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Underlying Memory Model

• Multiple machines, each with local memory

• Global memory is union of local memories

• Distinguish two types of pointers:
–– LocalLocal points to local memory only

–– GlobalGlobal points anywhere: 〈machine, address〉
– Different representations & operations



Language Design Options

• Make everything global?
áConservatively sound

áEasy to use

àHides program structure

àNeedlessly slow



Language Design Options

• Expose local/global to programmer?
áExplicit cost model

áFaster execution

àNaïve designs are unsound (as we will show)

àCode becomes difficult to write and maintain

àConversion of sequential code is problematic



A (Possibly) Gratuitous Global
A (Potentially) Unsound Local
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Understand It First, Then Fix It

• Study local/global in a simpler context
– Design a sound type system for a tiny language

• Move from type checking to type inference
– Programmers see as much detail as they want

• Apply findings to design of real languages
– Type system detects & forbids “bad things”

– Local qualification inference as optimization



Type Grammar
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  boxedint::

globallocal::

• Boxed and unboxed values
• Integers, pointers, and pairs

– Pairs are not assumed boxed

• References to boxes are either local or global



Global Dereferencing:
Standard Approach Unsound
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Global Dereferencing:
Sound With Type Expansion
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Global Dereferencing:
Tuple Expansion

• Type expansion for tuple components?

• No: would change representation of tuple
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Global Dereferencing:
Tuple Expansion

• Solution: Invalidate local pointers in tuples

• Other components remain valid, usable
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Global Tuple Selection

• Starting at x, can we reach 5?

• Yes, with a proper selection operator
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Global Tuple Selection

• Selection offsets pointer within tuple
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Global Tuple Selection

• Selection offsets pointer within tuple

• Global-to-local pointer works just as before
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Extended Type Grammar
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   boxedint::

invalidvalid::

globallocal::

• Allow subtyping on validity qualifiers
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Global Assignment
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Global Assignment
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Type Qualifier Inference

• Efficiently infer qualifiers in two passes:
1. Maximize number of “invalid” qualifiers

2. Maximize number of “local” qualifiers

• Allows for a range of language designs
– Complete inference

– Allow explicit declarations as needed

• On large codes, does better than humans!



Titanium Implementation

• Titanium = Java + SPMD parallelism
– Focus is on scientific codes

• Global is assumed; local is explicit
– E.g., “Object local” or “double [] local [] local”

• Local qualification inference in compiler
– Conservative for valid/invalid qualifiers

– Monomorphic



Titanium Benchmarks: Speed
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Titanium Benchmarks: Code Size
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Summary and Conclusions

• For top performance, local/global must be 
dealt with

• Soundness issues are subtle, but tractable
– Analysis core is surprisingly simple

• Type qualifier inference is a double win:
– Programming is easier

– Optimized code is faster, smaller




