
Type Systems for Distributed Data Structures

by Benjamin Liblit

Research Project

Submitted to the Department of Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, in partial satisfaction of the re-
quirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Alexander Aiken
Research Advisor

(Date)

* * * * * * *

Professor Katherine Yelick
Second Reader

(Date)



Abstract

Distributed-memory programs are often written using a global address space: any process can name
any memory location on any processor. Some languages completely hide the distinction between local and
remote memory, simplifying the programming model at some performance cost. Other languages give the
programmer more explicit control, offering better potential performance but sacrificing both soundness and
ease of use.

Through a series of progressively richer type systems, we formalize the complex issues surrounding sound
computation with explicitly distributed data structures. We then illustrate how type inference can subsume
much of this complexity, letting programmers work at whatever level of detail is needed. Experiments
conducted with the Titanium programming language show that this can result in easier development and
significant performance improvements over manual optimization of local and global memory.



1 Introduction

While there have been many efforts to design distributed, parallel programming languages, none has been
completely satisfactory. Many approaches present the illusion of a single shared, global address space. While
easy for programmers to understand, this approach hides the real structure of memory, making it difficult to
exploit locality of data. In complex applications where local memory accesses may be orders of magnitude
faster than remote accesses, this can seriously harm performance, development time, or both.

Another approach is to reveal the full distributed memory hierarchy at the language level. A popular
model is to allow a mixture of global and local pointers: the former span the entire global address space, while
the latter only address memory that is physically colocated with a given processor. This supports globally
shared data structures while still allowing efficient implementation of algorithms specifically structured for
distributed parallel execution [4, 5, 7, 8, 15,21, et al ].

Historically, programming languages that expose mutable local and global addresses have been unsound.
Designing a sound type system which allows local and global pointers turns out to be a subtle problem.
Exposing local/global also places an additional burden on the programmer, who may be forced to attend to
the details of memory layout even in sections of code that are not performance critical.

This paper makes three principal contributions:

• Through a progression of sound type systems, we illustrate and clarify the semantic issues surrounding
local and global pointers.

• We present a type inference system that is capable of completing a program with inferred local/global
annotations, thereby relieving the programmer from managing address spaces in much or all of the
code.

• We present experimental results showing that this inference algorithm improves program performance
significantly, simplifies development, and does a better job than hand-optimization by humans.

The remainder of this paper is structured as follows. Section 2 offers a primer on the common termi-
nology with which we discuss distributed address spaces and highlights some of the performance costs of
simpler models that treat distributed memory as though it were shared memory. In Section 3 we develop
a series of small languages and type systems that codify sound computing with distributed mutable data
structures. The more expressive systems are also more complex; Section 4 shows how type inference can
simplify programming while retaining the full power of the type system. We have applied these principles
to the Titanium programming language, and report the results of our experiments in Section 5. Section 6
reviews related work. We conclude in Section 7 by summarizing our findings, and discussing directions for
future research.

2 Background

When describing interconnections between allocated blocks of data, we use the term pointer, which reinforces
the idea that we are discussing very low level operations. Although pointers can implement Standard ML
ref’s [28] or Java references [20], pointers are more primitive.

Our distributed memory model is an explicit two-level hierarchy with local and global memory. Local
memory is physically colocated with a processor. A system with sixteen processors has sixteen distinct local
memories. A local pointer encodes an address within one local memory and corresponds to a pointer or
memory address in standard languages. Local pointers do not travel well; a local address formed on one
processor is meaningless elsewhere.

Global memory is the union of all local memories. If we assume that processors are uniquely numbered,
then a global pointer encodes a pair 〈processor, address〉, with a home processor and an address within that
processor’s local memory. Global pointers have a different representation from local pointers and are more
costly to use. Manipulating remote memory may involve special machine instructions, trapping into the
operating system, or function calls into a message-passing library. The exact mechanism is irrelevant. What
matters is that global and local pointers have different representations and are manipulated using different
operations.

1



if (p.processor == MyProcessor)

result = *p.address;

else

result = RemoteRead(p.processor, p.address);

Figure 1: Dereferencing a global pointer. Because “result” may receive its value from an opaque
function call, the compiler is unlikely to be able to effectively optimize any code that uses the resulting value.

CM-5 T3D
function 2.8 µsec/edge 1.19
inline 2.0 0.71
optimized 1.3 0.66
narrow 1.15 N/A

Table 1: Costs of global pointers to local data. “Function” uses global pointers and requires a function
call for every read or write. “Inline” inlines global pointer code directly at the point of use. “Optimized”
uses extensive manual optimization and likely represents the theoretical best performance possible for global
references. “Narrow” uses simple pointers, and represents a level of performance only possible with hardware
support for shared memory.

While dereferencing a global pointer to another processor’s memory can be extremely slow, even a global
pointer into local memory generally incurs a performance penalty. As Figure 1 illustrates, dereferencing a
global pointer that turns out to be local may entail comparing two values, ignoring a branch to the remote
fetch clause, dereferencing the local address, and branching to the end of the entire conditional. The presence
of a branch, combined with the possibility of a function call, may make it difficult for an optimizing compiler
to improve code using the result of a statically global dereference.

Benchmarking quantifies these concerns. A Split-C [18] benchmark was run using various strategies to
implement global pointers. The benchmark, EM3D, repeatedly walks across an irregular bipartite graph
performing a simple calculation. We can estimate the cost of global pointers to local data by computing the
average time required per edge when all data is stored locally. Table 1 shows times collected on a Thinking
Machines CM-5 and partial times collected on a Cray T3D. These findings were originally presented in [26]
and [33], respectively.

The benchmark reveals that the performance cost of using global pointers for local data is significant.
Even when the code for reading and writing through global pointers references is inlined, the CM-5 shows
nearly a 75% slowdown compared with simple pointers. This is largely due to lost opportunities for opti-
mization. Extensive manual optimization included relocating code into the “local” clause of the locality test
to avoid a branch. Such heroic efforts bring performance to within 13% of simple pointers; the difference is
probably due to less effective register use and the increased time to move larger amounts of data around in
memory.

Thus, high performance parallel code must acknowledge the distributed nature of memory. Where data
structures genuinely span processor boundaries, global pointers are entirely appropriate. But when static
information can prove that data is always local, global pointers are needlessly costly.

3 A Progression of Type Systems

We present a suite of three languages and type systems that offer both global and local pointers, illustrating
the key soundness issues that arise when manipulating distributed data structures. All three systems have
been reduced to essentials to more clearly illuminate the novel issues. These are not languages in which
one would program directly. Rather, these languages should be considered as just barely above the level of
primitive machine addressing.

Our foremost concern is distributed data, not mobile code. Therefore, none of the languages we describe
contains λ expressions, let bindings or any other facility for introducing new functions, variables, or closures.
Rather, we assume a fixed set of named functions and variables available in an initial environment. Functions

2



J ::= integer literals
e ::= J | x | f e | ↑ e | ↓ e | widen e | transmit e
τ ::= int | boxed ω τ

ω ::= local | global

Figure 2: Expressions and types I. Expressions are given by e, while τ represents expression types.

are not first-class; function types are not data types, and function names only appear directly applied to
arguments. In Section 7 we briefly consider extensions allowing first-class functions; for now, we focus on
data.

Similarly, we omit the details of a parallel semantics. A single language construct, the unary transmission
operator, represents an explicit transfer of information from one processor to another. An expression of the
form “transmit e” should be read as evaluating expression “e” on one processor, then transmitting the result
to a different processor. The result of a transmit expression is the value as seen on the receiving processor.
This is the only explicit communication primitive; all other data is exchanged implicitly, via global pointers.
The presentation here is deliberately somewhat informal. An operational semantics and soundness proof for
the most complex type system are presented in the appendix.

The first language contains local and global pointers with arbitrary levels of indirection but without
updates. The second language introduces an assignment operator for destructive updates. The third language
adds pairs with updatable fields, which model the composite records, objects, or data structures of higher
level languages.

3.1 System I: Simple Pointers

Our first language contains integers, local and global pointers, and basic pointer operations. It has neither
destructive assignment nor compound data types; these are added in sections 3.2 and 3.3, respectively.
Expression and type grammars are given in Figure 2. Figure 3 gives type checking rules. A type environment,
A, encapsulates information about externally defined variable and function names.

To discuss pointers and pointer operations, we work with boxed and unboxed values. As is standard,
types represent unboxed values unless explicitly boxed. One may take a value’s address using the “↑”
indirection operator, so while “5” is a pattern of bits representing five, “↑ 5” is a local pointer to a memory
location holding the value five. We use “boxed” to describe pointer types, augmented with a width qualifier
to distinguish global from local pointers. The “widen” operator widens a local pointer to global. Hence:

5 : int

↑ 5 : boxed local int

↑ ↑ 5 : boxed local boxed local int

widen ↑ ↑ 5 : boxed global boxed local int

The “↓” dereferencing operator retrieves the value addressed by a pointer. Dereferencing a local pointer
works as expected, essentially stripping off an outer level of boxing. Dereferencing a global pointer is more
subtle.

3.1.1 Implicit Type Expansion

The difficulty with global pointer dereferencing is illustrated in Figure 4. Dotted lines mark local memory
boundaries; in this case, we have two processors and therefore two local memories. Processor 1 has con-
structed a local pointer to a memory location storing the value five. We indicate local pointers using a single
arrow. Processor 0 has a variable x of type boxed global boxed local int: a global pointer to a local
pointer to an integer. We use double arrows to indicate global pointers. A näıve dereference of x would

3



A ` J : int

A(x) = τ

A ` x : τ

A(f) = τ → τ ′ A ` e : τ
A ` f e : τ ′

A ` e : τ
A ` ↑ e : boxed local τ

A ` e : boxed local τ

A ` ↓ e : τ

A ` e : boxed global τ

A ` ↓ e : expand(τ)

A ` e : boxed local τ

A ` widen e : boxed global τ

A ` e : τ
A ` transmit e : expand(τ)

Figure 3: Type checking rules I.

processor 0 processor 1

x '/ ↑ 5

��
↓x &. 5

Figure 4: Situation requiring type expansion.

4



expand(boxed local τ) , boxed global τ

expand(τ) , τ otherwise

Figure 5: Type manipulating functions I.

J ::= integer literals
e ::= J | x | f e | ↑ e | ↓ e | widen e | transmit e |

e ; e | e := e
τ ::= int | boxed ω τ

ω ::= local | global

Figure 6: Expressions and types II. Relative to Figure 2, expressions now allow sequencing (;) and
assignment (:=).

simply extract the local pointer value ↑ 5. However, that local pointer is meaningless in processor 0’s local
address space. Rather, as the figure suggests, the local pointer addressed by x must be widened, so that ↓x
is global as well. The new global pointer’s home processor is 1, while its address on processor 1 is the same
as the address expressed by ↑ 5.

Widening is only needed when an operation could cause the value of a local pointer to cross processor
boundaries. Thus, if y : boxed global int is a global pointer to an integer, then ↓ y : int is the value of that
integer. Similarly, if z : boxed global boxed global int is a global pointer to a global pointer to an integer,
then ↓ z : boxed global int would traverse one level of indirection, yielding a global pointer to an integer.
Widening is required when transmitting a local pointer: if ↑ 5 has type boxed local int, then transmit ↑ 5
must have type boxed global int, or else the receiving processor would be left holding a local pointer into
the wrong address space. But transmit 5 requires no special manipulation, because integers travel safely
across processor boundaries.

The expand function, used in the final two type rules, is given in Figure 5. It widens local pointers to
global, but leaves other types unchanged. Simple though this may seem, real parallel programming languages
do not necessarily get this right. Split-C, for example, makes no effort to prevent processors from seeing each
other’s local pointers. In cases like Figure 4, the programmer is expected to extract the processor number
from x and manually combine that with the local pointer at ↓x to produce a valid global pointer. Forgetting
to do so elicits no warning from the compiler; the program simply contains a wild pointer [17].

3.2 System II: Assignable Pointers

We now extend the language with destructive assignment through pointers. An updated grammar appears
in Figure 6. To help support assignment we have also added sequencing.

Given a pointer to some memory location and a compatible value, the new “:=” assignment operator
writes a new value into the pointed-to location, replacing what may have been stored there before. The
pointer itself is unchanged; it merely identifies the target of the store operation. This is a more primitive
operation than, for example, assignment to an ML ref, although ML assignment could be implemented using
our primitive plus an extra level of indirection. The key point is that the left hand side of an assignment
must always be a pointer, and that the new value is placed in the location to which the pointer refers.

3.2.1 Type Expansion Versus Assignment

Type checking rules for the augmented language are given in Figure 7. As before, the interesting case is
a global pointer to local pointer, such as x in Figure 8. Suppose that global pointer x is to receive an

5



A ` J : int

A(x) = τ

A ` x : τ

A(f) = τ → τ ′ A ` e : τ
A ` f e : τ ′

A ` e : τ
A ` ↑ e : boxed local τ

A ` e : boxed local τ

A ` ↓ e : τ

A ` e : boxed global τ

A ` ↓ e : expand(τ)

A ` e : boxed local τ

A ` widen e : boxed global τ

A ` e : τ
A ` transmit e : expand(τ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A ` e : τ A ` e′ : τ ′

A ` e ; e′ : τ ′

A ` e : boxed local τ A ` e′ : τ
A ` e := e′ : τ

A ` e : boxed global τ A ` e′ : τ robust(τ)
A ` e := e′ : τ

Figure 7: Type checking rules II. Rules above the dotted line are identical to those in Figure 3, while
those below the line are new.

processor 0 processor 1

x '/ ↑ 5

��
bad

m
m

vvm m m
6 5

Figure 8: Situation precluding assignment.

6



expand(boxed local τ) , boxed global τ

expand(τ) , τ otherwise

robust(boxed local τ) , false

robust(τ) , true otherwise

Figure 9: Type manipulating functions II. The expand function is unchanged from Figure 5. The robust
predicate is new.

assignment, via “x := ↑ 6”. The types seem, superficially, to match: x addresses a local pointer to int, and
↑ 6 is also a local pointer to int. Yet that local pointer would be meaningless if transported from processor
0 across to processor 1. Widening ↑ 6 to global is no solution either, because the box to which x points is
typed as local.

In general, then, we must forbid assignment to local pointers across globals. The local pointer value can
be read, subject to expansion as seen earlier. But it can never be updated. The core issue is that local
pointers cannot travel across processor boundaries, and global pointers use a different and incompatible
representation. Figure 9 gives the robust predicate that enforces these restrictions. A robust type is one that
can safely travel across a global pointer during an assignment. Note that assignment across local pointers
requires no such test, as it is always safe providing the source and destination types match.

3.3 System III: Assignable Tuples

Lastly, we enrich the language with tuples. For simplicity, we only permit pairs; general n-tuples contribute
nothing novel. The language and type grammars appear in Figure 10. We have added a pair constructor
〈 , 〉, plus two new operators for decomposing pairs.

Given a valid pointer to a pair, the @1 and @2 pair selection operators produce offset pointers to the first
and second components of the pair. Again, this is more primitive than the #n record selection operator from
ML, and the two should not be confused. Assuming that ML records are always boxed, ML record selection
roughly corresponds to pair selection followed by dereference (↓ @n). Primitive pair selection alone, without
dereference, forms a pointer suitable for assignment, permitting in-place mutation of one component of a
pair while leaving the other unchanged. The need for these atypical operators will become more evident in
Section 3.3.2.

We have also added a subtyping relation, defined in Figure 11. The subtyping relation allows one to
weaken pointer types by promoting certain ρ qualifiers from valid to invalid. This qualifier subsumption
is allowed at the top level or embedded anywhere within a top level pair. However, one cannot change
validity qualifiers below a pointer. If this were permitted, then it would be possible for two pointers with
different types to alias the same value, which is unsound in the presence of assignment. No implicit changes
to the ω qualifier are permitted at all, because this entails a change of representation, and therefore should
logically produce a new value.

3.3.1 Consistent Representation of Pairs

As we have seen, when an isolated local pointer moves across processor boundaries, it must be expanded
into a global pointer. What about moving an unboxed pair containing a local pointer? One option would
be to expand the embedded pointer as before. Thus, expand(〈boxed local τ , int〉) could be defined as
〈boxed global τ , int〉. However, this means that the expanded pair would have a different representation
than the original pair. This approach is very unattractive in any language with named record types (i.e.,
almost all languages). Suppose the programmer declares Entry as a pair 〈boxed local τ , int〉 for some τ .
What name would we use for the expanded pair? Entry is inappropriate, since the type has changed. Do we
synthesize a new name? Assume that the value belongs to some anonymous record type? Any functions that

7



J ::= integer literals
e ::= J | x | f e | ↑ e | ↓ e | widen e | transmit e |

e ; e | e := e | 〈e, e〉 | @1 e | @2 e
τ ::= int | boxed ω ρ τ | 〈τ, τ〉
ω ::= local | global
ρ ::= valid | invalid

Figure 10: Expressions and types III. Relative to Figure 6, expressions now allow pair creation (〈 , 〉)
and selection (@n). Types include pairs, and the pointer types now carry an additional validity qualifier ρ.

ρ ≤ ρ valid ≤ invalid τ ≤ τ
boxed ω ρ τ ≤ boxed ω ρ′ τ ⇐⇒ ρ ≤ ρ′

〈τ1, τ2〉 ≤ 〈τ ′1, τ ′2〉 ⇐⇒ τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2

Figure 11: Subtyping relation for type system III.

manipulate unboxed Entry values cannot properly use the expanded pair, because its representation (and
possibly size and component offsets) will have changed. Treating Entry as polymorphic in its ω qualifiers
would entail either generating multiple copies of code, or else inserting runtime tests wherever polymorphic
pointers are used. But code expansion is undesirable and runtime pointer tests are exactly what we wish to
avoid.

Thus, we wish to ensure that expand never causes a pair to change representation. Local pointers within
pairs should remain local, even when copied between processors. Such pointers no longer represent valid
memory addresses and must never subsequently be used. We add a new validity qualifier, ρ, to mark when
an embedded local pointer has been invalidated by movement between processors. Thus, when an unboxed
Entry is moved across processor boundaries, its embedded local pointer is marked as invalid. But the
second component of the tuple, an embedded integer, remains accessible. An embedded global pointer
would likewise arrive unscathed. Any existing function that manipulates unboxed Entry values could still
be used, provided that it only accesses the integer, and never touches the (now invalid) local pointer.

Figure 12 presents our final set of type checking rules. The updated expand and robust functions in
Figure 13 complete the picture. A new function, pop, is responsible for traversing pairs and invalidating any
embedded local pointers. The robust predicate, which forbids unsound assignments across global pointers,
has been relaxed slightly. Cross-global assignments to valid local pointers are forbidden. But cross-global
assignments to invalid local pointers are allowed: if a local pointer is already invalid on the receiving end,
one can certainly replace it with a different invalid local pointer. The robust and pop functions have an
important relationship: robust(τ) is true if and only if pop(τ) = τ . Intuitively, a value can be assigned across
a global pointer if and only if it will not be damaged in transit.

3.3.2 Selection Without Dereference

We can now demonstrate why it is important to have pair selection operators that do not also immediately
dereference. Suppose that we are given a global pointer to 〈4, 〈x, 5〉〉, where x is some embedded local pointer.
We wish to extract x. If selection is always coupled with dereference, then selecting the second component
of the pair would produce the unboxed value 〈x, 5〉. There is no global pointer associated with this value;
we have carried the local pointer x across processors, and can no longer safely use it. Therefore, the expand
and pop functions will have correctly marked x as invalid.

However, if selection and dereferencing are distinct operations, we can do better. Given a global pointer

8



A ` J : int

A(x) = τ

A ` x : τ

A(f) = τ → τ ′ A ` e : τ
A ` f e : τ ′

A ` e : τ
A ` ↑ e : boxed local valid τ

A ` e : boxed local valid τ

A ` ↓ e : τ

A ` e : boxed global valid τ

A ` ↓ e : expand(τ)

A ` e : τ
A ` transmit e : expand(τ)

A ` e : τ A ` e′ : τ ′

A ` e ; e′ : τ ′

A ` e : boxed local valid τ A ` e′ : τ
A ` e := e′ : τ

A ` e : boxed global valid τ
A ` e′ : τ robust(τ)

A ` e := e′ : τ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A ` e1 : τ1 A ` e2 : τ2
A ` 〈e1, e2〉 : 〈τ1, τ2〉

A ` e : boxed ω valid 〈τ1, τ2〉
A ` @n e : boxed ω valid τn

A ` e : τ τ ≤ τ ′

A ` e : τ ′

Figure 12: Type checking rules III. Rules above the dotted line are identical to those in Figure 7, or have
been changed trivially to support the ρ qualifier. Rules below the line are new.

9



expand(boxed local ρ τ) , boxed global ρ τ

expand(〈τ1, τ2〉) , 〈pop(τ1), pop(τ2)〉
expand(τ) , τ otherwise

pop(boxed local ρ τ) , boxed local invalid τ

pop(〈τ1, τ2〉) , 〈pop(τ1), pop(τ2)〉
pop(τ) , τ otherwise

robust(boxed local valid τ) , false

robust(〈τ1, τ2〉) , robust(τ1) ∧ robust(τ2)
robust(τ) , true otherwise

Figure 13: Type manipulating functions III.

to 〈4, 〈x, 5〉〉, selecting the second component will produce a global pointer to 〈x, 5〉. Selecting the first
component of this yields a global pointer to x. We already know how to use global pointers to local pointers:
dereferencing yields a valid global pointer equivalent to widen x.

Thus, we find that a sequence of selection operations must not dereference too early. Selection should
be treated as simple pointer displacement. When extracting a value deeply embedded in nested pairs, all
selection displacements must be applied first, and only then should the final offset pointer be dereferenced.

4 From Checking to Inference

The third system provides address space management, safe pointers, and updatable tuples. This forms
a suitable starting point for the design of a realistic language for manipulating distributed mutable data
structures. However, it is impractical to expect programmers to systematically annotate programs with
local, global, valid, and invalid type qualifiers; it is simply too cumbersome and time consuming (see
Section 5.1).

Fortunately, the type qualifiers we have described are quite amenable to automatic inference. Figure 14
shows a set of inference rules directly derived from the third type system. One new rule allows implicit
coercion of pointers from local to global. This is allowed at the top level only, both to keep pair types
consistent as well as to avoid the well-known soundness problems in allowing distinct aliases of mutable data
to have different types. For clarity of presentation, the rules use several abbreviations:

1. Constraints are not explicitly propagated up from subexpressions; assume that the complete constraint
set is the simple union of the sets of constraints induced by all subexpressions.

2. A nontrivial rule hypothesis such as

e : boxed ω valid τ

should be read as an equality constraint

e : τ0 τ0 = boxed ω valid τ

3. All constraint variables are fresh.

The inference rules induce a set of constraints on unknown qualifiers; for example, the operand of any
dereference operator is constrained to be qualified as valid. Figure 15 shows supporting functions that

10



A ` J : int

A(x) = τ

A ` x : τ

A(f) = τ → τ ′ A ` e : τ
A ` f e : τ ′

A ` e : τ
A ` ↑ e : boxed local valid τ

A ` e : boxed ω valid τ expand(ω, τ, τ ′)
A ` ↓ e : τ ′

A ` e : τ expand(global, τ, τ ′)
A ` transmit e : τ ′

A ` e : τ A ` e′ : τ ′

A ` e ; e′ : τ ′

A ` e : boxed ω valid τ
A ` e′ : τ robust(ω, τ)

A ` e := e′ : τ

A ` e1 : τ1 A ` e2 : τ2
A ` 〈e1, e2〉 : 〈τ1, τ2〉

A ` e : boxed ω ρ 〈τ1, τ2〉
A ` @n e : boxed ω ρ τn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A ` e : boxed local ρ τ

A ` e : boxed global ρ τ

Figure 14: Type inference rules. Rules above the dotted line correspond directly to type checking rules in
Figure 12, while the rule below the line is new.

11



expand(ω0, boxed ω ρ τ, boxed ω′ ρ′ τ ′) , {ω0 ≤ ω′, ω ≤ ω′, ρ = ρ′, τ = τ ′}
expand(ω0, 〈τ1, τ2〉, 〈τ ′1, τ ′2〉) , pop(ω0, τ1, τ

′
1) ∪ pop(ω0, τ2, τ

′
2)

expand(ω0, τ, τ
′) , {τ = τ ′} otherwise

pop(ω0, boxed ω ρ τ, boxed ω′ ρ′ τ ′) , {ω0 = global⇒ (ω = global ∨ ρ′ = invalid),
ω = ω′, ρ ≤ ρ′, τ = τ ′}

pop(ω0, 〈τ1, τ2〉, 〈τ ′1, τ ′2〉) , pop(ω0, τ1, τ
′
1) ∪ pop(ω0, τ2, τ

′
2)

pop(ω0, τ, τ
′) , {τ = τ ′} otherwise

robust(ω0, boxed ω ρ τ) , {ω0 = global =⇒ (ω = global ∨ ρ = invalid)}
robust(ω0, 〈τ1, τ2〉) , robust(ω0, τ1) ∪ robust(ω0, τ2)

robust(ω0, τ) , ∅ otherwise

Figure 15: Constraint generating functions.

generate additional constraints. Type qualifier inference requires finding a solution to the set of all constraints
induced by a program.

Some constraints generated by the pop and robust functions have the following general form:

ω0 = global =⇒ (ω = global ∨ ρ = invalid)

These conditional constraints arise whenever data crosses a (possibly global) pointer. For example, when
dereferencing a pointer to a pair, if the pointer being dereferenced is global (ω0 = global), then either a
pointer embedded in the pair must also be global (ω = global) or else it must be marked invalid (ρ =
invalid).

In general, solving conditional disjunctive constraints is NP-complete, by reduction from satisfiability of
boolean formulae in 3-conjunctive normal form. However, we can exploit the particular structure of this
inference problem to find a solution more efficiently.

Our goal is to minimize the number of global pointers. The conditional disjunctive constraints may
leave us with a choice between having a global valid pointer and a local invalid one. If either would be
correct, we will always prefer local invalid. Of course, if that pointer is required to be valid elsewhere,
then local invalid is not an option and we must choose global valid instead.

The constraints have two important properties. First, the constraints on types can induce constraints on
qualifiers, but constraints on qualifiers do not introduce constraints on types. Thus, we can resolve the type
constraints to obtain the complete set of qualifier constraints. Second, the conditional qualifier constraints
mention only global/local qualifiers in the antecedents. This observation suggests the following procedure
for selecting a best solution of the constraints:

1. Assume that initially we have an unqualified static typing for the program. That is, we know what is
a pointer, pair, or integer, but we do not know which pointers are local, global, valid, or invalid.

2. Using the equivalences in Figure 11, expand the type constraints τ = τ ′ and τ ≤ τ ′ to obtain the
complete set of qualifier constraints.

3. Solve the unconditional equality and inclusion constraints on ρ variables. Set any ρ variable not
required to be valid to invalid. At this point all ρ variables are resolved.

4. Remove conditional constraints of the form

ω0 = global =⇒ (ω = global ∨ invalid = invalid)

These are always satisfied.

12



5. Replace conditional constraints of the form

ω0 = global =⇒ (ω = global ∨ valid = invalid)

by simply ω0 ≤ ω.

6. Resolve the conditional and unconditional constraints on ω variables. Set any ω variables not required
to be global to local. Note that the conditional constraints no longer mention ρ variables, so this
step cannot introduce an inconsistency. It is easy to show that there is a unique solution minimizing
the number of ω variables resolved to global. This devolves to graph reachability, computable in time
linear with respect to the number of global qualifiers in the solution [19,23].

7. Complete the program by adding a minimal set of explicit widen operators wherever the new local-to-
global coercion rule has been used. This is similar to Henglein’s minimal completions [22], but with
neither induced coercions nor projections, and requiring only a linear-time pass across the derivation
tree.

We note that setting all possible variables to global and valid will always produce one legitimate
solution to the constraints. Thus, languages that require all pointers to be global are safe, albeit overly
conservative.

5 Experimental Implementation

5.1 A Practical Need for Sound Inference

Titanium is an experimental language for high-performance parallel computing. Titanium has the syntax
and semantics of Java, although it compiles to native machine code rather than virtual machine bytecodes.
Titanium extends Java with a distributed global address space, where processes can address, read, and write
each other’s data across physical machine boundaries [24].

By default, all references in a Titanium program are assumed to be global. This makes it easy to build
simple programs that work. It is also a suitable choice for architectures with true shared memory (SMP’s),
which Titanium also supports. However, when tuning a program for speed, programmers may selectively
declare some references as local (e.g. within inner loops). If the programmer knows that a large array is
always local, a local declaration causes the Titanium compiler to produce more efficient code to traverse
the local array. The compiler checks explicit local qualifiers statically, using rules similar to those presented
here. For example, if a method expects a local pointer as a parameter, passing it a global pointer is a simple
type error [34].

This design allows programmer to ignore locality issues until the code is running correctly and then add
local qualifiers to speed things up. However, Titanium does not provide qualifier inference, and experience
working with application developers has shown that adding local qualifiers by hand is not easy. Arrays of
arrays of arrays are bewildering; static type errors are often reported far away from the site of the offending
declaration; and the more aggressive one is at adding local qualifiers, the harder it is to maintain a valid
program in the long run.

Maintenance issues become dominant when dealing with legacy code. Titanium incorporates a large
portion of the standard Java class library into its own runtime environment. The complete contents of the
java.io, java.lang, and java.util packages are available in Titanium. The Titanium compiler produces
native code directly from Sun’s Java source code for these packages. Incorporating the standard Java libraries
is very desirable: the libraries represent an enormous amount of work that does not need to be repeated.

However, this large body of existing code was written for Java, not Titanium. The three packages
comprise sixteen thousand lines of source code without local qualifiers. None of this code uses Titanium’s
cross-processor communication; but in the absence of explicit qualifiers, every variable, field, and method
parameter defaults to a global reference. Methods are assumed to return global references, making it even
more difficult for programmers to use local references in their own code. Manually annotating this large body
of legacy Java code would be very tedious and would need to be redone with each new release from Sun. Yet
without reducing these global references to local, it may be impossible to achieve acceptable performance.

13



Effect on Speed Effect on Code Size
Benchmark

Näıve LQI Improvement Näıve LQI Improvement

cannon manual 53.4 sec 50.3 sec 5.7% 43.5 MB 23.4 MB 46.2%
cannon auto 58.1 51.3 13.2% 43.0 23.6 45.2%
lu-fact manual 131.4 130.1 < 1.0% 78.1 44.6 42.9%
lu-fact auto 227.1 131.3 42.2% 87.4 44.9 48.7%
sample 29.2 21.4 26.6% 40.5 20.3 49.8%
gsrb 16.0 15.7 1.9% 99.1 64.4 35.0%
pps 92.2 40.3 56.3% 545.0 309.8 43.2%

Table 2: Titanium benchmark performance.

Practical local qualification has proven unexpectedly difficult for programmers. Furthermore, formally
defining how local qualification may be used in a sound manner has been an ongoing source of bugs in the
Titanium language design. For these reasons, we have implemented a local qualification inference engine,
LQI, and made it available as an optimization within the Titanium compiler.

5.2 Accommodating Titanium Features

Titanium contains many features not present in the languages presented earlier. However, these may all
be handled without difficulty; the core issues of type expansion and pointer validity can be extended to
accommodate a realistic language. We briefly describe the highlights.

Titanium is object-oriented, with methods, inheritance, and class- and interface-based polymorphism.
A method’s actual arguments must match its formals; thus, if a method is observed to receive a global
argument in any context, the corresponding formal parameter is constrained to be global within the method
body. Titanium permits implicit coercion from local to global, so a method can receive a local argument in
one context and a global elsewhere. The local argument is widened at the point of the call.

Native methods, which are implemented by external C code, are treated conservatively. Because the
compiler has no access to the implementation, it is never safe to change either the formal parameter types
or the return type of a native method. This conservative approach can be taken in any situation where
only partial information is available. For example, while the analysis is currently whole-program, it could
be made to accommodate separate compilation by forcing conservative analysis at module boundaries.

Inheritance simply induces additional constraints between parent and child classes. A subclass is con-
strained to use identical types for any fields inherited from its parent. Interfaces and overridden methods
are handled in the same manner.

Arrays are treated similarly to references. An array of references is akin to a pointer to an n-tuple of
homogeneously-typed pointers. A particularly tricky issue is handling type casts involving arrays. When
an array is implicitly cast to Object, we forbid changes to any “forgotten” qualifiers below the topmost
level of the array type. When an Object is dynamically cast back to an array type, we also forbid changes
to any “remembered” qualifiers below the topmost level. By holding the qualifiers fixed in both cases, we
ensure that any dynamic casts will behave identically in the original and optimized programs. Otherwise, if
qualifiers were changed in the array declaration but not the explicit cast, or vice versa, dynamic cast failures
would occur where none existed in the original program.

5.3 Local Qualification Inference for Titanium

As implemented in the Titanium compiler, the LQI optimization is slightly less powerful than the inference
system presented in Section 4. The initial pass, which identifies references that must remain valid, is omitted.
Instead, it is assumed that all references must be valid at all times. This is safe, if overly conservative. In
some cases, when data is copied across processors but never subsequently used, the validity assumption may
force references to be global when they could have been local invalid.

We have measured the effectiveness of LQI optimization on several numerical kernels and applications.
These include:

14



cannon Cannon’s algorithm for dense matrix multiplication. We multiply a pair of random 256 × 256
matrixes.

lu-fact LU factorization for dense matrixes. We factor a 1024× 1024 element random matrix, partitioned
into sixty four 128× 128 element blocks. No pivoting is used.

sample Sample sort, a distributed sorting algorithm. We sort 220 thirty two bit integer keys, with 64 keys
per sample.

gsrb The Gauss-Seidel Red Black algorithm for solving elliptic partial differential equations. We solve a
2048× 128 element problem, partitioned into four 512× 128 element patches across 100 full iterations.

pps A parallel solver for elliptic equations with infinite domain boundary conditions, using a two-level
domain decomposition approach. We solve a 512×512 element problem partitioned into four 128×128
element patches, with a refinement ratio of 16 between coarse and fine grids.

In all cases, the programs were run in parallel on four nodes of the Berkeley Network of Workstations
(NOW ) [1, 16]. The Titanium runtime system implements cross-processor reads and writes by sending
messages from node to node; Active Messages II provides the lightweight fast messaging substrate [27].

Table 2 shows our experimental results. Note that for cannon and lu-fact, two sets of measurements
were taken. The “manual” measurements reflect the code as originally produced by the programmer. In
both cannon and lu-fact, the programmer had already deployed numerous explicit local qualifiers in an
effort to speed up the code. Thus, the “manual” measurements reflect the additional speedup available
from local qualification opportunities that the programmer missed, even in these relatively small kernels.
The “auto” variants use the same code but with all explicit local qualifications removed. These reflect the
opposite extreme, where a programmer has relied completely upon LQI.

As one would expect, the manual variants show less relative benefit than their auto counterparts. For
lu-fact, the programmer has already added so many explicit qualifications as to leave little room for further
improvement. However, the same programmer missed a few important spots in cannon, even though the
entire program is only 180 lines long. LQI was able to discover and optimize these for a 5.7% net speedup.

For both cannon and lu-fact, manual annotation plus LQI is just slightly faster than LQI alone. Human
programmers can add explicit casts that recover local qualifiers, but which are only correct due to deep
properties of the program that static analysis cannot reveal. This affirms our hypothesis that the best design
combines selective manual annotation with aggressive, sound inference.

The measurements as a whole show that improvement varies widely from program to program. In a
sense, LQI identifies the portion of a calculation that takes place locally, and optimizes that to run using
fast local pointers. Thus, the benefit to be gained is directly dependent upon the locality of the underlying
algorithms. A program that genuinely uses lots of cross-processor data will harbor few opportunities for
local qualification. Conversely, an algorithm that has been specifically designed for scalable distributed
operation will perform most work locally, and only communicate very rarely. Such algorithms will show
larger speedups from LQI, and the relative speedup will become greater when working on increasingly large
problems. This is particularly evident in pps, a fairly new algorithm that is specifically designed for scalable
distributed operation. It performs relatively more local calculations than gsrb, but is thereby able to
greatly reduce the amount of cross-processor communication [3]. Because communication is so costly, this
gives much better performance in general, and meshes particularly well with LQI, for an impressive speedup.
The anecdotal experience of the programmer who wrote pps is illuminating. When asked if he had previously
put in many explicit local qualifiers, he replied “Yes, but apparently not anywhere that it mattered.” LQI’s
analysis is more thorough and 56.3% more effective.

The primary concern of most Titanium programmers is execution speed. However, LQI also makes code
smaller. As Titanium is implemented on the NOW, local pointers require many fewer instructions to use.
Table 2 shows that LQI makes the benchmarks’ code segments 35% to 50% smaller. These sizes exclude
code for the standard Java classes, like String or Math. If the standard classes are included as well, the
overall reduction is smaller, from 13% to 18% for a complete executable.

15



6 Related Work

Nearly one hundred distributed programming languages were identified ten years ago [2], and many more
have appeared since. We highlight some representative examples of approaches previously taken to the
local/global pointer problem.

Olden adds parallelism to C, focusing on dynamic structures augmented with compiler-directed software
caching and migration [10,11,31]. All Olden pointers are global, so it is never possible to see an invalid local
pointer from another processor’s address space. However, pointer operations require four extra instructions
to test the processor ID and decode the machine address. Data flow analyses can eliminate some redundant
checks, but address decoding always adds one instruction of overhead. The inference described in this
paper could complement these analyses, using a faster (unencoded) representation for those pointers that
are statically guaranteed to be local.

Emerald also focuses on fine-grained object mobility [25]. While local and global are not distinguished
at the source level, selected object fields may be declared as attached. Because an object and its transitively
attached fields always live in the same address space, the compiler can use fast local addresses to implement
attached fields. This is a safe alternative to the techniques presented here, but may require more data motion
to keep attached fields colocated as objects migrate.

Cid [29], Split-C, and Titanium explicitly distinguish local and global in the source language. Cid uses
a single type for all global pointers, the distributed equivalent of void *. Split-C assumes all pointers local
unless declared otherwise, while Titanium references default to global. Cid and Split-C make little effort to
enforce soundness; while this is consistent with C’s low-level approach, the difficulty of distributed debugging
compounds the standard issue of wild pointers. Titanium attempts to be as safe Java, and does address
some of the issues highlighted in Section 3. However, it does not do so consistently or completely, and one
can easily craft unsound expressions. Those remaining holes can now be closed in light of this research.

Compositional C++ [14] also offers explicit local and global pointers. The CC++ language definition
states that “a local pointer cannot be accessed through a global pointer.” [9] However, it is not clear whether
this rule is expected to be enforced at compile time, run time, or not at all. Our experiments with the
CC++ compiler reveal that violations of this rule elicit obscure internal error messages from late stages of
the compiler, well beyond the point where type checking ought to have approved or rejected such operations.
While this may be an improvement over Cid and Split-C’s complete lack of static checking, it conservatively
forbids many operations that could have been given reasonable, sound semantics. At best, CC++ might be
interpreted as statically forbidding roughly the same constructs that we would permit with type expansion.

AC [12] and Universal Parallel C [13] offer alternate models for distributed memory. Each of these
languages divides memory into several processor-specific private address spaces plus a single shared space.
However, a shared pointer into another processor’s private space creates problems akin to those we have pre-
viously seen. Such dangerous constructs will pass AC and UPC’s type checking rules, but have no defined
semantics in either language. AC’s creators state that the language “is solidly in the C tradition. Program-
mers can write efficient programs because they do not have to pay the overhead of software protections.”
As we have illustrated, efficiency and software protection need not be mutually exclusive; a rich static type
system can support both sound language design as well as performance-boosting optimization.

Certain aspects of our approach may be applicable to other models of distributed computing, such as
those based on remote procedure calls [6]. Inferred type qualifications might allow specialized marshaling for
particular recipients. For example, Java has no global pointers, so when an object is marshaled using Java
remote method invocation, all other objects transitively reachable from it must be marshaled as well [32].
Inference of invalid qualifiers would let the sender prune this reachability graph if the recipient were known
to never traverse certain pointers. Conversely, CORBA objects always reference each other with network-
aware handles [30]. Inference of local qualifiers could replace some handles with simple local pointers,
thereby reducing overhead. In general, any system based on distributed objects may be able to leverage
qualification inference to simplify representations of data that never actually span the network.

16



7 Conclusions and Future Work

Distributed computing environments have distinct notions of local and remote memory. However, explicitly
distinguishing between pointer types creates several opportunities for unsoundness. We have described a
suite of type systems that clarify these problems and demonstrate how they can be avoided. A simple,
asymptotically efficient type inference system can automatically insert an optimal set of qualifiers, reducing
the burden on the programmer. Experiments with the Titanium language show that inference can greatly
improve performance, particularly for codes specifically designed for scalable distributed execution.

The systems presented here could be enhanced in three important ways. First, the assumption of a two-
level memory could be generalized to n levels of partitioned address spaces. This may become important as
simple distributed uniprocessors give way to clusters of SMP’s, clusters of clusters, and other deep parallel
hierarchies. Second, the model should be extended to include mobile code, an area of growing interest. A
simple approach may be to require that only robust free variables appear in any mobile closure, but more
study is needed. Finally, polymorphic analysis of functions could be beneficial. For example, this would let
Titanium’s LQI automatically produce both local and global variants of standard container classes like
Vector or Hashtable, for potentially larger improvements to performance.

8 Acknowledgements

Titanium benchmark programs were written by Siu Man Yau, Kar Ming Tang, and Gregory T. Balls. Chris
Harrelson adapted the IBane constraint solver shell for use within the Titanium compiler. Additional
support came from members of the Titanium and Bane research groups too numerous to mention, but
without whose help this research could not have taken place.

References

[1] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M. Hellerstein, and D. A. Patterson.
Searcing for the sorting record: Experiences in tuning NOW-sort. In Symposium on Parallel and
Distributed Tools, pages 124–133, Welches, Oregon, Aug. 1998. Association for Computing Machinery.

[2] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for distributed computing
systems. ACM Computing Surveys, 21(3):261–322, Sept. 1989.

[3] G. T. Balls. A Finite Difference Domain Decomposition Method Using Local Corrections for the Solution
of Poisson’s Equation. PhD thesis, Department of Mechanical Engineering, University of California at
Berkeley, 1999.

[4] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive spectral bisection. In
Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, pages 711–
718, Philadelphia, 1993. SIAM.

[5] J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm. Nature, 324(4):446–449,
Dec. 1986.

[6] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. In A. L. Ananda and B. Srini-
vasan, editors, Distributed Computing Systems: Concepts and Structures, pages 89–109. IEEE Computer
Society Press, 1992.

[7] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A comparison of
sorting algorithms for the Connection Machine CM-2. In Proceedings of the 3rd Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 3–16, Hilton Head, South Carolina, July 21–24, 1991.
SIGACT/SIGARCH.

[8] W. L. Briggs. A Multigrid Tutorial. SIAM Books, Philadelphia, 1987.

17



[9] P. Carlin, M. Chandy, and C. Kesselman. The Compositional C++ language definition. Technical
Report CS-TR-92-02, Computer Science Department, California Institute of Technology, Mar. 12 1993.

[10] M. C. Carlisle. Olden: Parallelizing Programs with Dynamic Data Structures on Distributed-Memory
Machines. PhD thesis, Department of Computer Science, Princeton University, June 1996.

[11] M. C. Carlisle and A. Rogers. Software caching and computation migration in Olden. In Proc. 5th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP’95, pages 29–38,
Santa Barbara, California, July 1995. Princeton.

[12] W. W. Carlson and J. M. Draper. Distributed data access in AC. In Proc. 5th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP’95, pages 39–47, Santa Barbara,
California, July 1995. IDA Supercomputing Research Center.

[13] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction to UPC
and language specification. Technical Report CCS-TR-99-157, IDA Center for Computing Sciences,
May 13 1999.

[14] K. M. Chandy and C. Kesselman. Compositional C++: Compositional parallel programming. Lecture
Notes in Computer Science, 757:124–144, 1993.

[15] J. Choi, J. Demmel, I. Dhillon, and J. Dongarra. ScaLAPACK: A portable linear algebra library for
distributed memory computers — design issues and performance. Lecture Notes in Computer Science,
1041, 1996.

[16] D. E. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau, B. Chun, S. Lumetta, A. Mainwaring, R. Martin,
C. Yoshikawa, and F. Wong. Parallel computing on the Berkeley NOW. In 9th Joint Symposium on
Parallel Processing, Kobe, Japan, 1997.

[17] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, S. Luna, T. von Eicken, and
K. Yelick. Introduction to Split-C. Computer Science Division, Department of Electrical Engineering
and Computer Science, University of California at Berkeley, version 1.0 edition, Apr. 1996.

[18] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel programming in Split-C. In IEEE, editor, Proceedings, Supercomputing ’93: Portland, Oregon,
November 15–19, 1993, pages 262–273, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1993. IEEE Computer Society Press.

[19] J. S. Foster, M. Fähndrich, and A. Aiken. A Theory of Type Qualifiers. In Proceedings of the 1999 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 192–203, Atlanta,
Georgia, May 1999.

[20] J. Gosling, B. Joy, and G. Steele. The JavaTM Language Specification. The JavaTM Series. Addison-
Wesley, Menlo Park, California, 1996.

[21] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Computational
Physics, 73:325–348, 1987.

[22] F. Henglein. Dynamic typing. In B. Krieg-Brückner, editor, Proc. European Symp. on Programming
(ESOP), Rennes, France, pages 233–253. Springer-Verlag, Feb. 1992. Lecture Notes in Computer Sci-
ence, Vol. 582.

[23] F. Henglein and J. Rehof. The complexity of subtype entailment for simple types. In Proceedings, Twelth
Annual IEEE Symposium on Logic in Computer Science, pages 352–361, Warsaw, Poland, 29 June–
2 July 1997. IEEE Computer Society Press.

[24] P. N. Hilfinger. Titanium Language Working Sketch, draft version 0.22w edition, June 14 1999.

[25] E. Jul, H. Levy, N. C. Hutchinson, and A. P. Black. Fine-grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 6(1):109–133, Feb. 1988.

18



[26] A. Krishnamurthy. Analyses and optimizations for shared address space programs. Ph.D. qualifying
examination talk, Nov. 1995.

[27] A. Mainwaring and D. Culler. Active message applications programming interface and communication
subsystem organization. Technical Report CSD-96-918, University of California, Berkeley, Oct. 14 1996.

[28] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, Cambridge,
Mass., 1990.

[29] R. S. Nikhil. Parallel symbolic computing in Cid. Lecture Notes in Computer Science, 1068, 1996.

[30] The Object Management Group, Framingham, Massachusetts. The Common Object Request Broker:
Architecture and Specification, Oct. 1999. Revision 2.3.1.

[31] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Supporting dynamic data structures on
distributed-memory machines. ACM Transactions on Programming Languages and Systems, 17(2):233–
263, Mar. 1995.

[32] Sun. Java remote method invocation specification. Technical report, Sun Microsystems, 1997.

[33] K. Yelick, D. Culler, and J. Demmel. Programming support for clusters of multiprocessors (CLUMPs).
Talk presented at Lawrence Livermore National Laboratories, Mar. 1997.

[34] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: a high-performance Java dialect. Concurrency: Prac-
tice and Experience, 10(11–13):825–836, Sept. 1998. Special Issue: Java for High-performance Network
Computing.

A Operational Semantics and Soundness

In this appendix we prove that the type checking system presented in Section 3.3 is sound with respect to an
operational semantics. We focus on the sequential subset of the language, which includes everything except
transmit expressions. Because the semantic problems with local and global pointers are the representation
and movement of pointers between address spaces, dealing with concurrency complicates the semantics while
also obscuring the core issues. The language subset we work with is:

e ::= J | x | f e | ↑ e | ↓ e | widen e |
e1 ; e2 | e1 := e2 | 〈e1, e2〉 | @1 e | @2 e

Furthermore, we restrict primitive functions to be mappings from integers to integers. This simplifies the
proof without hiding any core issues.

A.1 Semantic Domains

We use the following semantic domains. The treatment of stored pairs is unusual and is explained below.

M the set of machines
A the set of local addresses
Id the set of identifiers
T the set of all types
G = M ×A global addresses
V = J+A+G+ V × V values

SV = J+A+G+A×A values that can be stored
Store = G→ SV

Fun = J→ J

Env = Id→ Fun+ V

19



We use the following conventions for naming elements of the semantic domains.

m,m0,m
′, . . . ∈M a machine

v, v0, v
′, . . . ∈ V a value

sv, sv0, sv
′, . . . ∈ SV a storable value

S, S0, S
′, . . . ∈ Store a store
E ∈ Env the environment

e, e0, e
′, . . . a source expression

i, i0, i
′, . . . ∈ J an integer

g, g0, g
′, . . . ∈ G a global pointer

a, a0, a
′, . . . ∈ A a local pointer

In the operational semantics, the use of i, a, or g in a hypothesis should be read as a constraint, not a
comment. That is, a hypothesis e→ i means that e must evaluate to an integer for the rule to be applicable.

We write global addresses as a pair 〈m,a〉 of machine and local address. Global addresses can be
distinguished from pair values 〈v1, v2〉 by context, as machines cannot be a component of pairs.

A store is a finite function from global addresses to values. When a value is created a new location in
the store must be allocated. The function

new : Store×M → A

takes a store and a machine m and returns a fresh local address. We also use a shorthand

newn(m,S) = 〈a1, . . . , an〉

to simultaneously obtain n distinct fresh addresses in a local memory. By “fresh” we mean that new satisfies:

new(m,S) = a =⇒ a /∈ dom(λa0.S(〈m,a0〉))

In other words, the new address is not already in use on machine m.
Our treatment of pairs is unusual. Unboxed pairs are treated as values, but only pairs of addresses are

placed in the store. Because the operations @1 and @2 take the addresses of pair components, and because
these addresses are then first-class values, we must model the location in the store of the components of the
pair as well as the pair itself. This is done most directly by simply storing the two components of the pair at
different addresses, rather than more usual solution of representing the entire pair value with a single address.
To maintain the knowledge that these two components represent a pair we store the pair of addresses at the
address of the pair itself.

For example, consider an unboxed pair consisting of two integers 〈5, 6〉. Taking the address ↑〈5, 6〉 forces
the pair to be placed in the store S. Three new locations on the local machine m are allocated to store the
pair:

S(〈m,a1〉) = 〈a2, a3〉
S(〈m,a2〉) = 5
S(〈m,a3〉) = 6

The value of ↑〈5, 6〉 is the pair address a1. Selecting the address of the first field @1 ↑〈5, 6〉 yields the value
a2.

Nested pair values are stored recursively when boxed. Thus the expression ↑〈〈5, 6〉, 7〉 allocates five new
locations in the local store for the three integers and two pairs:

S(〈m,a0〉) = 〈a1, a4〉
S(〈m,a1〉) = 〈a2, a3〉
S(〈m,a2〉) = 5
S(〈m,a3〉) = 6
S(〈m,a4〉) = 7

20



In practical language implementations only the “leaf” values 5, 6, and 7 are stored and the knowledge of the
grouping of the addresses into pairs is maintained implicitly inside the compiler. The stored pair values are
the semantic representation of this compiler knowledge.

Unboxing a nested pair is the inverse of boxing a pair: any stored address pairs are traversed recursively
to recreate the unboxed value. In the example just given ↓ ↑〈〈5, 6〉, 7〉 is the value 〈〈5, 6〉, 7〉.

A.2 Operational Semantics

Operational rules have the form:

m,S0, E ` e→ v, S1

which should be read “on a given machine m in store S0 and environment E, the expression e evaluates to
the value v and produces a new store S1.”

The rules for integer, variable, and function application expressions are simple.

m,S,E ` i→ i, S

E(x) = v ∈ V
m,S,E ` x→ v, S

m, S0, E ` e→ i, S1

E(f) = φ ∈ Fun φ(i) = i′

m,S0, E ` f e→ i′, S1

The rules for referencing and dereferencing values are more elaborate. We need a number of auxiliary
functions. Let a · 〈b, c〉 = 〈a, b, c〉 be a tuple append operator. Append may also be applied on the right
〈b, c〉 · a = 〈b, c, a〉 and to sets of tuples:

a ·B = {a · b | b ∈ B}

A path is a tuple with elements appearing in an order described by the regular expression ($ | %)?sv. That
is, a path consists of a sequence of $ and %, except for the last element which is a storable value. A path
describes a sequence of selections within nested pairs (taking either the left or right component) to reach a
storable value. We write t, t0, t′, . . . to denote paths.

A pure path is a tuple with elements appearing in an order described by the regular expression ($ | %)?.
We write p, p0, p

′, . . . to denote pure paths. Figure 16 defines a number of functions on paths and values.
Taking the address of any value but a pair simply boxes the value by allocating a local address on the

current processor and storing the value at that address. As described above, the components of pairs are
recursively boxed.

m,S0, E ` e→ v, S1

Paths(v) = {p1, . . . , pl, pl+1 · svl+1, . . . , pn · svn} where p1 = 〈〉
newn(m,S1) = {a1, . . . , an}

svi = 〈aj , ak〉 where pi· $= pj and pi· %= pk, for 1 ≤ i ≤ l
S2 = S1[〈m,a1〉 ← sv1, . . . , 〈m,an〉 ← svn]

m,S0, E ` ↑ e→ a1, S2

For dereferences there are two cases. For a dereference of a local pointer, we use the auxiliary function
Value defined in Figure 16 to unbox the value. For a dereference of a global pointer we use auxiliary function
WideValue, which widens any local pointer appearing at the top level but is otherwise identical to Value.

m,S0, E ` e→ a, S1

m,S0, E ` ↓ e→ Value(S1, 〈m,a〉), S1

21



Paths(v) =

{
{〈〉} ∪ ($ ·Paths(v1)) ∪ (% ·Paths(v2)) if v = 〈v1, v2〉
{〈v〉} otherwise

LeafPaths(v) = {x | x ∈ Paths(v) ∧ x = p · sv}

LeafAddresses(S, 〈m,a〉) =


($ ·LeafAddresses(S, 〈m,a1〉)) if S(〈m,a〉) = 〈a1, a2〉
∪ (% ·LeafAddresses(S, 〈m,a2〉))

{〈〈m,a〉〉} otherwise

Value(S, 〈m,a〉) =


〈Value(S, 〈m,S(〈m,a1〉)〉), if S(〈m,a〉) = 〈a1, a2〉

Value(S, 〈m,S(〈m,a2〉)〉)〉
S(〈m,a〉) otherwise

WideValue(S, 〈m,a〉) =

{
〈m,a′〉 if S(〈m,a〉) = a′

Value(S, 〈m,a〉) otherwise

Figure 16: Auxiliary functions for boxing, unboxing, and assignment.

m,S0, E ` e→ g, S1

m,S0, E ` ↓ e→WideValue(S1, g), S1

The rules for widening, sequencing, and pairing are straightforward.

m,S0, E ` e→ a, S1

m,S0, E ` widen e→ 〈m,a〉, S1

m,S0, E ` e1 → v1, S1

m,S1, E ` e2 → v2, S2

m,S0, E ` e1 ; e2 → v2, S2

m,S0, E ` e1 → v1, S1

m,S1, E ` e2 → v2, S2

m,S0, E ` 〈e1, e2〉 → 〈v1, v2〉, S2

The rule for assignment is complicated by the semantics of assigning into pairs. Assume a is a boxed local
pointer to a pair of integers. Then the assignment a :=〈1, 2〉 overwrites the two integers of the pair in the
store with the integers 1 and 2. This semantics corresponds directly to the structure assignment primitive in
the C programming language. The auxiliary functions LeafAddresses and LeafPaths in Figure 16 provide the
mechanism for matching addresses with the values to be assigned. Note that in the case where S(〈m,a〉) and
v are not pairs, the sets of leaf addresses and leaf values are just {〈〈m,a〉〉} and {〈v〉} respectively. There
are two cases of assignment: one for assigning across a local pointer and one for assigning across a global
pointer.

m,S0, E ` e1 → a, S1

m,S1, E ` e2 → v, S2

LeafAddresses(S2, 〈m,a〉) = {p1 · g1, . . . , pn · gn}
LeafPaths(v) = {p1 · sv1, . . . , pn · svn}
S3 = S2[g1 ← sv1, . . . , gn ← svn]
m,S0, E ` e1 := e2 → v, S3

22



m,S0, E ` e1 → g, S1

m,S1, E ` e2 → v, S2

LeafAddresses(S2, g) = {p1 · g1, . . . , pn · gn}
LeafPaths(v) = {p1 · sv1, . . . , pn · svn}
S3 = S2[g1 ← sv1, . . . , gn ← svn]
m,S0, E ` e1 := e2 → v, S3

The final four rules implement the @n operators, which return the addresses of pair components.

m,S0, E ` e→ a, S1 S1(〈m,a〉) = 〈a1, a2〉
m,S0, E ` @1 e→ a1, S1

m,S0, E ` e→ a, S1 S1(〈m,a〉) = 〈a1, a2〉
m,S0, E ` @2 e→ a2, S1

m,S0, E ` e→ 〈m′, a〉, S1 S1(〈m′, a〉) = 〈a1, a2〉
m,S0, E ` @1 e→ 〈m′, a1〉, S1

m,S0, E ` e→ 〈m′, a〉, S1 S1(〈m′, a〉) = 〈a1, a2〉
m,S0, E ` @2 e→ 〈m′, a2〉, S1

A.3 Soundness

Before we can prove type soundness we need to state what representation we expect the values of types to
have. Figure 17 defines a predicate Consistent that recursively compares a type with a value and a store to
check that the value matches requirements of the type. We say that a store S on machine m is consistent
with value v and type τ if Consistent(m,S, 〈v, τ〉) is true. We extend consistency to apply to sets of values
and types as well. If U is a set of value/type pairs, then Consistent(m,S, U) if and only if Consistent(m,S, u)
for all u ∈ U .

To prove soundness, there is another issue we must address. Our language allows pointer aliasing, and
the language will be unsound if stored pointer values can be given different types by different aliases. In
particular,

if x : boxed local valid boxed local invalid τ

and y : boxed local valid boxed local valid τ

and x and y happen to refer to the same pointer, then the type system might permit an assignment of an
invalid pointer into x, thereby giving y a value that disagrees with its type. The Consistent predicate cannot
detect this situation; to check this it is necessary to compare all the different typings of each memory address
through all of its aliases to ensure they agree.

The function StoreType in Figure 18 captures the needed property. A StoreType maps mutable locations
to types, ⊥, or >. The ordering of elements is ⊥≤ τ ≤ >, with all types τ being incomparable. The least
upper bound of two elements is the smallest element that is ≥ to both. The least upper bound of two
functions is defined point-wise:

(f t f ′)(x) = f(x) t f ′(x)

If a store typing st has the property that st(g) = >, then the location g is typed differently by two or
more aliases of the location; in this case we say the store typing st is not uniform. If there is no g such that
st(g) = > then all of the aliases of all mutable locations agree on the types of those locations: the store
typing is uniform. Predicate Uniform in Figure 18 formalizes this notion.

23



U = V × T
U ∈ 2U

u, u0, u
′, . . . ∈ U

Consistent : M × Store× U → boolean

Consistent(m,S, 〈i, int〉) ⇐⇒ true

Consistent(m,S, 〈a, boxed local invalid τ〉) ⇐⇒ true

Consistent(m,S, 〈g, boxed global invalid τ〉) ⇐⇒ true

Consistent(m,S, 〈〈v1, v2〉, 〈τ1, τ2〉〉) ⇐⇒ Consistent(m,S, 〈v1, τ1〉)
∧ Consistent(m,S, 〈v2, τ2〉)

Consistent(m,S, 〈a, boxed local valid τ〉) ⇐⇒ S(〈m,a〉) is defined

∧ Consistent(m,S, 〈S(〈m,a〉), τ〉)
where τ 6= 〈τ1, τ2〉

Consistent(m,S, 〈a, boxed local valid 〈τ1, τ2〉〉) ⇐⇒ S(〈m,a〉) = 〈a1, a2〉
∧ Consistent(m,S, 〈a1, boxed local valid τ1〉)
∧ Consistent(m,S, 〈a2, boxed local valid τ2〉)

Consistent(m,S, 〈〈m′, a〉, boxed global valid τ〉) ⇐⇒ S(〈m′, a〉) is defined

∧ Consistent(m′, S, 〈S(〈m′, a〉), τ〉)
where τ 6= 〈τ1, τ2〉

Consistent(m,S, 〈〈m′, a〉, boxed global valid 〈τ1, τ2〉〉) ⇐⇒ S(〈m′, a〉) = 〈a1, a2〉
∧ Consistent(m,S, 〈〈m′, a1〉, boxed global valid τ1〉)
∧ Consistent(m,S, 〈〈m′, a2〉, boxed global valid τ2〉)

Consistent(m,S,U) ⇐⇒
∧
u∈U

Consistent(m,S, u)

Figure 17: Consistent stores.

24



ST = G→ (τ+ ⊥ +>)

StoreType : M × Store× U → ST

StoreType(m,S, 〈i, int〉) = λx. ⊥
StoreType(m,S, 〈a, boxed local invalid τ〉) = λx. ⊥

StoreType(m,S, 〈〈m′, a〉, boxed global invalid τ〉) = λx. ⊥

StoreType(m,S, 〈〈v1, v2〉, 〈τ1, τ2〉〉) = StoreType(m,S, 〈v1, τ1〉)
t StoreType(m,S, 〈v2, τ2〉)

StoreType(m,S, 〈a, boxed local valid τ〉) = λx. ⊥ [〈m,a〉 ← τ ]

t StoreType(m,S, 〈S(〈m,a〉), τ〉)
where τ 6= 〈τ1, τ2〉

StoreType(m,S, 〈a, boxed local valid 〈τ1, τ2〉〉) = λx. ⊥ [〈m,a〉 ← 〈τ1, τ2〉]
t StoreType(m,S, 〈a1, boxed local valid τ1〉)
t StoreType(m,S, 〈a2, boxed local valid τ2〉)

where S(〈m,a〉) = 〈a1, a2〉

StoreType(m,S, 〈〈m′, a〉, boxed global valid τ〉) = λx. ⊥ [〈m′, a〉 ← τ ]

t StoreType(m′, S, 〈S(〈m′, a〉), τ〉)
where τ 6= 〈τ1, τ2〉

StoreType(m,S, 〈〈m′, a〉, boxed global valid 〈τ1, τ2〉〉) = λx. ⊥ [〈m′, a〉 ← 〈τ1, τ2〉]
t StoreType(m,S, 〈〈m′, a1〉, boxed global valid τ1〉)
t StoreType(m,S, 〈〈m′, a2〉, boxed global valid τ2〉)

where S(〈m′, a〉) = 〈a1, a2〉

StoreType(m,S,U) =
⊔
u∈U

StoreType(m,S, u)

Uniform : ST → boolean

Uniform(st) ⇐⇒ @g.st(g) = >

Figure 18: Uniform store typings.

25



Data that is immutable need not have the same typing for every alias. StoreType does not require the
top-level pointer encountered in its traversal of a value to have a uniform view everywhere. This pointer is
not itself mutable, only the data it points to is mutable.

Finally, the full notion of soundness we need simultaneously confirms that the execution and type envi-
ronments also agree. For this purpose it is useful to combine the two environments pairwise, matching each
variable’s value with its corresponding type:

E on A = {〈E(x), A(x)〉 ∈ U | x ∈ dom(E) ∩ dom(A)}

For the soundness proof we require that the execution and type environments agree from the outset; that is,
dom(E) = dom(A).

Because we do not have any iteration constructs in our small language, all computations are terminating.
We can use this fact to sidestep the usual issues with showing type soundness even for infinite computations.
We simply show that if an expression has any type then computation never goes wrong, provided the
computation is performed in an environment consistent with the typing assumptions.

A.3.1 Lemmas Relating to Store Typing Functions

Lemma 1. A store typing function is not changed by inclusion or exclusion of integers. That is, for any
integer i

StoreType(m,S, U) = StoreType(m,S, U ∪ {〈i, int〉})

provided that the first store typing function is defined.

Proof. From the definition of StoreType, we know that StoreType(m,S, 〈i, int〉) = λx. ⊥ and so

StoreType(m,S, U)
= StoreType(m,S, U) t λx. ⊥
= StoreType(m,S, U) t StoreType(m,S, 〈i, int〉)
= StoreType(m,S, U ∪ {〈i, int〉})

Lemma 2. A global pointer induces the same store typing function as an equivalent local pointer on the
remote machine. That is,

StoreType(m0, S, 〈〈m,a〉, boxed global ρ τ〉) = StoreType(m,S, 〈a, boxed local ρ τ〉)

provided that the first store typing function is defined.

Proof. The proof is by induction on the structure of τ .

Base Case: Invalid Pointers If ρ is invalid, then both store typing functions are λx. ⊥ and therefore
equivalent.

Base Case: Valid Pointers to Non-Pairs Suppose that ρ is valid, and that τ is not a pair type. Then

StoreType(m0, S, 〈〈m,a〉, boxed global valid τ〉)
= λx. ⊥ [〈m,a〉 ← τ ] t StoreType(m,S, 〈S(〈m,a〉), τ〉) definition of StoreType

= StoreType(m,S, 〈〈m,a〉, boxed local valid τ〉) definition of StoreType

26



Inductive Case: Valid Pointers to Non-Pairs Suppose that ρ is valid, and that τ is 〈τ1, τ2〉 for
some τ1 and τ2. Since we require that the first store typing function be defined, it must be the case that
S(〈m,a〉) = 〈a1, a2〉 for some a1 and a2. Then

StoreType(m0, S, 〈〈m,a〉, boxed global valid 〈τ1, τ2〉〉)
= λx. ⊥ [〈m,a〉 ← τ ] definition of StoreType

t StoreType(m0, S, 〈〈m,a1〉, boxed global valid τ1〉)
t StoreType(m0, S, 〈〈m,a2〉, boxed global valid τ2〉)
where S(〈m,a〉) = 〈a1, a2〉

= λx. ⊥ [〈m,a〉 ← τ ] by induction, twice

t StoreType(m,S, 〈a1, boxed local valid τ1〉)
t StoreType(m,S, 〈a2, boxed local valid τ2〉)
where S(〈m,a〉) = 〈a1, a2〉

= StoreType(m,S, 〈〈m,a〉, boxed local valid 〈τ1, τ2〉〉) definition of StoreType

Lemma 3. The store typing of a single value and type is unchanged by a single fresh extension of the store.
That is, for any local address a′ such that 〈m,a′〉 /∈ dom(S), and for any storable value sv,

StoreType(m,S, 〈v, τ〉) = StoreType(m,S[〈m,a′〉 ← sv], 〈v, τ〉)

provided that the first store typing function is defined.

Proof. The proof is by induction of the structure of τ .

Base Case: Integers Suppose that τ is int. Then v must be an integer i. We must show that

StoreType(m,S, 〈i, int〉) = StoreType(m,S[〈m,a′〉 ← sv], 〈i, int〉)

This equivalence holds trivially from the definition of StoreType, which is always λx. ⊥ for integers, regardless
of the store.

Base Case: Invalid Pointers Suppose that τ is boxed local invalid τ ′ for some τ ′. Then v must be
a local pointer a. We must show that for any storable value sv,

StoreType(m,S, 〈a, boxed local invalid τ ′〉)
= StoreType(m,S[〈m,a′〉 ← sv], 〈a, boxed local invalid τ ′〉)

This holds trivially from the definition of StoreType, which is always λx. ⊥ for invalid local pointers, regardless
of the store. The case for invalid global pointers is analogous.

Inductive Cases: Valid Local Pointers Suppose that τ is boxed local valid τ ′ for some τ ′. Then v
must be a valid local pointer a on machine m. We must show that

StoreType(m,S, 〈a, boxed local valid τ ′〉)
= StoreType(m,S[〈m,a′〉 ← sv], 〈a, boxed local valid τ ′〉)

There are two subcases, depending upon whether τ ′ is or is not a pair.

27



Inductive Subcase: Valid Local Pointers to Non-Pairs Suppose that τ ′ is not a pair type.
From the definition of StoreType, if StoreType(m,S, 〈a, boxed local valid τ ′〉) is defined then we know that
〈m,a〉 ∈ dom(S). Since 〈m,a′〉 /∈ dom(S) it follows that a 6= a′. Then

StoreType(m,S, 〈a, boxed local valid τ ′〉)
= StoreType(m,S, 〈S(〈m,a〉), τ ′〉) t λx. ⊥ [〈m,a〉 ← τ ′]
= StoreType(m,S[〈m,a′〉 ← sv], 〈S(〈m,a〉), τ ′〉) by induction

t λx. ⊥ [〈m,a〉 ← τ ′]
= StoreType(m,S[〈m,a′〉 ← sv], 〈S[〈m,a′〉 ← sv](〈m,a〉), τ ′〉) since a 6= a′

t λx. ⊥ [〈m,a〉 ← τ ′]
= StoreType(m,S[〈m,a′〉 ← sv], 〈a, boxed local valid τ ′〉)

Inductive Subcase: Valid Local Pointers to Pairs Suppose that τ ′ is 〈τ1, τ2〉 for some τ1 and τ2.
Then S(〈m,a〉) must be 〈a1, a2〉 for some pair of local addresses a1 and a2. From the definition of StoreType,
if StoreType(m,S, 〈a, boxed local valid 〈τ1, τ2〉〉) is defined then we know that 〈m,a〉, 〈m,a1〉, and 〈m,a2〉
are all contained within dom(S). Since 〈m,a′〉 /∈ dom(S) it follows that a′ is not equal to a, a1, or a2. Then

StoreType(m,S, 〈a, boxed local valid 〈τ1, τ2〉〉)
= λx. ⊥ [〈m,a〉 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m,S, 〈a1, boxed local valid τ1〉)
t StoreType(m,S, 〈a2, boxed local valid τ2〉)
where S(〈m,a〉) = 〈a1, a2〉

= λx. ⊥ [〈m,a〉 ← 〈τ1, τ2〉] by induction, twice

t StoreType(m,S[〈m,a′〉 ← sv], 〈a1, boxed local valid τ1〉)
t StoreType(m,S[〈m,a′〉 ← sv], 〈a2, boxed local valid τ2〉)
where S(〈m,a〉) = 〈a1, a2〉

= λx. ⊥ [〈m,a〉 ← 〈τ1, τ2〉] since a′ 6∈ {a, a1, a2}
t StoreType(m,S[〈m,a′〉 ← sv], 〈a1, boxed local valid τ1〉)
t StoreType(m,S[〈m,a′〉 ← sv], 〈a2, boxed local valid τ2〉)
where S[〈m,a′〉 ← sv](〈m,a〉) = 〈a1, a2〉

= StoreType(m,S[〈m,a′〉 ← sv], 〈a, boxed local valid 〈τ1, τ2〉〉) definition of StoreType

Inductive Cases: Valid Global Pointers Suppose that τ is boxed global valid τ ′ for some τ ′. Then
v must be a valid global pointer 〈mv, av〉. We must show that

StoreType(m,S, 〈〈mv, av〉, boxed global valid τ ′〉)
= StoreType(m,S[〈m,a′〉 ← sv], 〈〈mv, av〉, boxed global valid τ ′〉)

There are two subcases, depending upon whether τ ′ is or is not a pair.

Inductive Subcase: Valid Global Pointers to Non-Pairs Suppose that τ ′ is not a pair type.
From the definition of StoreType, if StoreType(m,S, 〈〈mv, av〉, boxed global valid τ ′〉) is defined then we
know that 〈mv, av〉 ∈ dom(S). Since 〈m,a′〉 /∈ dom(S) it follows that 〈mv, av〉 6= 〈m,a′〉. Then

28



StoreType(m,S, 〈〈mv, av〉, boxed global valid τ ′〉)
= StoreType(mv, S, 〈S(〈mv, av〉), τ ′〉 t λx. ⊥ [〈mv, av〉 ← τ ′])
= StoreType(mv, S[〈m,a′〉 ← sv], 〈S(〈mv, av〉), τ ′〉) by induction

t λx. ⊥ [〈mv, av〉 ← τ ′]
= StoreType(mv, S[〈m,a′〉 ← sv], 〈S[〈m,a′〉 ← sv](〈mv, av〉), τ ′〉) since 〈mv, av〉 6= 〈m,a′〉

t λx. ⊥ [〈mv, av〉 ← τ ′]
= StoreType(mv, S[〈m,a′〉 ← sv], 〈av, boxed local valid τ ′〉)
= StoreType(m,S[〈m,a′〉 ← sv], 〈〈mv, av〉, boxed global valid τ ′〉) by Lemma 2

Inductive Subcase: Valid Global Pointers to Pairs Suppose that τ ′ is 〈τ1, τ2〉 for some τ1
and τ2. Then S(〈mv, av〉) must be 〈a1, a2〉 for some pair of local addresses a1 and a2. From the defini-
tion of StoreType, if StoreType(m,S, 〈〈mv, av〉, boxed global valid 〈τ1, τ2〉〉) is defined then we know that
{〈mv, av〉, 〈mv, a1〉, 〈mv, a2〉} ⊆ dom(S). Since 〈m,a′〉 /∈ dom(S) it follows that 〈m,a′〉 is not equal to
〈mv, av〉, 〈mv, a1〉, or 〈mv, a2〉. Then

StoreType(m,S, 〈〈mv, av〉, boxed global valid 〈τ1, τ2〉〉)
= λx. ⊥ [〈mv, av〉 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m,S, 〈〈mv, a1〉, boxed global valid τ1〉)
t StoreType(m,S, 〈〈mv, a2〉, boxed global valid τ2〉)
where S(〈mv, av〉) = 〈a1, a2〉

= λx. ⊥ [〈mv, av〉 ← 〈τ1, τ2〉] by induction, twice

t StoreType(m,S[〈m,a′〉 ← sv], 〈〈mv, a1〉, boxed global valid τ1〉)
t StoreType(m,S[〈m,a′〉 ← sv], 〈〈mv, a2〉, boxed global valid τ2〉)
where S(〈mv, av〉) = 〈a1, a2〉

= λx. ⊥ [〈mv, av〉 ← 〈τ1, τ2〉] since 〈m,a′〉 6∈ dom(S)

t StoreType(mv, S[〈m,a′〉 ← sv], 〈〈mv, a1〉, boxed global valid τ1〉)
t StoreType(mv, S[〈m,a′〉 ← sv], 〈〈mv, a2〉, boxed global valid τ2〉)
where S[〈m,a′〉 ← sv](〈mv, av〉) = 〈a1, a2〉

= StoreType(m,S[〈m,a′〉 ← sv], 〈〈mv, av〉, boxed global valid 〈τ1, τ2〉〉) definition of StoreType

Inductive Case: Pairs Suppose that τ is 〈τ1, τ2〉 for some τ1, τ2. Then v must be a pair 〈v1, v2〉. We
must show that

StoreType(m,S, 〈〈v1, v2〉, 〈τ1, τ2〉〉) = StoreType(m,S[〈m,a′〉 ← sv], 〈〈v1, v2〉, 〈τ1, τ2〉〉)

We can show inductively that each component of the pair produces an identical typing function in the
extended store, and thus the typing function for the pair as a whole remains unchanged as well. Using the
definition of StoreType:

StoreType(m,S, 〈〈v1, v2〉, 〈τ1, τ2〉〉)
= (StoreType(m,S, 〈v1, τ1〉)

t StoreType(m,S, 〈v2, τ2〉))
= (StoreType(m,S[〈m,a′〉 ← sv], 〈v1, τ1〉) by induction, twice

t StoreType(m,S[〈m,a′〉 ← sv], 〈v2, τ2〉))
= StoreType(m,S[〈m,a′〉 ← sv], 〈〈v1, v2〉, 〈τ1, τ2〉〉)

29



Corollary 4. The store typing of a set of values and types is unchanged by a single fresh extension of the
store. That is, for any local address a′ such that 〈m,a′〉 /∈ dom(S), and for any storable value sv,

StoreType(m,S, U) = StoreType(m,S[〈m,a′〉 ← sv], U)

provided that the first store typing function is defined.

Proof. Easily derived from Lemma 3 by induction on the size of U .

Corollary 5. The store typing of a set of values and types is unchanged by multiple fresh extensions of the
store. That is, for any vector of n distinct local addresses a′i such that 〈m,a′i〉 /∈ dom(S), and for any vector
of n storable values svi,

StoreType(m,S, U) = StoreType(m,S[〈m,a′1〉 ← sv1, . . . , 〈m,a′n〉 ← svn], U)

provided that the first store typing function is defined.

Proof. Easily derived from Corollary 4 by induction on n.

Lemma 6. The store typing function for a set of values and types is at least as defined as that for the same
set with one type replaced by a subtype. That is, for any types τ and τ ′ such that τ ≤ τ ′,

StoreType(m,S, U ∪ {〈v, τ〉}) w StoreType(m,S, U ∪ {〈v, τ ′〉})

provided that the first store typing function is defined.

Proof. Proof is by induction on the structure of τ .

Base Case: Identical Types If τ = τ ′ the result is trivial.

Base Case: Valid and Invalid Pointers Suppose that τ is a local pointer. If τ 6= τ ′ then it must be
the case that

τ = boxed local valid τ0

∧ τ ′ = boxed local invalid τ0

∧ v = a

for some τ0 and a. However, StoreType(m,S, 〈a, boxed local invalid τ0〉) is always λx. ⊥, so we have

StoreType(m,S, U ∪ {〈v, boxed local valid τ0〉})
w StoreType(m,S, U ∪ {λx. ⊥})
= StoreType(m,S, U ∪ {〈v, boxed local invalid τ0〉})

which proves the result.

Inductive Case: Pairs Assume that τ = 〈τ1, τ2〉. Then τ ′ = 〈τ ′1, τ ′2〉 and v = 〈v1, v2〉. Using the
definitions of StoreType and subtyping:

StoreType(m,S, U ∪ {〈v, τ〉}) where τ ≤ τ ′

= StoreType(m,S, U ∪ {〈〈v1, v2〉, 〈τ1, τ2〉〉}) where 〈τ1, τ2〉 ≤ 〈τ ′1, τ2〉
= StoreType(m,S, U ∪ {〈v1, τ1〉, 〈v2, τ2〉}) where τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2
w StoreType(m,S, U ∪ {〈v1, τ

′
1〉, 〈v2, τ2〉}) where τ2 ≤ τ ′2 by induction

w StoreType(m,S, U ∪ {〈v1, τ
′
1〉, 〈v2, τ

′
2〉}) by induction

= StoreType(m,S, U ∪ {〈〈v1, v2〉, 〈τ ′1, τ ′2〉〉})

30



Lemma 7. Uniformity is retained following local replacement of a single non-pair by a new value of the
same type. That is, if we define U = U0 ∪ {〈sv, τ〉, 〈a, boxed local valid τ〉} where τ is not a pair type,
then

Uniform(StoreType(m,S, U)) =⇒ Uniform(StoreType(m,S[〈m,a〉 ← sv], U))

provided that the first store typing function is defined.

Proof. It suffices to show that Uniform(StoreType(m,S, U)) implies that

∀〈v0, τ0〉 ∈ U . StoreType(m,S, U) w StoreType(m,S[〈m,a〉 ← sv], 〈v0, τ0〉)

from which it follows that

StoreType(m,S, U)

w
⊔

〈v0,τ0〉∈U

StoreType(m,S[〈m,a〉 ← sv], 〈v0, τ0〉)

= StoreType(m,S[〈m,a〉 ← sv], U)

Then since Uniform(StoreType(m,S, U)) holds and StoreType(m,S, U) w StoreType(m,S[〈m,a〉 ← sv], U),
we know that Uniform(StoreType(m,S[〈m,a〉 ← sv], U)). The proof is by induction on the structure of τ0.

Base Case: τ0 = int Then Uniform(StoreType(m,S, U)) implies that v0 is an integer.

StoreType(m,S, U)
w λx. ⊥
= StoreType(m,S[〈m,a〉 ← sv], 〈v0, int〉) definition of StoreType

Inductive Cases: τ0 = boxed local valid τ ′

StoreType(m,S, U) is defined
=⇒ v0 is a local address and S(〈m, v0〉) is defined since 〈v0, τ0〉 ∈ U

There are three subcases, depending upon whether v0 is or is not the updated address, and whether τ ′

is or is not a pair.

Inductive Subcase: v0 = a Since Uniform(StoreType(m,S, U)) is true, we know that τ = τ ′ from the
definition of uniformity. We reason as follows:

StoreType(m,S, U0 ∪ {〈sv, τ〉, 〈a, boxed local valid τ〉})
w λx. ⊥ [〈m,a〉 ← τ ] t StoreType(m,S, U0 ∪ {〈sv, τ〉}) definition of StoreType

w λx. ⊥ [〈m,a〉 ← τ ] t StoreType(m,S[〈m,a〉 ← sv], 〈sv, τ〉) by induction

= StoreType(m,S[〈m,a〉 ← sv], 〈a, boxed local valid τ〉) definition of StoreType

= StoreType(m,S[〈m,a〉 ← sv], 〈v0, boxed local valid τ ′〉) since v0 = a and τ = τ ′

31



Inductive Subcase: v0 6= a and τ ′ 6= 〈τ1, τ2〉

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v0, boxed local valid τ ′〉}) since 〈v0, boxed local valid τ ′〉 ∈ U0

= λx. ⊥ [〈m, v0〉 ← τ ′] definition of StoreType

t StoreType(m,S, U ∪ {〈S(〈m, v0〉), τ ′〉})
w λx. ⊥ [〈m, v0〉 ← τ ′] by induction

t StoreType(m,S[〈m,a〉 ← sv], 〈S(〈m, v0〉), τ ′〉)
= λx. ⊥ [〈m, v0〉 ← τ ′] since v0 6= a

t StoreType(m,S[〈m,a〉 ← sv], 〈S[〈m,a〉 ← sv](〈m, v0〉), τ ′〉)
= StoreType(m,S[〈m,a〉 ← sv], 〈v0, boxed local valid τ ′〉) definition of StoreType

Inductive Subcase: v0 6= a and τ ′ = 〈τ1, τ2〉

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v0, boxed local valid 〈τ1, τ2〉〉}) since 〈v0, boxed local valid τ ′〉 ∈ U0

= λx. ⊥ [〈m, v0〉 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m,S, U ∪ {〈a1, boxed local valid τ1〉})
t StoreType(m,S, U ∪ {〈a2, boxed local valid τ2〉})
where S(〈m, v0〉) = 〈a1, a2〉

w λx. ⊥ [〈m, v0〉 ← 〈τ1, τ2〉] by induction, twice

t StoreType(m,S[〈m,a〉 ← sv], 〈a1, boxed local valid τ1〉)
t StoreType(m,S[〈m,a〉 ← sv], 〈a2, boxed local valid τ2〉)
where S(〈m, v0〉) = 〈a1, a2〉

= λx. ⊥ [〈m, v0〉 ← 〈τ1, τ2〉] since 〈m, v0〉 6= 〈m,a〉
t StoreType(m,S[〈m,a〉 ← sv], 〈a1, boxed local valid τ1〉)
t StoreType(m,S[〈m,a〉 ← sv], 〈a2, boxed local valid τ2〉)
where S[〈m,a〉 ← sv](〈m, v0〉) = 〈a1, a2〉

= StoreType(m,S[〈m,a〉 ← sv], 〈v0, boxed local valid 〈τ1, τ2〉〉) definition of StoreType

Inductive Cases: τ0 = boxed global valid τ ′ There are three subcases paralleling the three subcases
for local pointers.

Inductive Subcase: v0 = 〈m,a〉 Since Uniform(StoreType(m,S, U)) is true, we know that τ = τ ′

from the definition of uniformity, and therefore that τ ′ 6= 〈τ1, τ2〉. We reason as follows:

StoreType(m,S, U0 ∪ {〈sv, τ〉, 〈a, boxed local valid τ〉})
w λx. ⊥ [〈m,a〉 ← τ ] t StoreType(m,S, U0 ∪ {〈sv, τ〉}) definition of StoreType

w λx. ⊥ [〈m,a〉 ← τ ] t StoreType(m,S[〈m,a〉 ← sv], 〈sv, τ〉) by induction

= StoreType(m,S[〈m,a〉 ← sv], 〈〈m,a〉, boxed global valid τ〉) definition of StoreType

= StoreType(m,S[〈m,a〉 ← sv], 〈v0, boxed global valid τ ′〉) since v0 = 〈m,a〉 and τ = τ ′

32



Inductive Subcase: v0 = 〈m′, a′〉 6= 〈m,a〉 and τ ′ 6= 〈τ1, τ2〉

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v0, boxed global valid τ ′〉}) since 〈v0, boxed global valid τ ′〉 ∈ U0

w λx. ⊥ [v0 ← τ ′] definition of StoreType

t StoreType(m′, S, 〈S(v0), τ ′〉)
w λx. ⊥ [v0 ← τ ′] by induction

t StoreType(m′, S[〈m,a〉 ← sv], 〈S(v0), τ ′〉)
= λx. ⊥ [v0 ← τ ′] since v0 6= 〈m,a〉

t StoreType(m′, S[〈m,a〉 ← sv], 〈S[〈m,a〉 ← sv](v0), τ ′〉)
= StoreType(m,S[〈m,a〉 ← sv], 〈v0, boxed global valid τ ′〉) definition of StoreType

Inductive Subcase: v0 = 〈m′, a′〉 6= 〈m,a〉 and τ ′ = 〈τ1, τ2〉

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v0, boxed global valid 〈τ1, τ2〉〉}) since 〈v0, τ0〉 ∈ U0

= λx. ⊥ [v0 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m,S, U ∪ {〈〈m′, a1〉, boxed global valid τ1〉})
t StoreType(m,S, U ∪ {〈〈m′, a2〉, boxed global valid τ2〉})
where S(v0) = 〈a1, a2〉

w λx. ⊥ [v0 ← 〈τ1, τ2〉] by induction, twice

t StoreType(m,S[〈m,a〉 ← sv], 〈〈m′, a1〉, boxed global valid τ1〉)
t StoreType(m,S[〈m,a〉 ← sv], 〈〈m′, a2〉, boxed global valid τ2〉)
where S(v0) = 〈a1, a2〉

= λx. ⊥ [v0 ← 〈τ1, τ2〉] since v0 6= 〈m,a〉
t StoreType(m,S[〈m,a〉 ← sv], 〈〈m′, a1〉, boxed global valid τ1〉)
t StoreType(m,S[〈m,a〉 ← sv], 〈〈m′, a2〉, boxed global valid τ2〉)
where S[〈m,a〉 ← sv](v0) = 〈a1, a2〉

= StoreType(m,S[〈m,a〉 ← sv], 〈v0, boxed global valid 〈τ1, τ2〉〉) definition of StoreType

Base Case: τ0 = boxed local invalid τ ′ Then Uniform(StoreType(m,S, U)) implies that v0 is a local
address.

StoreType(m,S, U)
w λx. ⊥
= StoreType(m,S[〈m,a〉 ← sv], 〈v, boxed local invalid τ ′〉) definition of StoreType

Base Case: τ0 = boxed global invalid τ ′ Then Uniform(StoreType(m,S, U)) implies that v0 is a global
address.

StoreType(m,S, U)
w λx. ⊥
= StoreType(m,S[〈m,a〉 ← sv], 〈v, boxed global invalid τ ′〉) definition of StoreType

33



Inductive Case: τ0 = 〈τ1, τ2〉 Then Uniform(StoreType(m,S, U)) implies that v0 = 〈v1, v2〉. We reason
as follows:

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v1, τ1〉, 〈v2, τ2〉}) definition of StoreType

w StoreType(m,S[〈m,a〉 ← sv], 〈v1, τ1〉) by induction, twice

t StoreType(m,S[〈m,a〉 ← sv], 〈v2, τ2〉)
= StoreType(m,S[〈m,a〉 ← sv], 〈〈v1, v2〉, 〈τ1, τ2〉〉) definition of StoreType

Corollary 8. Uniformity is retained following local replacement of several non-pairs by new values of the
same types. That is, if we define

U = U0 ∪ {〈sv1, τ1〉, 〈a1, boxed local valid τ1〉, . . . , 〈svn, τn〉, 〈an, boxed local valid τn〉}

where all ai are distinct and all τi 6= 〈τ, τ ′〉, then

Uniform(StoreType(m,S, U)) =⇒ Uniform(StoreType(m,S[〈m,a1〉 ← sv1, . . . , 〈m,an〉 ← svn], U))

provided that the first store typing function is defined.

Proof. Easily derived from Lemma 7 by induction on n.

Lemma 9. A robust value and type induces the same store typing function on any machine. That is, if
robust(τ) is true then

StoreType(m0, S, 〈v, τ〉) = StoreType(m1, S, 〈v, τ〉)

provided that the first store typing function is defined.

Proof. The proof is by induction on the structure of τ .

Base Case: τ = int Then v = i for some integer i.

StoreType(m0, S, 〈i, int〉)
= λx. ⊥
= StoreType(m1, S, 〈i, int〉)

Base Case: τ = boxed local invalid τ0 Then v = a for some address a.

StoreType(m0, S, 〈a, boxed local invalid τ0〉)
= λx. ⊥
= StoreType(m1, S, 〈a, boxed local invalid τ0〉)

Base Case: τ = boxed global invalid τ0 Then v = g for some global address g.

StoreType(m0, S, 〈g, boxed local invalid τ0〉)
= λx. ⊥
= StoreType(m1, S, 〈g, boxed local invalid τ0〉)

Base Case: τ = boxed local valid τ0 Then robust(τ) does not hold, contradicting the lemma premise.

34



Base Case: τ = boxed global valid τ0 Then v = 〈m,a〉 for some machine m and address a.

StoreType(m0, S, 〈〈m,a〉, boxed global valid τ0〉)
StoreType(m,S, 〈a, boxed local valid τ0〉) by Lemma 2

= StoreType(m1, S, 〈〈m,a〉, boxed global valid τ0〉) by Lemma 2

Inductive Case: τ = 〈τ1, τ2〉 Then v = 〈v1, v2〉 for some values v1 and v2.

StoreType(m0, S, 〈〈v1, v2〉, 〈τ1, τ2〉〉)
= StoreType(m0, S, 〈v1, τ1〉) t StoreType(m0, S, 〈v2, τ2〉) definition of StoreType

= StoreType(m1, S, 〈v1, τ1〉) t StoreType(m1, S, 〈v2, τ2〉) by induction, twice

= StoreType(m1, S, 〈〈v1, v2〉, 〈τ1, τ2〉〉)

Lemma 10. Uniformity is retained following global replacement of a single robust non-pair by a new value
of the same type. That is, if we define U = U0 ∪ {〈sv, τ〉, 〈g, boxed global valid τ〉} where τ is not a pair
type, and further require that robust(τ) be true, then

Uniform(StoreType(m,S, U)) =⇒ Uniform(StoreType(m,S[g ← sv], U))

provided that the first store typing function is defined.

Proof. As in the case of local assignment, it suffices to show that Uniform(StoreType(m,S, U)) and robust(τ)
implies that

∀〈v0, τ0〉 ∈ U . StoreType(m,S, U) w StoreType(m,S[g ← sv], 〈v0, τ0〉)

from which it follows that

StoreType(m,S, U)

w
⊔

〈v0,τ0〉∈U

StoreType(m,S[g ← sv], 〈v0, τ0〉)

= StoreType(m,S[g ← sv], U)

Then since Uniform(StoreType(m,S, U)) holds and StoreType(m,S, U) w StoreType(m,S[g ← sv], U), we
know that Uniform(StoreType(m,S[g ← sv], U)). The proof is by induction on the structure of τ0.

Base Case: τ0 = int Then Uniform(StoreType(m,S, U)) implies that v0 is an integer.

StoreType(m,S, U)
w λx. ⊥
= StoreType(m,S[g ← sv], 〈v0, int〉) definition of StoreType

Inductive Cases: τ0 = boxed local valid τ ′

StoreType(m,S, U) is defined
=⇒ v0 is a local address and S(〈m, v0〉) is defined since 〈v0, τ0〉 ∈ U

There are three subcases, depending upon whether 〈m, v0〉 is or is not the updated address, and whether
τ ′ is or is not a pair.

35



Inductive Subcase: 〈m, v0〉 = g Since Uniform(StoreType(m,S, U)) is true, we know that τ = τ ′

from the definition of uniformity. We reason as follows:

StoreType(m,S, U0 ∪ {〈sv, τ〉, 〈g, boxed global valid τ〉})
w λx. ⊥ [g ← τ ] t StoreType(m,S, U0 ∪ {〈sv, τ〉}) definition of StoreType

w λx. ⊥ [g ← τ ] t StoreType(m,S[g ← sv], 〈sv, τ〉) by induction

= λx. ⊥ [〈m, v0〉 ← τ ] t StoreType(m,S[g ← sv], 〈sv, τ〉) since 〈m, v0〉 = g

= StoreType(m,S[g ← sv], 〈v0, boxed local valid τ〉) definition of StoreType

= StoreType(m,S[g ← sv], 〈v0, boxed local valid τ ′〉) since τ = τ ′

Inductive Subcase: 〈m, v0〉 6= g and τ ′ 6= 〈τ1, τ2〉

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v0, boxed local valid τ ′〉}) since 〈v0, boxed local valid τ ′〉 ∈ U0

= λx. ⊥ [〈m, v0〉 ← τ ′] definition of StoreType

t StoreType(m,S, U ∪ {〈S(〈m, v0〉), τ ′〉})
w λx. ⊥ [〈m, v0〉 ← τ ′] by induction

t StoreType(m,S[g ← sv], 〈S(〈m, v0〉), τ ′〉)
= λx. ⊥ [〈m, v0〉 ← τ ′] since 〈m, v0〉 6= g

t StoreType(m,S[g ← sv], 〈S[g ← sv](〈m, v0〉), τ ′〉)
= StoreType(m,S[g ← sv], 〈v0, boxed local valid τ ′〉) definition of StoreType

Inductive Subcase: 〈m, v0〉 6= g and τ ′ = 〈τ1, τ2〉

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v0, boxed local valid 〈τ1, τ2〉〉}) since 〈v0, boxed local valid 〈τ1, τ2〉〉 ∈ U0

= λx. ⊥ [〈m, v0〉 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m,S, U ∪ {〈a1, boxed local valid τ1〉})
t StoreType(m,S, U ∪ {〈a2, boxed local valid τ2〉})
where S(〈m, v0〉) = 〈a1, a2〉

w λx. ⊥ [〈m, v0〉 ← 〈τ1, τ2〉] by induction, twice

t StoreType(m,S[g ← sv], 〈a1, boxed local valid τ1〉)
t StoreType(m,S[g ← sv], 〈a2, boxed local valid τ2〉)
where S(〈m, v0〉) = 〈a1, a2〉

= λx. ⊥ [〈m, v0〉 ← 〈τ1, τ2〉] since 〈m, v0〉 6= g

t StoreType(m,S[g ← sv], 〈a1, boxed local valid τ1〉)
t StoreType(m,S[g ← sv], 〈a2, boxed local valid τ2〉)
where S[g ← sv](〈m, v0〉) = 〈a1, a2〉

= StoreType(m,S[g ← sv], 〈v0, boxed local valid 〈τ1, τ2〉〉) definition of StoreType

Inductive Cases: τ0 = boxed global valid τ ′ There are three subcases paralleling the three subcases
for local pointers.

36



Inductive Subcase: v0 = 〈m′, a′〉 = g Since Uniform(StoreType(m,S, U)) is true, we know that τ = τ ′

from the definition of uniformity. We reason as follows:

StoreType(m,S, U0 ∪ {〈sv, τ〉, 〈g, boxed global valid τ〉})
w λx. ⊥ [g ← τ ] t StoreType(m,S, U0 ∪ {〈sv, τ〉}) definition of StoreType

w λx. ⊥ [g ← τ ] t StoreType(m,S[g ← sv], 〈sv, τ〉) by induction

= λx. ⊥ [g ← τ ] t StoreType(m′, S[g ← sv], 〈sv, τ〉) by Lemma 9

= λx. ⊥ [g ← τ ] t StoreType(m′, S[g ← sv], 〈S[g ← sv](g), τ〉) since S[g ← sv](g) = sv

= λx. ⊥ [〈m′, a′〉 ← τ ] t StoreType(m′, S[g ← sv], 〈S[g ← sv](g), τ〉) since S[g ← sv](g) = sv

= StoreType(m,S[g ← sv], 〈〈m′, a′〉, boxed global valid τ〉) definition of StoreType

= StoreType(m,S[g ← sv], 〈v0, boxed global valid τ ′〉) since v0 = 〈m′, a′〉 and τ = τ ′

Inductive Subcase: v0 = 〈m′, a′〉 6= g and τ ′ 6= 〈τ1, τ2〉

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v0, boxed global valid τ ′〉}) since 〈v0, boxed global valid τ ′〉 ∈ U0

= StoreType(m,S, U) definition of StoreType

t λx. ⊥ [v0 ← τ ′] t StoreType(m′, S, 〈S(v0), τ ′〉)
w λx. ⊥ [v0 ← τ ′] t StoreType(m′, S, 〈S(v0), τ ′〉)
w λx. ⊥ [v0 ← τ ′] by induction

t StoreType(m′, S[g ← sv], 〈S(v0), τ ′〉)
= λx. ⊥ [v0 ← τ ′] since v0 6= g

t StoreType(m′, S[g ← sv], 〈S[g ← sv](v0), τ ′〉)
= StoreType(m,S[g ← sv], 〈v0, boxed global valid τ ′〉) definition of StoreType

Inductive Subcase: v0 = 〈m′, a′〉 6= g and τ ′ = 〈τ1, τ2〉

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v0, boxed global valid 〈τ1, τ2〉〉}) since 〈v0, τ0〉 ∈ U0

= λx. ⊥ [v0 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m,S, U ∪ {〈〈m′, a1〉, boxed global valid τ1〉})
t StoreType(m,S, U ∪ {〈〈m′, a2〉, boxed global valid τ2〉})
where S(v0) = 〈a1, a2〉

w λx. ⊥ [v0 ← 〈τ1, τ2〉] by induction, twice

t StoreType(m,S[g ← sv], 〈〈m′, a1〉, boxed global valid τ1〉)
t StoreType(m,S[g ← sv], 〈〈m′, a2〉, boxed global valid τ2〉)
where S(v0) = 〈a1, a2〉

= λx. ⊥ [v0 ← 〈τ1, τ2〉] since v0 6= g

t StoreType(m,S[g ← sv], 〈〈m′, a1〉, boxed global valid τ1〉)
t StoreType(m,S[g ← sv], 〈〈m′, a2〉, boxed global valid τ2〉)
where S[g ← sv](v0) = 〈a1, a2〉

= StoreType(m,S[g ← sv], 〈v0, boxed global valid 〈τ1, τ2〉〉) definition of StoreType

37



Base Case: τ0 = boxed local invalid τ ′ Then Uniform(StoreType(m,S, U)) implies that v0 is a local
address.

StoreType(m,S, U)
w λx. ⊥
= StoreType(m,S[g ← sv], 〈v, boxed local invalid τ ′〉) definition of StoreType

Base Case: τ0 = boxed global invalid τ ′ Then Uniform(StoreType(m,S, U)) implies that v0 is a global
address.

StoreType(m,S, U)
w λx. ⊥
= StoreType(m,S[g ← sv], 〈v, boxed global invalid τ ′〉) definition of StoreType

Inductive Case: τ0 = 〈τ1, τ2〉 Then Uniform(StoreType(m,S, U)) implies that v0 = 〈v1, v2〉. We reason
as follows:

StoreType(m,S, U)
= StoreType(m,S, U ∪ {〈v1, τ1〉, 〈v2, τ2〉}) definition of StoreType

w StoreType(m,S[g ← sv], 〈v1, τ1〉) t StoreType(m,S[g ← sv], 〈v2, τ2〉) by induction, twice

= StoreType(m,S[g ← sv], 〈〈v1, v2〉, 〈τ1, τ2〉〉) definition of StoreType

Corollary 11. Uniformity is retained following global replacement of several robust non-pairs by a new
values of the same types. That is, if we define

U = U0 ∪ {〈sv1, τ1〉, 〈g1, boxed global valid τ1〉, . . . , 〈svn, τn〉, 〈gn, boxed global valid τn〉}

where all gi are distinct, all τi 6= 〈τ, τ ′〉, and all robust(τi) are true, then

Uniform(StoreType(m,S, U)) =⇒ Uniform(StoreType(m,S[g1 ← sv1, . . . , gn ← svn], U))

provided that the first store typing function is defined.

Proof. Easily derived from Lemma 10 by induction on n.

Lemma 12. The store typing function for a valid local pointer is at least as defined as that for the referenced
value. That is,

StoreType(m,S, 〈a, boxed local valid τ〉) w StoreType(m,S, 〈Value(S, 〈m,a〉), τ〉)

provided that the first store typing function is defined.

Proof. The proof is by induction on the structure of τ .

Base Case: Non-Pairs Suppose that τ is not a pair type. Then S(〈m,a〉) cannot be a pair of local
addresses. So

StoreType(m,S, 〈a, boxed local valid τ〉)
= StoreType(m,S, 〈S(〈m,a〉), τ〉) t λx. ⊥ [〈m,a〉 ← τ ] definition of StoreType

w StoreType(m,S, 〈S(〈m,a〉), τ〉)
= StoreType(m,S, 〈Value(S, 〈m,a〉), τ〉) definition of Value

38



Inductive Case: Pairs Suppose that τ is 〈τ1, τ2〉 for some τ1 and τ2. Then S(〈m,a〉) must be 〈a1, a2〉
for some a1 and a2. So

StoreType(m,S, 〈a, boxed local valid 〈τ1, τ2〉〉)
= λx. ⊥ [〈m,a〉 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m,S, 〈a1, boxed local valid τ1〉)
t StoreType(m,S, 〈a2, boxed local valid τ2〉)

w StoreType(m,S, 〈a1, boxed local valid τ1〉)
t StoreType(m,S, 〈a2, boxed local valid τ2〉)

w StoreType(m,S, 〈Value(S, 〈m,a1〉), τ1〉) by induction, twice

t StoreType(m,S, 〈Value(S, 〈m,a2〉), τ2〉)
= StoreType(m,S, 〈〈Value(S, 〈m,a1〉),Value(S, 〈m,a2〉)〉, 〈τ1, τ2〉〉) definition of StoreType

= StoreType(m,S, 〈Value(S, 〈m,a〉), 〈τ1, τ2〉〉) definition of Value

Corollary 13. Uniformity of a set of values and types is preserved across dereferencing of a valid local
pointer. That is,

Uniform(StoreType(m,S, U ∪ {〈a, boxed local valid τ〉}))
=⇒ Uniform(StoreType(m,S, U ∪ {〈Value(S, 〈m,a〉), τ〉}))

provided that the first store typing function is defined.

Proof. Easily derived from Lemma 12 by induction on the size of U .

Lemma 14. The store typing function for a valid global pointer is at least as defined as that for the
referenced value with type popping. That is,

StoreType(m0, S, 〈〈m,a〉, boxed global valid τ〉) w StoreType(m0, S, 〈Value(S, 〈m,a〉), pop(τ)〉)

provided that the first store typing function is defined.

Proof. The proof is by induction on the structure of τ .

Base Case: Integers Suppose that τ is int. Then S(〈m,a〉) must be some integer. So

StoreType(m0, S, 〈〈m,a〉, boxed global valid int〉)
w λx. ⊥
= StoreType(m0, S, 〈S(〈m,a〉), int〉) definition of StoreType

= StoreType(m0, S, 〈Value(S, 〈m,a〉), int〉) definition of Value

= StoreType(m0, S, 〈Value(S, 〈m,a〉), pop(int)〉) definition of pop

Base Case: Invalid Pointers Suppose that τ is boxed ω invalid τ ′ for some ω and τ ′. Then S(〈m,a〉)
must be an invalid ω pointer. So

StoreType(m0, S, 〈〈m,a〉, boxed global valid boxed ω invalid τ ′〉)
w λx. ⊥
= StoreType(m0, S, 〈S(〈m,a〉), boxed ω invalid τ ′〉) definition of Value

= StoreType(m0, S, 〈Value(S, 〈m,a〉), boxed ω invalid τ ′〉) definition of Value

= StoreType(m0, S, 〈Value(S, 〈m,a〉), pop(boxed ω invalid τ ′)〉) definition of pop

39



Base Case: Local Pointers Suppose that τ is boxed local ρ τ ′ for some ρ and τ ′. Then S(〈m,a〉) must
be a ρ local pointer. So

StoreType(m0, S, 〈〈m,a〉, boxed global valid boxed local ρ τ ′〉)
w λx. ⊥
= StoreType(m0, S, 〈S(〈m,a〉), boxed local invalid τ ′〉) definition of Value

= StoreType(m0, S, 〈Value(S, 〈m,a〉), boxed local invalid τ ′〉) definition of Value

= StoreType(m0, S, 〈Value(S, 〈m,a〉), pop(boxed local ρ τ ′)〉) definition of pop

Note that the preceding two derivations are equivalent in the overlapping case where τ is both local and
invalid.

Base Case: Global Pointers Suppose that τ is boxed global valid τ ′ for some τ ′. Then S(〈m,a〉)
must be a valid global pointer. So

StoreType(m0, S, 〈〈m,a〉, boxed global valid boxed global valid τ ′〉)
= StoreType(m,S, 〈S(〈m,a〉), boxed global valid τ ′〉) definition of StoreType

t λx. ⊥ [〈m,a〉 ← boxed global valid τ ′]
w StoreType(m,S, 〈S(〈m,a〉), boxed global valid τ ′〉)
= StoreType(m0, S, 〈S(〈m,a〉), boxed global valid τ ′〉) by Lemma 9

= StoreType(m0, S, 〈Value(S, 〈m,a〉), boxed global valid τ ′〉) definition of Value

= StoreType(m0, S, 〈Value(S, 〈m,a〉), pop(boxed global valid τ ′)〉) definition of pop

Inductive Case: Pairs Suppose that τ is 〈τ1, τ2〉 for some τ1 and τ2. Then S(〈m,a〉) must be 〈a1, a2〉
for some a1 and a2. So

StoreType(m0, S, 〈〈m,a〉, boxed global valid 〈τ1, τ2〉〉)
= λx. ⊥ [〈m,a〉 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m0, S, 〈〈m,a1〉, boxed global valid τ1〉)
t StoreType(m0, S, 〈〈m,a2〉, boxed global valid τ2〉)

w StoreType(m0, S, 〈〈m,a1〉, boxed global valid τ1〉)
t StoreType(m0, S, 〈〈m,a2〉, boxed global valid τ2〉)

w StoreType(m0, S, 〈Value(S, 〈m,a1〉), pop(τ1)〉) by induction, twice

t StoreType(m0, S, 〈Value(S, 〈m,a2〉), pop(τ2)〉)
= StoreType(m0, S, 〈〈Value(S, 〈m,a1〉),Value(S, 〈m,a2〉)〉, 〈pop(τ1), pop(τ2)〉〉) definition of StoreType

= StoreType(m0, S, 〈Value(S, 〈m,a〉), 〈pop(τ1), pop(τ2)〉〉) definition of Value

= StoreType(m0, S, 〈Value(S, 〈m,a〉), pop(〈τ1, τ2〉)〉) definition of pop

Lemma 15. The store typing function for a valid global pointer is at least as defined as that for the
referenced value with value widening and type expansion. That is,

StoreType(m0, S, 〈〈m,a〉, boxed global valid τ〉)
w StoreType(m0, S, 〈WideValue(S, 〈m,a〉), expand(τ)〉)

provided that the first store typing function is defined.

Proof. There are two cases, depending upon whether τ is or is not a local pointer.

40



LeafTypes(τ) =


($ ·LeafTypes(τ1)) if τ = 〈τ1, τ2〉
∪ (% ·LeafTypes(τ2))

{τ} otherwise

Figure 19: Auxiliary function for leaf type enumeration.

Local Pointers Suppose that τ is boxed local ρ τ ′ for some ρ and τ ′. Then S(〈m,a〉) must be some
local pointer. Therefore,

StoreType(m0, S, 〈〈m,a〉, boxed global valid boxed local ρ τ ′〉)
= StoreType(m,S, 〈S(〈m,a〉), boxed local ρ τ ′〉) definition of StoreType

= t λx. ⊥ [〈m,a〉 ← boxed local ρ τ ′]
w StoreType(m,S, 〈S(〈m,a〉), boxed local ρ τ ′〉)
= StoreType(m0, S, 〈〈m,S(〈m,a〉)〉, boxed global ρ τ ′〉) by Lemma 2

= StoreType(m0, S, 〈WideValue(S, 〈m,a〉), expand(boxed local ρ τ ′)〉) definition of WideValue, expand

All Other Types Suppose that τ is int, or boxed global ρ τ ′ for some ρ and τ ′, or 〈τ1, τ2〉 for some
τ1 and τ2. Then from the definitions of expand and pop we know that expand(τ) = pop(τ). Furthermore,
S(〈m,a〉) cannot be a local pointer, which implies that Value(S, 〈m,a〉) = WideValue(S, 〈m,a〉). Therefore,

StoreType(m0, S, 〈〈m,a〉, boxed global valid τ〉)
w StoreType(m0, S, 〈Value(S, 〈m,a〉), pop(τ)〉) by Lemma 14

= StoreType(m0, S, 〈WideValue(S, 〈m,a〉), expand(τ)〉)

Corollary 16. Uniformity of a set of values and types is preserved across dereferencing of a valid global
pointer with value widening and type expansion. That is,

Uniform(StoreType(m0, S, U ∪ {〈g, boxed global valid τ〉}))
=⇒ Uniform(StoreType(m0, S, U ∪ {〈WideValue(S, g), expand(τ)〉}))

provided that the first store typing function is defined.

Proof. Easily derived from Lemma 15 by induction on the size of U .

Assignment only replaces values corresponding to the terminal leaves of a compound type. The 〈a1, a2〉
address pairs that express interior structure are created once, by the indirection operator, and are not
subsequently changed by assignment. We already have ways to name leaf values and addresses, using the
LeafPaths and LeafAddresses functions defined earlier. To prove soundness we also need a way to name
leaf types. Auxiliary function LeafTypes in Figure 19 provides this functionality. All three functions have a
similar recursive-descent structure; that connection is formalized in the following two lemmas.

Lemma 17. A store typing function is unchanged if augmented with the constituent leaf components of a
valid local pointer and a type-compatible value.

StoreType(m,S, U ∪ {〈v, τ〉, 〈a, boxed local valid τ〉})
= StoreType(m,S, U ∪ {〈v, τ〉, 〈a, boxed local valid τ〉} ∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}

∪ {〈a1, boxed local valid τ1〉, . . . , 〈an, boxed local valid τn〉})

41



where

LeafPaths(v) = {p1 · sv1, . . . , pn · svn}
LeafAddresses(S, 〈m,a〉) = {p1 · 〈m,a1〉, . . . , pn · 〈m,an〉}

LeafTypes(τ) = {p1 · τ1, . . . , pn · τn}

provided that the first store typing function is defined.

Proof. The proof is by induction on the structure of τ .

Base Case: Non-Pairs Suppose that τ is not a pair type. Then

LeafPaths(v) = {〈〉 · v}
LeafAddresses(S, 〈m,a〉) = {〈〉 · 〈m,a〉}

LeafTypes(τ) = {〈〉 · τ}

So in this case, n = 1 and p1 = 〈〉 and sv1 = v and a1 = a and τ1 = τ . Then quite trivially,

StoreType(m,S, U ∪ {〈v, τ〉, 〈a, boxed local valid τ〉})
= StoreType(m,S, U ∪ {〈v, τ〉, 〈a, boxed local valid τ〉} ∪ {〈v, τ〉, 〈a, boxed local valid τ〉})
= StoreType(m,S, U ∪ {〈v, τ〉, 〈a, boxed local valid τ〉} ∪ {〈sv1, τ1〉} ∪ {〈a1, boxed local valid τ1〉})

Inductive Case: Pairs Suppose that τ is 〈τ ′, τ ′′〉 for some τ ′ and τ ′′. Then if the first store typing
function is defined, it must be the case that v is 〈v′, v′′〉 for some v′ and v′′. Similarly, S(〈m,a〉) must be
〈a′, a′′〉 for some a′ and a′′. Therefore,

LeafPaths(v) = ($ ·LeafPaths(v′)) ∪ (% ·LeafPaths(v′′))
LeafAddresses(S, 〈m,a〉) = ($ ·LeafAddresses(S, 〈m,a′〉)) ∪ (% ·LeafAddresses(S, 〈m,a′′〉))

LeafTypes(τ) = ($ ·LeafTypes(τ ′)) ∪ (% ·LeafTypes(τ ′′))

Now, we know inductively that

LeafPaths(v′) = {p1 · svj , . . . , pj · svj}
LeafAddresses(S, 〈m,a′〉) = {p1 · 〈m,a1〉, . . . , pj · 〈m,aj〉}

LeafTypes(τ ′) = {p1 · τ1, . . . , pj · τj}

and that

LeafPaths(v′′) = {pj+1 · svj+1, . . . , pn · svn}
LeafAddresses(S, 〈m,a′′〉) = {pj+1 · 〈m,aj+1〉, . . . , pn · 〈m,an〉}

LeafTypes(τ ′′) = {pj+1 · τj+1, . . . , pn · τn}

42



for some j such that 0 ≤ j ≤ n. Using these substitutions,

StoreType(m,S, U ∪ {〈〈v′, v′′〉, 〈τ ′, τ ′′〉〉, 〈a, boxed local valid 〈τ ′, τ ′′〉〉})
= λx. ⊥ [〈m,a〉 ← 〈τ ′, τ ′′〉] definition of StoreType

t StoreType(m,S, U ∪ {〈v′, τ ′〉, 〈a′, boxed local valid τ ′〉})
t StoreType(m,S, U ∪ {〈v′′, τ ′′〉, 〈a′′, boxed local valid τ ′′〉})

= λx. ⊥ [〈m,a〉 ← 〈τ ′, τ ′′〉] by induction, twice

t StoreType(m,S, U ∪ {〈v′, τ ′〉, 〈a′, boxed local valid τ ′〉}
∪ {〈sv1, τ1〉, . . . , 〈svj , τj〉}
∪ {〈a1, boxed local valid τ1〉, . . . , 〈aj , boxed local valid τj〉})

t StoreType(m,S, U ∪ {〈v′′, τ ′′〉, 〈a′′, boxed local valid τ ′′〉}
∪ {〈svj+1, τj+1〉, . . . , 〈svn, τn〉}
∪ {〈aj+1, boxed local valid τj+1〉, . . . , 〈an, boxed local valid τn〉})

= λx. ⊥ [〈m,a〉 ← 〈τ ′, τ ′′〉] regrouping of terms

t StoreType(m,S, U ∪ {〈v′, τ ′〉, 〈v′′, τ ′′〉}
∪ {〈a′, boxed local valid τ ′〉, 〈a′′, boxed local valid τ ′′〉}
∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}
∪ {〈a1, boxed local valid τ1〉, . . . , 〈an, boxed local valid τn〉})

= StoreType(m,S, U ∪ {〈〈v′, v′′〉, 〈τ ′, τ ′′〉〉, 〈a, boxed local valid 〈τ ′, τ ′′〉〉} definition of StoreType

∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}
∪ {〈a1, boxed local valid τ1〉, . . . , 〈an, boxed local valid τn〉})

Lemma 18. A store typing function is unchanged if augmented with the constituent leaf components of a
valid global pointer and a type-compatible value.

StoreType(m,S, U ∪ {〈v, τ〉, 〈〈m′, a〉, boxed global valid τ〉})
= StoreType(m,S, U ∪ {〈v, τ〉, 〈〈m′, a〉, boxed global valid τ〉} ∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}

∪ {〈〈m′, a1〉, boxed global valid τ1〉, . . . , 〈〈m′, an〉, boxed global valid τn〉})

where

LeafPaths(v) = {p1 · sv1, . . . , pn · svn}
LeafAddresses(S, 〈m′, a〉) = {p1 · 〈m′, a1〉, . . . , pn · 〈m′, an〉}

LeafTypes(τ) = {p1 · τ1, . . . , pn · τn}

provided that the first store typing function is defined.

Proof. The proof is by induction on the structure of τ .

Base Case: Non-Pairs Suppose that τ is not a pair type. Then

LeafPaths(v) = {〈〉 · v}
LeafAddresses(S, 〈m′, a〉) = {〈〉 · 〈m′, a〉}

LeafTypes(τ) = {〈〉 · τ}

So in this case, n = 1 and p1 = 〈〉 and sv1 = v and a1 = a and τ1 = τ . Then quite trivially,

StoreType(m,S, U ∪ {〈v, τ〉, 〈〈m′, a〉, boxed global valid τ〉})
= StoreType(m,S, U ∪ {〈sv1, τ1〉} ∪ {〈〈m′, a1〉, boxed global valid τ1〉})

43



Inductive Case: Pairs Suppose that τ is 〈τ ′, τ ′′〉 for some τ ′ and τ ′′. Then if the first store typing
function is defined, it must be the case that v is 〈v′, v′′〉 for some v′ and v′′. Similarly, S(〈m′, a〉) must be
〈a′, a′′〉 for some a′ and a′′. Therefore,

LeafPaths(v) = ($ ·LeafPaths(v′)) ∪ (% ·LeafPaths(v′′))
LeafAddresses(S, 〈m′, a〉) = ($ ·LeafAddresses(S, 〈m′, a′〉)) ∪ (% ·LeafAddresses(S, 〈m′, a′′〉))

LeafTypes(τ) = ($ ·LeafTypes(τ ′)) ∪ (% ·LeafTypes(τ ′′))

Now, we know inductively that

LeafPaths(v′) = {p1 · svj , . . . , pj · svj}
LeafAddresses(S, 〈m′, a′〉) = {p1 · 〈m′, a1〉, . . . , pj · 〈m′, aj〉}

LeafTypes(τ ′) = {p1 · τ1, . . . , pj · τj}

and that

LeafPaths(v′′) = {pj+1 · svj+1, . . . , pn · svn}
LeafAddresses(S, 〈m′, a′′〉) = {pj+1 · 〈m′, aj+1〉, . . . , pn · 〈m′, an〉}

LeafTypes(τ ′′) = {pj+1 · τj+1, . . . , pn · τn}

for some j such that 0 ≤ j ≤ n. Using these substitutions,

StoreType(m,S,U ∪ {〈〈v′, v′′〉, 〈τ ′, τ ′′〉〉, 〈〈m′, a〉, boxed global valid 〈τ ′, τ ′′〉〉})
= λx. ⊥ [〈m′, a〉 ← 〈τ ′, τ ′′〉] definition of StoreType

t StoreType(m,S,U ∪ {〈v′, τ ′〉, 〈〈m′, a′〉, boxed global valid τ ′〉})
t StoreType(m,S,U ∪ {〈v′′, τ ′′〉, 〈〈m′, a′′〉, boxed global valid τ ′′〉})

= λx. ⊥ [〈m′, a〉 ← 〈τ ′, τ ′′〉] by induction, twice

t StoreType(m,S,U ∪ {〈v′, τ ′〉, 〈〈m′, a′〉, boxed global valid τ ′〉}
∪ {〈sv1, τ1〉, . . . , 〈svj , τj〉}
∪ {〈〈m′, a1〉, boxed global valid τ1〉, . . . , 〈〈m′, aj〉, boxed global valid τj〉})
t StoreType(m,S,U ∪ {〈v′′, τ ′′〉, 〈〈m′, a′′〉, boxed global valid τ ′′〉}
∪ {〈svj+1, τj+1〉, . . . , 〈svn, τn〉}
∪ {〈〈m′, aj+1〉, boxed global valid τj+1〉, . . . , 〈〈m′, an〉, boxed global valid τn〉})

= λx. ⊥ [〈m′, a〉 ← 〈τ ′, τ ′′〉] regrouping of terms

t StoreType(m,S,U ∪ {〈v′, τ ′〉, 〈v′′, τ ′′〉}
∪ {〈〈m′, a′〉, boxed global valid τ ′〉, 〈〈m′, a′′〉, boxed global valid τ ′′〉}
∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}
∪ {〈〈m′, a1〉, boxed global valid τ1〉, . . . , 〈〈m′, an〉, boxed global valid τn〉})

= StoreType(m,S,U ∪ {〈〈v′, v′′〉, 〈τ ′, τ ′′〉〉, 〈〈m′, a〉, boxed global valid 〈τ ′, τ ′′〉〉} definition of StoreType

∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}
∪ {〈〈m′, a1〉, boxed global valid τ1〉, . . . , 〈〈m′, an〉, boxed global valid τn〉})

A.3.2 Lemmas Relating Consistency to Store Typing

Lemma 19. A store is consistent for a single value and type if and only if the corresponding store typing
function is defined:

Consistent(m,S, 〈v, τ〉) ⇐⇒ StoreType(m,S, 〈v, τ〉) is defined

Proof. The proof is by induction on the structure of τ .

44



Base Case: Integers Suppose τ is int. Then

Consistent(m,S, 〈v, int〉)
⇐⇒ v = i for some integer i
⇐⇒ StoreType(m,S, 〈v, int〉) is defined

Base Case: Invalid Pointers Suppose that τ is boxed local invalid τ ′ for some τ ′. Then

Consistent(m,S, 〈v, boxed local invalid τ ′〉)
⇐⇒ v = a for some local address a
⇐⇒ StoreType(m,S, 〈v, boxed local invalid τ ′〉) is defined

The case for invalid global pointers is analogous.

Inductive Case: Valid Pointers to Non-Pairs Suppose that τ is boxed local valid τ ′ for some τ ′,
and that τ ′ is not a pair type. Then

Consistent(m,S, 〈v, boxed local valid τ ′〉)
⇐⇒ v = a for some local address a ∧ Consistent(m,S, 〈S(〈m,a〉), τ ′〉)
⇐⇒ v = a for some local address a ∧ StoreType(m,S, 〈S(〈m,a〉), τ ′〉) is defined by induction

⇐⇒ StoreType(m,S, 〈v, boxed local valid τ ′〉) is defined

The case for valid global pointers is similar. Suppose that τ is boxed global valid τ ′ for some τ ′, and
that τ ′ is not a pair type. Then

Consistent(m,S, 〈v, boxed global valid τ ′〉)
⇐⇒ v = 〈m′, a〉 for some m′ and a ∧ Consistent(m′, S, 〈S(〈m′, a〉), τ ′〉)
⇐⇒ v = 〈m′, a〉 for some m′ and a ∧ StoreType(m′, S, 〈S(〈m′, a〉), τ ′〉) is defined by induction

⇐⇒ StoreType(m,S, 〈v, boxed global valid τ ′〉) is defined

Inductive Case: Valid Pointers to Pairs Suppose that τ is boxed local valid 〈τ1, τ2〉 for some pair
of types τ1 and τ2. Then

Consistent(m,S, 〈v, boxed local valid 〈τ1, τ2〉〉)
⇐⇒ v = a for some local address a definition of Consistent

∧ S(〈m,a〉) = 〈a1, a2〉 for some local addresses a1 and a2

∧ Consistent(m,S, 〈a1, boxed local valid τ1〉)
∧ Consistent(m,S, 〈a2, boxed local valid τ2〉)

⇐⇒ v = a for some local address a by induction, twice

∧ S(〈m,a〉) = 〈a1, a2〉 for some local addresses a1 and a2

∧ StoreType(m,S, 〈a1, boxed local valid τ1〉) is defined
∧ StoreType(m,S, 〈a2, boxed local valid τ2〉) is defined

⇐⇒ StoreType(m,S, 〈v, boxed local valid 〈τ1, τ2〉〉) is defined definition of StoreType

The case for valid global pointers is similar. Suppose that τ is boxed global valid 〈τ1, τ2〉 for some pair

45



of types τ1 and τ2. Then

Consistent(m,S, 〈v, boxed global valid 〈τ1, τ2〉〉)
⇐⇒ v = 〈m′, a〉 for some machine m′ and local address a definition of Consistent

∧ S(〈m′, a〉) = 〈a1, a2〉 for some local addresses a1 and a2

∧ Consistent(m,S, 〈〈m′, a1〉, boxed global valid τ1〉)
∧ Consistent(m,S, 〈〈m′, a2〉, boxed global valid τ2〉)

⇐⇒ v = 〈m′, a〉 for some machine m′ and local address a by induction, twice

∧ S(〈m′, a〉) = 〈a1, a2〉 for some local addresses a1 and a2

∧ StoreType(m,S, 〈〈m′, a1〉, boxed global valid τ1〉) is defined
∧ StoreType(m,S, 〈〈m′, a2〉, boxed global valid τ2〉) is defined

⇐⇒ StoreType(m,S, 〈v, boxed global valid 〈τ1, τ2〉〉) is defined definition of StoreType

Inductive Case: Pairs Suppose that τ is 〈τ1, τ2〉 for some pair of types τ1 and τ2. Then

Consistent(m,S, 〈v, 〈τ1, τ2〉〉)
⇐⇒ v = 〈v1, v2〉 for some v1 and v2

∧ Consistent(m,S, 〈v1, τ1〉)
∧ Consistent(m,S, 〈v2, τ2〉)

⇐⇒ v = 〈v1, v2〉 for some v1 and v2 by induction, twice

∧ StoreType(m,S, 〈v1, τ1〉) is defined
∧ StoreType(m,S, 〈v2, τ2〉) is defined

⇐⇒ StoreType(m,S, 〈〈v1, v2〉, 〈τ1, τ2〉〉) is defined

Corollary 20. A store is consistent for a set of values and types if and only if the corresponding store typing
function is well defined:

Consistent(m,S, U) ⇐⇒ StoreType(m,S, U) is defined

Proof. Easily derived from Lemma 19 by induction on the size of U .

A.4 Main Soundness Theorem

Theorem 1. Let A ` e : τ . Assume that m is a machine, S is a store, and E is an environment such
that dom(E) = dom(A). If initially

Uniform(StoreType(m,S,E on A))

then

m,S,E ` e→ v, S′

∧ Consistent(m,S′, (E on A) ∪ {〈v, τ〉})

i.e., computation succeeds and ends in a state where all values have types consistent with the store.

Theorem 1 is too weak to be proven directly. We instead prove the following theorem, which by Lemma 19
implies Theorem 1.

46



Theorem 2. Let A ` e : τ . Assume that m is a machine, S is a store, and E is an environment such
that dom(E) = dom(A). If initially

Uniform(StoreType(m,S,E on A))

then

m,S,E ` e→ v, S′

∧ Uniform(StoreType(m,S′, (E on A) ∪ {〈v, τ〉}))

Proof. The proof is by induction on the typing derivation for e.

A.4.1 Integers

Assume the last step in the type derivation is

A ` i : int

Then e is the integer i. It follows trivially that m,S,E ` i→ i, S.
Given the theorem premise

Uniform(StoreType(m,S,E on A))

we conclude from Lemma 1 that

Uniform(StoreType(m,S, (E on A) ∪ {〈i, int〉}))

A.4.2 Variables

Let the last step of the type derivation be an application of the variable assumption rule. Then e is a variable
x. The typing proof for x is

A(x) = τ

A ` x : τ

Because A and E have identical domains, E(x) is defined and therefore

m,S,E ` x→ E(x), S

From the definition of the “on” operator we know that 〈E(x), A(x)〉 ∈ E on A, and therefore that
(E on A) ∪ {〈E(x), τ〉} = (E on A) ∪ {〈E(x), A(x)〉} = E on A. From the induction hypothesis it directly
follows that

Uniform(StoreType(m,S, (E on A) ∪ {〈E(x), τ〉}))

A.4.3 Subtyping

Let the last step of the type derivation be an application of the subtyping rule. The proof has the form

A ` e : τ τ ≤ τ ′

A ` e : τ ′

By the induction hypothesis, we have

m,S,E ` e→ v, S′

∧ Uniform(StoreType(m,S′, (E on A) ∪ {〈v, τ〉}))

Then Uniform(StoreType(m,S′, (E on A) ∪ {〈v, τ ′〉})) follows from Lemma 6.

47



A.4.4 Indirection

Let the last step of the type derivation be an application of the rule for ↑ e′. The type derivation has the
form

A ` e : τ
A ` ↑ e : boxed local valid τ

By the induction hypothesis we have that m,S0, E ` e → v, S1. The premises of the operational
semantics rule for ↑ are:

m,S0, E ` e→ v, S1

Paths(v) = {p1, . . . , pl, pl+1 · svl+1, . . . , pn · svn} where p1 = 〈〉
newn(m,S1) = {a1, . . . , an}

svi = 〈aj , ak〉 where pi· $= pj and pi· %= pk, for 1 ≤ i ≤ l
S2 = S1[〈m,a1〉 ← sv1, . . . , 〈m,an〉 ← svn]

We have already shown the first line by induction; the remaining premises simply define names for
addresses and store values. We may conclude that

m,S0, E ` ↑ e→ a1, S2

Now, S2 simply extends S1 at a set of fresh locations. By Corollary 5 we know that fresh extension does
not change store typing functions. Thus, since we have Uniform(StoreType(m,S1, (E on A) ∪ {〈v, τ〉})) by
induction, it must also be the case that Uniform(StoreType(m,S2, (E on A) ∪ {〈v, τ〉})).

It remains to show that the new pointer a1 to the root of v is uniform in S2 as well. The proof is by
induction on the structure of τ .

Base Case: Non-Pairs Suppose that τ is not a pair type. Then v must be a suitably-typed integer or
pointer, and S2 = S1[〈m,a1〉 ← v].

Now, from the definition of new we know that 〈m,a1〉 is not in the domain of S1, and so StoreType(m,S1, (E on
A) ∪ {〈v, τ〉})(〈m,a1〉) =⊥. Then StoreType(m,S2, (E on A) ∪ {〈v, τ〉})(〈m,a1〉) =⊥ as well, since these two
store typing functions are equivalent by Corollary 5. Thus, extending the latter store typing function to be
τ at 〈m,a1〉 preserves uniformity. Hence,

Uniform(StoreType(m,S2, (E on A) ∪ {〈v, τ〉}))
=⇒ Uniform(StoreType(m,S2, (E on A) ∪ {〈v, τ〉}) t λx. ⊥ [〈m,a1〉 ← τ ])
=⇒ Uniform(StoreType(m,S2, (E on A) ∪ {〈S2(〈m,a1〉), τ〉}) t λx. ⊥ [〈m,a1〉 ← τ ])
=⇒ Uniform(StoreType(m,S2, (E on A) ∪ {〈a1, boxed local valid τ〉}))

Inductive Case: Pairs Suppose that τ is 〈τ1, τ2〉 for some τ1 and τ2. Then v is 〈v1, v2〉 for some v1

and v2. Also, S3 = S2[〈m,a1〉 ← 〈a2, a3〉, . . . ] for some a2 and a3 such that p2 = 〈$〉 and p3 = 〈%〉 in the
operational semantics.

Now, from the definition of new we know that 〈m,ai〉 is not in the domain of S1 for any 1 ≤ i ≤ n. Thus,
StoreType(m,S1, (E on A) ∪ {〈v, τ〉})(〈m,ai〉) =⊥. Then StoreType(m,S2, (E on A) ∪ {〈v, τ〉})(〈m,ai〉) =⊥
as well, since these two store typing functions are equivalent by Corollary 5. Thus, extending the latter store
typing function to be 〈τ1, τ2〉 at 〈m,a1〉 preserves uniformity. Hence,

48



Uniform(StoreType(m,S2, (E on A) ∪ {〈〈v1, v2〉, 〈τ1, τ2〉〉}))
=⇒ Uniform(StoreType(m,S2, (E on A) ∪ {〈〈v1, v2〉, 〈τ1, τ2〉〉})

t λx. ⊥ [〈m,a1〉 ← 〈τ1, τ2〉])
⇐⇒ Uniform(StoreType(m,S2, (E on A) ∪ {〈v1, τ1〉, 〈v2, τ2〉})

t λx. ⊥ [〈m,a1〉 ← 〈τ1, τ2〉])
=⇒ Uniform(StoreType(m,S2, (E on A) by induction, twice

∪ {〈a2, boxed local valid τ1〉, 〈a3, boxed local valid τ2〉})
t λx. ⊥ [〈m,a1〉 ← 〈τ1, τ2〉])

=⇒ Uniform(StoreType(m,S2, (E on A) ∪ {〈a1, boxed local valid 〈τ1, τ2〉〉}))

A.4.5 Dereferencing

Let the last step of the type derivation be an application of one of the rules for ↓ e′. There are two cases.

Local Pointers Assume the type rule applied is

A ` e′ : boxed local valid τ

A ` ↓ e′ : τ

By induction we have that

m,S0, E ` e′ → a, S1

∧ Uniform(StoreType(m,S1, (E on A) ∪ {〈a, boxed local valid τ〉}))

From the operational rules for ↓ it follows that

m,S0, E ` ↓ e′ → Value(S1, 〈m,a〉), S1

Corollary 13 then ensures that Uniform(StoreType(m,S1, (E on A) ∪ {〈Value(S1, 〈m,a〉), }〉τ)) holds.

Global Pointers For the second case assume the type rule applied is

A ` e′ : boxed global valid τ

A ` ↓ e′ : expand(τ)

By induction we have that

m,S0, E ` e′ → g, S1

∧ Uniform(StoreType(m,S1, (E on A) ∪ {〈g, boxed global valid τ〉}))

From the operational rules for ↓ it follows that

m,S0, E ` ↓ e′ →WideValue(S1, g), S1

Corollary 16 then ensures that Uniform(StoreType(m,S1, (E on A) ∪ 〈WideValue(S1, g), expand(τ)〉)) holds.

A.4.6 Function Application

Let the last step of the type derivation be an use of the function application rule. The type derivation has
the form

A(f) = int→ int A ` e : int

A ` f e : int

49



By induction we have that

m,S,E ` e′ → i, S1

The premises of the operational semantics rule for function application are:

m,S0, E ` e′ → i, S1

E(f) = φ ∈ Fun
φ(i) = i′

We have already shown the first line. Because A and E have identical domains, the second and third
lines follow as well, so we know that

m,S0, E ` f e→ i′, S1

By induction we have that

Uniform(StoreType(m,S1, (E on A) ∪ {〈i, int〉}))

From Lemma 1 we conclude that

Uniform(StoreType(m,S1, (E on A) ∪ {〈i′, int〉}))

A.4.7 Assignment

Let the last step of the type derivation be an application of the assignment rule. There are two cases.

Local Assignment For the first case, assume the type rule applied is

A ` e1 : boxed local valid τ
A ` e2 : τ

A ` e1 := e2 : τ

By induction we have that

m,S0, E ` e1 → a, S1

∧ m,S1, E ` e2 → v, S2

These satisfy the first two premises of the operational semantics rule. As an indirect consequence of Lemma 17
we know that LeafPaths(v) and LeafAddresses(S2, 〈m,a〉) produce sets of the same size and with pairwise
matched paths. Thus, the third and fourth premises of the operational semantics hold as well:

LeafAddresses(S2, 〈m,a〉) = {p1 · 〈m,a1〉, . . . , pn · 〈m,an〉}
∧ LeafPaths(v) = {p1 · sv1, . . . , pn · svn}

Finally, observe that the definition of the indirection operator (↑) for pairs guarantees that all addresses are
unique. Thus ai 6= aj if i 6= j, which ensures that the simultaneous update expressed by the final operational
semantics premise is well defined:

S3 = S2[〈m,a1〉 ← sv1, . . . , 〈m,an〉 ← svn]

Having satisfied all premises of the operational semantics, we conclude that assignment “works”, produc-
ing a result and an updated store as defined by the applicable semantic rule:

m,S0, E ` e1 := e2 → v, S3

We demonstrate uniformity in two stages. By induction we know that the left hand side pointer a is
uniform in S1. We first show that it remains uniform in S2, after the right hand side has been evaluated.

50



We then show that the right hand side value v, which is inductively uniform in S2, remains uniform in S3

after all substitutions have been performed.
We begin with the left hand side. Let y be a fresh variable not occurring in the domain of E or A. Clearly

StoreType(m,S1, (E on A) ∪ {〈a, boxed local valid τ〉})
= StoreType(m,S1, E[y ← a] on E[y ← boxed local valid τ ])

We know that m,S1, E ` e2 → v, S2. Since y does not appear in either E or A, and therefore cannot
appear in e2, we also have m,S1, E[y ← a] ` e2 → v, S2. Applying the induction hypothesis we conclude
that

Uniform(StoreType(m,S2, (E[y ← a] on E[y ← boxed local valid τ ]) ∪ {〈v, τ〉}))

from which we immediately get that

Uniform(StoreType(m,S2, (E on A) ∪ {〈v, τ〉, 〈a, boxed local valid τ〉}))

Thus, we know that the pointer on the left hand side remains uniform even after the right hand side has
been evaluated.

We must now show that the right hand side remains uniform following the substitutions that produce
store S3. By Lemma 17 we can flatten out any compound pair structure in v and a, yielding

Uniform(StoreType(m,S2, (E on A) ∪ {〈v, τ〉, 〈a, boxed local valid τ〉}
∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}
∪ {〈a1, boxed local valid τ1〉, . . . , 〈an, boxed local valid τn〉}))

where svi and ai are given above by the operational semantics, and LeafTypes(τ) = {p1 · τ1, . . . , pn · τn}.
Then by Corollary 8 we have

Uniform(StoreType(m,S3, (E on A) ∪ {〈v, τ〉, 〈a, boxed local valid τ〉}
∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}
∪ {〈a1, boxed local valid τ1〉, . . . , 〈an, boxed local valid τn〉}))

from which we readily conclude

Uniform(StoreType(m,S3, (E on A) ∪ {〈v, τ〉, 〈a, boxed local valid τ〉}))

Global Assignment For the second case, assume the type rule applied is

A ` e1 : boxed global valid τ
A ` e2 : τ robust(τ)

A ` e1 := e2 : τ

By induction we have that

m,S0, E ` e1 → g, S1

∧ m,S1, E ` e2 → v, S2

These satisfy the first two premises of the operational semantics rule. As an indirect consequence of Lemma 18
we know that LeafPaths(v) and LeafAddresses(S2, g) produce sets of the same size and with pairwise matched
paths. Thus, the third and fourth premises of the operational semantics hold as well:

LeafAddresses(S2, 〈m,a〉) = {p1 · g1, . . . , pn · gn}
∧ LeafPaths(v) = {p1 · sv1, . . . , pn · svn}

51



Finally, observe that the definition of the indirection operator (↑) for pairs guarantees that all addresses are
unique. Thus gi 6= gj if i 6= j, which ensures that the simultaneous update expressed by the final operational
semantics premise is well defined:

S3 = S2[g1 ← sv1, . . . , gn ← svn]

Having satisfied all premises of the operational semantics, we conclude that assignment “works”, produc-
ing a result and an updated store as defined by the applicable semantic rule:

m,S0, E ` e1 := e2 → v, S3

We demonstrate uniformity in two stages. By induction we know that the left hand side pointer a is
uniform in S1. We first show that it remains uniform in S2, after the right hand side has been evaluated.
We then show that the right hand side value v, which is inductively uniform in S2, remains uniform in S3

after all substitutions have been performed.
We begin with the left hand side. Let y be a fresh variable not occurring in the domain of E or A. Clearly

StoreType(m,S1, (E on A) ∪ {〈a, boxed global valid τ〉})
= StoreType(m,S1, E[y ← g] on E[y ← boxed global valid τ ])

We know that m,S1, E ` e2 → v, S2. Since y does not appear in either E or A, and therefore cannot
appear in e2, we also have m,S1, E[y ← g] ` e2 → v, S2. Applying the induction hypothesis we conclude
that

Uniform(StoreType(m,S2, (E[y ← g] on E[y ← boxed global valid τ ]) ∪ {〈v, τ〉}))

from which we immediately get that

Uniform(StoreType(m,S2, (E on A) ∪ {〈v, τ〉, 〈a, boxed global valid τ〉}))

Thus, we know that the pointer on the left hand side remains uniform even after the right hand side has
been evaluated.

We must now show that the right hand side remains uniform following the substitutions that produce
store S3. By Lemma 18 we can flatten out any compound pair structure in v and a, yielding

Uniform(StoreType(m,S2, (E on A) ∪ {〈v, τ〉, 〈g, boxed global valid τ〉}
∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}
∪ {〈g1, boxed global valid τ1〉, . . . , 〈gn, boxed global valid τn〉}))

where svi and gi are given above by the operational semantics, and LeafTypes(τ) = {p1 · τ1, . . . , pn · τn}. The
type rule requires that robust(τ) hold. By a simple induction it must be the case that all robust(τi) hold as
well. Then by Corollary 11 we have

Uniform(StoreType(m,S3, (E on A) ∪ {〈v, τ〉, 〈g, boxed global valid τ〉}
∪ {〈sv1, τ1〉, . . . , 〈svn, τn〉}
∪ {〈g1, boxed global valid τ1〉, . . . , 〈gn, boxed global valid τn〉}))

from which we readily conclude

Uniform(StoreType(m,S3, (E on A) ∪ {〈v, τ〉, 〈g, boxed global valid τ〉}))

A.4.8 Sequencing

Let the last step of the type derivation be an application of the sequencing rule. The type derivation has
the form

A ` e1 : τ1 A ` e2 : τ2
A ` e1 ; e2 : τ2

52



By induction we have that

m,S0, E ` e1 → v1, S1

∧ m,S1, E ` e2 → v2, S2

∧ Uniform(StoreType(m,S1, (E on A) ∪ {〈v1, τ1〉}))
∧ Uniform(StoreType(m,S2, (E on A) ∪ {〈v2, τ2〉}))

It follows from the operational semantics that

E,m, S0 ` e1 ; e2 → v2, S2

and the induction hypothesis directly shows that

Uniform(StoreType(m,S2, (E on A) ∪ {〈v2, τ2〉}))

A.4.9 Pair Construction

Let the last step of the type derivation be an application of the pair construction rule. The type derivation
has the form

A ` e1 : τ1 A ` e2 : τ2
A ` 〈e1, e2〉 : 〈τ1, τ2〉

By induction we know that

m,S0, E ` e1 → v1, S1

∧ Uniform(StoreType(m,S1, (E on A) ∪ {〈v1, τ1〉}))

Our strategy here is similar to that used in part of the soundness case for assignments. Let y be a fresh
variable not occurring in the domain of E or A. Now we have that

StoreType(m,S1, (E on A) ∪ {〈v1, τ1〉})
= StoreType(m,S1, E[y ← v1] on A[y ← τ1])

We know that m,S1, E ` e2 → v2, S2. Since y does not appear in either E or A, and therefore cannot
appear in e2, we also have m,S1, E[y ← v1] ` e2 → v2, S2. Applying the induction hypothesis we conclude
that

Uniform(StoreType(m,S2, (E[y ← v1] on A[y ← τ1]) ∪ {〈v2, τ2〉}))

from which we immediately get that

m,S0, E ` 〈e1, e2〉 → 〈v1, v2〉, S2

∧ Uniform(StoreType(m,S2, (E[y ← v1] on A[y ← τ1]) ∪ {〈v2, τ2〉}))

Now

Uniform(StoreType(m,S2, (E[y ← v1] on A[y ← τ1]) ∪ {〈v2, τ2〉}))
⇐⇒ Uniform(StoreType(m,S2, (E on A) ∪ {〈v1, τ1〉, 〈v2, τ2〉}))
⇐⇒ Uniform(StoreType(m,S2, (E on A) ∪ {〈〈v1, v2〉, 〈τ1, τ2〉〉}))

which proves the result.

A.4.10 Pair Selection

Let the last step of the type derivation be an application of the pair selection rule. There are several similar
cases.

53



Local Valid Pointers Assume that the type derivation has the form

A ` e′ : boxed local valid 〈τ1, τ2〉
A ` @1 e′ : boxed local valid τ1

By induction we have that

m,S0, E ` e′ → a, S1

∧ Uniform(StoreType(m,S1, (E on A) ∪ {〈a, boxed local valid 〈τ1, τ2〉〉}))

The applicable operational semantics rule requires that we show the following:

m,S0, E ` e′ → a, S1

∧ S1(〈m,a〉) = 〈a1, a2〉

The first premise holds by induction. The second premise follows directly from the definition of StoreType
for local pointers to pairs. Now,

StoreType(m,S1, 〈a, boxed local valid 〈τ1, τ2〉〉)
= λx. ⊥ [〈m,a〉 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m,S1, 〈a1, boxed local valid τ1〉)
t StoreType(m,S1, 〈a2, boxed local valid τ2〉)

w StoreType(m,S1, 〈a1, boxed local valid τ1〉)

from which uniformity directly follows. The case for @2 is analogous.

Global Valid Pointers Assume that the type derivation has the form

A ` e′ : boxed global valid 〈τ1, τ2〉
A ` @1 e′ : boxed global valid τ1

By induction we have that

m,S0, E ` e′ → 〈m′, a〉, S1

∧ Uniform(StoreType(m,S1, (E on A) ∪ {〈〈m′, a〉, boxed global valid 〈τ1, τ2〉〉}))

The applicable operational semantics rule requires that we show the following:

m,S0, E ` e′ → 〈m′, a〉, S1

∧ S1(〈m′, a〉) = 〈a1, a2〉

The first premise holds by induction. The second premise follows directly from the definition of StoreType
for global pointers to pairs. Now,

StoreType(m,S1, 〈〈m′, a〉, boxed global valid 〈τ1, τ2〉〉)
= λx. ⊥ [〈m′, a〉 ← 〈τ1, τ2〉] definition of StoreType

t StoreType(m,S1, 〈〈m′, a1〉, boxed global valid τ1〉)
t StoreType(m,S1, 〈〈m′, a2〉, boxed global valid τ2〉)

w StoreType(m,S1, 〈〈m′, a1〉, boxed global valid τ1〉)

from which uniformity directly follows. The case for @2 is analogous.

54


	Cover
	Abstract
	Introduction
	Background
	A Progression of Type Systems
	System I: Simple Pointers
	Implicit Type Expansion

	System II: Assignable Pointers
	Type Expansion Versus Assignment

	System III: Assignable Tuples
	Consistent Representation of Pairs
	Selection Without Dereference


	From Checking to Inference
	Experimental Implementation
	A Practical Need for Sound Inference
	Accommodating Titanium Features
	Local Qualification Inference for Titanium

	Related Work
	Conclusions and Future Work
	Acknowledgements
	Operational Semantics and Soundness
	Semantic Domains
	Operational Semantics
	Soundness
	Lemmas Relating to Store Typing Functions
	Lemmas Relating Consistency to Store Typing

	Main Soundness Theorem
	Integers
	Variables
	Subtyping
	Indirection
	Dereferencing
	Function Application
	Assignment
	Sequencing
	Pair Construction
	Pair Selection



