
Analyzing Memory Ownership Patterns in C Libraries ∗

Tristan Ravitch
Department of Computer Sciences
University of Wisconsin–Madison
travitch@cs.wisc.edu

Ben Liblit
Department of Computer Sciences
University of Wisconsin–Madison

liblit@cs.wisc.edu

Abstract
Programs written in multiple languages are known as polyglot
programs. In part due to the proliferation of new and productive
high-level programming languages, these programs are becoming
more common in environments that must interoperate with existing
systems. Polyglot programs must manage resource lifetimes across
language boundaries. Resource lifetime management bugs can lead
to leaks and crashes, which are more difficult to debug in polyglot
programs than monoglot programs.

We present analyses to automatically infer the ownership se-
mantics of C libraries. The results of these analyses can be used to
generate bindings to C libraries that intelligently manage resources,
to check the correctness of polyglot programs, and to document the
interfaces of C libraries. While these analyses are unsound and in-
complete, we demonstrate that they significantly reduce the manual
annotation burden for a suite of fifteen open source libraries.

Categories and Subject Descriptors D.2.11 [Software Engi-
neering]: Software Architectures—Languages; D.2.12 [Software
Engineering]: Interoperability; D.2.13 [Software Engineering]:
Reusable Software—Reusable libraries; D.3.2 [Programming Lan-
guages]: Language Classifications—C, Python; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Dynamic
storage management, Procedures, functions, and subroutines; D.3.4
[Programming Languages]: Processors—Code generation, Mem-
ory management; E.1 [Data Structures]: Arrays, Records; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Program analysis

Keywords resource lifetime management; memory allocation; al-
locators; finalizers; ownership transfer; escape analysis; sharing;
reference counting; foreign function interfaces (FFIs); bindings; li-
braries; dataflow analysis; interprocedural static program analysis;
polyglot programming; interoperability

∗ Supported in part by DoE contract DE-SC0002153, LLNL contract
B580360, NSF grants CCF-0953478 and CCF-1217582, and a grant from the
Wisconsin Alumni Research Foundation. Opinions, findings, conclusions,
or recommendations expressed herein are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’13 June 20–21, 2013, Seattle, Washington, USA
Copyright© 2013 ACM 978-1-4503-2100-6/13/06. . . $15.00
Reprinted from ISMM’13, Proceedings of the 12th International Symposium on Mem-
ory Management, June 20–21, 2013, Seattle, Washington, USA, pp. 1–11.

1 char *strdup(const char *s);
2 char *asctime(const struct tm *tm);

Figure 1. C function signatures

1. Introduction
High-level programming languages have been gaining acceptance
in many application domains where unsafe low-level languages like
C and C++ were once the only option. For example, Python and
JavaScript have a significant presence in the desktop application
space. Additionally, Python has gained acceptance in the scientific
computing community [14]. Unfortunately, these high-level lan-
guages do not exist in a vacuum. They depend on code written in
unsafe lower-level languages for, among other reasons, performance
and interoperability. Some performance-sensitive pieces of code
simply cannot be rewritten in the desired high-level language. In
other cases, it is possible but not economically feasible to rewrite
working and tested code, so the original implementation must be
used from the high-level language.

Production-quality high-level languages support calling func-
tions from libraries written in other languages through foreign func-
tion interfaces (FFIs). High-level language programs using FFIs
execute code from more than one language, making them polyglot
programs. A critical challenge in writing correct polyglot programs
lies in managing the flow of resources across language boundaries.
Programs lacking a precise cross-language ownership semantics are
vulnerable to resource leaks, threatening reliability. Unclear owner-
ship semantics can also lead to crashes induced by use-after-free or
double-free errors. Both of these types of errors are more difficult
to debug in polyglot programs, as common debugging tools target
programs written in a single language.

Most low-level languages like C do not provide any means for
describing, much less checking, object ownership semantics. Instead,
this critical information must be conveyed through documentation
or recovered through static analysis. Library interfaces defined
in C typically refer to dynamically-allocated resources by their
address (a pointer). Unfortunately one cannot simply call free on all
pointers obtained from a low-level language to release the associated
resources, or finalize them. This approach fails because, while C
functions expose most resources through pointers, they use pointers
for many other purposes as well.

Consider the two C function declarations in figure 1. Each returns
a char*. The value returned by strdup must be freed to prevent
memory leaks, but freeing the value returned by asctime will cause
a crash. The caller owns the result of strdup but not the result
of asctime. Furthermore, some dynamically-allocated resources
may require specialized finalizer functions instead of generic free.
Consider fopen and fclose: calling free on the result of fopen is a
partial resource leak. Thus, functions returning managed resources
must be identified along with their associated resource finalizers.

1

mailto:travitch@cs.wisc.edu
mailto:liblit@cs.wisc.edu

1 typedef struct pvl_elem_t {
2 void *data;
3 struct pvl_elem_t *next;
4 } pvl_elem;
5

6 typedef struct pvl_list_t {
7 pvl_elem *head;
8 } pvl_list;
9

10 typedef struct icalcomponent {
11 pvl_list *components;
12 struct icalcomponent* parent;
13 } icalcomponent;
14

15 void pvl_push(pvl_list *lst, void *d) {
16 pvl_elem *e = calloc(1, sizeof(pvl_elem));
17 e→next = lst→head;
18 lst→head = e;
19 e→data = d;
20 }
21

22 void* pvl_pop(pvl_list *lst) {
23 if(lst→head == NULL) return NULL;
24 list_elem *e = lst→head;
25 void *ret = e→data;
26 lst→head = e→next;
27 free(e);
28 return ret;
29 }

Figure 2. Definitions for figure 3

Resource management semantics are unclear in C even without the
additional complexities of polyglot programming.

We describe our ownership model for C resources and present
algorithms to infer the ownership semantics of C libraries. These
semantics are presented to users and tools through inferred anno-
tations on library functions. While these analyses are unsound and
incomplete, they are nonetheless useful. As discussed in section 8,
our algorithms significantly reduce the manual annotation burden
required to create library bindings. With review by a programmer
familiar with the library being analyzed, these inferred annotations
are sufficient to generate idiomatic FFI library bindings for high-
level languages. The resulting bindings will be idiomatic in that they
automatically manage the flow of resources between languages and
clean them up when they become garbage. They also serve as an
aid in program understanding and can augment documentation. Our
primary contributions over prior work are: (1) two methods for iden-
tifying the ownership transfers of objects in C libraries (sections 4
and 5), (2) a method for inferring contracts that must be obeyed for
function pointers (section 6), and (3) an algorithm for identifying
reference-counted resources (section 7).

2. Resource Ownership Model
We adopt the ownership model of Heine and Lam [6] whereby each
object is pointed to by exactly one owning reference. The object
must eventually either be finalized through the owning reference, or
ownership must be transferred to another owning reference. When a
pointer is finalized, the resources held by the object it points to are
safely released. Non-owning references to any object can be created
at any time and are valid until the object is finalized. In the Heine
and Lam model, pointer-typed members of C++ objects are either
always owning references or are never owning references (at public

1 struct icalcomponent* icalcomponent_new() {
2 icalcomponent* comp = malloc(sizeof(icalcomponent));
3

4 if (!comp) return NULL;
5

6 comp→components = newlist();
7 comp→parent = NULL;
8

9 return comp;
10 }
11

12 void icalcomponent_free(icalcomponent* c) {
13 icalcomponent* comp;
14

15 if (!c) return;
16

17 while ((comp=pvl_pop(c→components)) != NULL) {
18 icalcomponent_remove_component(c,comp);
19 icalcomponent_free(comp);
20 }
21

22 pvl_free(c→components);
23 free(c);
24 }
25

26 void icalcomponent_remove_component(
27 icalcomponent *component, icalcomponent *child);
28

29 void icalcomponent_add_component(icalcomponent *c,
30 icalcomponent *child) {
31 pvl_push(c→components, child);
32 }
33

34 void icalcomponent_set_parent(icalcomponnent *c,
35 icalcomponent* parent) {
36 c→parent = parent;
37 }

Figure 3. Example from ical

interface boundaries). We extend this model to pointer-typed fields
of some C structures for all functions.

2.1 Memory Ownership in C
A memory allocator is an abstraction over the most prevalent
resource in most programs: dynamically allocated memory. The
standard C library’s allocator and finalizer functions are malloc
and free, respectively. When the memory allocator owns a piece of
memory (i.e., the memory is unallocated), it is an error for any other
part of the program to use it. When the allocator function is called,
it completely transfers ownership of the memory to the caller via
the returned owning reference.

Complex resources may own other resources through owned
pointer fields. Finalizers for these complex resources must finalize
their owned resources to obey the ownership model and to avoid
leaks, as in figures 2 and 3. The icalcomponent type is a resource
allocated with icalcomponent_new. It owns a component list,
along with each of the components in the list of children. The
finalizer for this type, icalcomponent_free, finalizes the list of
children as well as the child components before finalizing the
component itself with a call to free on line 23.

Ownership extends beyond just allocators and finalizers. For
example, the function icalcomponent_remove_component re-
moves a child component from a component without finalizing it.

2

1 with pinned(r):
2 # allow r to escape into a global
3 stash_in_global(r)
4

5 # drop explicit reference to r, but is still pinned
6 del r
7

8 # r is pinned, so safe to access via stashed global
9 use_stashed_global()

Figure 4. Pinning Python objects with a context manager

After a call to this function, the component no longer owns the child
and ownership is implicitly transferred to the caller. Note that sim-
ply reading a child component from a component does not transfer
ownership because the component will still finalize all of its children
when it is itself finalized. Similarly, components do not own the
component referenced by their parent field because that field is not
finalized in the component finalizer. Our analysis does not automati-
cally recognize this type of ownership transfer. It is relatively rare
in real code, and would require expensive shape analysis [18].

2.2 Ownership in High-Level Languages
When a C allocator is called from a high-level language, the high-
level language run-time system assumes exclusive ownership of the
allocated resource by wrapping it in a special object. All references
to the C resource in the high-level language are mediated through
this wrapper object, which is managed by the high-level language
memory manager (i.e., garbage collector). Since the wrapper object
is a normal high-level language object, the memory manager knows
when it is unreferenced and safe to finalize. The wrapper object uses
memory manager hooks to automatically invoke the appropriate
finalizer for the C resource when doing so is safe. In contrast, there
is no such system in C unless it is implemented manually, such as
through reference counting.

Of course, to be of any use these resources must be passed back
to low-level code, in which operations on them are written. For a
low-level language resource r owned exclusively by a high-level
language run-time, assume that it is passed to a low-level language
function f : f (. . . , r, . . .). For each such call, one of the following
must hold:

1. f assumes ownership of r . The high-level language must relin-
quish ownership of r by disabling any garbage collector hooks
that would have run a finalizer on r .

2. f creates only transient references to r, all of which are de-
stroyed when f returns. The high-level language still owns r and
need take no further actions.

3. f creates a non-transient non-owning reference n to r . The high-
level language run-time system still owns r and does not need to
take any further actions. However, the programmer passing r to
f must ensure that the lifetime of r exceeds that of n.

4. r does not obey our ownership model, but is instead reference-
counted. In this case, as long as the reference manipulation
functions are known, the object can safely be passed between
languages.

5. r does not obey our ownership model and its resources cannot
be automatically managed by the high-level language.

Cases one, two, and four can be fully automated and are ideal
for robust language interoperability. The third case requires the
high-level language caller of f to understand the semantics of
the called function and its effect on the lifetime of r. Note that
this semantic knowledge is required of any caller of f , even in C.
While the lifetime management of r in the third case cannot be

fully automated, a high-level language library binding could provide
programmers with tools to make such lifetime management simpler.
For example, a Python library binding could provide a resource
manager to pin objects to keep them alive within a lexical scope,
as in figure 4. In this example, assume that stash_in_global(r)
lets r escape into a global location managed by the library. If
use_stashed_global accesses r through that global location, then r
must still be live when use_stashed_global is called. The pinned
resource manager retains a reference to its argument for the lexical
scope of the with statement.

3. Allocators and Finalizers
Prior work in automating language interoperability by Ravitch et al.
[16] presented algorithms for identifying the functions comprising
memory allocators. We characterize the memory allocators identified
by this work as derived allocators because they are built on top of
lower-level allocators, with the standard allocator malloc as the
ultimate base.

This prior work identifies a function as an allocator if it always
returns the result of a base allocator (such as malloc) and gives up
ownership of the allocation or returns NULL (to report failure). This
is a must analysis: it identifies functions that must return a new re-
source. A must analysis is appropriate here because it can only miss
allocator functions. At worst this can cause a leak (or require explicit
resource-release calls). By contrast, over-approximating the set of
allocators could lead to crashes. In figure 3, icalcomponent_new
is an allocator because it returns NULL on line 4 and the result of a
call to malloc on line 9.

The corresponding finalizer for an allocator f is a function that
takes an argument that is the same type as the return value of f and,
on every path, that argument is NULL or is finalized. Ravitch et al.
under-approximate the set of finalizers with dataflow analysis. The
example in figure 3 shows a finalizer: icalcomponent_free. On
one path (at line 15), the argument c is NULL and on the other path
it is finalized (at line 23).

A key feature of derived allocators is that they obtain a resource
from a lower-level allocator and completely transfer ownership of
it to their caller. While most allocation functions in libraries are
derived allocators, some libraries define custom memory allocators
based on pools, arenas, or some other abstraction. We require
manual annotations to identify these custom low-level allocators.
This burden is low because few libraries define their own allocators.
Additionally, a manual annotation for the allocator and its associated
finalizer of a custom allocator allows the analysis to identify many
derived allocators.

In principle, shape analysis could identify even these custom
allocators. We do not attempt this due to the scarcity of custom
allocators and the relative expense of the required analysis.

4. Recognizing Ownership Transfer
As discussed in section 2.2, knowledge of the ownership model of a
resource allows a high-level language library binding to automati-
cally manage its lifetime. A key aspect of the ownership model is
recognizing which library functions transfer ownership of resources;
this allows the high-level language run-time system to assume re-
sponsibility for managing library resources safely. Prior work by
Ravitch et al. [16] used an escape analysis to conservatively identify
library functions that take ownership away from the caller. Intu-
itively, when a library function causes a pointer provided by the
high-level language caller to escape, the lifetime of the pointed-
to object becomes unknown and the high-level language run-time
system can never safely finalize it.

Certainly if a parameter does not escape, then its ownership is
not transferred. Escaping allows transfer, but does not necessarily

3

lead to transfer in all cases. For example, common container-like
data structures in C (e.g., lists, trees, or hash tables) typically store
pointers to data objects. Clearly, storing an object in one of these
containers allows it to escape. However, most of these containers do
not take ownership of their elements: the caller must still manage
their memory. Ma and Foster [10] note that ownership transfer in
library interfaces is relatively rare; we note that escaping parameters
are anything but rare. We therefore suggest that escape analysis is
distinct from ownership transfer analysis. In this section, we present
a transfer analysis to more accurately identify ownership transfers
in C library functions. We revisit escape analysis in section 5.

The essence of our ownership transfer analysis follows from our
resource ownership model in section 2. We consider a structure field
to be owned if that field will be finalized within the context of a
finalizer function. Thus, ownership of an object is transferred from
a caller when another object assumes responsibility for finalizing it
(i.e., it is stored into a field that will be finalized). Fields finalized in
other contexts are sometimes used to store temporary allocations,
but these fields are not guaranteed to be finalized with the rest of
the object and are managed separately. The analysis proceeds in two
phases. First it identifies all of the owned fields in a library. Then it
identifies all of the function parameters that may be stored into an
owned field. We describe fields in terms of symbolic access paths.
Note that we assume that any given field is either always owned or
never owned. We do not attempt to reason about fields that are only
owned sometimes. Furthermore, we assume that, if one element
held in a container-like field (i.e., an array or linked data structure)
is owned, all elements in that field are owned.

4.1 Symbolic Access Paths
This analysis is based on symbolic access paths [2, 7]; we follow
the formulation of Matosevic and Abdelrahman [11]. An access
path describes a memory location accessible from a base value
by a (possibly empty) sequence of path components. While we
will only discuss field accesses in this paper, pointer dereferences,
array accesses, and union accesses are also valid path components.
We treat all array elements in a single array as identical; a more
precise analysis could differentiate between them. This treatment
of field accesses is unsound when pointers to struct types are cast
to unrelated types [15], which could cause the analysis to identify
invalid ownership transfers.

Let ap(v) represent the access path for a source expression v.
For example, the assignment on line 18 of figure 3 assigns a value
to lst→head. The corresponding access path ap(lst→head) is the
pair (lst, 〈head〉). In this pair, lst is the base value and 〈head〉 is a
sequence of one field access to reach the affected memory location.
We sometimes refer to locations abstractly in terms of a base type
rather than a base value. Here, lst has type pvl_list, so the abstract
access path for this field access is (pvl_list, 〈head〉).

Following Matosevic and Abdelrahman, we construct symbolic
access paths by traversing the call graph bottom-up, with strongly-
connected components being iteratively re-analyzed until a fixed-
point is reached. We will assume that functions are normalized
such that the return value is the first parameter in the list of formal
parameters (always indexed as zero). Functions return values by
writing to their return parameter. Void functions have a placeholder
in argument zero. For each library analyzed, we construct two maps,
each keyed by function and formal parameter number:

• Let f be a function and i be the zero-based index of a parameter
to that function. Then finalizePaths[f , i] is a set of access paths
that function f finalizes in its ith parameter.
• Let f be a function and i be the zero-based index of a parameter

to that function. Then writePaths[f , i] is a set of triples of the
form (p, j, q) where function f reads the value at access path q

of its j th parameter and ultimately stores this value into access
path p of its ith parameter.

Let argno(v) return the index of formal parameter v in the formal
parameter list of the enclosing function. Let base(p) return the base
of access path p and components(p) return the path components of
p. The access path extend operation p1 ⊕ p2 extends p1 by p2 in
the natural way; the resulting path has the same base value as p1
and the path components of p2 appended to those of p1. The set-
valued operation nr(p) returns the singleton set containing p if each
path component in components(p) is unique within p; otherwise, it
returns the empty set. Likewise, nr((p, j, q)) returns a singleton set
containing a triple if neither p nor q has repeated path components.
This condition excludes cyclic paths that could grow indefinitely;
such paths are common in the presence of inductive data structures.

Our handling and representation of cyclic access paths differs
from Matosevic and Abdelrahman [11]. They represent paths using
a regular expression-like language with repetition operators. Our
analysis does not require information about cycles in paths, so we
use the simpler representation discussed above; this requires the
no-repetition condition (through the nr() operator) to prevent cyclic
paths from growing without bound. This less expressive treatment
of paths is a potential source of unsoundness, though it has not been
a problem in practice.

We analyze code represented as LLVM bitcode: three-address
code in static single assignment (SSA) form [8]. Two types of
statements add elements to finalizePaths or writePaths: function
calls and store instructions. This analysis is flow-insensitive and
paths are created or extended for any relevant store or function call
that may be executed. We consider function calls first. Suppose
function f contains a function call of the form g(value). Let p =
ap(value) be the access path of value. If g is a finalizer and base(p)
is among the formal parameters of f, then:

finalizePaths[f , argno(base(p))] ∪= nr(p)

Now consider a store of the form *location = value in function
f. Let lp = ap(location) and p = ap(value). If both base(lp) and
base(p) are among the formal parameters of f , then:

writePaths[f , argno(base(lp))] ∪= nr((lp, argno(base(p)), p))

Calls to non-finalizer functions generate new paths by extending
access paths in finalizePaths and writePaths. At a high level, paths
are extended by mapping access paths in callees to the arguments
of their callers. For each call callee(..., a, ...) in function f where
a is the ith argument to callee and p ∈ finalizePaths[callee, i], let
pext = ap(a) ⊕ p. If base(pext) is a formal parameter of f , then:

finalizePaths[f , argno(base(pext))] ∪= nr(pext)

For each call callee(..., a, ..., b, ...) in function f where a and b
are the ith and j th arguments to callee, respectively, and (p, j, q) ∈
writePaths[callee, i], let qext = ap(b) ⊕ q and pext = ap(a) ⊕ p.
Let qextB = base(qext) and pextB = base(pext). If both qextB and
pextB are formal parameters of f , then:

writePaths[f , argno(pextB) ∪= nr((pext, argno(qextB), qext))

Lastly, assume a function f calls v = g(..., a, ...); and then later
calls h(..., v, ...); where h finalizes v and a is the j th argument
to g. Further assume that (p, j, q) ∈ writePaths[g, 0] and that
base(ap(a)) is a formal parameter of f with index i. p is a degenerate
access path with no components because it is the return value of g.
Let qext = ap(a) ⊕ q, the path of base(ap(a)) that is finalized by
h. Then:

finalizePaths[f , i] ∪= nr(qext)
In each of these cases, we use local points-to information (the PT-

relation from Matosevic and Abdelrahman [11]) to produce maximal

4

access paths. For the pvl_push function in figure 2, the analysis
can only conclude that d is written to the path (e, 〈data〉) without
local points-to information. Since e is not a formal parameter
of pvl_push, this fact is not recorded in writePaths. With local
points-to information, the analysis can construct the maximal path
(lst, 〈head,data〉). The base of this maximal path is lst, which is a
formal parameter of pvl_push. Thus, writePaths can be updated to
reflect the write of d to this path.

4.2 Identifying Owned Fields
After all of the symbolic access paths in a library are constructed,
we next identify the owned fields in the library. According to our
resource ownership model from section 2, owned fields of a type
are those fields that will be finalized when an object of that type is
finalized. Our analysis determines this by analyzing the finalized
access paths of each function: if a field of the argument of a finalizer
function is finalized, that field is owned. That is, if some function
f is a finalizer for its ith formal parameter, all of the fields in
finalizePaths[f , i] are owned fields.

In figure 3, the function icalcomponent_free is a finalizer
because the c parameter (of type icalcomponent*) is finalized
(or NULL) on every path. The pvl_free and icalcomponent_free
functions are finalizers as well (implementations not shown). We see
that icalcomponent_free passes the return value of pvl_pop to a
finalizer. pvl_pop returns the data from the head of its list argument
through the access path (lst, 〈head,data〉). Thus, the value passed to
the finalizer is (icalcomponent, 〈components,head,data〉); we
conclude that this field of icalcomponent is owned.

4.3 Transferred Ownership
The key insight of the ownership transfer analysis is that ownership
of any function argument stored into an owned field is transferred
from the caller. Assume a function f has formal parameters a and
b at positions i and j in the formal parameter list respectively. If
(p, j, q) ∈ writePaths[f , i] where ap(b) is q (q is the degenerate
access path of just the formal parameter b) and the last component
of p is an owned field, as per section 4.2, then f transfers ownership
of b to a.

Returning to figure 3, the function pvl_push stores its d ar-
gument into a field of lst, which is summarized by the access
path (lst, 〈head,data〉). icalcomponent_add_component calls
pvl_push with a field of c, components, as an argument, ex-
tending the write access path to (c, 〈components,head,data〉).
The first phase of the analysis identified the last component
of this path as an owned field, and thus the c argument of
icalcomponent_add_component assumes ownership of child.
Note that icalcomponent_set_parent does not assume ownership
of its parent parameter: the corresponding field is never finalized,
and is thus not owned.

Our access path construction proceeds backwards from an ad-
dress across pointer dereferences, field accesses, union accesses,
and array accesses. We stop the construction at SSA φ-nodes to
avoid a potential exponential explosion of generated access paths.
While this is unsound, we have not observed any missed ownership
transfers in practice.

5. An Improved Escape Analysis
While the results of the transfer analysis are essential to minimize
the effort of generating language bindings that automate resource
management, an escape analysis still provides important information.
If a pointer to an object escapes, but ownership of that object is not
transferred, we still learn information about the lifetime of that
object. While we cannot always automatically manage this lifetime,
the user can at least be informed that some scope management is

required. Helper functions could be used to pin objects with scoped
lifetimes to keep them from being collected while references exist in
a C library that are not visible to the garbage collector. While prior
work has described an escape analysis for this purpose, we present
a more precise analysis that eliminates many of the false positives
of prior work.

We describe a bottom-up summary-based flow-insensitive escape
analysis with limited field and context sensitivity for C. This analysis
is a form of stack escape analysis [3, 21], rather than a thread escape
analysis [19]. Our analysis is based on a value flow escape graph,
which is a value flow graph [9] with extra annotations. Our analysis
is most similar to that of Whaley and Rinard [21], though ours
is flow-insensitive and requires only a single graph per function.
Like Whaley and Rinard [21], we analyze functions independently
of their callers. We require this because callers may be written in
another language and unavailable at analysis time. Furthermore, we
trade precision for speed and simpler handling of callees. Instead
of unifying the points-to escape graph of each callee into the graph
of the caller at call sites, we use summary information to mark only
the escaping parameters as escaping. This allows for more compact
representations of callees at the cost of some of the precision of
graph unification. We conservatively assume that values passed to
callees with no summaries do escape. The value flow graph does
not allow us to answer points-to queries, which we do not require,
but it can be constructed in a single pass, unlike the points-to escape
graph.

Our value flow graph has two types of nodes: location nodes
and sink nodes. An edge a → b denotes that values flow from
a to b. A value escapes if there is a path from it to a sink. The
analysis is conservative and identifies values that may escape.
This approximation is appropriate in that false positives (values
incorrectly identified as escaping) lead to leaks, not crashes.

Sink nodes are created for (1) return statements in functions that
return aggregate or pointer values and (2) stores to global variables,
arguments, the return values of callees, and access paths thereof. A
sink is also created for each escaping actual argument of a callee.
The following statements induce edges in the value flow graph:

• *a = b adds b→ a or bp → a
Assignments cause the source operand to flow to the destination
operand. The edge bp → a is added if the right-hand side of
the assignment is a field reference with concrete access path
(b, 〈p〉); if there is no field access, the simpler form b → a is
added.
• return a adds a → sinkret

The returned value flows to the special return sink node.

For example, the function CaseWalkerInit in figure 5 has the
value-flow escape graph shown in figure 6. We represent location
nodes as circles and sinks as rectangles. The argument src is
represented by its location node, which flows into a field of the
w argument. src escapes because there is a path from it to a sink.

Function calls of the form f(a1, a2, ..., aN) act as a sequence
of assignments ∗ f1 = a1, ∗ f2 = a2, . . . , ∗ fN = aN where f i is
the node representing the ith formal argument of f . If f i allows its
argument to escape, then f i is a sink node. Local value v escapes
from f if v →∗ s for some s ∈ sinkNodes; that is if any sink node s
is reachable from v. If v does not escape according to this query, then
field p of v escapes from f if, vp →∗ s for some s ∈ sinkNodes.

To introduce a limited form of context sensitivity, we make
special note of arguments that escape into fields of other arguments.
Assume there is a function call f(a, b) where the first argument
of f escapes into the second argument. We add an edge a → b in
all callers of f to model the effects of f on the value flow escape
graph of the caller. For example, the CmpIgnoreCase function in

5

1 void CaseWalkerInit(const char *src, CaseWalker *w) {
2 w→src = src;
3 w→read = 0;
4 }
5

6 int CmpIgnoreCase(const char *s1, const char *s2) {
7 CaseWalker w1, w2;
8 Char8 c1, c2;
9

10 if (s1 == s2) return 0;
11

12 CaseWalkerInit(s1, &w1);
13 CaseWalkerInit(s2, &w2);
14

15 for (;;) {
16 c1 = CaseWalkerNext(&w1);
17 c2 = CaseWalkerNext(&w2);
18 if (!c1 || (c1 != c2)) break;
19 }
20 return (int)c1 −(int)c2;
21 }

Figure 5. Examples of escaping pointers from fontconfig library

w→srcsrc

Figure 6. Value flow escape graph for CaseWalkerInit in figure 5

w1

w2

s1

s2

Figure 7. Value flow escape graph for CmpIgnoreCase in figure 5

figure 5 calls CaseWalkerInit, which we already established allows
its src argument to escape into w. Thus, the value flow escape
graph of CmpIgnoreCase, shown in figure 7, has edges from s1
to w1 and s2 and w2. Since w1 and w2 are local variables that do
not otherwise escape, we are able to conclude that s1 and s2 do
not escape, despite being passed as arguments that could escape if
considered only in isolation.

Field sensitivity prevents a single escaping field from causing all
other fields of the same object to also escape. We take a field-based
approach to field sensitivity that is unsound when pointers to struct
types are cast to structurally unrelated types [15] as in section 4.1.
This unsoundness could make us label an escaping pointer as non-
escaping. It could be made sound by having any casts to structurally
unrelated types cause all affected fields to escape. We have not done
this because such casts are rare in practice and have not yet caused
problems.

6. Indirect Calls as Contracts
While analyzing library code, indirect calls (calls through function
pointers) pose a problem. Libraries typically have many entry points
and context of the call is unavailable. While some indirect call targets
can be resolved, most cannot. Thus, whenever one of our analyses
encounters an indirect call, it seems that we must conservatively
assume that any function at all could be called. Instead of accepting
this often overly-conservative conclusion, we note that:

1 typedef struct XML_ParserStruct {
2 const char *m_encoding;
3 XML_MemSuite m_mem;
4 } *XML_Parser;
5

6 XML_Parser parserCreate(const char *encodingName)
7 {
8 XML_Parser parser;
9 parser = malloc(sizeof(struct XML_ParserStruct));

10 if (parser != NULL) {
11 parser→m_encoding = encodingName;
12 parser→m_mem.malloc_fcn = malloc;
13 parser→m_mem.realloc_fcn = realloc;
14 parser→m_mem.free_fcn = free;
15 }
16

17 return parser;
18 }
19

20 DTD* dtdCreate(const XML_MemSuite *ms) {
21 DTD *p = ms→malloc_fcn(sizeof(DTD));
22 if (p == NULL) return p;
23

24 p→scaffLevel = 0;
25 p→scaffSize = 0;
26 p→scaffCount = 0;
27 p→contentStringLen = 0;
28 return p;
29 }

Figure 8. Contracts in expat library

• many indirect function calls are made through function pointers
stored in object fields, particularly in the case where they are
used to implement polymorphic behavior; and
• libraries initialize many of these fields with default functions

defined in the same library.

While callers can technically store the address of any function
in one of these function pointers, the library-provided initializers
clearly indicate what semantics the library expects the call targets
to obey. Violating those semantics is possible, but risks undefined
behavior. Library-provided function pointer initializers effectively
induce contracts on internally-initialized function pointers. The
library obeys these contracts, and inferences based on them hold as
long as client code obeys them as well. Recognizing these contracts
and incorporating them into the analyses discussed in sections 3 to 7
improves precision.

Consider the example in figure 8. When parser objects are created
in parserCreate, the malloc_fcn field of their XML_MemSuite is
initialized with a pointer to the standard malloc function on line 12.
While this does not mean that every malloc_fcn field will refer to
malloc, it strongly suggests that the library expects the target to be
an allocator. Since we consider the assignment on line 12 to create a
contract on the malloc_fcn field, we conclude that dtdCreate is an
allocator because of the call-under-contract on line 21.

7. Safely Sharing Ownership
Most resources in our model must be exclusively owned in order
for them to be automatically managed by a high-level language run-
time system. However, we support shared ownership for reference-
counted resources. Moreover, ownership can be safely shared be-
tween a low-level language and a high-level language run-time
system, provided the high-level language run-time safely manipu-

6

1 typedef struct {
2 int refcount;
3 Connection *connection;
4 } PendingCall;
5

6 PendingCall* pending_call_ref(PendingCall *pending) {
7 ++pending→refcount;
8 return pending;
9 }

10

11 void pending_call_unref(PendingCall *pending) {
12 −−pending→refcount;
13 if (pending→refcount) return;
14

15 Connection *c = pending→connection;
16 free(pending);
17 connection_unref(c);
18 }

Figure 9. Reference counting in dbus-1 library

lates the reference count. When the high-level language acquires
shared ownership of a resource, it must increment its reference count.
When the high-level language is ready to relinquish ownership of the
resource, it must decrement the reference count instead of calling
a finalizer on it. If the high-level language finalizes the resource
directly, later accesses through outstanding shared references in
library code could lead to a crash. Note that shared resources may
safely escape into library code (c.f. section 5) because the reference
counts mediate their lifetimes.

7.1 Identifying Reference Increment and Decrement
Functions

We describe an analysis to identify, for a library with reference-
counted resources:

• the set of types that must be reference-counted (to know when
references must be managed) and
• the functions to increment and decrement references (IncRef and

DecRef, respectively) for each type (to correctly manipulate the
reference counts).

We begin by identifying the DecRef function of a resource.
Fundamentally, DecRef :

• takes a pointer to a resource as an argument,
• decrements an integer field of the resource, and
• if the reference count becomes zero, calls a finalizer on the

argument.

A common variant of DecRef calls the finalizer directly without
decrementing the reference count if there is only a single reference
to the resource. Another interesting variant, such as from gobject-
2.0, has multiple reference count decrement attempts; these arise
because gobject-2.0 supports finalizers that can add references to
objects that are in the process of being finalized. Instead of precisely
modeling every possible variant of reference counting, we employ an
over-approximation that is unsound and incomplete, but nonetheless
effective.

Without loss of generality, assume that DecRef functions take
only single argument: a pointer to a resource. First, identify all
conditional finalizers in the library. These are functions that finalize
their argument on some, but not all, paths. Building on the results
of the finalizer analysis described in section 3, this is a linear scan
of the instructions in each function. A conditional finalizer is a

function that calls at least one finalizer on its argument but is not
itself a finalizer. (If it were a finalizer, it would call a finalizer on all
paths.)

Consider the example in figure 9, which is adapted from code in
the dbus-1 library simplified for exposition. Following the algorithm,
we note that pending_call_unref takes a single pointer-typed
argument. It passes this argument to finalizer free on line 16.
However, pending_call_unref may also return early on line 13.
Therefore, pending_call_unref is not itself a finalizer, but it is a
conditional finalizer.

For each conditional finalizer cf with argument a, cf is a DecRef
function with access path (a, 〈p〉) if it decrements an integer field of
a via a sequence of field accesses p. We do not require that cf always
decrement the reference count because some variants skip it under
certain circumstances; this is a potential source of imprecision. For
example, the conditional finalizer pending_call_unref in figure 9
always decrements the refcount field of its pending argument on
line line 12. Therefore, pending_call_unref is a DecRef function
with access path (pending, 〈refcount〉).

For each DecRef function and its associated access path (a, 〈p〉),
the corresponding IncRef function is the one that takes a single
argument of the same type as a, the root of the access path, and
always increments the location in the resource described by p. If
there is more than one IncRef function for a given DecRef function,
we do not associate them and an annotation would be required to
match the desired pairs. If more than one DecRef function could
manage a given type, a consumer of the analysis results would
need an annotation to prefer one. Returning to figure 9, we find
that pending_call_ref always increments the refcount field of its
one argument. Therefore, pending_call_ref is the IncRef function
corresponding to pending_call_unref.

Note that we assume that libraries correctly manage reference
counts internally. We make no attempt to verify this assumption, for
which other analyses already exist [4].

7.2 Identifying Reference-Counted Types
So far we have identified the IncRef and DecRef functions that
manipulate reference counts. We must also determine the set of
types whose reference counts are managed by these functions.
Clearly, this set includes the common argument type between IncRef
and DecRef. Polymorphic reference counting functions, however,
manage multiple types. One way to identify the set of managed
types is to note that any polymorphic DecRef function needs some
way to perform type-specific finalization when the reference count
reaches zero. The types handled by these type-specific finalization
functions are the types managed by the IncRef and DecRef pair.

More formally, let c be a function that has already been identified
as a DecRef function for some type. Identify all indirect function
callees in c to which c passes its argument. For each such callee f ,
let τf be the set of types to which f casts its argument. The set of
types managed by c is the type of the argument of c unioned with⋃

f τf .
The example in figure 10 is simplified from the open-source

library glib-2.0. Our analysis recognizes g_object_unref as a De-
cRef function because of the decrements of the ref_count field
on lines 6 and 9 and the call to finalizer g_type_free_instance
on line 13. Next, we identify the targets of indirect calls in
g_object_unref. The only indirect call appears on line 12. As
initialized in g_emblem_class_init, the only known target is
g_emblem_finalize. Thus, g_object_unref and g_object_ref are
the DecRef and IncRef functions for GObject and GEmblem.
As in this example, the indirect callees of DecRef often represent
finalizers for resource-specific data members.

This algorithm assumes that DecRef functions operate on struc-
tural subtypes of the input value. An alternative approach is to

7

1 void g_object_unref(GObject *object) {
2 gint oref;
3

4 oref = g_atomic_int_get(&object→ref_count);
5 if (oref > 1) {
6 g_atomic_int_add(&object→ref_count, −1);
7 }
8 else {
9 oref = g_atomic_int_add(&object→ref_count, −1);

10

11 if (oref == 1) {
12 object→klass→finalize(object);
13 g_type_free_instance(object);
14 }
15 }
16 }
17

18 void g_emblem_class_init(GEmblemClass *klass) {
19 klass→finalize = g_emblem_finalize;
20 }
21

22 void g_emblem_finalize(GObject *object) {
23 GEmblem *emblem = (GEmblem*)object;
24 g_object_unref(emblem→icon);
25 }

Figure 10. Managed types example from glib-2.0 library

directly exploit the structural subtyping relationship and consider
all structural subtypes of the input to DecRef as being managed. We
compare these two approaches in section 8.2.

7.3 Interprocedural Reference Count Manipulation
Not all functions directly increment and decrement references. Many
use auxiliary functions, particularly those that rely on atomic incre-
ments and decrements. We employ a simple analysis to summarize
the effects that functions have on the integer fields of their pointer-
typed arguments. This analysis also tracks these effects for argu-
ments of type int* to accommodate reference counting functions
that pass the address of their reference count field instead of the
object containing it.

7.4 Benefits of Automation
For users unfamiliar with a library, the inferred annotations docu-
ment that reference counts must be maintained. More importantly,
automatically finding the vast majority of reference-counted types
decreases a potentially large annotation burden.

8. Evaluation
We have applied the analyses described in sections 3 to 6 to a suite
of fifteen open-source libraries. The libraries range in size from a
few functions and a few hundred lines of code up to several thousand
functions with hundreds of thousands of lines of code.

We evaluate the effectiveness of the ownership transfer analysis
and the reference counting analysis separately. For the most part,
libraries using a reference counting discipline do not require the
results of the ownership transfer analysis because ownership is
explicitly shared through the reference counts. Thus, the results
of the ownership transfer analysis are typically not necessary to
generate library bindings for reference-counted libraries.

8.1 Transfer Analysis
This section evaluates the effectiveness of the ownership transfer
analysis, with a particular focus on the reduction in manual annota-

Table 1. Number of inferred transfer and escape annotations
Library Analyzed Transferred Parameters

Name Functions Transfer Contract Indirect Direct

archive 267 9 33 18 47
freenect 61 2 0 5 13
fuse 188 4 5 106 28
glpk 1072 0 67 54 149
gsl 3910 39 68 21 88
ical 1045 10 0 7 142

tion burden compared to relying solely on the results of an escape
analysis. Table 1 shows the number of inferred annotations for six
libraries of various sizes. The transfer analysis was designed based
on archive and ical. The remaining libraries can be considered as
the test set. The second column in the table notes the number of
functions in each library. The “Transfer” column reports the number
of function parameters that our analysis has identified as transferring
ownership from the caller. The rest of the columns break down the
results of our escape analysis.

We partition escaping parameters into three categories: contract
escapes, indirect escapes, and direct escapes. Contract escapes are
parameters that escape through calls to function pointers where some
targets are known, and all of those targets agree that the parameter
does not escape. We refer to these parameters as contract escapes
because they only escape if the contract on the function pointer they
are passed to is violated, i.e., only if the assumptions of section 6
do not apply. Indirect escapes are parameters that are passed as
arguments to calls through function pointers for which no targets
can be identified. However, it is rare in practice for parameters to
truly escape through function pointers because that would make the
code difficult to reason about. If a consumer of these analysis results
can make this assumption, the distinction can make a significant
difference. For example, the fuse client library has many more
indirect escapes than direct escapes. Direct escapes in table 1 are the
remaining escaping parameters: simple escapes, such as to global
variables, that are not due to calls through function pointers.

While contract escapes are clearly not expected to escape by
the library, by virtue of library-provided initializers, they offer
more information still. Each indirect function call that induces
contract escapes imposes a contract on the function pointer that
is dereferenced for that call. We can say that any function that could
be pointed to by that function pointer should obey the contract that
its arguments not escape. Contract escapes are most prevalent in
libraries with polymorphic behavior, as can be seen in archive. In
this library, polymorphism is implemented through function pointers
stored in each object. These function pointer fields are initialized
with functions defined in the library when objects are created,
allowing us to infer the corresponding contracts as suggested in
section 6. It is important to note that we do not consider an argument
to an indirect function call to be a contract escape if we merely know
some of the targets of the call. We only label it as a contract escape
if all known call targets agree that the parameter does not escape.

Each transfer annotation has an accompanying direct escape
annotation. If the results of the ownership transfer analysis, rather
than the escape analysis, are used to automate resource management,
then the difference between the “Direct” and “Transfer” columns in
table 1 is the number of manual annotations saved by the ownership
transfer analysis. Without the ownership transfer analysis, each extra
escape annotation introduces a memory leak that must be plugged
with a manual annotation. This difference is striking in glpk and ical:
the ownership transfer analysis saves over 100 manual annotations
in each. Further, glpk does not seem to ever transfer ownership.
However, as discussed in section 5, the escape annotations are still
useful as object lifetime documentation to the user.

8

Note that the transfer analysis requires an accurate view of the
finalizer functions in a given library. The finalizer analysis is be-
yond the scope of this paper, and the one used for this evaluation
was not able to identify all of the finalizers in the libraries used for
this evaluation. To compensate, we manually annotated four missed
finalizers in ical and two in glpk. The finalizers in archive, freenect,
and fuse were automatically identified. We have not exhaustively
inspected the results for glpk or gsl and some finalizers may have
been missed in those libraries; if so, our ownership transfer analysis
would identify more transferred parameters if the missed finaliz-
ers were manually annotated. We note that manually annotating
finalizers is significantly easier than manually examining possible
ownership transfers because finalizers tend to follow uniform nam-
ing conventions.

In the remainder of this subsection, we provide a more detailed
analysis of the results for three of the libraries in our evaluation.
These three libraries were chosen because they have interesting own-
ership transfer properties while being small enough to thoroughly
evaluate by hand.

8.1.1 ical
The ical library provides a representation of calendar data. It has
many functions, but only a few actually transfer ownership of objects.
The primary data structures in this library form a tree; when an item
is added to a tree representing some calendar event, that tree assumes
ownership of the new item.

The two analyses agree that 10 parameters induce ownership
transfers. The escape analysis flags over 100 extra parameters,
however. Some of these non-transferred escapes can be explained
by the presence of a container API that does not own its elements:
adding an item to the container causes an escape but the container
does not own anything except its own internal structures. Many of
the remaining discrepancies arise from parent pointers. When one
item is inserted as the child of another in a tree, the parent field of
the newly inserted item is updated to point to its new parent element.
This causes the child to escape into the parent and the parent to
escape into the child. Similarly, many functions cause one or more
of their parameters to escape into themselves. These self-escapes
could potentially be special-cased when generating library bindings.

One function with an escape annotation but no transfer annota-
tion was particularly interesting. This function adds an attachment
to another object; however, attachments are the one resource in ical
that are reference-counted. Since attachments are reference-counted,
they do not have a finalizer function that our analysis could automat-
ically identify. Adding a manual annotation to the unref function for
attachments causes the analysis to correctly identify the ownership
transfer in question. This suggests that it may be prudent to consider
unref functions for reference-counted resources as finalizers for the
purposes of the ownership transfer analysis.

8.1.2 freenect
This library provides a driver and userspace control for Kinect
hardware. Our analysis infers ownership transfer of two parame-
ters in two different functions, freenect_init and fnusb_init. Both
of these inferences are incorrect. The root cause is fnusb_init,
which freenect_init calls. The parameter in question is an optional
libusb_context. If the caller provides a context, the library keeps a
reference to it but does not assume ownership. However, if the caller
does not provide a context, fnusb_init allocates its own context
over which it does assume ownership. This ownership is recorded
with a flag alongside the reference to the libusb_context. This vio-
lates one of the assumptions of our ownership transfer analysis: that
fields are either always owned or never owned. This particular field
is sometimes owned. While these inferred transfer annotations are
not correct, the analysis still relieves the user of having to provide

eleven annotations to compensate for the overzealous escape analy-
sis. The transfer analysis also reduced the amount of code that must
be inspected manually to two functions.

We could adapt our analysis to make special note of fields that
are only sometimes finalized. Perhaps we could restrict it to fields
that are finalized only based on some flag. These conditionally-
owned fields could be reported in diagnostics and in generated
documentation; with this extra information, users could decide on
the correct ownership semantics for their case. Although adding
to the manual inspection burden for users is undesirable, our
analysis can show users exactly where the ambiguity arises, limiting
the scope of the inspection to just unusual finalizers, rather than
potentially every function in the library.

8.1.3 fuse
The fuse library is the userspace component of the Filesystem in
Userspace project for some *NIX systems. This library has only a
handful of ownership transfers; three of the four are transfers of a
single type. In these cases, fuse_session objects assume ownership
of communication channels through constructors and an explicit
fuse_session_add_chan function.

The fourth ownership transferring function, fuse_session_new,
is more interesting. It creates a new fuse_session with two param-
eters: a void* for arbitrary user-provided data and a struct with
metadata. Among the metadata is an optional function to finalize the
user-provided data, which the finalizer for fuse_session objects
invokes if it is present.

This function exhibits an unforeseen interaction with our assump-
tion that fields will either always be owned or never owned: the user
has control over the ownership of a field, and our analysis finds
evidence within the library being analyzed that the field may be
owned. This case suggests that our restriction, as well as our notion
of finalizers, could benefit from more nuance. In this case, we see
that a field is conditionally finalized based on a value provided by
the user, whereas the example in freenect made its decision to final-
ize or not based on a field set by the library. While the correctness
of the transfer annotation in the case of this user data parameter to
fuse_session_new may depend on the preferences of the library
user, the transfer analysis still saves a user from having to provide
at least 24 annotations to prevent leaks due to the escape analysis.
Furthermore, the user need only examine the four annotations in-
ferred by the transfer analysis. In reading the documentation on how
to call fuse_session_new, the meaning of the transfer annotation
on the user data parameter would become clear.

One might be tempted to generate library bindings that never
transfer ownership of user data pointers to a C library. This example
shows that such special treatment for even this extremely common
C idiom is not completely safe. In most cases user data is not owned,
but when it is the type system bears no indication one way or another.

Most of the escaping parameters whose ownership is not trans-
ferred are other user data pointers. There are also a few instances of
self-escaping parameters as in ical. A third class of escapes are due
to an imprecision in the escape analysis that could be fixed. The fuse
library uses non-escaping heap allocations; parameters stored into
these heap allocations are reported as escaping because our escape
analysis does not take advantage of the fact that pointers returned
by allocators like malloc are not aliased by anything. This could be
fixed by treating heap-allocated locals in the same way that we treat
non-escaping stack-allocated locals.

8.2 Reference Counting Analysis
Table 2 summarizes the results of our reference counting analysis.
This analysis was designed based on the dbus-1, exif, gobject-2.0,
and gio-2.0 libraries. For each library, we report (1) the number
of functions in the library, (2) the number of functions that are

9

Table 2. Number of inferred reference counting annotations. “Ref/
Unref” refers to the number of inferred IncRef and DecRef function
pairs, rather than single functions.

Library Analyzed Reference Counting

Name Functions Allocators Finalizers Ref/Unref

cairo 379 2 2 4
dbus-1 804 36 8 11
exif 142 16 5 7
fontconfig 196 51 8 3
freetype 289 9 6 3
gio-2.0 1772 58 11 9
glib-2.0 1529 228 39 16
gobject-2.0 394 15 3 1
soup-2.4 530 46 6 3

1 void exif_mem_free(ExifMem *mem, void *d)
2 {
3 if (!mem) return;
4 if (mem→free_func) {
5 mem→free_func(d);
6 return;
7 }
8 }

Figure 11. Finalizer from exif library

allocators, (3) the number of functions that are finalizers, and (4)
the number of IncRef and DecRef function pairs. As with our
ownership transfer analysis, the reference counting analysis requires
an accurate view of the allocators and finalizers present in each
library. The dbus-1 library required two manual annotations, exif
required four, gobject required one, and glib required seven in order
for all of the allocators and finalizers to be recognized. Some of these
libraries use custom memory allocators, while others have finalizers
that do not quite match the notion of a finalizer that our tools use
because they include extra not-NULL checks. Figure 11 shows an
example. On line 4, this finalizer checks that a function pointer
that it calls is not-NULL. Extending the allocator and finalizer
identification analyses is beyond the scope of this work.

This analysis is useful in several ways. First, it alerts users that
their library uses reference counting. Our experiments revealed
reference-counted types in libraries where we did not expect them,
including ical and libusb. Reference counting is not the primary re-
source management discipline in either library, but is still important
yet not apparent from a visual scan. More importantly, even in cases
where reference counting is the primary resource management disci-
pline, our reference counting analysis identifies both polymorphic
IncRef /DecRef functions and the types they operate on. For exam-
ple, in dbus-1 we recognize dbus_auth_unref and dbus_auth_ref
as polymorphic managers of reference counts for three related types:
DBusAuthClient, DBusAuthServer, and DBusAuth.

The gio-2.0 library highlights the importance of the reference
counting analysis in the presence of polymorphic reference counters.
While gio-2.0 has 9 IncRef/DecRef pairs that are identified by the
analysis, it defines a further 138 types that are managed by the
g_object_unref and g_object_ref functions defined in the gobject-
2.0 library. Note that the 9 types with their own reference counting
functions cannot be managed with the generic gobject-2.0 reference
counting functions, though nothing in the names of the types reveals
this. Section 7.2 describes two algorithms for recognizing which
types are managed by polymorphic reference counting functions.
The first relies on the presence of type-specific finalizers and the
second relies only on structural subtyping. The second algorithm

has been more reliable in practice, identifying 23 types as managed
by the gobject-2.0 reference counting functions that were missed by
the first algorithm. The first algorithm misses these types because
they have no type-specific resources that need to be finalized, and so
do not define a finalizer. However, they are still structural subtypes
of GObject, so the second algorithm recognizes them.

9. Related Work
The C/C++ leak detector of Heine and Lam [6] is very similar
in spirit to our work. They present an inference algorithm based
on inequality constraints to assign an owner to each object in
a program. Our algorithms work on partial programs (libraries)
and are formulated in terms of symbolic access paths. Our major
contributions beyond their work are to (1) recognize ownership
semantics for C objects with a generalized notion of allocators and
finalizers (instead of C++) and (2) incorporate shared ownership
via reference counting and inferred contracts on function pointers
used in library code. Rayside and Mendel [17] take a more dynamic
approach with ownership profiling; they report detailed hierarchical
ownership information that is more precise than what we can achieve
statically. Negara et al. [13] describe an inference algorithm based
on liveness analysis for identifying ownership transfer semantics
in message passing applications. In cases where ownership can
be proved to transfer to another process via message passing, the
copy of the message can be skipped and the receiving process
can assume ownership of the message directly. Boyapati et al.
[1] address ownership at the type level with work on ownership
types. Müller and Rudich [12] extend Universe Types to support
ownership transfer. Their notion of temporary aliases correspond
closely to our transient references. In effect, we infer ownership
types for C. Focusing specifically on memory, Wegiel and Krintz
[20] discuss methods for sharing heap-allocated objects between
different managed run-time environments. They do not need to
establish an owner for each heap object because the run-time
environments are able to cooperate and safely share objects. Since
one of our run-time systems is C, which has no facilities for such
object sharing, we must infer ownership.

As discussed in section 7, we do not verify the correctness of
reference count handling in the libraries we analyze. Emmi et al. [4]
present an analysis to perform this complex verification building on
the Blast model checker. Our work is complementary in that Emmi
et al. require manual specification of the set of reference-counted
types, which could be automated with our analysis.

10. Conclusion
We have described an ownership model for C resources to make
sharing resources between languages in polyglot programs safer.
Documenting the ownership properties of even moderately large
programs by hand is difficult and labor-intensive. We have described
the allocator and finalizer analyses of Ravitch et al. in terms of
our ownership model. We have discussed the difficulty in relying
only on an escape analysis to model the ownership of objects in C
libraries: many manual annotations are required to compensate for
the prevalence of escaping function parameters when true ownership
transfer is rare. We addressed this difficulty by describing a new
ownership transfer analysis based on our ownership model. We
also argue that the results of an escape analysis are still useful for
understanding the semantics of libraries. We presented a scalable
and composable escape analysis to further reduce the number of
false positive escape annotations. We have described trade-offs
for this escape analysis in context and field sensitivity that are
suitable for analyzing an important class of incomplete program:
library code. We have also presented an analysis to automatically

10

identify reference-counted types and their associated reference count
management functions.

Our algorithms automatically infer hundreds of annotations de-
scribing the resource ownership semantics of fifteen significant open
source libraries, significantly reducing the manual annotation burden
for those wishing to generate library bindings. While these inferred
annotations clearly have applications to polyglot programming, they
are also useful for understanding and documenting the behavior of
complex C libraries.

References
[1] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object

encapsulation. In A. Aiken and G. Morrisett, editors, POPL, pages
213–223. ACM, 2003. ISBN 1-58113-628-5.

[2] B.-C. Cheng and W. W. Hwu. Modular interprocedural pointer analysis
using access paths: design, implementation, and evaluation. In M. S.
Lam, editor, PLDI, pages 57–69. ACM, 2000. ISBN 1-58113-199-2.

[3] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff.
Stack allocation and synchronization optimizations for Java using
escape analysis. ACM Trans. Program. Lang. Syst., 25(6):876–910,
2003.

[4] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar. Verifying reference
counting implementations. In S. Kowalewski and A. Philippou, editors,
TACAS, volume 5505 of Lecture Notes in Computer Science, pages
352–367. Springer, 2009. ISBN 978-3-642-00767-5.

[5] R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S. Jr., editors.
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, 2007.
ACM. ISBN 978-1-59593-786-5.

[6] D. L. Heine and M. S. Lam. A practical flow-sensitive and context-
sensitive C and C++ memory leak detector. In PLDI, pages 168–181.
ACM, 2003. ISBN 1-58113-662-5.

[7] U. P. Khedker, A. Sanyal, and A. Karkare. Heap reference analysis
using access graphs. ACM Trans. Program. Lang. Syst., 30(1), 2007.

[8] C. Lattner and V. S. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO, pages 75–88.
IEEE Computer Society, 2004. ISBN 0-7695-2102-9.

[9] L. Li, C. Cifuentes, and N. Keynes. Boosting the performance of
flow-sensitive points-to analysis using value flow. In T. Gyimóthy and

A. Zeller, editors, SIGSOFT FSE, pages 343–353. ACM, 2011. ISBN
978-1-4503-0443-6.

[10] K.-K. Ma and J. S. Foster. Inferring aliasing and encapsulation
properties for Java. In Gabriel et al. [5], pages 423–440. ISBN 978-1-
59593-786-5.

[11] I. Matosevic and T. S. Abdelrahman. Efficient bottom-up heap analysis
for symbolic path-based data access summaries. In C. Eidt, A. M.
Holler, U. Srinivasan, and S. P. Amarasinghe, editors, CGO, pages
252–263. ACM, 2012. ISBN 978-1-4503-1206-6.

[12] P. Müller and A. Rudich. Ownership transfer in universe types. In
Gabriel et al. [5], pages 461–478. ISBN 978-1-59593-786-5.

[13] S. Negara, R. K. Karmani, and G. A. Agha. Inferring ownership transfer
for efficient message passing. In C. Cascaval and P.-C. Yew, editors,
PPOPP, pages 81–90. ACM, 2011. ISBN 978-1-4503-0119-0.

[14] T. E. Oliphant. Python for scientific computing. Computing in Science
and Engineering, 9(3):10–20, 2007.

[15] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Efficient field-sensitive
pointer analysis of c. ACM Trans. Program. Lang. Syst., 30(1), 2007.

[16] T. Ravitch, S. Jackson, E. Aderhold, and B. Liblit. Automatic Gen-
eration of Library Bindings using Static Analysis. In M. Hind and
A. Diwan, editors, PLDI, pages 352–362. ACM, 2009. ISBN 978-1-
60558-392-1.

[17] D. Rayside and L. Mendel. Object ownership profiling: a technique
for finding and fixing memory leaks. In R. E. K. Stirewalt, A. Egyed,
and B. Fischer, editors, ASE, pages 194–203. ACM, 2007. ISBN 978-
1-59593-882-4.

[18] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298,
2002.

[19] A. Salcianu and M. C. Rinard. Pointer and escape analysis for
multithreaded programs. In M. T. Heath and A. Lumsdaine, editors,
PPOPP, pages 12–23. ACM, 2001. ISBN 1-58113-346-4.

[20] M. Wegiel and C. Krintz. Cross-language, Type-safe, and Transparent
Object Sharing for co-Located Managed Runtimes. In W. R. Cook,
S. Clarke, and M. C. Rinard, editors, OOPSLA, pages 223–240. ACM,
2010. ISBN 978-1-4503-0203-6.

[21] J. Whaley and M. C. Rinard. Compositional pointer and escape analysis
for Java programs. In B. Hailpern, L. M. Northrop, and A. M. Berman,
editors, OOPSLA, pages 187–206. ACM, 1999. ISBN 1-58113-238-7.

11

	Introduction
	Resource Ownership Model
	Memory Ownership in C
	Ownership in High-Level Languages

	Allocators and Finalizers
	Recognizing Ownership Transfer
	Symbolic Access Paths
	Identifying Owned Fields
	Transferred Ownership

	An Improved Escape Analysis
	Indirect Calls as Contracts
	Safely Sharing Ownership
	Identifying Reference Increment and Decrement Functions
	Identifying Reference-Counted Types
	Interprocedural Reference Count Manipulation
	Benefits of Automation

	Evaluation
	Transfer Analysis
	ical
	freenect
	fuse

	Reference Counting Analysis

	Related Work
	Conclusion

