. Some of the constraints (SC.2) might be redun-
dant to define our set covering formulation. In particular, we say that a constraint of the form (SC.2) associated to 
paths (p1, p2) is dominated by another constraint of the form (SC.2) associated to paths (p1, p2) if V(p1)∆V(p2) ⊇

V(p1)∆V(p2).

Example 2 (Continued). Consider the CFG in Figure 1(b) and recall that we are assuming D � {4}. We have 
V(p1)∆V(p2) � {3, 4, 5}, and all coverage sets must contain some node in V(p1)∆V(p2). Thus, we impose the con-
straint

x3 + x4 + x5 ≥ 1, 
that is a constraint of the form (SC.2).

If we set D � {4, 8}, the path

p2 � 〈s, 1, 2, 3, 4, 5, 6, 7, 9, 1, 2, 3, 4, 5, 6, 7, t〉

is such that p1 and p2 are not D-equivalent. We have V(p1)∆V(p2) � {8}; thus, all coverage sets must contain node 8. 
Thus, we also need to impose the constraint x8 ≥ 1:

In this case, it can be checked that (SC) is

min
X

u∈V
cuxu

s:t: x3 + x4 + x5 ≥ 1
x8 ≥ 1
xu ∈ {0, 1} u ∈ V:

Any other constraint of the form (SC.2) is dominated by the two set covering constraints that appear previously.

3.2. Separation
Our goal is to design an algorithm that, given a vector x ∈ [0, 1]I, either establishes that x satisfies all of constraints 
(SC.2) or returns an inequality of the form (SC.2) that is violated by x.

To proceed, we need to introduce some additional notation. If q1 is a uv path and q2 is a vw path, we denote by 
q1 ◦ q2 the uw path obtained by appending q2 to q1, and we say that we compose the paths q1 and q2. For u, v, d ∈ V, 
we denote by Puv

d the set of all uv paths that do not traverse d. Moreover, we denote by Vuv
d the set of all the nodes 

that belong to some path in Puv
d , that is, Vuv

d �
S

p∈Puv
d

V(p). Finally, by considering all possible exit nodes, we define 
VβTd �

S
t∈TVβtd .

Definition 4. Let x ∈ [0, 1]I; let π1 and π2 be two αβ-paths for some α,β ∈ V; and let d ∈D. We say that (π1,π2) is 
an ambiguous (α,β, d) triangle with respect to x if 

1. The set Psα
d ≠ ∅;

2. The set Pβtd ≠ ∅ for some t ∈ T;
3. The path π1 is obtained as π1

αd ◦π
1
dβ, where π1

αd and π1
dβ�are an αd path and a dβ�path, respectively;

4. The path π2 is a path in Pαβd ; and
5. 
P

u∈(V(π1)∆V(π2))\Yxu < 1, where Y � Vsα
d ∪ VβTd .

An (α,β, d) ambiguous triangle (π1,π2) is a simple ambiguous triangle if π1
αd, π1

dβ�and π2 are simple paths.
Condition 1 requires that α�can be reached from the entry without traversing d, and Condition 2 requires that 

an exit can be reached from β�without traversing d. Condition 3 asks that π1 is a path from α�to β�that does trav-
erse d, and Condition 4 asks that π2 is a path from α�to β�that does not traverses d. Finally, Condition 5 looks at the 
symmetric difference V(π1)∆V(π2), from which we exclude the nodes that are in some path from the entry to α�
not traversing d and those that are in some path from β�to an exit not traversing d. The condition imposes that 
the total weight of x on such set of nodes does not exceed one. When x is the characteristic vector of S ⊆ V, Con-
dition 5 says that π1 and π2 can differ on a node in S only if this node belongs to a path from the entry to α�that 
does not traverse d or to a path from β�to an exit that does not traverse d. A pictorial representation of a (α,β, d)
ambiguous triangle (π1,π2) is given in Figure 2.

Example 2 (Continued). Consider the CFG in Figure 1(b), and suppose that D � {4, 8} and I�V. Let S �
{s, 1, 2, 6, 7, 8, 9, t} and let x ∈ {0, 1}I be the characteristic vector of S. A (2, 6, 4) ambiguous triangle with respect to 
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x is given by π1 � 〈2, 3, 4, 5, 6〉, and π2 � 〈2, 8, 6〉. To check this, we verify that all the conditions of Definition 4 are 
satisfied. It can be easily checked that there exists a path from s to 2 that does not traverse 4. Similarly, there 
exists a path from 6 to t that does not traverse 4. This shows that the first two conditions are satisfied. For the 
third condition, we set π1

24 � 〈2, 3, 4〉 and π1
46 � 〈4, 5, 6〉. Condition 4 is also satisfied because π2 � 〈2, 8, 6〉 does not 

traverse 4. To verify Condition 5, we note that V(π1)∆V(π2) � {3, 4, 5, 8} and S ∩ V(π1)∆V(π2) � {8}. Because 
there exists some path from s to 2 that traverses 8 and not 4, we have that 8 ∈ Vs2

4 � {s, 1, 2, 6, 7, 8, 9}. Thus, Condi-
tion 5 holds.

Paths π1 and π2 are also a (2, 6, 8) ambiguous triangle with the respect to x′, the characteristic vector of S′ �
{s, 1, 2, 3, 4, 5, 6, 7, 9, t}. Conditions 1–4 are easily checked. To check Condition 5, we note that S ∩ V(π1)∆V(π2) � {4}
and 4 ∈ Vs2

8 � {s, 1, 2, 3, 4, 5, 6, 7, 9}.
Next, we describe the mechanics of the separation algorithm, we discuss its running time, and we provide 

some intuition on its structure. The crucial feature of our separation algorithm is that it checks for the existence 
of an ambiguous triangle with respect to x: If there exists an ambiguous triangle with respect to x, then a new 
inequality of type (SC.2) violated by x is generated; if there is no ambiguous triangle with respect to x, then all 
constraints (SC.2) are satisfied by x. In particular, if x is binary, and no inequality of (SC.2) is violated by x, then 
x is the characteristic vector of a coverage set of D.

Algorithm 1 (Separation Algorithm)
Input: G � (V, E), s ∈ V, T ⊆ V, D ⊆ V, I ⊆ V, x ∈ [0, 1]I.
Output: inequality of form (SC.2) violated by x, or certificate that x satisfies all constraints (SC.2). 
1 for each d ∈D do
2 for each node u in G \ d do
3 compute V+d (u) in G \ d
4 for any two nodes α�and β�in V \ d do
5 Vsα

d � {u |α ∈ V+d (u) and u ∈ V+d (s)}
6 VβTd � {u |u ∈ V+d (β) and V+d (u) ∩ T ≠ ∅}
7 if Vsα

d ≠ ∅ and VβTd ≠ ∅ then

8 Let Y � Vsα
d ∪ VβTd

9 Define w ∈ [0, 1]V such that wu � xu if u ∈ I \Y, and wu � 0 otherwise
10 Let π1 be a shortest node-weighted αβ-path in (G, w) traversing d. If no such path exists go back to line 

4 and try a new (α,β) pair
11 Let π2 be a shortest node-weighted αβ-path in (G \ d, w). If no such path exists go back to line 4 and try 

a new (α,β) pair
12 if 

P
u∈V(π1)∆V(π2)wu < 1 then

13 return 
P

u∈(V(π1)∆V(π2))\Yxu ≥ 1

14 return x satisfies all constraints (SC.2)

Algorithm 1 shows the pseudocode of the separation algorithm. At line 3, the set V+d (u) is computed by a breadth- 
first search (BFS) in G \ d. Lines 5 and 6 compute Vsα

d and VβTd based on the sets computed at line 3. At line 7, the algo-
rithm verifies if the current (α,β, d) triple satisfies Condition 1 and Condition 2 of Definition 4. If so, at line 8, the set Y 
of Definition 4 is computed. At line 9, we assign weights to each node of G, according to the current vector x and set Y. 
At line 10, we check if Condition 3 of Definition 4 is satisfied. To find π1, we first construct an arc-weighted graph G′
from the node-weighted graph G. Precisely, we “split” each node u ∈ V into u+ and u–, and we add arc (u+, u�) of 
weight wu, and arcs {(v�, u+) : (v, u) ∈ E}, {(u�, v+) : (u, v) ∈ E} of weight 0. Then in G′, we find a shortest path from α�
to d+, which we map to a path π1

αd in G from α�to d. Similarly, in G′ we find a shortest path from d– to β+, which we 
map to a path π1

dβ�in G from d to β. Finally, we set π1 � π1
αd ◦π

1
dβ. At line 11, we check if Condition 4 of Definition 4 is 

satisfied. We proceed in a similar way as before to find a shortest node-weighted path π2 from α�to β�in G \ d. If we 
reach line 13, also Condition 5 of Definition 4 is satisfied; thus, we have found an ambiguous triangle and return the 
corresponding constraint violated by x. Only after checking all d ∈D and all (α,β, d) triples can we conclude at line 14 
that x satisfy all constraints (SC.2). The outer loop is executed O( |V | ) times, and the two inner loops are executed 
O( |V | ) and O( |V | 2) times, respectively. Each BFS has runtime in O( |E | ), each shortest path computation has runtime 
in O( |V | 2), and computing Y takes O( |V | ). It follows that the runtime of the algorithm is O( |V | ( |V | |E | + |V | 2 

( |V | + |V | 2))) �O( |V | 5). If the vector x in input is binary, then the shortest path computations at line 10 and line 11 
can be performed with BFS computations, and the total runtime reduces to O( |V | 3 |E | ).
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The correctness of the separation algorithm is formally proved in Section 3.3. Intuitively, a (α,β, d) ambiguous 
triangle (π1,π2)with respect to x effectively yields two st paths p1 and p2 that are not D-equivalent, which define a 
constraint of type (SC.2) violated by x. The two paths p1 and p2 can be obtained by composing both π1 and π2 with 
a sα�path, with a βt path, for some t ∈ T, and with all cycles in G \ d that contain α�or β. In our algorithm, we want to 
generate ambiguous triangles yielding paths p1 and p2 that overlap as much as possible. This way, the symmetric 
difference of p1 and p2 is minimal, yielding a constraint that is less likely to be dominated. In fact, each constraint 
that we generate when fixing a triple (α,β, d) is not dominated by any other constraints that could be obtained from 
a (α,β, d) ambiguous triangle.

3.3. Proof of Separation Algorithm Correctness
In this section, we will prove that the separation algorithm is correct, that is, that either it returns a constraint of the 
form (SC.2) that is violated by x or that it correctly states that all constraints (SC.2) are satisfied by x. The next 
lemma shows that, when checking for the existence of an ambiguous triangle, we can restrict our search to the sim-
ple ones.

Lemma 1. There exists an ambiguous triangle if and only if there exists a simple ambiguous triangle.

Proof. One direction is trivial, so we prove that if there is an ambiguous triangle, then there is a simple ambigu-
ous triangle. Suppose that (π1,π2) is an ambiguous (α,β, d) triangle with respect to x ∈ [0, 1]I, and let G1 and G2 be 
the node-weighted subgraphs of G containing the arcs and nodes in π1 and π2, respectively, such that each node 
u ∈ I has weight xu and all remaining nodes have weight 0. In G1, we compute a shortest αd path π1

αd and a short-
est dβ�path π1

dβ, and in G2, we compute a shortest αβ�path π2. Because the node weights are nonnegative, 
π1
αd, π1

dβ, and π2 are simple, and they satisfy Conditions 1–5 of Definition 4. w

The next theorem shows that if x ∈ [0, 1]I satisfies all constraints (SC.2), then there exists no simple ambiguous tri-
angle with respect to x. Equivalently, we show that if there is a simple ambiguous triangle with respect to x, then x 
violates a constraint of the form (SC.2).

Theorem 1. Let (π1,π2) be a simple ambiguous (α,β, d) triangle with respect to x ∈ [0, 1]I. Then, for some t ∈ T, there exist 
two st paths p1 and p2 such that d ∈ V(p1)∆V(p2) and 

P
u∈(V(p1)∆V(p2))xu < 1. Moreover

V(p1)∆V(p2) � (V(π1)∆V(π2)) \Y, (1) 

where Y � Vsα
d ∪ VβTd .

Proof. Our proof is algorithmic. We start with q1 � π1 and q2 � π2. At each step, we compose q1 and q2 with other 
paths, so that symmetric difference V(q1)∆V(q2) reduces but still contains d, until q1 and q2 are two st paths that 
satisfy (1). At the end, we set p1 � q1 and p2 � q2. Moreover, because (1) holds and because (π1,π2) is an ambigu-
ous triangle, we will have that 

P
u∈(V(p1)∆V(p2))xu < 1. In the remainder of the proof, we give the details of the algo-

rithm to construct p1 and p2.
Let π1 � π1

αd ◦π
1
dβ, where π1

αd and π1
dβ�are the simple αd path and the simple dβ�path of Definition 4. First, we 

determine the following nodes: 
• The first node ξ�in π1

dβ�such that ξ ∈ VβTd .
• The first node τ�in π2 such that τ ∈ VβTd .
• The last node ζ�in π1

αd such that ζ ∈ Vsα
d .

• The last node γ�in π2 such that γ ∈ Vsα
d .

• The first node η�in π1
αd such that η ∈ VβTd .

• The last node θ�in π1
αd such that θ ∈ VβTd .

• The first node σ�in π1
dβ�such that σ ∈ Vsα

d .
• The last node ω�in π1

dβ�such that ω ∈ Vsα
d .

Figure 3 provides a pictorial representation. Note that ξ,τ,ζ,γ�are guaranteed to exist because we can have ξ,τ�
coincide with β�and ζ,γ�coincide with α. In contrast, η�and θ�exist if and only if π1

αd contains some node in VβTd . 
Similarly, σ�and ω�exist if and only if π1

dβ�contains some node in Vsα
d .

If ξ≠ β, then there exists a directed cycle Cξ�containing β�and all the nodes in V(π1
dβ) ∩ VβTd , but not containing 

d. Furthermore, if τ≠ β, then there exists a directed cycle Cτ�containing β�and all the nodes in V(π2) ∩ VβTd , but 
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not containing d. We update
q1← q1 ◦Cξ ◦Cτ
q2← q2 ◦Cξ ◦Cτ:

Similarly, if ζ≠ α, then there exists a directed cycle Cζ�containing α�and all the nodes in V(π1
αd) ∩ Vsα

d , but not 
containing d. Furthermore, if γ≠ α, then there exists a directed cycle Cγ�containing α�and all the nodes in 
V(π2) ∩ Vsα

d , but not containing d. We update

q1← q1 ◦Cζ ◦Cγ
q2← q2 ◦Cζ ◦Cγ:

At this point, we have,
V(q1)∆(V(q2) � (V(π1)∆V(π2) \ Y) ∪ Y1 ∪ Y2, 

where Y � Vsα
d ∪ VβTd , Y1 � V(π1

dβ) ∩ (Vsα
d \VβTd ) and Y2 � V(π1

αd) ∩ (V
βT
d \Vsα

d ).
If Y1 is empty, to turn q1 and q2 into sβ�paths, we update

q1← qsα ◦ q1

q2← qsα ◦ q2, 

where qsα�is a sα�path that does not traverse d, which exists by Condition 1 in Definition 4. If Y1 is nonempty, then σ�
and ω�exist. Moreover σ�must occur before ξ�in π1

dβ. By definition, we have (i) σ ∈ V(p) for some p ∈ Psα
d and (ii) ω ∈

V(p′) for some p′ ∈ Psα
d . Let qsσ�be a sσ�path that does not traverse d, which exists by (i) and let qωα�be a path from ω�

to α�that does not go through d, which exists by (ii). Moreover, let π1
σω�be the subpath of π1

dβ�from σ�to ω. We update

q1← qsσ ◦π1
σω ◦ qωα ◦ q1

q2← qsσ ◦π1
σω ◦ qωα ◦ q2:

Now q1 and q2 are sβ�paths and all nodes in Y1 belong to both q1 and q2.
We proceed similarly with Y2. If Y2 is empty, then (1) is satisfied. To turn q1 and q2 into st paths, we update

q1 ← q1 ◦ qβt
q2 ← q2 ◦ qβt, 

where qβt is a βt path with t ∈ T that does not traverse d, which exists by Condition 2 in Definition 4. If Y2 is none-
mpty, then η�and θ�exist. Moreover θ�must occur after ζ�in π1

αd. By definition, we have (i) θ ∈ V(p) for some t ∈ T 
and p ∈ P

βt
d and (ii) η ∈ V(p′) for some t′ ∈ T and p′ ∈ P

βt′
d . Let qθt be a path from θ�to t ∈ T that does not traverse d, 

which exists by (i) and let qβη�be a path from β�to η�that does not go through d, which exists by (ii). Moreover, let π1
ηθ�

be the subpath of π1
αd from η�to θ. We update

q1← qθt ◦ q1 ◦ qβη ◦πηθ
q2← qθt ◦ q2 ◦ qβη ◦πηθ:

Now q1 and q2 are two st paths, with t ∈ T, and all nodes in Y2 belong to both q1 and q2; thus, (1) is satisfied. w

Let x ∈ [0, 1]I. An immediate consequence of Theorem 2 is that if (π1,π2) is an ambiguous (α,β, d) triangle with 
respect to x, then x violates an inequality of form (SC.2). We now prove the converse of Theorem 2, that is, if there 

Figure 3. (Color online) Reference Nodes in the Proof of Theorem 1

Notes. The path displayed on the left is p1; the path displayed on the right is p2. By construction, V(p1)∆V(p2) � (V(π1)∆V(π2)) \Y.
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exists no ambiguous triangle with respect to x, then x satisfies all the inequalities (SC.2). In particular, if x is binary, 
then it is the characteristic vector of a coverage set.

In the following, if p is the path defined by 〈u0, u1, : : : , uk〉 and i, j are two indices such that 0 ≤ i ≤ j ≤ k, we denote 
by p(i, j) the subpath of p defined by 〈ui, ui+1, : : : , uj〉.

Theorem 2. Let x ∈ [0, 1]I. If x violates an inequality of the form (SC.2), then there exists an ambiguous triangle with 
respect to x.

Proof. Because x violates an inequality of form (SC.2), there exist t ∈ T and two not D-equivalent st paths p1, p2, 
such that

X

u∈(V(p1)∆V(p2))

xu < 1:

Let p1 be defined by the sequence 〈s � u1
0, u1

1, : : : , u1
m�1, u1

m � t〉, and p2 be defined by the sequence 〈s � u2
0, u2

1, : : : , 
u2
ℓ�1, u2

ℓ � t〉. Let d ∈D ∩ (V(p1)∆V(p2)), and suppose without loss of generality d ∈ V(p1) \V(p2), that is, p1 tra-
verses d and p2 does not. We consider the first occurrence of d in p1. Let r be the smallest index in {0, : : : , m} such 
that u1

r � d. Let α � u1
i be the first node in V(p2) that we find traversing p1 “backward” from u1

r to u1
0. Similarly, let 

β � u1
j be the first node in V(p2) that we find traversing p1 “forward” from u1

r to u1
m.

We consider two cases. In the first case, p2 contains a subpath from β�to α, that is, u2
h � β, u2

k � α, for some 
0 ≤ h < k ≤ ℓ. See the top graph in Figure 4 for reference. Then, there is a directed cycle consisting of the αβ�path 
p1(i, j) and of the βα�path p2(h, k). We prove that we have a (α,α, d) ambiguous triangle with respect to x. To show 
that Psα

d ≠ ∅, we recall that p1(0, i) is a sα�path that does not contain d because u1
r is the first occurrence of d and i 

< r. To show that Pαt
d ≠ ∅ for some t ∈ T, we recall that p2(k, ℓ) is a αt path that does not contain d because p2 does 

not traverse d. Moreover, we define π2 as the trivial path consisting of the single node α, and we let π1 �

p1(i, j) ◦ p2(h, k). Finally, we show that Condition 5 of Definition 4 is satisfied by proving that (V(π1)∆V(π2))\

Vsα
d ⊆ V(p1)∆V(p2). Recall that V(π2) � {α}; thus, V(π1)∆V(π2) � V(π1) \ {α}. First, because p2(0, k) is a sα�path 

that does not contain d, we have V(p2(h, k)) \Vsα
d � ∅, and in particular β ∈ Vsα

d . Moreover, V(p1(i, j)) \ {α,β} ⊆
V(p1) \V(p2) by construction. As a consequence, we obtain (V(π1) \ {α}) \Vsα

d ⊆ V(p1)∆V(p2).
In the second case, p2 does not contain any subpath from β�to α, that is, if u2

h � β, u2
k � α, then h > k. See the bot-

tom graph in Figure 4 for reference. If p1 contains multiple occurrences of d, we can consider p1(0, j) ◦ p2(h, ℓ)
instead of p1. Thus, we now assume that p1 traverses d exactly once. We show that we have an ambiguous 
(α,β, d) triangle with π1 � p1(i, j) and π2 � p2(k, h). As before, we can show Psα

d ≠ ∅, which implies α ∈ Vsα
d . More-

over, Pβtd ≠ ∅ for some t ∈ T because p2(h,ℓ) is a βt path with t ∈ T, and it does not contain d. This implies β ∈ VβTd . 
Finally, we show that Condition 5 of Definition 4 is satisfied by proving that (V(π1)∆V(π2)) \ (Vsα

d ∪ VβTd ) ⊆

Figure 4. (Color online) The Two Cases Analyzed in the Proof of Theorem 2
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V(p1)∆V(p2). Because by construction V(p1(i, j)) \ {α,β} ⊆ V(p1) \V(p2), we have V(π1) \ (Vsα
d ∪ VβTd ) ⊆ V(p1)∆V(p2). 

Moreover, if w ∈ V(p2(k, h) ∩ V(p1), then w must be either in p1(0, i) or in p1(j, m) based on how we defined α�and 
β; thus, w ∈ Vsα

d ∪ VβTd . This implies V(π2) \ (Vsα
d ∪ VβTd ) ⊆ V(p1)∆V(p2). As a consequence, we obtain (V(π1)∆V(π2))\

(Vsα
d ∪ VβTd ) ⊆ V(p1)∆V(p2). w

The correctness of the separation algorithm relies on the following corollary.

Corollary 1. The vector x ∈ [0, 1]I satisfies all constraints (SC.2) if and only if there exists no ambiguous triangle with 
respect to x.

Proof. Sufficiency immediately follows from Theorem 2. To prove necessity, by contradiction we suppose that 
there exists an ambiguous triangle with respect to x, and we show that x violates a constraint of form (SC.2). By 
Lemma 1, we know that there exists a simple ambiguous (α,β, d) triangle with respect to x. Our claim then fol-
lows by applying Theorem 1 and Proposition 1. w

We are finally ready to prove the main result of this section.

Theorem 3. The separation algorithm either returns a constraint of type (SC.2) violated by x, or it correctly states that all 
constraints (SC.2) are satisfied by x.

Proof. By Corollary 1, we can equivalently show that the separation algorithm either finds an ambiguous triangle 
with respect to x, or it correctly states that no such ambiguous triangle exists. Clearly, if the algorithm exits at 
line 13, we have that (π1,π2) is a (α,β, d) ambiguous triangle with respect to x. We need to prove that if the algo-
rithm exits at line 14, after having checked all d ∈D and all (α,β, d) triples, then there is no ambiguous triangle 
with respect to x. By contradiction, suppose that (π1,π2) is a an (α,β, d) ambiguous triangle with respect to x. 
First, by Lemma 1, we can assume that (π1,π2) is a simple ambiguous triangle. This implies that π1 contains only 
one occurrence of d. Moreover, we can assume without loss of generality that V(π1) ∩ V(π2) � {α,β}, because if 
not, we can redefine α�to be the first node in V(π2) that we find traversing π1 “backward” from d, and we can 
redefine β�to be the first node in V(π2) that we find traversing π1 “forward” from d. Thus, when we consider the 
triple (α,β, d), we have

1 >
X

u∈(V(π1
)∆V(π2

))\Y

xu �
X

u∈(V(π1
)∆V(π2

))

wu �
X

u∈V(π1
)

wu +
X

u∈V(π2
)

wu � 2wα � 2wβ: (2) 

Let π1 and π2 be the shortest paths computed at line 10 and line 11, respectively, of the separation algorithm for 
the triple (α,β, d). We have

X

u∈(V(π1)∆V(π2))

wu �
X

u∈V(π1)

wu +
X

u∈V(π2)

wu� 2
X

u∈V(π1)∩V(π2)

wu

≤
X

u∈V(π1)

wu +
X

u∈V(π2)

wu� 2wα� 2wβ

≤
X

u∈V(π1
)

wu +
X

u∈V(π2
)

wu � 2wα � 2wβ < 1, 

where the first inequality follows from the fact that V(π1) ∩ V(π2) ⊇ {α,β}, the second inequality follows from the 
fact that π1 and π2 are shortest paths, and the strict inequality follows from (2). This contradicts the fact that the 
condition at line 12 is not satisfied. w

4. Evaluation
Table 2 shows our evaluated applications. These precisely match those from Ohmann et al. (2016b) and are mostly 
taken from the Software-Artifact Infrastructure Repository (Do et al. 2005, Rothermel et al. 2006). All applications 
are written in C, although some applications have multiple versions. These applications were selected because 
they contain seeded and/or real faults that can be enabled for debugging and program analysis research. In results 
that follow, we compile only nonfaulty builds to maintain the comparison with prior work by Ohmann et al. 
(2016b). For each application version, we performed two separate compilations.

First, we used the methods to optimize instrumentation for basic block coverage. In terms of our problem defini-
tion from Section 2: 
• G is the intraprocedural CFG for each function,
• T � V (the set of all basic blocks, indicating that we could crash or halt at any point),
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• I � V (indicating that we may instrument anywhere), and
• D � V (indicating that we want coverage data for the entire program).
Costs for each block are determined by LLVM‘s block frequency analysis, which provides a static approximation 

of each basic block’s execution frequency (LLVM Project 2018).
Second, we optimized for coverage at only call sites in aid of program analysis work that uses call-site coverage 

data (Nishimatsu et al. 1999, Ohmann and Liblit 2013) and for complete comparison with Ohmann et al. (2016b). 
Formally, 
• G, T, and costs (c) are defined as before, but
• I � {blocks with at least one call site}, and
• D � {blocks with at least one call site} (indicating that we only care about coverage data at call sites).
We ran all experiments on a 24-core, 3.07-GHz Intel Xeon X5675 CPU with 192 GB of RAM. However, as noted 

in the following sections, all methods use only a single core, and we cap memory use at 32 GB. Our system runs 
Ubuntu 16.04.5 LTS. We downloaded a copy of prior solvers from Ohmann et al. (2016b), which use the csi-cc 
instrumenting compiler (Ohmann and Liblit 2013). We built our new set covering implementation into csi-cc and 
built with Clang/LLVM 4.0 (Lattner and Adve 2004). The network flow–based algorithm from prior work models 
problem instances using the general algebraic modeling sdystem (GAMS; GAMS Development Corporation 2018) 
and uses the Gurobi Optimizer (Gurobi Optimization LLC 2018) (v9.1) to solve the generated mixed integer linear 
program; our new set covering–based method uses the Gurobi Optimizer (v9.1) directly. In all cases, Gurobi is 
called from within the program compiler. The software implementation and instructions for building and repro-
ducing results are available from the paper’s associated Github repository (Michini et al. 2022).

4.1. Compile Time
We began by measuring the amount of time and memory used to compile each application version with each avail-
able method. We compared our own method (set cover) to two approaches from Ohmann et al. (2016b): the 
network-flow-based MILP approach (netflow) and the top-down locally optimal approach (local).

We first examined the number of compilations that exceeded our per-program time (three hours) or memory (32 
GB) cutoffs. We selected very generous budgets to allow for as many direct comparisons as possible. Table 3 shows 
the results as the percentage of compilations for each application that ran out of time or memory. Recall that some 
applications have multiple versions, per Table 2; percentages between 0% and 100% indicate that some but not all 
versions ran out of time or memory. The table does not tabulate time and memory failures separately, but all fail-
ures for netflow ran out of memory, while all failures for local and set cover ran out of time.

For basic block instrumentation, our new method exceeds the time threshold far less often than prior work, 
including solutions for seven application versions that ran out of time with the local heuristic. Instrumentation for 
call sites performs exceptionally well using our approach: We find an optimal instrumentation plan for every pro-
gram tested, never running out of either time or memory.

In Table 4, we compare the compile times (in seconds) for the netflow and set-cover approaches, including only 
those applications for which both methods completed within the time or memory limit. These are the only two 

Table 2. Evaluated Applications, Ordered by Size

Application Description Versions Mean LOC

tcas Siemens 1 173
schedule2 Siemens 1 373
schedule Siemens 1 413
replace Siemens 1 563
tot_info Siemens 1 564
print_tokens2 Siemens 1 568
print_tokens Siemens 1 727
ccrypt Linux utility 1 5,280
gzip Linux utility 5 8,114
space ADL interpreter 1 9,563
exif Linux utility 1 10,611
bc Linux utility 1 14,292
sed Linux utility 7 14,314
flex Linux utility 5 14,946
grep Linux utility 5 15,460
bash Linux shell 6 80,443
Gcc C compiler 1 222,196
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methods, to our knowledge, that provide provably optimal coverage plans. The set-cover method is clearly more 
efficient; in the most extreme example, basic block coverage optimization for schedule2 takes 473 seconds (more 
than seven minutes) with netflow but less than 1 second with set cover. Overall, this table demonstrates that the 
new set cover–based exact approach we introduce in this work is often hundreds of times faster than the only other 
known exact approach for customized program coverage.

To compare the compile times of the locally optimal and set cover–based approaches, we computed the average 
compilation times, treating each timed-out compilation as though it had actually completed in exactly three hours. 
This saturation study makes the most optimistic possible assumption—that each timed-out compilation was just 
on the verge of completing. (This is far from the truth; we allowed many “local” compilations to continue for more 
than 24 hours, and they did not produce a solution.) We plot results as compilation time relative to compiling with 
no analysis or instrumentation whatsoever for program coverage. The results are shown in Figure 5; we exclude 
the small Siemens applications as these have trivial compilation times.

Figure 5(a) shows results for basic block coverage, excluding results for grep and gcc. (Because both these appli-
cations did not complete in three hours with either method, there are no results to compare.) For the other applica-
tions, we often see significant improvements. For example, gzip times out in some cases with local and saturated 
averages at almost a 1,000 times increase over noninstrumented build time; with set cover, the increase is 25 times. 
On average, for all larger applications except grep and gcc, the prior local heuristic is 110 times slower than base, 
whereas our new method is 23 times.

Figure 5(b) shows call coverage results. Here, we see immense improvements for all applications: sed sees 
the largest improvement, going from 836 times with local down to just 12 times with set cover. On average, our 
new method improves compilation overhead from 19 to 4 times. Furthermore, as mentioned earlier, these 

Table 3. Percentage of Compilations That Ran Out of Time or Memory

Application

Basic blocks Call sites

Netflow Local Set cover Netflow Local Set cover

tcas 0% 0% 0% 0% 0% 0%
schedule2 0% 0% 0% 0% 0% 0%
schedule 100% 0% 0% 0% 0% 0%
replace 100% 0% 0% 0% 0% 0%
toṫinfo 100% 0% 0% 0% 0% 0%
prinṫtokens2 100% 0% 0% 0% 0% 0%
prinṫtokens 100% 0% 0% 100% 0% 0%
ccrypt 100% 0% 0% 100% 0% 0%
gzip 100% 20% 0% 100% 0% 0%
space 100% 0% 0% 100% 0% 0%
exif 100% 0% 0% 100% 0% 0%
bc 100% 0% 0% 100% 0% 0%
sed 100% 100% 57% 100% 43% 0%
flex 100% 100% 80% 100% 80% 0%
grep 100% 100% 100% 100% 0% 0%
bash 100% 100% 33% 100% 33% 0%
gcc 100% 100% 100% 100% 100% 0%
mean 88% 31% 22% 65% 15% 0%

Notes. Lower is better. Applications are ordered by size.

Table 4. Compilation Times (Seconds) for Exact Methods

Application Instrumentation Netflow Set cover Speedup ×

tcas Basic blocks 10.28 0.46 22.46
schedule2 Basic blocks 473.00 0.78 604.26
tcas Call sites 0.47 0.44 1.08
schedule2 Call sites 44.18 0.72 60.99
schedule Call sites 286.50 0.77 374.47
replace Call sites 12.48 0.84 14.84
toṫinfo Call sites 126.54 0.67 188.60
prinṫtokens2 Call sites 208.02 0.68 305.96
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improvements are lower bounds, in that we assumed that all time-out compilations would have completed immedi-
ately at three hours.

4.2. Plan Cost
Recall that our new method provides a guarantee of optimality for any instrumentation plan that it produces. We 
also examined how often this optimal solution was better than prior approaches (i.e., lower cost, meaning lower 
expected execution frequency of probes). The prior optimal method (netflow) also produces optimal solutions, so 
our plans are cost identical. Prior work found that the local heuristic often produces nontrivial improvements over 
the simple heuristic (Ohmann et al. 2016b). However, the authors did not examine how close this locally optimal 
solution was to the true optimum.

All results in this section compare expected run-time costs rather than actual running times. We used this model 
for two reasons. First, prior experiments by Ohmann et al. (2016b) also performed running-time comparisons and 
established this abstract cost model for comparing performance. Second, this model generalizes beyond the cost of 
executing individual probes and is especially useful for comparing performance when running-time differences 
would be hard to measure, as on short-running test cases.

Table 5 shows the count and percentage of functions in each application that received an improved solution (i.e., 
where local was not already fully optimal). Blank entries indicate that no local compilations completed, so results 
could not be compared. These results clearly show that local was already getting optimal results in most cases. 
However, some results do improve. For example, gzip with call coverage sees improvements for nine functions, or 
approximately 3% of the application’s codebase. Overall, these improvements demonstrate that our new method 
is faster than prior approximations while still producing instrumentation plans that are sometimes better (and 
never worse).

4.3. Integer Programming Implementation Details
The purpose of this section is to provide details on the set covering instances arising from the applications and 
behavior of our method for solving these instances. The 40 (application, version) combinations tested with both 
basic-block and customized coverage result in a total of 18,494 functions. The CFG of each function varies in size, 
and many of the CFGs are quite small, resulting in trivial integer programming instances. To summarize the 
behavior of the integer programming–based algorithm, we partition the instances based on the number of nodes in 

Figure 5. (Color online) Compile-Time Overhead, Saturated to Three Hours 

(a)

(b)

Note. Lower is better. Applications are ordered by size.
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the CFG for the function. Functions with CFG of 25 nodes or fewer are categorized as tiny, functions whose CFG 
has between 25 and 100 nodes are categorized as medium, functions whose CFG has been 101 and 250 nodes are 
called large, and functions whose CFG has more than 250 nodes are called jumbo.

In Table 6, for each class of CFG size, we list the number of functions in the class (N), the average number of 
nodes and arcs in the CFG, the average number of rounds of cut generation, the number of initial ambiguous trian-
gle inequalities (SC.2) added to the integer program (SC) and the total number of inequalities (SC.2) generated by 
our method, the average total number of branch and bound nodes required to solve the instances, the average time 
spent solving integer programs, and the average time spent separating inequalities.

To interpret the results of the table, it is necessary to explain specific details of our implementation. Crucial to 
this discussion is the order in which, for each fixed d ∈D, the node pairs (α, β) are enumerated in Algorithm 1. We 
search for ambiguous triangles by fixing the maximum distance of α�and β�from a given desired node d ∈D. We 
define the depth of a candidate node α�as the minimum number of CFG arcs that must be traversed in any path 
from α�to d. Similarly, the depth of β�is the minimum number of arcs required to reach β�from d. When enumerating 
(α,β) pairs at step 4 of Algorithm 1, we iterate over (maximum) depth values δ � 1, 2, : : : , and consider αd and dβ�
paths of length at most δ. For each desired node, it is possible to generate multiple ambiguous triangle inequalities 
with different (α,β) pairs. Our implementation will return up to κ�� 7 violated ambiguous triangles for each 
desired node d. If we find ambiguous triangle inequalities at depth δ, all ambiguous triangle inequalities from this 
depth, establishing that the current candidate solution is not a coverage set, are added to the master integer pro-
gram (SC) and separation is concluded. One benefit of performing enumeration in this manner is that the path π1 

will have length at most 2δ, resulting in constraint (SC.2) having a small support, hopefully dominating other 
ambiguous triangle inequalities with larger support.

Each integer program (SC) is initialized with a small number of constraints (SC.2). We generate an initial set of 
inequalities for the integer program by looking for one ambiguous triangle for each potential depth of α�and β�and 
for each desired node d ∈D. As seen in Table 6, this can lead to a large number of initial triangles, but this does not 
negatively impact the solution time of the integer program.

Table 6. Average IP Performance

Class N
CFG 

nodes
CFG 
arcs

No. of 
rounds

Initial no. 
of cuts

Total no. 
of cuts

B&B 
nodes

IP time 
(s)

Sep. time 
(s)

Tiny 14,474 7.7 10.5 0.4 5.6 6.5 0.4 0.0001 0.0008
Medium 3,176 47.0 74.1 1.7 71.7 80.6 4.4 0.0040 0.1409
Large 651 150.6 239.2 3.7 326.5 366.1 6.2 0.0114 9.0467
Jumbo 193 456.8 759.7 6.4 1,671.7 1,792.6 101.5 0.0902 504.9844

Table 5. Functions Where the Set-Cover Solution Improves on the Local Solution, Reported as Both an 
Absolute Count of Functions and a Percentage of All Functions in the Application

Application

Basic blocks Call sites

Count Percent Count Percent

tcas 1 11.1% 0 0.0%
schedule2 0 0.0% 1 6.2%
schedule 0 0.0% 0 0.0%
replace 0 0.0% 0 0.0%
toṫinfo 0 0.0% 0 0.0%
prinṫtokens2 0 0.0% 0 0.0%
prinṫtokens 0 0.0% 0 0.0%
ccrypt 0 0.0% 3 4.0%
gzip 0 0.0% 9 2.9%
space 1 0.7% 1 0.7%
exif 2 1.1% 1 0.6%
bc 0 0.0% 0 0.0%
sed 0 0.0%
flex 0 0.0%
grep 0 0.0%
bash 29 0.4%
gcc

Notes. Higher is better. Applications are ordered by size.
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We experimented with an implementation where inequalities (SC.2) were added using Gurobi callback func-
tions in the branch and bound tree (branch-and-cut) or simply adding the inequalities and resolving the integer 
program from scratch (cut-and-branch). We also experimented with an implementation where inequalities (SC.2) 
were generated by separating fractional candidate coverage sets x. Surprisingly, the cut-and-branch implementa-
tion, separating only integer-valued candidate solutions x, was the most efficient. At each iteration, the relaxed 
integer program (SC), with a subset of ambiguous triangle inequalities (SC.2), is solved to optimality, resulting in a 
candidate coverage set x. Separation is done as described previously by enumerating potential (α,β) depths δ�for 
each desired node d ∈D, for fixed depths of δ � 1, 2, : : : , until inequalities violated by x are found or until the maxi-
mum depth is reached, at which point we know that x is an optimal coverage set. As seen in Table 6, in general, 
very few rounds of cut generation are necessary.

The most notable aspect of this table is the very small amount of time that is spent on average in solving the inte-
ger programs. For the larger instances, nearly all the time is spent in separation. The vast majority of separation 
time is taken in the final round to prove the candidate coverage solution is in fact feasible. The average CPU times 
for the last round of cut generation for the four instance families are 0.0006 seconds for tiny, 0.1206 seconds for 
medium, 8.667 seconds for large, and 496.9752 seconds for jumbo. Speeding up separation is an obvious important 
future research direction.

4.4. Discussion and Practical Implications
We improve on prior work both in the efficiency of our method and the quality of solutions. As noted in Section 
4.1, our algorithm is often orders of magnitude faster than the prior locally optimal heuristic solution. Further-
more, developers using our approach now have the assurance of a certificate of optimality, which prior work could 
not provide.

When choosing three hours as the time-out cutoff, we do not mean to imply that developers would actually wait 
this long. Most of the applications we examined compiled in seconds without coverage instrumentation. Thus, 
although increases on the order of 100 times are unrealistic in many scenarios, increases on the order of 10 times 
may be tolerable. As made especially evident in Figure 5b, our new method makes optimized instrumentation 
practical for a much larger set of applications.

Even if for certain applications the compile times for our exact instrumentation method are too long to be used 
in an online setting, our new approach has significant potential to assess the quality of other methods for the cus-
tomized coverage probing problem. Specifically, as our method provides the most efficient mechanism for com-
puting optimal coverage plans, it could be used in an offline setting to gauge the performance (in terms of 
additional overhead) of faster, inexact methods.

5. Conclusion
Program coverage data are pervasive and useful in many areas of computer programming debugging analysis. 
Many real-world scenarios demand customized coverage instrumentation, where only a portion of a program 
requires coverage or can be instrumented for program coverage. By using a characterization of a coverage set in terms 
of subgraphs known as ambiguous triangles, we present a new algorithm for the customized coverage probing problem. 
Using the characterization, we formulate the problem as a set covering problem and leverage state-of-the-art commer-
cial integer programming software to find optimal coverage plans. Our technique produces exact (i.e., optimal) solu-
tions multiple orders of magnitude faster than any previous exact method. In fact, our method produces exact 
coverage plans faster than previous methods in the literature whose plans come with no guarantee of the coverage 
plan quality. The new method makes optimized instrumentation practical for a much wider set of applications.
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