
Type Systems For
Distributed Data Structures

Ben Liblit & Alexander Aiken

University of California, Berkeley



Underlying Memory Model

• Multiple machines, each with local memory

• Global memory is union of local memories

• Distinguish two types of pointers:
–– LocalLocal points to local memory only

–– GlobalGlobal points anywhere: 〈machine, address〉
– Different representations & operations



Language Design Options

• Make everything global?
áConservatively sound

áEasy to use

àHides program structure

àNeedlessly slow



Language Design Options

• Expose local/global to programmer?
áExplicit cost model

áFaster execution

àNaïve designs are unsound (as we will show)

àCode becomes difficult to write and maintain

àConversion of sequential code is problematic



A (Possibly) Gratuitous Global
A (Potentially) Unsound Local

5

7

8



Understand It First, Then Fix It

• Study local/global in a simpler context
– Design a sound type system for a tiny language

• Move from type checking to type inference
– Programmers see as much detail as they want

• Apply findings to design of real languages
– Type system detects & forbids “bad things”

– Local qualification inference as optimization



Type Grammar

τττωτ
ω

×=
=

  boxedint::

globallocal::

• Boxed and unboxed values
• Integers, pointers, and pairs

– Pairs are not assumed boxed

• References to boxes are either local or global



Global Dereferencing:
Standard Approach Unsound

5

int local boxed  where,
:

 global boxed: =
↓

τ
τ

τ
x

x

x =  

↓x =  



Global Dereferencing:
Sound With Type Expansion

5

)expand(:

 global boxed:

τ
τ

x

x

↓

x =  

↓x =  



Global Dereferencing:
Tuple Expansion

• Type expansion for tuple components?

• No: would change representation of tuple

5

8

8

x =  

↓x =  



Global Dereferencing:
Tuple Expansion

• Solution: Invalidate local pointers in tuples

• Other components remain valid, usable

5

8

8

x =  

↓x =  



Global Tuple Selection

• Starting at x, can we reach 5?

• Yes, with a proper selection operator

5

8x =  



Global Tuple Selection

• Selection offsets pointer within tuple

5

8x =  

@2 x =  



Global Tuple Selection

• Selection offsets pointer within tuple

• Global-to-local pointer works just as before

5

8x =  

↓ @2 x =  

@2 x =  



Extended Type Grammar

τττρωτ
ρ
ω

×=
=
=

   boxedint::

invalidvalid::

globallocal::

• Allow subtyping on validity qualifiers

42314321           

 invalid  boxed  valid boxed

ττττττττ
τωτω

≤∧≤⇔×≤×
≤



3

Global Assignment

5

τ
τ

τ

::

:

 global  validboxed:

yx

y

x

=

x =  

y =  



3

Global Assignment

5

τ
τττ
τ

::

)(expand:

 global  validboxed:

yx

y

x

=
=

x =  

y =  



Type Qualifier Inference

• Efficiently infer qualifiers in two passes:
1. Maximize number of “invalid” qualifiers

2. Maximize number of “local” qualifiers

• Allows for a range of language designs
– Complete inference

– Allow explicit declarations as needed

• On large codes, does better than humans!



Titanium Implementation

• Titanium = Java + SPMD parallelism
– Focus is on scientific codes

• Global is assumed; local is explicit
– E.g., “Object local” or “double [] local [] local”

• Local qualification inference in compiler
– Conservative for valid/invalid qualifiers

– Monomorphic



Titanium Benchmarks: Speed

1%

42%

6%
12%

27%

2%

56%

0%

10%

20%

30%

40%

50%

60%

lu-fact
manual

lu-fact
auto

cannon
manual

cannon
auto

sample gsrb pps

R
ed

uc
ti

on
 in

 E
xe

cu
ti

on
 T

im
e



Titanium Benchmarks: Code Size

43%
49% 46% 45%

50%

35%

43%

0%

10%

20%

30%

40%

50%

60%

lu-fact
manual

lu-fact
auto

cannon
manual

cannon
auto

sample gsrb pps

R
ed

uc
ti

on
 in

 C
od

e 
Si

ze



Summary and Conclusions

• For top performance, local/global must be 
dealt with

• Soundness issues are subtle, but tractable
– Analysis core is surprisingly simple

• Type qualifier inference is a double win:
– Programming is easier

– Optimized code is faster, smaller




