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Abstract—Petascale systems will present several new challenges
to performance and correctness tools. Such machines may contain
millions of cores, requiring that tools use scalable data structures
and analysis algorithms to collect and to process application
data. In addition, at such scales, each tool itself will become
a large parallel application – already, debugging the full Blue-
Gene/L (BG/L) installation at the Lawrence Livermore National
Laboratory requires employing 1664 tool daemons. To reach
such sizes and beyond, tools must use a scalable communication
infrastructure and manage their own tool processes efficiently.
Some system resources, such as the file system, may also become
tool bottlenecks.

In this paper, we present challenges to petascale tool develop-
ment, using the Stack Trace Analysis Tool (STAT) as a case study.
STAT is a lightweight tool that gathers and merges stack traces
from a parallel application to identify process equivalence classes.
We use results gathered at thousands of tasks on an Infiniband
cluster and results up to 208K processes on BG/L to identify
current scalability issues as well as challenges that will be faced
at the petascale. We then present implemented solutions to these
challenges and show the resulting performance improvements.
We also discuss future plans to meet the debugging demands of
petascale machines.

I. INTRODUCTION

Large scale system sizes are increasing exponentially [1]
and systems with millions of cores are on the horizon. We are
faced with the challenge of ensuring system software and tools
scale to the level required by these environments. In particular,
we require scalable debugging and performance tools as users
will need mechanisms to ensure the correctness of their codes
and the efficient utilization of the underlying, often unique and
complex, target architectures.

Recently, several projects have begun to address this
problem by integrating hierarchical communication structures
with online aggregation mechanisms, like MRNet [2] or
Supermon [3], into their tools. On the debugger side, HP’s
Ladebug [4] relies on a tree of debug daemons to control large
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numbers of tasks and STAT (our own Stack Trace Analysis
Tool) [5] uses MRNet to collect and merge stack traces from
an entire parallel application. In the area of performance
tools both TAU/Paraprof [6] and Open|SpeedShop [7] have
demonstrated prototypes with MRNet, and TAU has also built
on Supermon [8].

Using a hierarchical approach is a necessary aspect of a
scalable tool design and has proven sufficient at modest system
sizes of a few thousand processors. However, when applied
to today’s largest systems of 50,000 processors and more,
we find that new bottlenecks arise and scalable tool designs
require further refinements in order to achieve the necessary
scalability. We anticipate that these bottlenecks will prove too
great for even the most scalable of current tool designs to
support petascale systems, which are projected to have more
than one million cores. Instead, we must enhance those designs
with new techniques gleaned from lessons learned on today’s
largest systems.

In this paper we categorize and describe the key scalability
challenges that tools face on current and future architectures.
More importantly, we provide solutions to overcome them. In
particular, we identify scalability problems in tool framework
startup costs, data structure representation, and tool related file
I/O, such as that caused by symbol table parsing. We further
highlight issues that arise from the projected move towards
highly multithreaded codes. In particular, the contributions of
this paper include:

• a detailed analysis of bottlenecks that prevent scaling
despite the use of a highly scalable tool design;

• a classification of such bottlenecks with respect to their
root cause;

• a description of the three most severe issues that prevent
full scalability in today’s systems along with methods to
overcome them; and

• experimental results on up to 212,992 cores to validate
our findings.

We perform this work using our own Stack Trace Analysis
Tool (STAT) as a case study and show how we optimized its
performance and scalability on two large scale systems: Atlas,
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Fig. 1. Example 3D-Trace/Space/Time call graph prefix tree from STAT

an Infiniband-based Linux cluster with close to 10,000 cores,
and BlueGene/L (BG/L), a custom architecture with 212,992
cores distributed in 104 racks. Importantly, the issues that we
encounter are general; they are not specific to STAT or these
platforms, but rather will be encountered by a wide range of
tools on emerging petascale architectures.

In Section II we introduce our case study tool, STAT, and in
Section III we present details of our evaluation environment. We
then illustrate the three main problems identified by our study
along with proposed solutions: the reduction of tool startup
cost (Section IV), the need for hierarchical data structures in
combination with hierarchically-structured reduction networks
(Section V), and the efficient utilization of I/O resources for
tool-internal analysis tasks (Section VI). In Section VII we
consider upcoming issues of scalably supporting multithreaded
codes before we conclude the paper with a brief review of
related work in Section VIII and final remarks in Section IX.

II. THE STACK TRACE ANALYSIS TOOL

The Stack Trace Analysis Tool [5] (STAT) is part of a
petascale debugging strategy that uses lightweight tools on an
entire parallel application to reduce the problem search space
to a manageable subset of tasks, on which a heavyweight
debugger can perform root cause analysis. STAT identifies
process equivalence classes (groups of processes that exhibit
similar behavior) by sampling stack traces over time from
each task of the parallel application and merging them into
a call graph prefix tree. The call graph prefix tree intuitively
represents the application’s behavior classes over space and
time, as shown in Figure 1. These equivalence classes reduce
both the search space and the number of tasks that need to be
considered, so that the user can effectively apply a full-featured

debugger to problems that arise at scale.
STAT was designed with scalability as the primary goal, so it

uses lightweight mechanisms for gathering stack traces and the
MRNet [2] tree based overlay network (TBŌN) to reduce the
data and processing loads on its front end. Conceptually, STAT
has three main components: the front end, the tool daemons,
and the stack trace analysis routine. The front end controls
the collection of stack trace samples by the tool daemons,
and our stack trace analysis routine processes the collected
traces. The TBŌN provides scalable communication between
the STAT front end and back ends, while a custom STAT filter
efficiently merges the stack traces as they propagate up the
communication tree.

The development and deployment of STAT has been very
successful. Our previously-published results demonstrate that
the basic architecture and intelligent implementation of the
filter routines support scalability to four thousand tasks [5].
Subsequent experiments have shown that it is the first parallel
debugging tool to scale to tens of thousands processors while
still maintaining reasonable bounds on execution time that
allow for interactive usage [9]. Most other tools fail to work at
such scales. Some fail due to internal or OS restrictions, and for
others the execution time of even simple, individual operations
grows linearly with the scale of the target application, which
leads to impractical delays at the scales required for petascale
architectures.

Even with an explicitly scalable design such as STAT’s,
our analysis shows that severe bottlenecks and challenges still
remain for petascale tools. In particular, new bottlenecks arise
or become more significant at 100,000 or 1,000,000 cores
compared to 1,000 or 10,000. While our experiences with STAT
may not exhaustively identify all petascale tool performance
challenges, most tools will benefit from addressing those we
have encountered.

We classify the performance challenges for petascale tools
into two main groups: structural problems within the tool and
inefficient interactions with the environment. Examples of tool
design issues include inefficient analysis algorithms, excessive
communication bandwidth requirements, and data structures
that use more space than necessary when considered in the
aggregate. One can directly address these problems through
tool (re)design, e.g., by using different analysis algorithms or
data representations. Although STAT’s original design handled
many of these issues, our experience, consistent with that
of scaling any parallel application, demonstrates that what
previously worked well at large scales does not necessarily
extend an additional order or two of magnitude. For example,
we show in Section V that, while space-efficient data structures
are sufficient for terascale tools, petascale tools must use
hierarchically-distributed data structures.

Inefficient environment interactions include actions such as
tool daemon launching or access to files. These issues are more
difficult to address because their sources are not entirely in the
tool developer’s hands. Although we can evaluate the tool’s
interactions with the system and implement specific solutions to
minimize their impact, the best solutions may require changes



to the hardware or the system software.
In contrast to the structural problems, inefficient interactions

with the environment typically are not restricted to a particular
tool, but rather describe general problems that most scalable
tools will face. We therefore focus on encapsulating these
problems into separate reusable components with portable APIs.
This decouples the tool itself from the system software, reduces
its complexity, and allows easy porting of machine-dependent
components, while at the same maintaining high efficiency.
Further, it allows the tool to exploit future improvements in
the hardware or system software seamlessly.

In the following sections we describe our experience with
our initial version of STAT on two large scale platforms
and analyze the performance and scalability bottlenecks we
observed. We focus on a new lesson for scalable tool design,
using hierarchically distributed data structures, and two issues
arising from environmental interactions. For the first of the
environmental issues, we implement a new tool interface to
scalable resource management. We also explore some initial
solutions to the second environmental challenge, which involves
file system and other I/O interactions.

III. SCALABILITY EVALUATION ENVIRONMENTS

This section details the systems we use to explore scalability
challenges of tools. We measure STAT’s performance and
scalability on two machines with distinctly different architec-
tures using a simple application with a known bug. In order to
explore the root cause for the observed scalability properties we
measure STAT’s three main phases separately: the launch time
of the daemons; the daemons’ local gathering and aggregation
of stack traces; and the aggregation of locally-merged results
to the final call graph prefix tree at the front end.

The first machine, Atlas, is a 1,152-node Linux cluster with
four-way, dual-core 2.4 GHz AMD Opteron nodes connected
with DDR Infiniband. On Atlas, one STAT daemon is launched
per compute node and gathers stack traces from all eight MPI
tasks running on that node. Any MRNet communication process
employed is launched on a separate allocation of compute
nodes, one per compute core. This platform allows us to explore
the suitability of STAT’s base design for terascale systems.

Our second machine is the BG/L installation at the Lawrence
Livermore National Laboratory (LLNL). This system has
106,496 compute nodes, which are primarily dual 700 MHz
PowerPC 440 chips. The BG/L architecture dictates that tools
such as STAT launch their daemons onto dedicated I/O nodes.
The LLNL configuration has one I/O node for every 64 compute
nodes resulting in 1664 I/O nodes for the whole machine. BG/L
supports two modes of operation: co-processor mode and virtual
node mode. In co-processor mode, one of the cores runs an
MPI task while the other core is used to offload communication.
In virtual node mode, each core runs a distinct MPI task. As
a direct consequence, each STAT daemon gathers stack traces
from 64 processes in co-processor mode and 128 processes in
virtual node mode, resulting in a significantly higher load for the
STAT daemons as compared to the 8-way CMP configuration
found on Atlas.

On BG/L, MRNet communication processes are spawned
on one of 14 login nodes, each with two 1.6 GHz Power5
processors, which restricts the topologies that we can use.
Nonetheless, we test multiple MRNet tree topologies including
a flat 1-to-N topology (1-deep), a tree with a single layer
of communication processes between the front end and the
daemons (2-deep) and a tree with two layers of communication
processes (3-deep). For the 2-deep tree, we use a fanout from
the front end equal to the square root of the number of daemons
or 28, whichever is less. At all scales, the 3-deep tree has a
fanout from the front end equal to 4. The next level employs
either 16 or 24 communication processes, depending on the
job scale.

Our target application is a simple MPI ring topology test
with an injected bug that causes the application to hang. Each
task does an MPI Irecv from the previous task in the ring and
an MPI Isend to the next task, followed by an MPI Waitall
and an MPI Barrier. The injected bug causes MPI task 1 to
hang before its send.

This paper presents the first performance results of tool
experiments with over 100,000 application tasks. Thus, our
BG/L results provide insight into the new challenges faced
by petascale tools. Subsequent sections detail these insights,
although one set is more indicative of the nature of running on
the world’s largest system. Since we share the BG/L installation
with application teams, we were only able to perform a limited
number of runs with all 104K compute nodes.

IV. SCALABLE RESOURCE MANAGEMENT

This section explores our first scalability issue arising from
interactions with the system environment: tool initialization.
Interactive tools must run some components, such as tool
daemons, concurrently with the user application. Starting these
tool daemons is an one-time cost that is easy to overlook in the
design of a scalable tool, and most tools use some simple ad
hoc mechanism based on rsh or ssh. While it may seem that any
reasonable implementation is sufficient for one-time operations,
application experiences at very large scales demonstrate that
efficient launching strategies are essential. This is especially
true for interactive tools: thirty minutes to initialize a debugger
is simply unacceptable to all but the most desperate of users.

A. Startup Costs with Initial Implementation

The initial STAT implementation relies on the daemon-
spawning facilities within MRNet, which uses remote access
protocols such as ssh or rsh to individually launch the daemons.
On Atlas and other Linux platforms, MRNet performs all tool
startup, including that of the back-end daemons. On BG/L,
users cannot log in to the I/O nodes. Therefore, BG/L’s own
system software launches the STAT daemons, but MRNet’s
launching facility still launches the communication processes
distributed across the BG/L login nodes. Having to use different
ad hoc mechanisms complicates tool software maintenance.
More importantly, we find that the MRNet facility does not
scale well and would incur unacceptable costs for petascale
systems.



Fig. 2. STAT startup time, LaunchMON versus MRNet

We have measured the startup time for STAT on Atlas. This
includes the time required to launch all STAT daemons and
MRNet communication processes and to connect all of the tool
processes to the MRNet network. The MRNet line in Figure 2
shows results with a flat 1-to-N topology. Our results have a
clear linear scaling trend; this is consistent with the fact that
each daemon is launched sequentially. At 512 nodes, MRNet
consistently fails to launch the daemons when using rsh. Our
previous results [5] on the Thunder machine scaled beyond
this point by using ssh. Unfortunately, Atlas does not support
ssh on the compute nodes.

We have also measured the startup time for STAT on BG/L.
As with Atlas, this includes the time to launch all STAT
daemons and MRNet communication processes and to connect
them all to the MRNet network. In addition, the BG/L STAT
prototype only supports debugging when the application is
launched under the tool’s control. Hence, the startup time
includes the time to launch the application. Results are shown in
Figure 3. The startup time on BG/L exceeds 100 seconds even
at 1024 compute nodes and exhibits linear scaling for larger
runs. The majority of this time occurs during the launching of
the back-end daemons and the generation of the process table
by BG/L’s system software. At 64K compute nodes in virtual
node mode, the system software accounts for over 86% of the
startup time. In addition to a scalability performance issue,
the BG/L resource manager also suffered from a scalability
correctness issue and caused an apparent run time failure (hang)
at 208K processes. Subsequent patches by IBM were able to
help alleviate both issues, leading to successful runs at 208K
processes. These changes included increasing buffer sizes and
removing the usage of non-scalable routines such as strcat,
which scans the buffer for the string termination character, for
data packing. The drops in startup time at the end of the curves
in Figure 3 show the performance improvement, with more
than a two fold speedup at 104K processes in the 2-deep CO
case.

Fig. 3. STAT startup time on BG/L with various topologies

B. Systematic, Reusable Tool and Job Startup

While ad hoc mechanisms like ssh or rsh to launch tool
daemons and TBŌN processes work correctly on some systems,
they do not provide portability. Several systems like BG/L
or the Cray XT3 do not support these protocols. Rather,
daemon launching must use a service that their resource
management systems provide. More importantly, these ad
hoc mechanisms rarely provide optimal performance and
scalability. At extreme scales, a tool becomes a large parallel
application in its own right, with thousands of debugger
daemons. Even today, debugging the full BG/L installation at
LLNL requires launching 1664 daemons onto the I/O nodes.
Thus, petascale tools need better integration with resource
management systems.

To address this challenge, we integrate STAT with Launch-
MON, a general-purpose infrastructure for launching tool
daemons [10]. LaunchMON implements a portable daemon-
spawning mechanism that exploits scalable system services
provided by the resource management software. Its use of
efficient daemon-launching mechanisms improves the daemon
launch and TBŌN setup time to have overheads an order of
magnitude less than ad hoc methods. Also, decoupling the
daemon-launching mechanism from the tool’s core operations
allows its front end to avoid excessive requests for system
services such as remote shell processes.

C. Optimized Tool Launching Performance

We compare the startup performance of STAT integrated
with LaunchMON to the startup performance of STAT using
MRNet’s daemon launching capabilities. Figure 2 shows that
STAT’s startup using LaunchMON clearly scales better than
serially launching the daemons using remote access protocols.
In fact, STAT starts 512 daemons in 5.6 seconds, a scale
at which the MRNet daemon spawning facility failed but
would have taken over 2 minutes based on the clear linear
scaling trend. Most of the scalability advantage comes from



Fig. 4. STAT merge time on Atlas with various topologies

LaunchMON’s ability to utilize the resource manager to bulk-
launch the daemons.

V. SCALABLE DATA STRUCTURE DESIGN

Most scalable tool designs deploy some kind of hierarchical,
online data aggregation scheme to reduce the amount of
data to be processed at the front-end node. However, as we
show in this section, this aggregation alone is insufficient if
not accompanied by a matching hierarchical data structure
representation. Otherwise, the pressure on the network due to
sending unnecessarily-large volumes of data causes significant
network congestion. This problem falls into the category of
structural problems and requires a careful (re)design of the
tool’s internal data structures.

A. STAT Merge Times

We first encounter this bottleneck when investigating the
performance of the STAT stack trace merging routine. In
particular, we measure the time it takes for each STAT daemon
to send its locally-merged 2D trace-space and 3D trace-space-
time prefix trees through the MRNet tree until the STAT
front end has a globally-merged copy of both prefix trees.
For this test, we run STAT with 1-deep, 2-deep, and 3-deep
topologies. In the 2-deep and 3-deep cases, we employ a
balanced topology; that is, every parent process in the MRNet
tree has approximately the same number of children. More
specifically, for an n-deep tree, the maximum fanout is set to
the nth root of the number of daemons. The scaling results in
Figure 4 show that even the 1-deep tree is able to perform the
merging quickly, under half a second at 4,096 tasks, although
it shows a clear linear scaling trend. The 2-deep and 3-deep
results, on the other hand, show significantly better scaling
characteristics.

While the Atlas results show good scalability and no
indication that bottlenecks exist at its modestly-large scale, our
experiments on BG/L paint a different picture. The respective
trace merge times can be seen in Figure 5. The 1-deep tree

Fig. 5. STAT merge time on BG/L with various topologies

fails to merge the graphs at 16,384 compute nodes (256 I/O
nodes), but the results up to that size clearly show the poor
scaling characteristics of this flat topology. The 2-deep and
3-deep trees tested have similar performance to each other
and both show linear scaling at larger scales, rather than the
logarithmic scaling expected with the MRNet tree.

One of the main reasons for this unexpected behavior is the
internal representation that STAT uses to identify the set of
tasks that take a given call path. At all levels in the MRNet
tree, we use a common representation for the stack traces that
have been collected and aggregated. As a consequence, all bit
vectors used to indicate task sets (e.g., for for the call graph
prefix tree edge labels) are sized to fit all tasks of the entire
application, even though only a subset of the bits are relevant
for a given daemon or MRNet communication process. Thus,
the tool unnecessarily tracks and sends many zero bits and
generates a high load on the I/O nodes.

Unfortunately, limited machine access prevented us from
getting complete scaling runs with the 3-deep topology, but we
anticipate the results would follow the 2-deep case. In any case,
the linear scaling demonstrates that the STAT implementation
needs to be modified for these scales and beyond. Looking
forward to petascale machines, a million cores would require a
1 megabit bit vector per edge label. This would easily saturate
the network with a large daemon count as well as lead to
severe memory contention on the processing nodes.

B. Hierarchical Data Representations

To alleviate the problem caused by fixed-size bit vectors,
we implement a hierarchical task list scheme that matches the
hierarchical structure of the tool communication layer. With this
approach each analysis node (STAT daemon or communication
process) only maintains lists for tasks within its own subtree. In
particular, each STAT daemon, which is a leaf in the analysis
tree, only maintains lists containing all tasks from which it
gathers stack traces. During the merge process in the analysis
tree we then combine the task lists of all children by simple
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Fig. 6. Daemon 0 is debugging tasks 0 and 2, while Daemon 1 is debugging
tasks 1 and 3. The original STAT bit vector (a) maintains excess bits (the
white boxes). The optimized STAT bit vector (b) conserves bits, but requires
the bit vector to be remapped in MPI rank order.

concatenation. However, since the mapping of nodes to STAT
daemons is not guaranteed to be in MPI rank order, we need
to add a remapping step at the front-end tool. For this we first
collect the map information once during the setup phase and
then perform a local remap during the final result rendering.
Figure 6 illustrates the difference between the original and
optimized implementations. Under this scheme, only the front
end maintains bit vectors that spans the entire job and we never
send a full bit vector over the TBŌN.

While this specific approach is limited to STAT’s node lists,
similar techniques can also be applied in other scenarios. As a
general rule tools must avoid global views of all tasks during
the processing of performance or debug information. Instead,
the working set for each participant in each analysis routine
should be as minimal as possible. With tree-based schemes,
in particular, a reduction of the working set to application
processes covered by the current subtree ensures that data
structures only grow logarithmically together with the actual
computation.

C. Merge Times after Bit Vector Optimization

Figure 7 shows the merge time results from BG/L with the
bit vector optimization in comparison to the original bit vector
implementation. The optimized bit vector exhibits logarithmic
scaling, in contrast to the original linear scaling, because of the
reduction in the data volume being sent through the MRNet
network. We achieve this logarithmic scaling despite limitations
on the number of communication processes we could launch
on BG/L and that we could not employ a fully balanced tree
topology. For tools that use a TBŌN, these results clearly show
the importance of designing data structures that are tailored to
exploit the logarithmic properties of the network tree effectively.
We note that the virtual node mode cases run faster than the
co-processor mode cases at equivalent task counts because the
merge performance is bound not only by the task count, but
also by the number of daemons. Since we are restricted on the
number of communication processes we can launch on BG/L,
the fanout from the last level of communication processes
in co-processor mode is double that of virtual node mode at
equivalent task counts.

The optimized bit vector does incur an additional cost in
the remapping step, which rearranges the bit vectors into MPI

Fig. 7. Optimized bit vector STAT merge time versus original bit vector
STAT merge time

rank order. At 208K tasks, this step takes 0.66 seconds.

VI. FILE SYSTEM ISSUES AND ACCESS TO STATIC
INFORMATION

As we scale up to larger systems, certain operations of
STAT that we assumed local to each node begin manifesting
scalability issues. Despite our expectation of constant overheads,
the “independent” operations that each daemon performs
exhibit worse than linear scaling characteristics. Most notable
is the stack trace sampling. Clearly, there is a scalability
bottleneck that prevents this ostensibly-independent operation
from scaling optimally. Further analysis attributes it to the
tool’s inefficient interactions with the I/O subsystems and with
the MPI implementations.

This section explores the performance problem of STAT’s
stack trace sampling, and presents our response: the scalable
binary relocation service (SBRS). While we present this using
STAT results, it captures general problems for contemporary
scalable tool research, in particular with trends towards scalably
combining reusable, serial components using a communication
infrastructure [4], [7], [11].

A. Sub-optimal Scaling Characteristics of Stack Trace Sam-
pling

STAT uses the StackWalker API [12], a lightweight API
that lets each back-end daemon take stack traces of the co-
located processes on a node, or other associated processes
traceable from that node. This API is intended to minimize
the perturbation to the application processes and offer constant
sampling overheads regardless of scale. In defiance of these
expectations, our experiments reveal sub-optimal scalability in
stack trace sampling, even with such a lightweight API.

On both Atlas and BG/L, we measure the local time
for each daemon to gather ten stack traces from all local
application processes. During this time, each daemon performs
a local merge of the stack traces that it gathers, including a
2D trace-space prefix tree and a 3D trace-space-time prefix



Fig. 8. STAT sampling time on Atlas with a flat 1-to-N topology

tree. Following the common practice of our users, we stage
the application executable on the network file system (NFS)
mounted home directory. Figure 8 shows the Atlas results up to
4,096 MPI tasks (512 daemons) while Figure 9 shows the BG/L
results up to 212,992 tasks (1,664 daemons). These scaling
runs expose several scaling characteristics of the stack trace
sampling performance. First, the sampling operation scales
poorly on Atlas, with slightly worse than linear scaling, while
it generally scales better on BG/L. Second, this operation
occasionally suffers performance variations larger than 20%;
specifically, the essentially-identical operation of two virtual
node mode runs (2-deep VN and 3-deep VN) makes greater
than a factor of two performance difference at 212,992 MPI
tasks. Third, at smaller scales the stack trace sampling performs
better on Atlas than on BG/L.

Among these observations, only the third has a simple
explanation. We can easily attribute the third observation to
an architectural difference between two systems: on BG/L, a
daemon must deal with 64 processes in co-processor mode or
128 in virtual node mode, while on Atlas only 8 processes.

For the first and the second observations, we theorize that
the problems may lie in the file I/O characteristics of the tool
daemons on shared file systems (NFS in this case). They are
the only non-local resource that the StackWalker API uses (to
parse the symbol table of the binary files residing in them).
Since no access coordination is provided, all participating
daemons simultaneously access the binaries, thrashing the file
server and/or becoming increasingly vulnerable to the current
file server loads. We suspect that this problem is generally
less severe on BG/L, as each daemon only has to deal with
a single static executable binary, in contrast to an executable
with multiple shared libraries, as is the case on Atlas.

Additionally, on BG/L a daemon does not contend for CPU
time with the processes it traces, as it runs on a dedicated I/O
node. In contrast, on Atlas the default behavior of an MPI
task waiting for a message arrival is to spin-wait on a CPU
core. When a node is fully loaded, this behavior causes CPU

Fig. 9. STAT sampling time on BG/L with various topologies

contention with the daemon. At large scale, there is a higher
probability that a daemon encounters the processes that either
spin or enter a blocking kernel service or a critical section,
refusing to yield the core.

B. I/O Subsystems and MPI Implementations

To further test our theory and to develop a general solution,
we implement a scalable binary relocation service (SBRS)
prototype. It is designed to scalably relocate a requested
executable and its dependent shared libraries from a shared
file system such as NFS to the RAM disk of participating
nodes. It then automatically redirects each tool daemon’s file
I/O requests on the original files to the relocated versions by
interposing all of its open calls. SBRS refers to the mounted
file system table (mtab) to determine if a binary resides on a
globally-shared file system. If it does, SBRS broadcasts the
binary via a communication fabric that the client tool must
provide. For STAT, we integrated SBRS with the LaunchMON
framework such that the master back-end daemon fetches a
target binary from the file system and distributes it to the rest
of the daemons using LaunchMON’s back-end communication
API (through the Infiniband switch in the case of Atlas).

Figure 10 shows preliminary results on Atlas up to 1,024 MPI
tasks, 128 back-end daemons. It illustrates that the sampling
costs on the relocated binaries (red line) are now a constant of
about 2 seconds regardless of scale. The SBRS overhead itself
is also measured to be small, taking 0.088 seconds to relocate
two main binary files, the base executable (10KB) and the
MPI library (4MB), to 128 nodes. To obtain such performance,
we find that we must minimize contention between SBRS and
application tasks. Thus, SBRS currently sends SIGSTOP to
all application processes and gives a grace period for them to
settle before it begins the relocation. We are currently studying
the MPI implementation to devise strategies that would enable
better time sharing of resources between MPI tasks and the
SBRS.

In this experiment, we also measure the sampling perfor-



Fig. 10. STAT sampling time on Atlas with the binary relocation service
prototype

mance when the binaries reside on a parallel file system,
LUSTRE [13]. However, at this scale, LUSTRE offers little
improvement over NFS. We note that the overall sampling
performance on NFS of Figure 10 is about four times better
than the original measurements shown in Figure 8. This is
mainly due to a recent OS update which shifts several dependent
shared libraries to faster file systems.

VII. THE CHALLENGE AHEAD: THREADING

While applications on current large scale architectures mostly
rely exclusively on MPI, it is expected that this will change
in the near future. The increasing number of cores will put
a high burden on the connection management of any MPI
implementation and the expected rise of multi-core and many-
core node architectures will increase the pressure on the
memory per core ratio that applications can expect to work
with. As a consequence of these trends, programmers will
have to use threading within tasks to keep the number of MPI
endpoints as well as the memory available per task reasonable.

Dealing with multithreaded applications can present addi-
tional challenges to tools. Beyond the mechanical complexities
of dealing with data collection from a multithreaded application,
threads can serve as a potentially-unbounded multiplier on the
amount of data being collected and managed. For a tool such as
STAT, an application running on 10,000 nodes with 8 threads
per node presents many of the same challenges as an application
running on 80,000 nodes. Many systems do not enforce a
reasonable limit on the number of threads an application may
spawn, so an application could spawn an arbitrary number of
threads and generate an arbitrary amount of data for the tool.
Of course, it is likely that such an application will need the
help provided by performance analysis and debugging tools.

We plan to implement thread support in the next version of
STAT. Instead of collecting a call stack from each process in
an application, we plan to collect a call stack from each thread
in the application. STAT will continue to associate each call

stack with its process representation, rather than associate it
with a new thread representation.

Collecting call stacks from multithreaded processes will
generate extra work during the stack trace sampling phase
(when STAT collects call stacks from each node) and during
the merging phase (when STAT merges call stacks from across
the application into a single representation). We expect to see
only a constant slowdown per thread in stack trace sampling
time, as this operation happens in parallel across all nodes. We
also expect that the MRNet scalable features will only cause a
logarithmic slowdown in merging time.

We do not expect to have to make significant changes to
STAT’s visualization mechanism to support threads. The general
goal of STAT will still be to highlight the processes that
may be causing bugs so that a heavyweight debugger can be
judiciously deployed. Our initial thoughts are that identifying
bugs in specific threads will both add complexity to the STAT
implementation and visualization, and it does not present much
information beyond what could be obtained from a heavyweight
debugger attached to a specific process.

VIII. RELATED WORK

Many performance and correctness tools have been devel-
oped for parallel computing platforms, with varying levels of
scalability. Full-featured debuggers such as TotalView [14]
and DDT [11] have been run on thousands of processes, but
typically suffer high latencies for even simple operations at
these scales. The Ladebug project [4] aims at providing scalable
parallel debugging and presented a prototype debugger on top
of a hierarchical communication network similar to MRNet
used in STAT. However, Ladebug has not been evaluated at
the scales targeted in this work.

Several projects have targeted scalable MPI tracing and
profiling. For instance, the mpiP [15] lightweight profiling
library has been successfully run with thousands of processes.
The SCALASCA project [16] performs scalable trace analysis
and has been successfully run up to 16,384 processes. IBM’s
High Performance Computing Toolkit [17] also provides a
set of tools for monitoring job performance. Tools such as
CUBE [18] and VAMPIR [19] have been developed to aid in
the visualization of large, parallel traces.

Several papers have discussed projects targeting BlueGene/L.
Chung et al. [20] evaluated several of the aforementioned
MPI performance analysis tools on BlueGene/L and identified
the quantity of data collected at large scales as a potential
bottleneck. Schulz et al. [21] described an implementation of
the Dynamic Probe Class Library [22] targeting BlueGene/L.
We previously developed STATBench [9], a tool emulation
infrastructure, and evaluated STAT’s scalability for BlueGene/L
up to 128K processes.

IX. CONCLUSION

Supercomputing experts know that what works for ten
processes may not work for a hundred. Likewise, scalability
to a thousand processes does not ensure good behavior as
we approach the millions of cores that petascale computing



promises. Furthermore, at extreme scales, even performance
and correctness tools become massively-parallel applications,
with all the challenges that computing at scale brings. We
have presented a detailed case study of the challenges faced in
scaling the Stack Trace Analysis Tool (STAT) up to hundreds of
thousands of compute nodes. Ours is the first tool-performance
evaluation with over one hundred thousand application tasks,
and therefore provides new insight into three key challenges
faced by petascale tools.

First, we find that sequential daemon launching becomes
a bottleneck at this scale. We improve both scalability and
portability by eschewing ad hoc sequential launchers in favor
of LaunchMON, a portable daemon spawner that integrates
closely with native resource managers. Second, as daemons
run, we find that it is critical that they avoid data structures
that represent, or even reserve space to represent, a global view.
Instead, we adopt a hierarchical representation that dramatically
reduces data storage and transfer requirements at the fringes
of the analysis tree. Third, we find that seemingly-independent
operations across daemons can suffer scalability bottlenecks
when accessing a shared resource, such as the file system. Our
scalable binary relocation service is able to optimize the file
operations and reduce file system accesses to constant time
regardless of system size.

Profiling and debugging million-core applications will bring
a host of new challenges, including some yet to be discovered.
However, we can anticipate some scalability issues even now.
The lessons we have learned with STAT will apply to future
tools as well. To the extent that ours is the first reported
experience with tools at this scale, we hope that our findings
will light the petascale path for other tool developers to follow.
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