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Abstract

Single assignment languages, such as Prolog or Standard ML, endure considerable inef-

ficiency to support their declarative semantics. Lacking destructive assignment, programs

written in these languages must frequently duplicate large portions of structures that con-

ventional programs would simply modify in place. This paper presents techniques for au-

tomatically transforming Prolog programs to perform in-place updates using destructive

assignment, and reports and evaluates experience prototyping the code synthesis portion of

the transformation. Where applicable, such a transformation produces code that updates

structures two to more than three times faster than näıve implementations and uses vastly

less memory.
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1 Introduction

Logic and functional programming languages have, until recent years, been restricted to

the realms of academia and formal theory. The expressive simplicity and high level of

abstraction that make these languages attractive also tend to make them inefficient. It is

difficult for Prolog, Standard ML, and related languages to compete with more conventional

languages such as C or Fortran. One major cause for this inefficiency is the extra work

required to support single assignment semantics. When an incremental change is to be

made to some large structure, a multiple assignment language would perform the updates

in place, modifying only those fields that need to be changed. A single assignment language,

on the other hand, would be forced to copy much of the structure, replacing old values with

new ones as it went. The overhead associated with allocating new memory, duplicating

data, and garbage collecting old, discarded copies hurts performance considerably.

If one can detect that the original copy of a structure is never reused past the point of

modification, it should be possible to update it in place, destructively modifying it to form

the new structure we wish to generate. We refer to such structures as dead, and it is the

memory cells occupied by these soon-to-be discarded structures that we intend to reuse.

More specifically, if static analysis can detect that certain arguments to a predicate or

function are always dead, the memory cells occupied by these arguments may be “recycled”

to construct the predicate or function’s output, or to construct arguments to body goals

or subcalls. The problem of detecting deadness relates directly to that of tracking liveness,

and several researchers have developed static analysis techniques that can be applied toward

this end [1, 2, 3, 4]. Certain languages, including Prolog, do not explicitly identify output
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arguments. In such cases, we define the “output” of a predicate to be those arguments that

are passed free variables wherever the predicate is called. Again, this may be determined

via static analysis, using methods described in [5] and [6].

Ideally, one would like to allow the programmer to continue to use logic and functional

languages without giving up the elegance and ease of expression that single assignment

affords. The compiler would synthesize equivalent code that performs multiple, destructive

assignment. Augmented by primitives for performing simple, in-place assignments, the

transformed source should be far more efficient, using much less memory and potentially

executing at speeds competitive with those of conventional languages.

Earlier attempts at applying multiple assignment efficiency to single assignment lan-

guages have demonstrated that this class of optimizations can lead to significant improve-

ments [7, 2, 8]. However, the multiple assignment code produced using these prior ap-

proaches may not always operate as efficiently as one would like. These techniques are

essentially equivalent for the purposes of this paper, and we will therefore focus our review

on Compile Time Garbage Collection (CTGC), the approach described in [8].

An alternative technique, the one with which this paper is centrally concerned, is the

Update in Place (UIP) transformation. Like CTGC, the UIP transformation produces code

that is able to reuse dead memory cells. However, UIP transformed programs avoid the

difficulties that hinder CTGC code’s performance, yielding still faster code. The complete

UIP transformation is a three stage process. The first stage performs dataflow analyses

of the source program. During this phase, deadness detection is performed, and input and

output arguments are identified. The second stage performs reuse analyses. Dead input cells

are matched up with the output structures they will be used to create, forming a mapping
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that describes specifically how and where memory cells will be reused. The problem of how

to produce good reuse mappings is an important open question; Debray [6] has proven that

a related reuse problem is NP complete but that efficient heuristics can usually find good

mappings. It is yet unclear whether the slightly different reuse problem faced by UIP shares

these traits. See [9] for further discussion of the relationship between Debray’s work and

UIP.

The third and final stage of the UIP transformation is code synthesis. Based upon the

dataflow patterns deduced in the first stage, and using the reuse mappings selected in the

second stage, the code synthesizer transforms single assignment programs into equivalent

programs that destructively reuse memory cells to create new structures. A prototype

code synthesizer for programs written in Prolog has been developed based upon formal

specifications given in [10]. This paper will primarily address the implementation issues

involved in creating such a synthesizer. Timing and memory use data are provided that

directly compare the performance of näıve code, CTGC code, and several variations of UIP

code on a small collection of benchmarks.

Section 2 reviews CTGC, focusing on those contexts in which it produces code that

does more work than is necessary. Section 2 also develops an intuitive basis for the type

of transformation we wish to apply here, contrasting it with CTGC. Section 3 discusses

several implementation issues that must be resolved to produce transformed code that is

not only correct, but highly efficient as well. Section 4 presents empirical studies of the

performance of a transformed collection of benchmarks, and evaluates the impact of these

issues. Lastly, Section 5 summarizes the author’s findings and discusses broader issues

regarding synthesizer and its incorporation into a working UIP transformation system.
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While the transformation we present is fairly general, we have chosen Prolog as a work-

ing language in which to implement and describe this research. For a discussion of cross

language issues, see [9].

4



2 Background

This section introduces previously presented techniques for rewriting Prolog predicates and

clauses to reuse the memory cells of dead input structures. The first subsection reviews

Compile Time Garbage Collection and illustrates that it may produce code that does extra

work, hampering its efficiency. The second subsection introduces the present proposal,

Update in Place (UIP). We will see that UIP avoids the pitfalls of earlier attempts, resulting

in faster, more efficient transformed code.

2.1 Compile Time Garbage Collection

The prior proposal for transforming Prolog programs to reuse dead memory cells is Com-

pile Time Garbage Collection [8]. CTGC destructively modifies cells to be reused so that

they look like free variables newly allocated from the heap. Memory cells that would or-

dinarily be discarded are instead made available for immediate reuse. This reduces the

garbage collector’s work load, leading to faster, more memory efficient code. Furthermore,

any fields that have the same value when the reused cell is reinstantiated need not be reini-

tialized. Closer examination reveals that CTGC transformed code may perform needless

work nonetheless. First, consider a näıve implementation of append/3, which concatenates

its first two arguments into the third:

append( [ Head | Tail ], List, [ Head | NewTail ] ) :-
append( Tail, List, NewTail ).

append( [], List, List ).
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Assume that static analysis has determined that the first and second arguments are

always dead after calls to append/3, and that the third argument is always a free variable

in all calls. Both Compile Time Garbage Collection and Update in Place attempt to reuse

the list cells from the first and second arguments to construct the third. CTGC’s approach

is to make potentially reassignable fields of reused cells into free variables. Essentially, fields

that we might wish to modify are uninstantiated, so that they may be reinstantiated with

new values.

The following code realizes the CTGC transformation of append/3. It is worth noting

that CTGC was originally proposed as an optimization of Warren Abstract Machine code.

For the purpose of contrasting it with UIP, though, CTGC is more conveniently presented

as a source level transformation.

append( Front, Rear, Front ) :-
Front = [ | Tail ],
makefree( 2, Front, NewTail ),
append( Tail, Rear, NewTail ).

append( [], Rear, Rear ).

CTGC uses a new primitive, makefree/3, to rewrite fields as free variables. When this

primitive is called as makefree( +ArgNum, +Term, -FreeVar ), it destructively modifies

the ArgNum’th field of Term so that it resembles an uninstantiated free variable. A reference

to this newly freed variable is placed in FreeVar.

In the CTGC code for append/3, the second field of Front is made into a free variable

referenced by NewTail. This works well when the next element in the list is nil: the second
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clause of the transformed predicate instantiates NewTail to the list Rear, and the output

argument has been completed. However, consider what happens when the list does not

yet terminate, and the first transformed clause executes again. Head unification unifies

the first and third arguments, which were Tail and NewTail in the preceding level of

recursion. Thus, NewTail is reinitialized to reference the list referenced by Tail, which

is exactly what it had been referencing before the call to makefree/3. The time spent

destructively unbinding and then rebinding Front’s second field has been wasted, since for

most of append/3’s execution, that second field is immediately reinstantiated to the same

value it already held. Clearly, transformed code would perform faster if it did not spend

time preparing to change fields that ultimately end up staying the same.

2.2 Update in Place

2.2.1 Last References

Compile Time Garbage Collection does extra work because it modifies reusable cells too

early. The Update in Place transformation avoids this pitfall by performing its destructive

assignments lazily, only where and when necessary. This is accomplished by replacing the

output argument in each clause of the original predicate with a reference to the most recent

cell that may need to be destructively modified. However, no assignment is made until it is

genuinely required. By convention, we refer to this extra argument as a last reference, and

refer to it in transformed code using variable names such as Last. Intuitively, it is the last

cell that has been recycled into the output structure on a given level of recursion.

To better understand the need for a Last argument, consider how a program written

in a conventional language would append a pair of lists, Front and Rear, given a pointer
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to the head of each. The lists are composed of singly linked nodes, with a known, specially

designated “nil” node marking the termination of each list. A straightforward approach

would be to step down links in Front until reaching nil. At this point the previous node’s

link pointer, which originally pointed to nil, should be destructively modified to point to

the head of Rear instead. Thus, as we step down Front, we must always keep track of the

last node we traversed, as each successive node might be the final node before the end of

the list.

The Prolog code for append/3 transformed to use Update in Place implements just

this algorithm. First, however, we must define a means for performing basic destructive

assignment. We use the primitive setarg/3, which takes the following form:

setarg( +ArgNum, +CompoundTerm, ?NewArgument ).

A call of this form replaces the ArgNum’th argument of CompoundTerm with the value of

NewArgument. The interpretation of the arguments is analogous to that of arg/3. Further-

more, setarg/3 is backtrackable; a trail test is performed, and if necessary the old value

of CompoundTerm’s ArgNum’th field is recorded on the trail so that backtracking can restore

the original value later. Note that setarg/3 is provided as a primitive by several Prolog

implementations [11, 12, 13].

Given this assignment primitive, the UIP transformed code for append/3 is as follows:

append( [], Rear, Rear ).
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append( Front, Rear, Front ) :-
Front = [ | Tail ],
append 1( Tail, Rear, Front ).

append 1( [], Rear, Last ) :-
setarg( 2, Last, Rear ).

append 1( Front, Rear, ) :-
Front = [ | Tail ],
append 1( Tail, Rear, Front ).

We notice immediately that the transformed code contains not two clauses, but four,

half belonging to append/3 and half to append 1/3. Within each predicate, the first and

second clauses were generated from the first and second clauses of the original code, respec-

tively. We call append/3 an entry predicate, and append 1/3 an internal predicate. Since

each clause from the original code appears as both an entry and internal clause, we may

occasionally refer to the entry or internal version of a clause. In general, entry predicates

have the same name as the original predicate, and are called using the same arguments.

Internal predicates have modified arguments that track last references, and are called by

each other and by entry versions. Internal predicates are named after the original predi-

cate plus an additional suffix, “ 1” in this case. The suffixes themselves encode additional

information which is further explained below.

Returning to our example, the first clause of the entry predicate handles the specific

case where the top level call to append/3 had the empty list as its first argument. In this

case, the output is simply the second argument; this clause is identical to the corresponding
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clause in the original code.

The second clause of the entry predicate is more interesting. If the first argument,

Front, is not the empty list, then we reuse its first cell to make the first cell in the output

list. Thus, head unification causes the third argument to be a reference to the same cell as

the first. In the body, the unification grabs a reference to Tail, the next cell in sequence.

Finally, the clause calls the internal predicate, append 1/3. In this call, Tail replaces the

first argument and Rear is passed along unchanged, just as in the original code. However,

in place of an output argument, we pass Front as a last reference. Should Tail be the

empty list, it is Front’s second field that should be destructively changed to point to Rear.

Beyond this initial cell, it is the internal predicate append 1/3 that handles the work

of repeatedly stepping forward down the first argument, always maintaining a reference to

the last cell traversed. The second clause of append 1/3 recursively walks down the list. At

each level of recursion, the unification gives us a reference to the next cell in the list, and

the current cell is passed as a last reference to the recursive subgoal. This second clause

is only executed when the first argument is not the empty list. This implies that the last

reference it had received from its caller will not need to be modified after all. Thus, it is

matched with “ ” in the head and discarded. Where CTGC would have already put work

into preparing that referenced cell for assignment, we have done no such extra work.

The recursive traversal ends with the first clause of append 1/3. Here, we have reached

the end of the first list. The second argument, Rear still holds the list to be concatenated,

and now Last references the cell just before (i.e. containing a reference to) the terminating

[]. Upon entry, then, the empty list in the first argument is the value referenced by the

tail field of Last. The call to setarg/3 destructively reassigns this field to point to Rear
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instead. The second list has now been pasted onto the end of the first; the execution is

complete. Where the original code would have copied as many cells as the entire length of

the first argument, we have copied none. A single destructive assignment redirects the last

cell of the first list to point to the head of the second.

2.2.2 Positional Arguments

In the call to setarg/3, notice that the number of the field to be changed is hard-coded as

two. This works for append/3, as we are always modifying only that field. This may not

be the case for other predicates, though. Consider the following näıve code for performing

insertion into a binary tree:

tree insert( Info, leaf, tree( Info, leaf, leaf ) ).

tree insert( Info, tree( Node, Left, Right ), tree( Node, NewLeft, Right ) ) :-
Info < Node,
tree insert( Info, Left, NewLeft ).

tree insert( Info, tree( Node, Left, Right ), tree( Node, Left, NewRight ) ) :-
Info >= Node,
tree insert( Info, Right, NewRight ).

Let us assume that static analysis has determined that the second argument is always

dead following calls to tree insert/3, and that the third argument is always a free variable

at the time of call. We will update the second argument in place to construct the third.

Intuitively, one expects that the transformed code for the first clause will perform a

destructive assignment to the parent of the leaf atom in the second argument to the first
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clause, giving it a reference to a new tree node containing Info instead. However, leaf may

have been either the left or right subtree of its parent. Hence, the destructive assignment

might need to be made to either the second or third field of the last reference. One way

to track which field should receive the assignment is to augment the internal predicates

of clauses with an extra parameter. Whenever a Last is passed down to a body goal,

an additional argument, Pos, accompanies it. Pos specifies which field of Last should be

replaced in the event that destructive assignment is actually performed. The full “last

reference,” then, is a particular field (given by Pos) of a particular cell (given by Last).

The following is the full transformed UIP code for tree insert/3:

tree insert( Info, leaf, tree( Info, leaf, leaf ) ).

tree insert( Info, Tree, Tree ) :-
Tree = tree( Node, Left, ),
Info < Node,
tree insert 2( Info, Left, Tree, 2 ).

tree insert( Info, Tree, Tree ) :-
Tree = tree( Node, , Right ),
Info >= Node,
tree insert 2( Info, Right, Tree, 3 ).

tree insert 2( Info, leaf, Last, Pos ) :-
setarg( Pos, Last, tree( Info, leaf, leaf ) ).

tree insert 2( Info, Tree, , ) :-
Tree = tree( Node, Left, ),
Info < Node,
tree insert 2( Info, Left, Tree, 2 ).

tree insert 2( Info, Tree, , ) :-
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Tree = tree( Node, , Right ),
Info >= Node,
tree insert 2( Info, Right, Tree, 3 ).

The inner workings of this code are very similar to those of the transformed append/3,

although now the second argument is traversed instead of the first. The internal version

of the first clause of the original code contains the anticipated call to setarg/3. However,

instead of assigning into a predetermined field of Last, we assign into the field specified by

Pos. Examining the other internal and entry clauses, we see that Pos is passed as either

two or three, depending on whether Info should be plugged in as the left or right subtree

of the node under examination.

2.2.3 Additional Internal Predicates

The reader may have noticed that the internal predicates for tree insert/3 use the suffix

“ 2” instead of “ 1”. The number chosen indicates which input argument is a child of

the last reference upon entry to that predicate. This information is significant, as it may

determine whether or not a clause must perform a destructive assignment to alter a last

reference’s relationship to the clause’s input arguments. In append/3, Last is always the

parent of the first argument; in tree insert/3, Last is always the parent of the second

argument. However, there may be occasions where the last reference’s children can vary

among different calls. If more than one input argument is being traversed, such as during

a merge operation, the last reference may be a parent of either input argument. Another

possibility is that none of the input arguments is an immediate child of the last reference.

This can happen when splicing occurs, and certain cells in the input are skipped over without
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incorporating them into the output. To reflect this situation, we use the suffix “ stray”.

Transforming the following code for delete/3 demonstrates how suffixes vary depending

on the parent/child relationship between last references and input arguments. The predicate

removes all instances of its first argument from the list given as its second argument, placing

the “cleaned” list in its third argument. First, the näıve implementation:

delete( Junk, [ Junk | OldTail ], New ) :-
delete( Junk, OldTail, New ).

delete( Junk, [ Keep | OldTail ], [ Keep | NewTail ] ) :-
Keep \== Junk,
delete( Junk, OldTail, NewTail ).

delete( , [], [] ).

One may think of delete as operating in one of two modes: a “skipping” mode and a

“copying” mode. In the skipping mode, cells that match Junk are discarded and the output

list being composed remains unchanged. In the copying mode, cells that do not match Junk

are copied into the output list. These two modes correspond to the first two clauses listed

above.

The UIP code for delete/3 will use destructive assignments to splice out those cells

that would be dropped in the näıve code’s skipping mode. Figure 1 illustrates visually how

certain cell’s successor references will be updated in place to skip over unwanted Junk cells.

Because of the possibility of skipping certain cells and recycling others, the UIP code for

delete/3 must keep track of more information than just the last reference. In particular,
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a b b dc

Figure 1: splicing in delete/3. This represents the behavior of UIP transformed code
deleting all b’s from the list [ a, b, b, c, d ]. Solid arrows represent references from
one list cell to the next that will not be changed. The reference represented by the dashed
arrow from a to b will be destructively updated to reference c instead, as indicated by the
lightly dotted arrow.

it must be able to detect transitions between the skipping and copying modes. Consider:

• When copying stops and skipping begins, the last reference when copying ended should

be carried over the sequence of skipped cells.

• When skipping stops and copying begins, the last reference that had been carried

across the skipped cells should be destructively modified to point to the first cell in

the coming sequence of copied cells.

To return to Figure 1, upon visiting the first cell containing b we transition from copying

to skipping. As the two b cells are skipped, we continue to pass down the second field of

cell a as the last reference. Cell c prompts a transition back to copying mode, so we modify

cell a’s second field (the last reference) to point to cell c.

The transition from skipping to copying is one of two points where the transformed

delete/3 will have to make assignments. The other arises if we are still skipping when we

reach the end of the list. In this case, the cell containing the last reference should become

the final cell in the output list. Destructively assigning the last reference to point to nil

([]) terminates the output list and the call is complete.
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At any level of recursion, the critical factor in distinguishing copying and skipping modes

rests in the location of the last reference relative to the input arguments. If the last reference

is an immediate parent of one of the input arguments, then we are copying. If none of the

input arguments is a child of the last reference, then we call this a “stray” and it signals

skipping. These cases match the description given earlier of the meaning of the suffixes of

internal predicates. In fact, tracking which input argument, if any, is a child of the last

reference provides sufficient information for all transformed code to behave correctly under

any pattern of discarding and reuse.

For delete/3, both the first and second arguments are considered input, but only the

second argument is reused. At any moment, then, the last reference is either the parent of

the second argument or of no input argument. The internal predicates, then, will be named

delete 2 and delete stray.

The UIP-transformed code for delete/3 is as follows:

delete( Junk, [ Junk | OldTail ], New ) :-
delete( Junk, OldTail, New ).

delete( Junk, Old, Old ) :-
Old = [ Keep | OldTail ],
Junk \== Keep,
delete 2( Junk, OldTail, Old, 2 ).

delete( , [], [] ).

delete 2( Junk, [ Junk | OldTail ], Last, Pos ) :-
delete stray( Junk, OldTail, Last, Pos ).
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delete 2( Junk, Old, , ) :-
Old = [ Keep | OldTail ],
Junk \== Keep,
delete 2( Junk, OldTail, Old, 2 ).

delete 2( , [], , ).

delete stray( Junk, [ Junk | OldTail ], Last, Pos ) :-
delete stray( Junk, OldTail, Last, Pos ).

delete stray( Junk, Old, Last, Pos ) :-
Old = [ Keep | OldTail ],
Junk \== Keep,
setarg( Pos, Last, Old ),
delete 2( Junk, OldTail, Old, 2 ).

delete stray( , [], Last, Pos ) :-
setarg( Pos, Last, [] ).

Notice that at the start of a top level call, the entry predicate skips over any initial Junk

cells without dropping into an internal predicate. The main purpose of internal predicates

is to keep track of last references and their relationships to input arguments. Also recall

that the last reference is a field within the most recent input cell to be recycled into output.

If the input list starts with Junk cells, then no cells will have been recycled into output until

the first non-Junk cell is found. Until that point, there is no last reference, so execution

remains inside the entry predicates.

The internal predicates for this example have arity four instead of three. As before,

the extra argument specifies the field number within Last that contains the actual last

reference. For delete/3 this is always two. In theory, it should be possible to optimize out

this positional argument and place the constant two directly in the calls to setarg/3. For
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the sake of simplicity, the present automated techniques for applying the UIP transformation

do not attempt to detect this situation. However, Section 3.2.2 examines another assignment

mechanism that allows the extra positional argument to be eliminated for all transformed

predicates.
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3 Implementation Issues

Gudjonsson [10] formally defines the code synthesis process in mathematical terms. This

section takes up the primary intent of this paper: to carry that specification forward into

implementation. Certain important implementation issues are omitted from the abstract

specification, and the actual synthesizer may have several options as to how these details

should be realized. In other areas, Gudjonsson’s specification makes certain decisions for

the sake of descriptive simplicity that might not actually lead to ideal transformed code.

The implementation questions that are left to the synthesizer’s discretion fall into two

major categories: those related to unravels (a special type of unification), and those related

to destructive assignments. Issues concerning unravels are described in Section 3.1. Those

concerning assignments are covered in Section 3.2. The hypotheses and inferences developed

in these sections are evaluated in light of empirical data in Section 4.

3.1 Unravels

Unravels are unifications that the synthesizer adds to the bodies of transformed clauses.

They serve several important purposes. One is to obtain references to substructures given

a reference to a parent structure. For example, if In points to the start of a list, the unravel

“In = [ | Tail ]” will cause Tail to be a reference to the tail of that list. Such a

reference might be needed so that Tail may be passed as an argument in a body goal,

or so that a recycled cell can be destructively assigned to incorporate Tail. Alternately,

if a destructive assignment is scheduled for the second field of In, but that field’s current

value will be needed elsewhere, it must be obtained before the destructive assignment is

19



performed. In addition to obtaining references to extant portions of structures, unravels

may be used to bind nonground terms to new static structures. By convention, the left

hand side of an unravel unification is the variable being unraveled. The right hand side is

called a template, as it serves as a template or outline of the structure being unraveled.

The formal specification of the UIP transformation uses unravels liberally, often redun-

dantly. Furthermore, unravel templates may cause the unification to examine structure

deeper than is really needed. Also, under certain conditions unravels may confound other

important optimizations. Each of these potential hindrances may have a corresponding

optimization or work around. The three subsections that follow describe these issues and

possible solutions in greater detail. Section 4.2 evaluates each empirically.

3.1.1 Minimized Unravels

When unravels are used simply to obtain references to substructures, certain simplifications

may be applied. When composing the template for such an unravel, underscores may be

substituted for entire substructures for which no reference is needed. For example, suppose

that a structure appears in the original program as “f( g( a ), g( b ), g( c ) )”,

that In is a reference to the root of this structure, and that references to the first and third

children of In are needed. A näıve unravel would simply substitute variables in for the

required subterms, giving an unravel of the form “In = f( First, g( b ), Third )”.

However, if it is known that In is already instantiated to the original static structure, there

is no need to examine the entire substructure of its second child. A more efficient unravel

would be “In = f( First, , Third )”. This may seem an obvious optimization, but it

is important to distinguish those contexts in which it can and cannot safely be applied.
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In particular, when an unravel is used for its second purpose, to create new structure,

templates cannot be simplified with underscores.

Once a reference to a given substructure has been obtained, any subsequent unravels that

are also intended to retrieve it may be omitted. The code synthesizer is able to track which

substructures have been located by a prior unravel, and avoids doing the same work twice.

This optimization may be thought of as a variant of common subexpression elimination.

As the synthesizer is processing unravels, it records the location of every subterm for which

a reference has been obtained. If a goal requires a reference to this same subterm, no

unravel is performed, and the reference already available is used. In many cases, avoiding

redundancy can eliminate all but a small handful of unravel unifications in the transformed

program. One final, extremely basic unravel minimization is possible: when the template in

an unravel is itself a free variable or a simple atom, it may be unified with the variable being

unraveled at synthesis time, causing the two to be expressed identically in the transformed

clause. The trivial variable-to-variable or variable-to-atom unification need never appear as

a goal in the body of the transformed clause.

3.1.2 Unravel Placement

The minimization techniques outlined above are able to significantly reduce the number of

unravels that must appear in transformed programs. However, for those few that remain, the

code synthesizer must choose exactly where in the transformed body the unravel unifications

should be placed. One option, the one given in [10], is to perform all unravels at the start of

a clause. However, this may lead the clause to perform unnecessary work: if some body goal

fails, any references obtained for use by later goals will never be needed. Prolog clauses are
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often informally structured so that early goals express guard conditions. Thus, failures are

most likely early in a clause, and the transformed code should do as little work as possible

while failure and backtracking is still a strong possibility.

An attractive alternative is to perform unravels at need. Unifications that fetch refer-

ences to substructures should appear just before those substructures are actually needed,

and no earlier. Similarly, unifications that bind variables to static structure should appear

immediately before those body goals that use the variables being unraveled. We hypothesize

that late placement of unravels will not hurt performance when failures are rare, and that

it may improve performance when failures occur frequently. Postponing unravels may lend

the additional benefit of reducing the number of live references that need to be preserved

on the stack across subcalls, although we will not directly address this issue here.

3.1.3 Input Aliasing

The third unravel issue under examination concerns the effect that the UIP transformation

has upon another major optimization: determinacy analysis. By examining the static struc-

ture of arguments in clause heads, the aggressively optimizing Aquarius Prolog Compiler is

able to determine when certain clauses within a given predicate are mutually exclusive [14].

In such cases, execution is deterministic and Aquarius may be able to avoid creating choice

points. This keeps both the trail and the stack small and reduces overhead associated with

maintaining them. In append/3, for example, one head has nil as its first argument, while

the other has a list cell. Assuming that all calls have their first argument ground, these two

clauses are mutually exclusive: if the arguments passed during a given call match one clause,

they cannot match the other. Therefore, no backtracking can occur across this point, and
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no choice point need be created.

The conflict arises when code has already been transformed to perform UIP before

Aquarius’s analyses begin. The topmost memory cell of an input argument tends to be

reused to construct output, so we will generally need a reference to it. According the the

formal specification, the synthesizer should simply replace any static structure in the clause

head with a simple variable, and unify that variable with the original static structure early

in the clause body through a series of unravels. Consider the following example of a head

before transformation, noting that underscores have been substituted for arguments not

central to the present discussion:

take first( [ [ Head | Tail ] | Lists ], , ) :-
...

Assume that the first argument, a list of lists, is an input argument. If a reference is

needed to the root of this argument, the variable that will hold the reference must appear

in the head. Thus, the transformed clause would begin as follows:

take first( In, , ) :-
In = [ [ Head | Tail ] | Lists ],
...

Unfortunately, moving these unifications from the head into the body often confounds

Aquarius’s determinacy analysis. The analysis is strongest when mutually exclusive unifi-

cations appear in heads; when those unifications instead appear in bodies, the determinism
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is still present, but Aquarius is not always able to take advantage of it. We anticipate that

blocking this important optimization will severely damage the performance of transformed

code.

An alternative, input aliasing, keeps static structure in clause heads, but also allows us to

obtain references to the root cells of these input arguments. Input arguments appear in the

transformed head just as they do in the original, including full static structure. However, for

each input argument, we add an additional argument, called an input alias, that appears as

a simple variable in transformed clause heads. In internal calls to the transformed predicate,

the input argument and the alias are passed identical values. During head unification, the

input alias becomes a reference to the root of the input argument, and the original static

structure is already available without requiring additional unravels in the body. Moreover,

the static structure still appears in the head, so Aquarius’s determinacy analysis continues

to function properly. Using input aliasing, the example from above would appear thusly:

take first( [ [ Head | Tail ] | Lists ], , , In ) :-
...

Calls to the original take first/3 are modified to use the new take first/4 instead.

An original goal of the form take first( Lists, Heads, Tails ) would be replaced by

take first( Lists, Heads, Tails, Lists ).

This work around has the disadvantage of increasing the arity of transformed clauses,

which may slow the calling process. However, we conjecture that this slowdown will be

extremely small compared to the cost of breaking Aquarius’s determinacy analysis.
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3.2 Destructive Assignments

The second major cluster of implementation issues involve destructive assignment directly.

Gudjonsson’s formal specification adopts a simple mechanism for adding destructive assign-

ments to clause bodies, and for implementing the destructive assignment primitive itself.

A more sophisticated placement scheme may lead to more efficient code; similarly, several

options exist for how to implement the destructive assignment primitive, and some may

execute faster than others. The two subsections that follow describe these two destruc-

tive assignment issues in further detail, and Section 4.3 evaluates the implications of each

empirically.

3.2.1 Upper Connection Placement

Just as in the case of unravels, there exists a certain amount of flexibility as to exactly

where in a clause body destructive assignments should be performed. Loosely speaking,

destructive assignments “piece together” new memory structures out of old ones. When

these new structures are to be used in a body goal, the necessary assignments should be

performed just before the call. Any earlier, and the “pieces” from which the structure is

composed may not have been fully processed by earlier goals; in particular, the interactions

between unravels and destructive assignments impose a partial ordering that must be obeyed

to preserve proper semantics. Any later, and the goal itself will receive incorrectly formed

structures as its arguments. However, when destructive assignments are used to assign to

a last reference, we have greater leeway as to when the assignment should be done. We can

choose to perform these assignments, called upper connections, anywhere in the body after

the proper unravels have been performed. As in the case of unravels, it would seem wise
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to postpone assignments as long as possible, so that less work need be backtracked in the

event that a body goal fails.

However, postponing assignments too long may create other problems. Specifically, if

assignments are pushed back so far that they become the last goals in the transformed

clause, any tail-recursion or last-call optimization that might have been applicable to the

original clause will no longer be available. As in the case of input aliasing, the synthesizer

must not confound other important optimizations in the process of applying its own. Our

hypothesis is that placing movable assignments just before the last subgoal in a clause body

will give the best performance. For example, placing assignments late would result in the

following code, drawn from the split/3 benchmark described below:

split stray 1( [ , | Tail ], Last1, Last2, In, Pos1, Pos2 ) :-
In = [ | Second ],
split stray 1( Tail, In, Second, Tail, 2, 2 ),
setarg( Pos1, Last1, In ),
setarg( Pos2, Last2, Second ).

Notice that both of the setarg/3 calls perform assignments to last references. These

assignments could just as well be placed before the recursive subgoal, giving the following:

split stray 1( [ , | Tail ], Last1, Last2, In, Pos1, Pos2 ) :-
In = [ | Second ],
setarg( Pos1, Last1, In ),
setarg( Pos2, Last2, Second ),
split stray 1( Tail, In, Second, Tail, 2, 2 ).
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While both of these clauses are semantically equivalent, the second is amenable to tail-

recursion optimization while the first is not. Needless to say, we anticipate that empirical

evaluation will show the second clause to execute far more rapidly.

3.2.2 Destructive Update Method

Beyond where to place destructive assignments, the exact method by which the assignments

are performed is an interesting issue. The examples introduced earlier have used setarg/3.

This is a simple, straightforward approach, and makes a source-to-source transformation

reasonably portable. However, setarg/3 may be too general a tool to perform the required

task efficiently. For one, setarg/3 may be applied to any type of memory cell, but the work

that it needs to do may change depending on its actual run time arguments. Specifically,

consider a call of the following form:

setarg( +ArgNum, +CompoundTerm, ?NewArgument ).

If CompoundTerm is a cell with the standard memory layout, the memory location to be

modified is offset from the start of the cell by ArgNum words, as the first word (offset zero)

holds CompoundTerm’s functor. However, most Prolog implementations optimize storage for

list cells, storing them in only two words without reserving the first word for a functor.

Thus, if CompoundTerm is a list cell, the memory location to be modified is offset by only

ArgNum− 1 words. Unless compile time analyses include aggressive type propagation down

to the level of builtins, setarg/3 will have to perform tag checks and conditionally an

integer decrement for every call. Figure 2 illustrates in a simplified manner the way in
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Figure 2: The upper rectangle represents the memory layout of the list cell [ a | b ]. The
lower rectangle represents the memory layout of the structure cell f( a, b ). Notice that
the first and second arguments of each, a and b, are located one word further back in the
list cell than in the structure cell.

which list cells and standard cells place the same fields at different offsets.

An alternative would be to propagate type information during UIP code synthesis, and

invoke one of three new, specialized destructive assignment primitives. These three new

primitives are of the following forms:

assign general( +ArgNum, +CompoundTerm, ?NewArgument ).

assign struct( +ArgNum, +Structure, ?NewArgument ).

assign list( +ArgNum, +ListCell, ?NewArgument ).

The first of these, assign general/3, performs the same task as setarg/3. It makes no

assumptions about the type of CompoundTerm. However, assign general/3 never decre-

ments ArgNum to compensate for the missing functor field of a list cell, unlike setarg/3.

Rather, at code synthesis time, when a new last reference is being passed to a body goal

and it is known to represent a list cell, the positional parameter (“Pos”) is decremented
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by the synthesizer before it appears in the transformed code. This primitive will only be

used when more detailed type information is unavailable, such as when either a list or

standard cell might reach the same destructive assignment point. Memory cells that are

known to contain structures using the standard memory layout are destructively modified

using assign struct/3. This predicate performs no tag checking and always modifies the

word at offset ArgNum within Structure. Lastly, assign list/3 is used to modify known

list cells. It also performs no tag checking and always modifies the word at offset ArgNum

within ListCell. As in the case of assign general/3, assign list/3 does not decrement

the positional parameter. That adjustment will have already been performed by the code

synthesizer. The elimination of most run time tag checks and all run time decrements

should allow transformed code to execute faster, although it is at the expense of greater

dependence upon the underlying representation of memory cells.

Both of the destructive assignment mechanisms presented thus far require a last reference

consisting of both a reference to a memory cell and a positional parameter representing

either a field number or adjusted offset. However, given sufficient access to the underlying

memory representation mechanisms, it is possible to condense the last reference into a single

parameter. Consider: the only information that a last reference need convey is the location

of the field that may need to be destructively updated. Instead of passing last references as

a cell base reference and offset, we can instead pass a single direct pointer into the interior of

the cell. When a clause needs to pass a last reference to a body goal, it obtains a reference

to the proper memory cell, increments that reference so that it points directly at the proper

field of the cell, changes its tag to be that of a free variable, and passes this new pointer as

the last reference. At the point of destructive assignment, no offset need be specified, and an
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assign/2 primitive performs a simple assignment into memory. Thus, where a transformed

program might formerly have contained the following code:

foo :-
..., bar( In, Last, 2 ), ...

bar( In, Last, Pos ) :-
setarg( Pos, Last, In ),
...

Instead, using this increment-before-call scheme to eliminate positional arguments, the

transformed code becomes:

foo :-
...,
increment( Last, 2, Pointer ),
bar( In, Pointer ),
...

bar( In, Last ) :-
assign( Last, In ),
...

Here, the increment/3 primitive sets Pointer to point into the interior of Last at an

offset of two words.1 It may appear here that the increment scheme for performing assign-

ments is falling into the same trap as CTGC: performing additional work in anticipation of

a destructive assignment that may never be performed. However, close scrutiny of compiled

1In truth, no increment/3 primitive exists. Rather, a collection of primitives of the form inc type n/2
are used, where type is either list or struct and n varies from 1 to a reasonable maximum anticipated
offset. This is an artifact of the manner in which primitives are added to Aquarius as Berkeley Abstract
Machine macros. By “hard wiring” the constant, significantly more efficient BAM code may be produced.
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code that uses this approach reveals that the increment/3 primitive can usually be exe-

cuted as a single register-to-register add operation. As a transfer of this type is otherwise

used to load the positional argument into an argument register before a call, and an add

operation takes one cycle, increment/3 does not result in a net slowdown on the calling end.

We anticipate that at the point of destructive assignment, the extremely simple assign/2

primitive will be able to execute more rapidly than either setarg/3 or any of assign */3.

Furthermore, reducing the arity of transformed predicates may help reduce register pressure,

facilitating other optimizations. The empirical data that follow will reveal how significant

these speed differences are. For now, we conjecture that setarg/3’s generality will cause it

to be the slowest destructive assigner, that assign */3 will be somewhat faster, and that

the the fastest performance will be obtained with increment/3 and assign/2.
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4 Empirical Evaluation

The implementation issues described above are difficult to resolve with confidence unless

real, demonstrable variations in execution speed may be found. This section examines the

results of timing each of a collection of seven benchmarks under the various conditions

proposed in Section 3. In all cases, the code being tested was generated by a prototype UIP

code synthesizer directly from näıve source, augmented by special guiding directives which

are detailed in the Appendix.

The subsections that follow present, for each choice of implementation options, compar-

ative timings of näıve code and different variations of UIP transformed code. Our primary

goal is to determine which choices as to how to perform synthesis will result in the fastest

overall code for most programs. All benchmarks were transformed using the prototype code

synthesizer. Both näıve and transformed programs have been compiled using release 1.0 of

the Aquarius Prolog Compiler [12, 14] with all analyses and optimizations enabled.

Time trials were conducted on an unloaded SPARCstation2 IPC with 28Mb of RAM.

The running environment for the benchmark executables was the standard provided by

Aquarius, with the exception that the trail was increased to a size of 1.5Mb. Each executable

is evoked repeatedly until twenty such executions complete with no page faults. System- and

user-mode execution times as reported by time [15] are summed, and the single execution

with the lowest total is reported. In general, times vary by no more than 0.1 second across

all twenty trials.

Section 3 informally proposed which choices of synthesizer options we expect will produce

2SPARCstation is a registered trademark of Sun Microsystems, Inc.
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the best code. In the tests that follow, while one choice is varied all others are held constant

at the expected best values. Specifically, where not otherwise specified:

• unravels are minimized as much as possible.

• unravels are performed as late as possible.

• input aliasing is enabled.

• assignments are performed using increment/3 and assign/2.

• assignments for upper connections are placed as late as possible in clause bodies, but

still before the last subgoal.

4.1 Benchmarks

The benchmark suite has been chosen to illustrate the performance of transformed programs

in a variety of contexts. All of the programs in the benchmark suite are fairly simplistic, as

certain earlier reuse analysis stages of the UIP transformation have not yet been automated.

Nevertheless, the selected programs do adequately span most of the relevant issues. The

programs upon which the UIP optimization’s effectiveness will be evaluated are as follows:

append A list of length one is appended onto a list of length 500,000.

delete A single integer is located and deleted from a list in which it is preceded

by 500,000 differing integers.

insert An integer is inserted into an ordered list of integers requiring 500,000

members of the list to be skipped before finding the proper point of inser-

tion.
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merge An ordered list of the first 70,000 even nonnegative integers is merged

with an list of the first 70,000 odd nonnegative integers so that the resulting

list is also ordered.

split A list of 500,000 integers is split so that every other member is in one of

two output lists.

take A list of 200,000 lists is split into a list of the heads and a list of the tails

of its members.

tree A node is added to a simple binary search tree requiring 200,000 nodes to

be traversed from root to leaf.

Appendix B provides the full source code for each of these benchmarks, including the

reuse directives that guide the code synthesizer.

4.2 Unravels

Section 3.1 described certain important implementation issues concerning the handling of

unravels by the synthesizer, and attempted to predict which choices would result in the most

efficient transformed programs. The three subsections that follow evaluate the accuracy of

these predictions in light of empirical data drawn from the benchmark suite outlined above.

4.2.1 Minimized Unravels

To measure the impact of unravel minimization, all benchmarks were executed and timed

first with unravels minimized as much as safely allowed, and then with no attention paid

to unravel simplification. Table 1 presents the net execution times and time ratio of trans-

formed to näıve code.
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Näıve Minimized UnsimplifiedBenchmark
Net Time Net Time Ratio Net Time Ratio

append 1.5 0.5 3.0 0.6 2.5
delete 1.9 0.8 2.3 1.5 1.2
insert 1.9 0.8 2.3 2.1 0.9
merge 1.0 0.3 3.3 0.7 1.4
split 1.6 0.7 2.2 1.3 1.2
take 1.4 0.7 2.0 1.1 1.2
tree 1.3 0.5 2.6 1.0 1.3

Table 1: Empirical comparison of benchmark speeds with unravels minimized versus not
simplified at all. All times in all tables have been adjusted to reflect only update time;
the constant time required to construct the original input structures has been subtracted.
Net times are reported in seconds; ratios are the quotient of the net time for the näıve
implementation and the net time for the transformed program.

One immediately sees that minimizing the number and complexity of unravels is a sig-

nificant optimization. With unravels minimized, UIP code executes two to more than three

times faster than näıve code. Without this aggressive simplification, the fastest benchmark

was only 2.5 times faster than näıve code, and insert actually executed ten percent more

slowly. Examination of the synthesized code for insert reveals that when unravel mini-

mization is used, all explicit unifications for unravels are removed from the transformed

program. Without minimization, sixteen unifications result, with as many as three appear-

ing in a single clause. This is extra run time work that could just as well be eliminated at

compile or synthesis time. On average, benchmarks executed nearly two times faster with

unravels minimized than without.

4.2.2 Unravel Placement

The current benchmark suite does not satisfactorily explore the question of how placement

of unravels in clause bodies affects performance. As noted earlier, this distinction should
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Näıve At-Need EarlyBenchmark
Net Time Net Time Ratio Net Time Ratio

append 1.5 0.5 3.0 0.6 2.5
delete 1.9 0.8 2.3 0.8 2.3
insert 1.9 0.8 2.3 0.8 2.3
merge 1.0 0.3 3.3 0.3 3.3
split 1.6 0.7 2.2 0.7 2.2
take 1.4 0.7 2.0 0.7 2.0
tree 1.3 0.5 2.6 0.5 2.6

Table 2: Empirical comparison of benchmark speeds with unravels placed in clause bodies
just before need versus as early as possible.

be most significant when backtracking occurs frequently. The benchmarks used here do not

backtrack. Therefore, one expects that performing unravels only at need will not signifi-

cantly improve performance. Table 4 presents timing data that confirm this expectation.

All benchmarks executed identically regardless of the positioning of unravels. In fact,

for several benchmarks, the actual UIP code produced is identical. For insert, for example,

early or at-need placement is a meaningless distinction since no unravels actually appear

in the synthesized code. An important area for future exploration would be the behavior

of more complex benchmarks that contain significant unravels and that do backtrack fre-

quently. The data presented here, however, do establish an important result: in code that

rarely backtracks, placement of unravels is not significant; any safe placement may be used

without adversely affecting performance.

4.2.3 Input Aliasing

Input aliasing is not an optimization per se, but rather a means to avoid blocking Aquarius’s

determinacy analysis. It is unfortunate that removing static structure from clause heads
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Näıve Aliasing No AliasingBenchmark
Net Time Net Time Ratio Net Time Ratio

append 1.5 0.5 3.0 0.4 3.7
delete 1.9 0.8 2.3 3.0 0.6
insert 1.9 0.8 2.3 3.0 0.6
merge 1.0 0.3 3.3 9.0 0.1
split 1.6 0.7 2.2 1.7 0.9
take 1.4 0.7 2.0 0.6 2.3

Table 3: Empirical comparison of benchmark speeds with input arguments aliased versus
no aliasing.

can confound this analysis, but the optimizations that determinacy detection permits are

too valuable to ignore. Table 3 contains the timing results for all benchmarks save tree,

which suffered such reduced efficiency without input aliasing as to be unable to execute on

inputs of the required test size.

Even those benchmarks that were still able to process their test data endure consider-

able speed reductions without benefit of Aquarius’s determinacy analysis. The hardest hit

of the benchmarks, tree excepted, is merge, which executes ten times more slowly than

näıve code unless input arguments are aliased. The two exceptions to this slowdown are

append and take, which executed slightly faster without aliases. It would appear that

Aquarius is still able to detect determinism for these two benchmarks. This is confirmed

by the fact that append and take compile down to BAM code containing no choice points

regardless of whether aliasing is used. By contrast, all other benchmarks contained more

choice points when compiled with aliasing disabled than with aliasing enabled. The reason

why Aquarius retains the ability to detect determinism only in append and take remains

somewhat unclear.
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4.3 Destructive Assignments

The heart of the UIP transformation is destructive assignment. While destructive assign-

ment is conceptually simple, the synthesizer has several options concerning how best to

implement and use this operation. Section 3.2 discussed these issues and conjectured how

their resolution would affect the efficiency of transformed programs. The two subsections

that follow evaluate these conjectures against the performance of the benchmark suite out-

lined earlier.

4.3.1 Upper Connection Placement

As in the evaluation of the impact of unravel placement, the current benchmark suite

cannot fully explore the issue of ideal upper connection placement. Because backtracking

never occurs, we expect that placing unravels early or later in a body will have no effect on

performance. However, as predicted in Section 3.2, if assignments for upper connections are

placed absolutely last in a body, they may prevent tail-recursion and last-call optimizations.

Table 4 contains time trial data that confirms these predictions.

In all cases, placing upper connections just after the guard goals of transformed bodies

or just before the last subgoal did not affect execution.3 This is encouraging, as placing

assignments later in a body may lead to speedups when backtracking is frequent. The

results given here verify that doing so will not hinder forward-executing code. See [9]

for a preliminary investigation of the performance of UIP transformed code in a heavily

backtracking environment.

3The synthesizer uses a simple but quite effective definition of guard goals. The guards of a clause are
defined to be those goals that appear at the start of the body and which do not lead to subcalls in the
compiled code. Thus, </2 would be a guard but write/1 would not.
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Näıve Before Tail Early LateBenchmark
Net Time Net Time Ratio Net Time Ratio Net Time Ratio

append 1.5 0.5 3.0 0.5 3.0 0.5 3.0
delete 1.9 0.8 2.3 0.8 2.3 0.8 2.3
insert 1.9 0.8 2.3 0.8 2.3 0.8 2.3
merge 1.0 0.3 3.3 0.3 3.3 6.7 0.1
split 1.6 0.7 2.2 0.7 2.2 - -
take 1.4 0.7 2.0 0.7 2.0 - -
tree 1.3 0.5 2.6 0.5 2.6 0.5 2.6

Table 4: Empirical comparison of benchmark speeds with upper connection assignments
placed in clause bodies just before the last subgoal versus early versus late. Late placement
rendered split and take non-viable.

The times listed for tests that use late placement highlight the need to avoid confounding

tail-recursion and last-call optimization. Three of the benchmarks, append, insert, and

tree, do not suffer slowdowns as they contain destructive assignments only in contexts

where no recursive subgoals are found. One benchmark, delete, could potentially suffer,

as in one clause tail recursion becomes hidden by a late assignment. However, this code

path is not crossed often enough when using the benchmark’s input data to cause a visible

reduction in speed. The three remaining benchmarks, merge, split, and take, suffer great

efficiency losses when assignments are placed too late; merge runs ten times more slowly

than näıve code, and split and take were not even able to complete execution without

running out of stack space.

4.3.2 Destructive Update Method

Three options have been presented for performing destructive assignments. The members

of the benchmark suite were timed using each, and these results may be found in Table 5.

The empirical data confirms our hypothesis that setarg/3’s generality hampers its per-
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Näıve Inc/Assign Assign SetargBenchmark
Net Time Net Time Ratio Net Time Ratio Net Time Ratio

append 1.5 0.5 3.0 0.5 3.0 0.5 3.0
delete 1.9 0.8 2.3 0.8 2.3 0.8 2.3
insert 1.9 0.8 2.3 0.8 2.3 0.8 2.3
merge 1.0 0.3 3.3 0.3 3.3 0.8 1.2
split 1.6 0.7 2.2 0.8 2.0 2.3 0.6
take 1.4 0.7 2.0 0.7 2.0 1.8 0.7
tree 1.3 0.5 2.6 0.5 2.6 0.5 2.6

Table 5: Empirical comparison of benchmark speeds with assignments performed via incre-
ment and assign versus position passing and assign versus position passing and setarg.

formance, and that using early increments and thereby eliminating the positional parameter

results in the fastest code. The benchmarks that are of particular interest are merge, split,

and take. These three benchmarks are the most assignment intensive, performing a de-

structive assignment at every level of recursion. The merge benchmark using setarg/3 was

barely able to outpace näıve code; both split and take actually ran considerably slower.

Using a positional parameter and assign */3 allowed these programs to outstrip the näıve

implementation by respectable distances. Finally, split was still faster, albeit only slightly,

using increment/3 and assign/2 to eliminate the positional parameter.

This result is extremely encouraging because of its implications regarding the applica-

bility of UIP to ill-suited programs. Even when destructive assignments would need to be

performed with great frequency, the UIP transformation still yields significant improvements

over näıve code. Of course, this does require an efficiently implemented set of destructive

assignment primitives. When assignment is too expensive, such as when performed by

setarg/3, the result may be a net loss in speed.
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Näıve UIP CTGCBenchmark
Time Best Ratio Standard Ratio Ratio

append 1.5 3.7 3.0 2.0
delete 1.9 2.3 2.3 1.5
insert 1.9 2.3 2.3 -
merge 1.0 3.3 3.3 2.4
split 1.6 2.2 2.2 -
take 1.4 2.3 2.0 -
tree 1.3 2.6 2.6 2.4

Table 6: Empirical comparison of execution times of näıve implementation versus best and
standard UIP transformed programs versus CTGC transformed programs.

4.4 General Results

The choices made concerning each synthesizer implementation issue have a profound effect

on the speed of the resulting code. Table 6 summaries the speedups obtained using the

synthesizer options proposed as ideal and the best speedup possible using any combination of

synthesizer options. In nearly all cases, the options that had been conjectured as preferable

did indeed produce the fastest transformed programs. The only anomalies were append and

take, which did not suffer reductions in speed when input argument aliasing was disabled.

This table also includes time ratios for four of the same benchmarks transformed using

CTGC. The CTGC timing data is reproduced from that found in [9].

Broadly speaking, the code synthesizer is able to produce UIP transformed programs

that update data structures two to nearly four times faster than näıve implementations.

Although the peculiarities of each benchmark cause them to react differently to choices

made for the synthesizer, the set of options conjectured as most generally desirable does give

excellent results throughout. As predicted, the extra work performed by CTGC transformed

programs consistently limits their speed. For the given benchmarks, UIP transformed code
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Näıve UIPBenchmark
Net Memory Net Memory Ratio

append 9344 16 489.0
delete 9368 72 108.5
insert 9368 64 122.1
merge 3728 40 109.2
split 9360 48 162.6
take 10920 0 ∞
tree 7776 24 261.0

Table 7: Comparison of benchmark memory comsumption for näıve implementations versus
UIP transformed programs. All counts have been adjusted to reflect only memory consumed
during data structure update; the constant memory required to construct the original input
structures has been subtracted. Net memory usages are reported in bytes; ratios are the
quotient of the net consumption for the näıve implementation and the net time for the
transformed program.

executes on average thirty seven percent faster than the corresponding CTGC code.

Although the paramount concern of most optimizations is to improve execution speed,

the amount of memory that a program requires to run is also an important issue. By

aggressively reusing memory, programs transformed by the UIP technique consume far less

memory than their näıve counterparts. Table 7 compares the net memory consumed by

each member of the benchmark suite.

The reduction in memory use demonstrated by programs transformed using UIP is re-

markable. Whereas näıve implementations consumed from 7.5Kb to 10.5Mb to process their

data, no UIP transformed benchmark required more than 72 additional bytes of storage.

The append benchmark reduced its memory consumption by a factor of nearly five hun-

dred, and take was able to complete execution without requiring a single additional byte

of storage.
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5 Conclusions

The Update in Place transformation has the potential to produce programs that run sig-

nificantly faster than näıve implementations. UIP is able to avoid Compile Time Garbage

Collection’s pitfall of performing unnecessary extra work preparing for destructive assign-

ments that are never performed. By augmenting the Prolog language with primitives for

performing high speed backtrackable destructive assignment, the UIP transformation offers

the promise of considerably enhanced performance. The benchmarks tested here execute

two to more than three times faster following transformation, and require vastly less mem-

ory. Even in tests where destructive assignment is performed with great frequency, UIP

transformed programs still execute more rapidly in less space than näıve implementations.

Earlier explorations of UIP have relied upon manual translation of source programs [16].

The prototype code synthesizer demonstrates that automating the transformation process

is indeed feasible, and that automatically synthesized code can perform as well as that pro-

duced by hand. Certain important implementation issues arise in the process of prototyping

the synthesizer, and empirical evaluation has confirmed intuitive notions as to how these

issues may best be resolved. Most significantly, the UIP transformation must take care

that the changes it introduces do not confound other optimizations such as determinacy

analysis and tail-recursion optimization. Examination of unravel simplification reiterates

the value of using transformation time analyses to minimize the amount of additional work

that the synthesized code must do. Finally, the comparison of mechanisms for perform-

ing destructive assignment highlights some of the tradeoffs between speed and portability.

Although the entire UIP optimization may be expressed as a high level source-to-source
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translation, faster code results when assignment primitives sacrifice portability in order to

take advantage of low level representation details.

Several important questions about the UIP transformation remain open to investigation.

Foremost among these is the challenge of choosing how to reuse memory cells most efficiently

in more complex contexts than the simple benchmarks used in this paper. The dataflow

analysis stage, although further developed, is still relatively immature. Once these two

stages have been more deeply investigated and prototype implementations developed, it

should be possible to automatically apply the Update in Place transformation to general

programs written in Prolog as well as other languages. The findings described in this paper

are a strong statement that such an effort would prove greatly rewarding.
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A Using the Code Synthesizer

A.1 Portability

This appendix is intended as an informal user’s guide to the prototype Update in Place Code

Transformer. The code synthesizer itself has been written to be as portable as is reasonably

possible, and to the author’s best knowledge conforms to the ISO Draft Standard as of the

date of this document’s printing [17]. Currently, implementations of the synthesizer exist

for and have been tested in the following Prolog environments:

• SICStus Prolog release 0.7, compiled

• SICStus Prolog release 0.7, interpreted

• Aquarius Prolog release 1.0, compiled

• Aquarius Prolog release 1.0, interpreted

Output from the synthesizer is portable only to the extent that the additional primitives

it uses are available across platforms. When setarg/3 is used as the vehicle for performing

destructive assignment, any Prolog implementation that provides this as a built in should

be able to execute UIP transformed code [11, 12, 13]. The other primitives described in

Section 3.2 have currently been implemented only as Berkeley Abstract Machine macros for

use with the Aquarius compiler.

A.2 Invoking the Synthesizer

The synthesizer provides two front end interfaces. When the synthesizer has been compiled

down to a free standing executable, it may be invoked from the command line as follows,
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assuming that the executable is named siva:

siva {<filenames> <option settings>}

File names and option settings may be freely interspersed. Once set, a given option

affects the processing of all files that follow it on the command line unless overridden

elsewhere. Further details on what options are available and the means by which they may

be set are provided in Appendix A.4. Filenames should be fully qualified; no “.pl” or

other suffix is assumed. If the filename “user” is given, the synthesizer will read from the

standard input stream instead of a physical file. All output is sent to the standard output

stream, where it may be redirected for storage into a physical file at the user’s option. If

no arguments are given, the set of default option values is simply printed.

If the synthesizer is being used in an interpreted environment, or is being called directly

by other Prolog code, the go/1 and go/0 predicates provide a simple interface. The former

will append the suffix “.pl” onto its argument, open a file with the resulting name, and

transform the contents of that file. The later, which takes no arguments, simply reads from

the current input stream, transforming what it receives.

A.3 Input File Format

Input files to the code synthesizer consist of standard Prolog programs plus directives that

specify how cells are to be reused and how body goals of transformed clauses should be

rewritten. Two directives provide the needed information: predicate reuse directives contain

information about entire predicates, and clause reuse directives describe individual clauses

of a single predicate.
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A.3.1 Predicate Reuse

The predicate reuse directive has the following form:

:- pred reuse( +PredName, +InputPosns, +OutputPosns, +Versions )

The four required arguments are interpreted as follows:

PredName identifies the predicate being described. It consists of the atomic name of the

predicate and the predicate’s arity, separated by a slash.

InputPosns is a list of positive integers identifying those argument positions of the predi-

cate that correspond to input arguments. This list need not be ordered, but should

contain no duplicates or out-of-range values. The list may be empty.

OutputPosns is a list of positive integers identifying those argument positions of the pred-

icate that correspond to output arguments. This list need not be ordered, but should

contain no duplicates or out-of-range values. The list may be empty. OutputPosns

and InputPosns should be disjoint but need not include all arguments of the predicate.

Versions is a list of transformed versions of this predicate that the synthesizer should emit.

Each member of the list should be one of the following:

• the atom entry

An entry version consisting of a single clause with the same name and calling

conventions of the original predicate will be produced.

• a list of last reference descriptors, exactly one for each member of OutputPosns

and ordered to correspond with them.

A last reference descriptor may be any one of the following:
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– the atom orphan, indicating that no last reference yet exists for the corre-

sponding output argument.

– a pair of the form ( +InPos, +Type ), where InPos is an input argument

position in InputPosns that is a child of this corresponding last reference,

and Type is one of the atoms list, term, or unknown, depending upon the

type of cell containing the last reference.

– a pair of the form ( stray, +Type ), indicating that no input argument

is a child of this corresponding last reference, and Type is one of the atoms

list, term, or unknown, depending upon the type of cell containing the last

reference.

Predicate reuse directives must appear after at least one clause for the corresponding

predicate. Predicates that are not to be transformed need not supply a predicate reuse

directive.

A.3.2 Clause Reuse

The clause reuse directive has the following form:

:- clause reuse( +ClauseName, +β, +G)

The three required arguments are interpreted as follows:

ClauseName identifies the clause being described. It consists of the atomic name of the

clause, the clause’s arity, and the sequential order of this clause in relation to all

clauses having the same name and arity. We will subsequently refer to the clause

identified by ClauseName as the current clause.

48



Thus, the first and second clauses of append/3 would be named append/3/1 and

append/3/2, respectively.

β is a list of pairs of paths to subterms in the clause being described. The pairs form a

one-to-one mapping. Preimages are memory cells that are to be reused; postimages

are structures that will be composed by reusing old cells. See below concerning the

format of paths.

G is a list of pairs describing how last references in body goals should be formed. The first

argument of each pair in G is a path to an output argument of a body goal that is to

be transformed. See below concerning the format of paths. We will subsequently refer

to the body goal containing the specified output argument as the current subgoal. The

second argument of each pair in G is one of the following:

• the atom orphan, indicating that no last reference exists for the specified output

argument.

• a term of the form outside( +ParentLastNum ), indicating that the last ref-

erence should be copied directly from one given in the head of the clause being

transformed. ParentLastNum is a member of OutputPosns for the current clause,

and the corresponding last reference is the one to be passed to the current sub-

goal.

• a term of the form oldStray( +ParentPath, +ChildNum), indicating that the

last reference should consist of the ChildNum’th field of the subterm located at

ParentPath. The last reference is stray: it is not a parent of any of the input

arguments to the current subgoal. Furthermore, the last reference is contained in
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an “old” memory cell that has already been allocated upon entry to the current

clause.

• a term of the form newStray( +ParentPath, +ChildNum), which is interpreted

in the same manner as oldStray except that the last reference is contained in

a “new” memory cell that originally appeared as static structure in the current

clause.

• a term of the form old( +ParentPath, +ChildNum, +InPos), indicating that

the last reference should consist of the ChildNum’th field of the subterm located

at ParentPath. The last reference is not stray: InPos is a member of InputPosns

for the current subgoal being constructed, and it indicates which input argument

to the current subgoal is a child of the last reference. Furthermore, the last

reference is contained in an “old” memory cell that has already been allocated

upon entry to the current clause.

• a term of the form new( +ParentPath, +ChildNum, +InPos), which is inter-

preted in the same manner as old except that the last reference is contained in

a “new” memory cell that originally appeared as static structure in the current

clause.

Clause reuse directives must appear at some point after the corresponding clause.

Clauses of predicates that are not to be transformed need not supply a clause reuse di-

rective.

For the sake of efficiency and ease of manipulation, the synthesizer expects and stores

all paths as lists of zero or more positive integers stored in reverse order. For example,
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given the term expand( [], [ Head | Tail ], Others), the path [ 1, 2 ] represents

the first child of the second child of the root, or Head.

All paths are rooted at the principal functor of the clause, with the clause being struc-

tured as any other term. Thus, for clauses with bodies, the principal functor is :-/2; the

head is located at [ 1 ], and the body consists of all paths of the form [ ..., 2 ]. For

facts, or clauses with no bodies, the principal functor is the functor of the head itself, which

would therefore be located at the path [].

A.4 User Options

The code synthesizer supports several user options that may be used to determine how

the implementation issues discussed in Section 3 should be resolved for the code being

generated. The following options may be set at code synthesis time:

unravel depth may be set to either shallow or deep.

When set to shallow unravels will be performed as simply and rarely as possible,

with trivial and redundant unravels being removed and templates simplified with

underscores where possible. When set to deep, so such simplifications occur, and

unravels appear as literally described in [10]. The default setting is shallow.

unravel placement may be set to either late or early.

When set to late, unravels are performed just before the goals that actually require

them are executed. When set to early, all unravels that may be needed are performed

at the start of the transformed clause’s body. The default setting is early.

input aliasing may be set to either on or off.
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When set to on, arguments listed in InputPosns for this predicate will be aliased to

aid determinacy analysis. When set to off, or if InputPosns is the empty list, no

aliasing will be performed. The default setting is on.

assign placement may be set to either tail, early, or late.

When set to tail, assignments for upper connections are placed immediately before

the last body goal of a transformed clause. When set to early, upper connections

are placed near the start of transformed bodies, after any “simple” opening goals that

likely serve as guards. When set to late, upper connections are placed after the last

body goal of a transformed clause. The default setting is tail.

assign method may be set to either increment, setarg, or assign.

When set to increment, the increment/3 and assign/2 primitives are used. When

set to setarg, the setarg/3 primitive is used. When set to assign, the assign */3

primitives are used. The default setting is increment.

Three mechanisms exist for modifying the settings of these user options. When the

synthesizer is invoked from the command line, option names and values may simply be

listed in and among file names. Thus, one possible invocation might be “siva unravel depth

deep foo.pl”. Note that contrary to Unix4 conventions, option names should not be preceded

by a dash. Doing so conflicts with SICStus’s option handling library.

Options may also be set directly in the input file to the synthesizer. A directive of

the form “:- siva option( +Name, +Value )” will set the named user option to the re-

4Unix is a registered trademark of Unix System Laboratories.
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quested value. Lastly, if the synthesizer is in an interpreter environment, evaluating the

goal “siva option( +Name, +Value ).” will perform the same function.

Once set, options affect the synthesis of all files that follow. If an option is set using

directives in the midst of an input file, those settings will affect all code synthesis for that

file and all subsequent files. At this time, it is not possible to specify different values of a

single synthesis option to be applied to individual clauses within the same file.

A.5 Known Limitations

The synthesizer uses an intermediate representation that requires augmenting clauses with

$old/1 and $new/1 pseudo-goals. If such goals actually were present in the original clause,

the synthesizer’s behavior becomes ill determined.

The synthesizer must hold the entire source code in memory at once. The size of program

that can be transformed, then, is limited by the amount of memory that can be allocated

to the synthesizer.

Predicate and clause reuse directives are not checked to verify that they are reasonable.

If errors are present in the reuse directives, the synthesizer will produce unexpected code

or more likely fail.

As described, option settings affect entire files at a time, and cannot be varied among

individual clauses or predicates that share a single file.
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B Benchmark Source Code

The complete source code for the members of the benchmark suite is presented in this

section, exactly as they are fed to the code synthesizer. The additional directives follow the

format specified in Appendix A. To generate näıve code, the reuse directives are simply

stripped off and the remaining clauses compile directly.

B.1 Append

insert( Element, [], [ Element ] ).

insert( Element, [ Head | Tail ], [ Element, Head | Tail ] ) :-
Element < Head.

insert( Element, [ Head | Tail ], [ Head | NewTail ] ) :-
Element >= Head,
insert( Element, Tail, NewTail ).

:- pred reuse( insert/3, [ 2 ], [ 3 ], [ entry, [ orphan ],
[ ( 2, list ) ] ] ).

:- clause reuse( insert/3/1, [ ( [ 2 ], [ 2, 3 ] ) ],
[] ).

:- clause reuse( insert/3/2, [ ( [ 1, 1 ], [ 1, 3, 1 ] ),
( [ 2, 1 ], [ 2, 3, 1 ] ),
( [ 1, 2, 1 ], [ 1, 2, 3, 1 ] ),
( [ 2, 2, 1 ], [ 2, 2, 3, 1 ] ) ],

[] ).

:- clause reuse( insert/3/3, [ ( [ 2, 1 ], [ 3, 1 ] ),
( [ 1, 2, 1 ], [ 1, 3, 1 ] ),
( [ 2, 2, 1 ], [ 2, 2, 2 ] ) ],

[ ( [ 3, 2, 2 ], old( [ 2, 1 ], 2, 2 ) ) ] ).
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B.2 Delete

delete( , [], [] ).

delete( Old, [ Old | OldTail ], NewTail ) :-
delete( Old, OldTail, NewTail ).

delete( Old, [ Other | OldTail ], [ Other | NewTail ] ) :-
Old =Other,
delete( Old, OldTail, NewTail ).

:- pred reuse( delete/3, [ 2 ], [ 3 ], [ entry, [ orphan ],
[ ( 2, list ) ],
[ ( stray, list ) ] ] ).

:- clause reuse( delete/3/1, [ ( [ 2 ], [ 3 ] ) ], [] ).

:- clause reuse( delete/3/2, [ ( [ 1, 2, 1 ], [ 1, 2 ] ),
( [ 2, 2, 1 ], [ 2, 2 ] ) ],

[ ( [ 3, 2 ], outside( 3 ) ) ] ).

:- clause reuse( delete/3/3, [ ( [ 2, 1 ], [ 3, 1 ] ),
( [ 1, 2, 1 ], [ 1, 3, 1 ] ),
( [ 2, 2, 1 ], [ 2, 2, 2 ] ) ],

[ ( [ 3, 2, 2 ], old( [ 2, 1 ], 2, 2 ) ) ] ).
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B.3 Insert

insert( Element, [], [ Element ] ).

insert( Element, [ Head | Tail ], [ Element, Head | Tail ] ) :-
Element < Head.

insert( Element, [ Head | Tail ], [ Head | NewTail ] ) :-
Element >= Head,
insert( Element, Tail, NewTail ).

:- pred reuse( insert/3, [ 2 ], [ 3 ], [ entry, [ orphan ],
[ ( 2, list ) ] ] ).

:- clause reuse( insert/3/1, [ ( [ 2 ], [ 2, 3 ] ) ],
[] ).

:- clause reuse( insert/3/2, [ ( [ 1, 1 ], [ 1, 3, 1 ] ),
( [ 2, 1 ], [ 2, 3, 1 ] ),
( [ 1, 2, 1 ], [ 1, 2, 3, 1 ] ),
( [ 2, 2, 1 ], [ 2, 2, 3, 1 ] ) ],

[] ).

:- clause reuse( insert/3/3, [ ( [ 2, 1 ], [ 3, 1 ] ),
( [ 1, 2, 1 ], [ 1, 3, 1 ] ),
( [ 2, 2, 1 ], [ 2, 2, 2 ] ) ],

[ ( [ 3, 2, 2 ], old( [ 2, 1 ], 2, 2 ) ) ] ).
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B.4 Merge

merge( [ Head1 | Tail1 ], [ Head2 | Tail2 ], [ Head1 | NewTail ] ) :-
Head1 =< Head2,
merge( Tail1, [ Head2 | Tail2 ], NewTail ).

merge( [ Head1 | Tail1 ], [ Head2 | Tail2 ], [ Head2 | NewTail ] ) :-
Head1 > Head2,
merge( [ Head1 | Tail1 ], Tail2, NewTail ).

merge( [], [ Head | Tail ], [ Head | Tail ] ).

merge( List, [], List ).

:- pred reuse( merge/3, [ 1, 2 ], [ 3 ], [ entry, [ orphan ],
[ ( 1, list ) ],
[ ( 2, list ) ] ] ).

:- clause reuse( merge/3/1, [ ( [ 1, 1 ], [ 3, 1 ] ),
( [ 1, 1, 1 ], [ 1, 3, 1 ] ),
( [ 2, 1, 1 ], [ 1, 2, 2 ] ),
( [ 2, 1 ], [ 2, 2, 2 ] ),
( [ 1, 2, 1 ], [ 1, 2, 2, 2 ] ),
( [ 2, 2, 1 ], [ 2, 2, 2, 2 ] ) ],

[ ( [ 3, 2, 2 ], old( [ 1, 1 ], 2, 1 ) ) ] ).

:- clause reuse( merge/3/2, [ ( [ 1, 1 ], [ 1, 2, 2 ] ),
( [ 1, 1, 1 ], [ 1, 1, 2, 2 ] ),
( [ 2, 1, 1 ], [ 2, 1, 2, 2 ] ),
( [ 2, 1 ], [ 3, 1 ] ),
( [ 1, 2, 1 ], [ 1, 3, 1 ] ),
( [ 2, 2, 1 ], [ 2, 2, 2 ] ) ],

[ ( [ 3, 2, 2 ], old( [ 2, 1 ], 2, 2 ) ) ] ).

:- clause reuse( merge/3/3, [ ( [ 2 ], [ 3 ] ),
( [ 1, 2 ], [ 1, 3 ] ),
( [ 2, 2 ], [ 2, 3 ] ) ],

[] ).

:- clause reuse( merge/3/4, [ ( [ 1 ], [ 3 ] ) ], [] ).
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B.5 Split

split( [], [], [] ).

split( [ Head ], [], [ Head ] ).

split( [ Head1, Head2 | Tail ], [ Head1 | Tail1 ], [ Head2 | Tail2 ] ) :-
split( Tail, Tail1, Tail2 ).

:- pred reuse( split/3, [ 1 ], [ 2, 3 ],
[ entry, [ orphan, orphan ],
[ ( stray, list ), ( 1, list ) ] ] ).

:- clause reuse( split/3/1, [ ( [ 1 ], [ 2 ] ) ], [] ).

:- clause reuse( split/3/2, [ ( [ 1 ], [ 3 ] ),
( [ 1, 1 ], [ 1, 3 ] ),
( [ 2, 1 ], [ 2, 3 ] ) ],

[] ).

:- clause reuse( split/3/3, [ ( [ 1, 1 ], [ 2, 1 ] ),
( [ 2, 1, 1 ], [ 3, 1 ] ),
( [ 1, 1, 1 ], [ 1, 2, 1 ] ),
( [ 1, 2, 1, 1 ], [ 1, 3, 1 ] ),
( [ 2, 2, 1, 1 ], [ 1, 2 ] ) ],

[ ( [ 2, 2 ], oldStray( [ 1, 1 ], 2 ) ),
( [ 3, 2 ], old( [ 2, 1, 1 ], 2, 1 ) ) ] ).
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B.6 Take

take first([],[],[]).

take first( [ [ Head | Tail ] | Lists ], [ Head | Heads ], [ Tail | Tails ] ) :-
take first( Lists, Heads, Tails ).

:- pred reuse( take first/3, [ 1 ], [ 2, 3 ],
[ entry,
[ orphan, orphan ],
[ ( stray, list ), ( 1, list ) ] ] ).

:- clause reuse( take first/3/1, [ ( [ 1 ], [ 3 ] ) ], [] ).

:- clause reuse( take first/3/2, [ ( [ 1, 1 ], [ 3, 1 ] ),
( [ 1, 1, 1 ], [ 2, 1 ] ),
( [ 1, 1, 1, 1 ], [ 1, 2, 1 ] ),
( [ 2, 1, 1, 1 ], [ 1, 3, 1 ] ) ],

[ ( [ 2, 2 ], oldStray( [ 1, 1, 1 ], 2 ) ),
( [ 3, 2 ], old( [ 1, 1 ], 2, 1 ) ) ] ).
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B.7 Tree

tree insert( Elem, tree( Node, Left, Right ), tree( Node, NewLeft, Right ) ) :-
Elem < Node,
tree insert( Elem, Left, NewLeft ).

tree insert( Elem, tree( Node, Left, Right ), tree( Node, Left, NewRight ) ) :-
Elem >= Node,
tree insert( Elem, Right, NewRight ).

tree insert( Elem, leaf, tree( Elem, leaf, leaf ) ).

:- pred reuse( tree insert/3, [ 1, 2 ], [ 3 ], [ entry, [ orphan ],
[ ( 2, term ) ] ] ).

:- clause reuse( tree insert/3/1, [ ( [ 1, 1 ], [ 1, 2, 2 ] ),
( [ 2, 1 ], [ 3, 1 ] ),
( [ 1, 2, 1 ], [ 1, 3, 1 ] ),
( [ 2, 2, 1 ], [ 2, 2, 2 ] ),
( [ 3, 2, 1 ], [ 3, 3, 1 ] ) ],

[ ( [ 3, 2, 2 ], old( [ 2, 1 ], 2, 2 ) ) ] ).

:- clause reuse( tree insert/3/2, [ ( [ 1, 1 ], [ 1, 2, 2 ] ),
( [ 2, 1 ], [ 3, 1 ] ),
( [ 1, 2, 1 ], [ 1, 3, 1 ] ),
( [ 2, 2, 1 ], [ 2, 3, 1 ] ),
( [ 3, 2, 1 ], [ 2, 2, 2 ] ) ],

[ ( [ 3, 2, 2 ], old( [ 2, 1 ], 3, 2 ) ) ] ).

:- clause reuse( tree insert/3/3, [ ( [ 1 ], [ 1, 3 ] ),
( [ 2 ], [ 2, 3 ] ) ],

[] ).
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