
User-Assisted Code Query Optimization
Ben Liblit
Amazon
USA

Yingjun Lyu
Amazon
USA

Rajdeep Mukherjee
Amazon
USA

Omer Tripp
Amazon
USA

Yanjun Wang
Amazon
USA

Abstract
Running static analysis rules in the wild, as part of a com-
mercial service, demands special consideration of time limits
and scalability given the large and diverse real-world work-
loads that the rules are evaluated on. Furthermore, these
rules do not run in isolation, which exposes opportunities
for reuse of partial evaluation results across rules. In our
work on Amazon CodeGuru Reviewer, and its underlying
rule-authoring toolkit known as the Guru Query Language
(GQL), we have encountered performance and scalability
challenges, and identified corresponding optimization op-
portunities such as, caching, indexing, and customization of
analysis scope, which rule authors can take advantage of
as built-in GQL constructs. Our experimental evaluation
on a dataset of open-source GitHub repositories shows 3×
speedup and perfect recall using indexing-based configura-
tions, and 2× speedup and 51% increase on the number of
findings for caching-based optimization.

CCS Concepts: •General and reference→ Performance;
Experimentation; • Theory of computation→Automated
reasoning; Programming logic; • Software and its engi-
neering→ Software defect analysis.

Keywords: AWS, caching, GitHub, Guru Query Language
(GQL), performance optimization, static analysis

ACM Reference Format:
Ben Liblit, Yingjun Lyu, Rajdeep Mukherjee, Omer Tripp, and Yan-
jun Wang. 2023. User-Assisted Code Query Optimization. In Pro-
ceedings of the 12th ACM SIGPLAN International Workshop on the
State Of the Art in Program Analysis (SOAP ’23), June 17, 2023, Or-
lando, FL, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3589250.3596148

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOAP ’23, June 17, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0170-2/23/06.
https://doi.org/10.1145/3589250.3596148

1 Problem Setting
Amazon CodeGuru Reviewer [10] is a commercial product
that performs source-code repository scans as well as inte-
grates into the code review process as an automated reviewer,
leaving comments on pull requests. Its underlying architec-
ture is based primarily on “micro-analyzers”, which run nar-
row yet precise analysis scenarios. These are built atop a
common abstraction layer, GQL, which contains reusable
constructs such as forward/backward slicing, taint analysis,
and filters to match code entities based on data types or call
signatures.
GQL is our main vehicle to “democratize” CodeGuru Re-

viewer by empowering domain experts to directly specify,
then tune and productionize, micro-analyzers. The GQL tool-
box provides the building blocks for such micro-analyzers,
which the expert then composes to express a property of
interest, e.g. regarding correct usage of some cryptography
or machine-learning library.
Our experience in supporting rule authors, and growing

the CodeGuru Reviewer rule base, has exposed many cases
where rules can — and in some cases, should — be optimized
to run faster and make more frugal usage of compute and
memory resources. This, in turn, has led us to design and
implement several optimization features as part of the GQL
toolbox, which are made available to rule authors to tune
their rules’ performance and resource consumption. In what
follows, we set up the technical background for these opti-
mizations, then describe them and report on their impact.

2 Background
CodeGuru supports Java and Python, and integrates with
different code hosting platforms including GitHub and Bit-
Bucket. CodeGuru supports three code scanning modes:

• Incremental: A code review is created automatically
when a pull request is raised.

• Full: The entire code base is analyzed upon request
from a developer.

• CI/CD: The entire code base is analyzed as part of
CI/CD workflows.

In any of the above modes, CodeGuru operates by (1) con-
structing an analysis-friendly intermediate graph representa-
tion of the target code base, then (2) applying a set of rules to

40

https://orcid.org/0000-0002-2245-2839
https://orcid.org/0000-0002-0139-8028
https://orcid.org/0000-0002-8179-4396
https://orcid.org/0000-0002-2393-854X
https://orcid.org/0000-0002-9459-9813
https://doi.org/10.1145/3589250.3596148
https://doi.org/10.1145/3589250.3596148
https://doi.org/10.1145/3589250.3596148
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589250.3596148&domain=pdf&date_stamp=2023-06-06

SOAP ’23, June 17, 2023, Orlando, FL, USA Ben Liblit, Yingjun Lyu, Rajdeep Mukherjee, Omer Tripp, and Yanjun Wang

search for graph nodes in that representation that correspond
to buggy code patterns.

2.1 Intermediate Graph Representation
CodeGuru’s intermediate representation is theMUgraph [21].
A MU graph is essentially a data-dependence graph overlaid
with a control-flow graph, all in static single assignment
(SSA) form. An individual MU graph node might represent a
piece of data, an action that transforms input data into out-
put data, or a control operation such as a branch. Nodes and
edges carry additional details specific to their type and role.
For example, a single action node that represents a function
call might have:

• zero or more incoming data edges, each from some
data node representing an argument to the call;

• an optional outgoing data edge, the target of which is
some data node that receives the result of the call; and

• one incoming and one outgoing control edge, con-
nected to the action or control nodes that execute im-
mediately before or after this call.

The MU graph representation is language-independent.
Actions are fairly fine-grained, and unnamed temporary val-
ues are made explicit. For example, the representation of
print(a + b) would include a sum action node; a call action
node; and three data nodes representing a, b, and the un-
named temporary value of a + b.

2.2 Rules
Finding buggy code patterns in a fine-grained MU graph can
be cumbersome. To make this task easier, CodeGuru includes
the Guru Query Language (GQL), a domain-specific language
for operating on MU graphs [21]. A GQL rule consists of a
sequence of operations on a set of MU graph nodes, called
the match frontier. The match frontier is initially the set of
all nodes in the MU graph representation of one function.
GQL operations transform this set, such as by filtering it or
by traversing the graph in a systematic way.

For example, one GQL operation might filter the match set
to only the subset of data nodes that represent string literals.
Another operation might transform each node in the match
set to its data-flow successor. A higher-order operation could
repeat the previous transformation while collecting a fixed-
point. By chaining together these and a few more operations,
one might create a rule that identifies all literal strings that
can transitively flow into the second argument of a call to a
function named “login”. Thus, we have built a rudimentary
rule that detects hard-coded passwords.
GQL is implemented as a Java library that relies heavily

on the builder pattern. Starting with a fresh builder, one
adds operations using calls like withDataByTypeFilter(. . .)
or withOutNodesTransform(. . .). A final call to build() re-
turns a constructed rule: an instance of GQL’s CustomRule
type that can be applied to functions or whole programs to

1 public void doPost(
2 HttpServletRequest servletRequest,
3 HttpServletResponse servletResponse,
4 FilterChain chain) {
5 String user =
6 servletRequest.getParameter("user");
7 String userPath = ".\\Data\\" + user;
8 . . .
9 findUserDirectory(userPath);
10 . . . }
11
12 private void findUserDirectory(String userPath) {
13 . . .
14 File file = new File(userPath);
15 if (file.exists() && file.isDirectory()) {
16 String[] commands =
17 { "/bin/sh", "−c", "ls " + userPath };
18 Process process =
19 Runtime.getRuntime().exec(commands);
20 . . .
21 }. . . }

Figure 1. Code snippet demonstrating Injection vulnerabili-
ties

detect bugs. Unlike other rule-based static analysis languages
such as, CodeQL [1], GQL does not require building the code-
base (then compilation of the facts database), which limits
adoption, blocks use cases like ad-hoc queries, etc. In terms
of analysis capabilities, GQL offer codebase-wide data-flow
and type-state capabilities, that is, deeper and more semantic
analysis, unlike tool such as, Semgrep [2].

3 Motivating Example
To illustrate the insights feeding into the optimizations de-
scribed in this paper, and the benefits that these optimiza-
tions introduce, we consider the code example in Figure 1,
inspired by real-world code that our rules were evaluated
on, where (untrusted) user input read via the getParameter
call at line 6 reaches both the File constructor at line 14
and the exec call at line 19 through inter-procedural data
flow. These flows give rise to path traversal and command
injection vulnerabilities, respectively.
The corresponding CustomRule rule excerpt is shown

in Figure 2. This rule detects taint-flow by using different
optimization strategies, such as caching that caches various
taint sources, configuration based indexing that dynamically
indexes into amatching taint configuration, and specification
of the tracking and analysis scope. In what follows is the
discussion of the rule in Figure 2 using the code example in
Figure 1.

41

User-Assisted CodeQuery Optimization SOAP ’23, June 17, 2023, Orlando, FL, USA

1 CustomRule rule = new CustomRule.Builder()
2 . . .
3 .withCachedDependency(b −> b
4 .withRuleConfigurationItemMatchFilter(
5 "$.Sources[∗].method",
6 (n,c) −> n.isCall() && n.getName().matches(c))
7 .withInterproceduralDataDependentsTransform(
8 TrackingScope.FILE))
9 . . .
10 .build();

Figure 2. Rule snippet demonstrating caching and configu-
ration indexing

Caching. Injection vulnerabilities, such as those illus-
trated in Figure 1, are typically modeled as taint problems,
where source/sink reachability is checked. The sources are
often shared in common across multiple vulnerability cate-
gories, since these represent the reading of untrusted data
into the program’s state.
Caching provides a medium to exploit the following ob-

servation. Forward data-flow slices, starting from sources,
can be computed once per function, then reused across other
rules that agree on the sources as well as validators and san-
itizers. In this case, reuse enables amortization across the
path traversal and command injection rules.
The withCachedDependency statement at line 3 in Fig-

ure 2 illustrates this scenario. The subrule logic in the cached
block reads sources from a configuration, then performs for-
ward slicing from these sources.

Configuration indexing. Many rules are backed by a
configuration, where the rule serves as a “template” that can
be instantiated to model different code scenarios.

In a production setting, these configurations can reach the
order of 10,000 entries, if not more, which mandates efficient
handling. Brute-force iteration over the configuration to
identify matching code entities (for example, source or sink
calls) becomes prohibitive. We later describe an “inversion”
of the configuration lookup, where an index is computed and
code entities are then represented as keys enabling constant-
time index lookup.

ThewithRuleConfigurationItemMatchFilter statement at
line 4 in Figure 2 corresponds to this optimization. We omit
the code to index into the configuration for space constraints,
and instead focus on how the configuration is accessed. The
first argument is a JSONPath query specifying which config-
uration items should be matched against entities in the code,
whereas the second argument relates nodes n in the graph
representation to configuration items c: in the example, call
nodes whose name matches the configuration item.

Scope customization. In GQL, taint queries can be com-
posed with other constructs, as well as instantiated in differ-
ent ways at different points in the overall query. We have
observed that in some cases, the return-on-investment from
limiting the scope of a taint query, where we trade off time/re-
source costs versus recall, leans towards running the query
on a smaller scope.

For the example in Figure 1, constraining the taint query to
functions in the same file (while excluding functions in other
files in the same repository) enables more precise analysis
(less room for error, for example due to incorrect call resolu-
tions), alongside faster and more resource-efficient analysis.
The scope specification appears as the TrackingScope.FILE
argument to the slicing operation at line 7 in Figure 2.

4 Optimization Strategies
4.1 Caching
The caching algorithm is based on a simple yet important
observation. Given rules 𝑟1 and 𝑟2 with respective subrules
𝑠𝑟1 and 𝑠𝑟2, if

1. 𝑠𝑟1 and 𝑠𝑟2 are evaluated on equivalent states;
2. 𝑠𝑟1 and 𝑠𝑟2 perform the same operations; and
3. 𝑠𝑟1 and 𝑠𝑟2 both have sufficient analysis budget to com-

plete their evaluation, or else both lack sufficient bud-
get to complete their evaluation,

then the evaluation result due to 𝑠𝑟1 in the context of 𝑟1 can
be “reused” for 𝑠𝑟2 in the context of 𝑟2, and vice versa. In
what follows, We go over these criteria, and the meaning of
“reuse“, in turn.

Starting from the first criterion, a rule evaluation state
consists of (i) the incoming match frontier, (ii) the match
frontiers stored as variables (or IDs), and (iii) any additional
metadata stored as part of the state. State equivalence reduces
to equivalence along these three dimensions.
Rule as well as subrule isomorphism is checked in an

inductive manner. Starting from the base case of atomic op-
erations, these are compared directly. Composite operations,
which consist of subrules and the operations therein (for
example, withAnyOf or withAllOf), are compared starting
from the subrules comprising them.

Finally, we check the analysis budgets attached to 𝑠𝑟1 and
𝑠𝑟2, where a budget is a bag of aspects, an aspect being a
measurable “cost unit”: wall-clock time, number of atomic
analysis operations executed, number of functions visited
during operation evaluation, and so on. We ensure that the
budgets are compatible, in that both are simultaneously either
sufficient to complete evaluation of 𝑠𝑟1 and 𝑠𝑟2, respectively,
or both would be exhausted during subrule evaluation.

Assuming 𝑠𝑟1 and 𝑠𝑟2 are isomorphic and have compatible
analysis budgets 𝑏1 and 𝑏2, respectively, the application of
𝑠𝑟1 to state 𝜎1 can be reused for 𝑠𝑟2 and 𝜎2 provided 𝜎1 ≡ 𝜎2,
where by reuse, we mean that

42

SOAP ’23, June 17, 2023, Orlando, FL, USA Ben Liblit, Yingjun Lyu, Rajdeep Mukherjee, Omer Tripp, and Yanjun Wang

1. the output state �̂�1 due to 𝑠𝑟1 is provided as the result
of ⟦𝑠𝑟2⟧𝜎2; and

2. the budget cost recorded during evaluation of ⟦𝑠𝑟2⟧𝜎2
is deducted from 𝑠𝑟2’s budget.

At the implementation level, the caching algorithm is built
atop a thread-safe map. Map keys are rule/input pairs, where
the values are the respective evaluation results. The caching
algorithm checks, in an atomic block, whether the mapping
is already established. If not, then the value is computed and
inserted into the map.

While designed to be generic, caching is particularly use-
ful when a potentially expensive subrule with a same set
of matching frontier is embedded inside multiple rules. For
example, taint tracking is a particularly helpful application
of caching. Consider, as an example, distinct injection rules
that share the same user input surface, thus same sources,
yet differ in terms of sinks. The subrule that computes the
forward slice from sources can be cached, hence amortized
across all rules with only one of the rules performing the
evaluation. This needs not be explicitly coordinated across
the rules. Suffice it that they all wrap this evaluation step
into awithCachedDependency statement, as shown at line 3
of Figure 2, and the reuse will emerge at run time. It is worth
noting that caching is not free. There are performance over-
heads of writing to and reading from the cache. More impor-
tantly, there is a memory cost. Given that the memory used
for caching is not unlimited, users shall use that memory to
cache the expensive operations to optimize the performance
gains of withCachedDependency.

4.2 Configuration Indexing
Analysis rules often cover multiple scenarios from one or
more libraries. Examples include (i) flagging deprecatedmeth-
ods in the AWS Java API; (ii) tracking untrusted data from
APIs that read user input; or (iii) checking that Closeable
types are used correctly.
These are examples of rules backed by a configuration,

listing the different instances that the rule logic applies to.
In our experience, these configurations can reach the order
of 10,000 entries, if not more. A naïve approach for evalu-
ating configuration-backed rules is to iterate over all the
configurations when evaluating the rule on a function 𝑓 , for
example by matching all calls made by 𝑓 to a deprecated
API, as listed in the configuration. For a configuration𝐶 , this
means that the rule is evaluated, fully or in part, |𝐶 | times
on 𝑓 . That is, evaluation time grows linearly with the size of
the configuration.

We have designed and implemented an alternate scheme,
where evaluation time is fixed irrespective of |𝐶 |. Our scheme
stems from the observation that the configuration relates to
entities in the code. Thus, we can start from the function
under analysis, and relate entities therein to the configu-
ration. As a simple example, for deprecated APIs, we can

mine all the function calls in the function, and consult the
configuration for any matches.
More generally, configuration indexing is backed by two

functions provided by the rule author:
• An indexing function], mapping the configuration
items 𝑐 ∈ 𝐶 to key/value pairs 𝑐 ↦→ 𝑘 .

• A mapping function 𝜏 from entities in the code to
the same domain of keys plus ⊥ (for configuration-
irrelevant entities).

Back to the example of deprecated APIs, the keys are the
names of deprecated functions, i.e.] projects deprecated API
configurations — consisting of the AWS service, declaring
class, and API name — on the API name as the key, whereas
𝜏 maps function calls within the target analysis scope to
the callee name (and other code entities, like variables and
control statements, to ⊥). Thus], starting from configuration
items, and 𝜏 , starting from the target scope, agree on how
the configuration would be searched based on the code being
analyzed: via function names.

With this “inversion”, and assuming a good indexing func-
tion (such that there are few collisions, thus effective distri-
bution across buckets), consulting the configuration requires
nearly constant time regardless of its size. In practice, this
has proven easy to achieve, since we typically make use of
types and identifiers. The indexing and mapping functions
are then both cheap to compute and yield effective distribu-
tion of configuration items.

5 Evaluation
In this section, we report on experimental evaluation.

5.1 Input Dataset
We have conducted the experiments on GitHub packages
that have Apache or MIT licenses, and popularity of at least 4
stars. To evaluate the impact of different optimization strate-
gies, we have selected two different datasets. The first dataset
was used to evaluate configuration indexing optimization
strategy. It consists of 200 randomly selected Java and Python
GitHub repositories which have specific SDK usages, such
as AWS Java SDK [9] or AWS Python SDK [8]. The second
dataset was used to evaluate different caching strategies and
analysis scopes. It consists of another 180 randomly selected
Java GitHub repositories which have specific APIs that are
identified as tainted sources. The average number of lines of
code in repositories from the dataset is 25697.

5.2 Experimental Setup
The experiments were run on an Amazon EC2 machine with
48 cores, 384 GB of memory, and 2 hard drives of size 1 TB
each. We have selected 5 AWS best practice rules and 7 taint-
flow rules to demonstrate the impact of the configuration
indexing, and caching, respectively. Depending on the usage
scenarios, users could have different requirements about

43

User-Assisted CodeQuery Optimization SOAP ’23, June 17, 2023, Orlando, FL, USA

time limits to run the analysis. For example, an offline scan
could have a longer time limit, while an online scanning
during Code Review typically demands a shorter time limit.
We evaluated our rules on open-source GitHub packages,
with a time limit of 30 minutes and 5 minutes per package.

5.3 Experiment 1: Configuration Indexing
Table 1 presents the impact of indexing based configuration
using 5 CodeGuru rules [24], that specifies a set of guidelines
for correct, secure, and performant usage of AWS cloud Java
and Python SDKs.
Column 1 in Table 1 gives the rule id, and Column 2

presents the total number of configurations that each rule
evaluates on. Columns 3–4 report the run times and num-
ber of findings or detection from the rules without indexing
optimization. Columns 5–6 report the same with indexing
optimization. Comparing the run times of the rules with-
out indexing and with indexing in Table 1, it is evident that
when the total number of configurations are large (>1,000),
the unoptimized rules without indexing, Rule 1 and Rule
2, timed out. The evaluation time of the unoptimized rules
grow linearly with the size of the configuration that the rules
operate on. For rules that evaluate on few hundred configu-
rations, such as Rule 3, Rule 4, and Rule 5, the speedup is 3×
or more. Furthermore, the number of findings (reported in
#Findings) show that the unoptimized rules, Rule 1 and Rule
2, did not produce any findings, while the optimized rules
produced same number of findings for different time limits.
This demonstrates that the dynamic indexing of configura-
tions help uncover more number of bugs overall.

5.4 Experiment 2: Caching and Scope Customization
In this experiment, we evaluated the impact of caching and
scope customization. We ran seven rules, targeting differ-
ent kinds of injection vulnerabilities, including command
injection, SQL injection, cross-site scripting, log injection,
path traversal, LDAP injection, and XPath injection [24].
All the rules shared a same set of tainted sources, the vast
majority of which represent data coming from the Internet
and is generally considered to be untrusted input to the pro-
gram. Depending on the injection issue, the rules differ in
sinks. For example, the rule for command injection considers
APIs responsible for OS command execution as sinks. We
used various combinations of analysis scopes (i.e., file-level
and package-level) and caching configurations (i.e., with and
without caching) on these rules. We ran these rules against
180 repositories in the second dataset with a time limit of 5
minutes and 30 minutes.

The results based on a time limit of 5 minutes are shown
in Table 2. In this table, column 1 indicates whether the
static analyzer performed a whole-program inter-procedural
analysis, i.e, package-level, versus, a more contained file-
level inter-procedural analysis. Columns 2–3 list the caching
configuration we set for each rule. We experimented with

different cache sizes, which specify the maximum number
of cached tainted program points. Column 4 presents the
number of cache hits and misses for each experiment. Under
columns 5–9, we first list the evaluation time for all the rules,
and then for the first rule, and then for the rest of the rules.
The reason of splitting the rules in this way is to show the
effect of caching. We also present the average and median
evaluation time it takes for analyzing a repository. Column 10
summarizes the number of findings we obtained for all the
rules. Column 11 reports the number of repositories that our
analysis timed out on the given time limit. Due to the space
constraint, we did not list the results based on a time limit
of 30 minutes. We will discuss about the numbers during
comparison.

Impact of scope customization: Our evaluation results
demonstrate the importance of customizing the analysis
scope. When caching is unavailable, file-level analysis scaled
well on a time limit of 5 minutes. Comparing to package-level
analysis, the speedup of the total rule evaluation time was
more than 1.5×, which also reduced the number of timeouts
from 17 repositories to 1. As for the number of findings, the
file-level analysis only reported 29 fewer findings (8% less)
than the package-level analysis. These numbers suggest that
given a short time limit, even if we enabled package-level
analysis, the analysis was not able to scale properly without
caching. On the other hand, file-level analysis performed
well in terms of meeting the time limit without sacrificing
too much recall.
If users have more budgets in terms of time limit and

are willing to increase the limit to 30 minutes, we observed
obvious improvement on recall using package-level inter-
procedural analysis. Even without caching, comparing to
file-level analysis, the number of findings increased 56% from
339 to 529. When caching is in place, the improvement is
even more significant, as we discuss below.

Impact of caching: Results show that caching can signif-
icantly improve the recall of package-level inter-procedural
analysis. When the time limit is 5 minutes, the speedup of
overall rule execution was more than 1.7×, comparing to no
caching. This directly resulted in an increased number of
findings by 44% from 343 to 495. When the time limit is 30
minutes, the speedup was even increase to 2×. The number
of findings was increased by 51% from 529 to 799. Caching is
effective even when the time limit is 5 minutes. Comparing
to no caching, only the analysis time of the first rule slightly
increased, likely caused by the overhead from cache writes.
Such overhead was well offset by later-on savings when the
rest of the rules were executed. If users have more budgets
on memory, they can increase the cache size and maximize
the benefits of caching. Looking at the last row of Table 2
where a cache size of 100,000 was used, the six rules that
can make use of cached entries in total only took 15% more
analysis time than the time of the first rule alone. The overall

44

SOAP ’23, June 17, 2023, Orlando, FL, USA Ben Liblit, Yingjun Lyu, Rajdeep Mukherjee, Omer Tripp, and Yanjun Wang

Table 1. Comparison for rules with and without configuration indexing. Evaluation times are in seconds, given as “𝑥 / 𝑦” for
for 30-minute and 5-minute limits, respectively.

Without Indexing With Indexing

Rule # Configurations Evaluation Times # Findings Evaluation Times # Findings

30 mins / 5 mins 30 mins / 5 mins

Rule 1 [6] 1,117 Timeout / Timeout N/A 215.3s / 215.3s 78
Rule 2 [3] 8,411 Timeout / Timeout N/A 296.7s / 296.7s 136
Rule 3 [5] 81 427.7s / Timeout 32 144.5s / 144.5s 32
Rule 4 [4] 186 694.5s / Timeout 56 139.4s / 139.4s 56
Rule 5 [7] 126 673.1s / Timeout 47 126.4s / 126.4s 47

Table 2. Comparison for rules with and without caching at file or package scope with time limit of 5 minutes.

Cache Analysis Time (in seconds)

Scope Configuration Size # Hits/Misses All Rules First Rule The Rest Mean Median # Findings # Timeouts

File Disabled N/A N/A 2,796.4 443.0 2,353.4 15.7 2.7 314 1
File Enabled 10,000 39,800/6,653 2,730.9 442.0 2,288.9 15.3 2.6 314 1
File Enabled 100,000 39,800/6,653 2,725.8 440.3 2,285.5 15.3 2.7 314 1

Package Disabled N/A N/A 4,327.6 1,121.3 3,206.3 39.1 3.7 343 17
Package Enabled 10,000 20,565/5,597 2,679.9 1,138.5 1,541.4 28.4 3.0 406 12
Package Enabled 100,000 21,705/4,651 2,448.8 1,134.5 1,314.3 26.9 2.9 495 11

speedup helped to discovered 44% more findings given the
short time limit.
Caching was even more effective when the time limit is

30 minutes, comparing to the time limit of 5 minutes. The
speedup and the percentage of increased number of findings
both improved. When the time limit was longer, the first
rule had its chance to finish on more complex repositories
and wrote to the cache. Due to complex taint flows in these
repositories, a larger cache size was needed otherwise the
cache can only hold a portion of the tainted program points.
Once the required resources on both time and memory were
met, users can maximize the benefits of caching.

6 Related Work
Toman and Grossman [26] note caching as widely used tech-
nique to make static analysis tractable [11, 12, 18–20, 22, 25],
but limited to reanalysis of the same program or of shared
library code [17]. Prior work on analysis caching has gener-
ally keyed the cache on coarse-grained program components,
such as functions or files. By contrast, we can cache results
of whole rules, subrules, or even individual GQL operations.
Our approach is well-matched to a feature-rich analysis ser-
vice that checks many aspects of a single code base [24], as
our cache can accelerate common intermediate steps across
multiple rules. Our focus on efficiently applyingmany checks
to varied programs contrasts with, and is complementary
to, that of Gu et al. [13], who focus on scaling any single
analysis to large programs.

Toman and Grossman [26] propose a community database
of analysis-relevant API information. If this effort succeeds,
then the sheer number of annotated APIs may become a scal-
ing challenge. We have shown that configuration indexing
works well for rules that operate with thousands of configu-
rations, that are mined from different SDKs.

Schubert et al. [23] discuss the importance of understand-
ing analysis performance so that it can be tuned to perform
well. Toman and Grossman [26] also note the use of tunable
“knobs” to balance precision and performance [14–16]. Our
analysis scopes are one such group of knobs, but we have
not detailed a procedure for selecting the best scopes for
any given task. The instrumentation-directed strategies of
Schubert et al. [23] are likely applicable here.

7 Conclusion
In this paper, we have presented an interactive approach
for rule authors—encoding their domain expertise as GQL
rules evaluated through Amazon CodeGuru Reviewer—to
optimize their rules’ performance. Specifically, rule authors
can (i) cache rule steps for reuse by co-evaluated rules; (ii)
control the scope of interprocedural queries at a granular
level; as well as (iii) scale a rule “template” to a large number
of configurations using efficient indexing. Our evaluation of
these optimizations on a GitHub dataset indicates significant
performance gains, e.g. ×3 speedup thanks to configuration
indexing and ×2 speedup thanks to caching.

45

User-Assisted CodeQuery Optimization SOAP ’23, June 17, 2023, Orlando, FL, USA

References
[1] 2019. CodeQL. https://codeql.github.com
[2] 2020. Semgrep. https://semgrep.dev
[3] 2022. CodeGuru Rule: Batch request with unchecked fail-

ures. https://docs.aws.amazon.com/codeguru/detector-library/java/
aws-unchecked-batch-failures/.

[4] 2022. CodeGuru Rule: Check uncaught exceptions High. https:
//docs.aws.amazon.com/codeguru/detector-library/java/check-
uncaught-exceptions/.

[5] 2022. CodeGuru Rule: Inefficient polling of AWS resource
High. https://docs.aws.amazon.com/codeguru/detector-library/java/
aws-polling-instead-of-waiter/.

[6] 2022. CodeGuru Rule: Missing pagination. https://docs.aws.amazon.
com/codeguru/detector-library/java/missing-pagination/.

[7] 2022. CodeGuru Rule: Use of a deprecated method. https://docs.aws.
amazon.com/codeguru/detector-library/java/deprecated-method/.

[8] Amazon Web Services. [n. d.]. AWS SDK for Python (Boto3). https:
//aws.amazon.com/sdk-for-python/

[9] Amazon Web Services. [n. d.]. Boto3 - The AWS SDK for Java. https:
//github.com/aws/aws-sdk-java

[10] Amazon Web Services. [n. d.]. What is Amazon CodeGuru Re-
viewer? https://docs.aws.amazon.com/codeguru/latest/reviewer-
ug/welcome.html

[11] Steven Arzt and Eric Bodden. 2014. Reviser: efficiently updating IDE-
/IFDS-based data-flow analyses in response to incremental program
changes. In 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, Pankaj Jalote,
Lionel C. Briand, and André van der Hoek (Eds.). ACM, 288–298. https:
//doi.org/10.1145/2568225.2568243

[12] Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic
Program Verifier for Memory Safety of C Programs. In NASA For-
mal Methods - Third International Symposium, NFM 2011, Pasadena,
CA, USA, April 18-20, 2011. Proceedings (Lecture Notes in Computer
Science, Vol. 6617), Mihaela Gheorghiu Bobaru, Klaus Havelund, Ger-
ard J. Holzmann, and Rajeev Joshi (Eds.). Springer, 459–465. https:
//doi.org/10.1007/978-3-642-20398-5_33

[13] Rong Gu, Zhiqiang Zuo, Xi Jiang, Han Yin, Zhaokang Wang, Linzhang
Wang, Xuandong Li, and Yihua Huang. 2021. Towards Efficient Large-
Scale Interprocedural Program Static Analysis on Distributed Data-
Parallel Computation. IEEE Trans. Parallel Distributed Syst. 32, 4 (2021),
867–883. https://doi.org/10.1109/TPDS.2020.3036190

[14] Ben Hardekopf, Ben Wiedermann, Berkeley R. Churchill, and Vineeth
Kashyap. 2014. Widening for Control-Flow. In Verification, Model
Checking, and Abstract Interpretation - 15th International Conference,
VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Proceedings
(Lecture Notes in Computer Science, Vol. 8318), Kenneth L. McMillan
and Xavier Rival (Eds.). Springer, 472–491. https://doi.org/10.1007/978-
3-642-54013-4_26

[15] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin
Gibbons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014.
JSAI: a static analysis platform for JavaScript. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, Shing-
Chi Cheung, Alessandro Orso, and Margaret-Anne D. Storey (Eds.).
ACM, 121–132. https://doi.org/10.1145/2635868.2635904

[16] Yoonseok Ko, Hongki Lee, Julian Dolby, and Sukyoung Ryu. 2015. Prac-
tically Tunable Static Analysis Framework for Large-Scale JavaScript
Applications (T). In 30th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2015, Lincoln, NE, USA, November
9-13, 2015, Myra B. Cohen, Lars Grunske, and Michael Whalen (Eds.).
IEEE Computer Society, 541–551. https://doi.org/10.1109/ASE.2015.28

[17] Sulekha Kulkarni, Ravi Mangal, Xin Zhang, and Mayur Naik. 2016. Ac-
celerating program analyses by cross-program training. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2016, part
of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November
4, 2016, Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 359–377.
https://doi.org/10.1145/2983990.2984023

[18] Yingjun Lyu, Sasha Volokh, William G. J. Halfond, and Omer Tripp.
2021. SAND: a static analysis approach for detecting SQL antipatterns.
In ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Virtual Event, Denmark, July 11-17, 2021, Cristian
Cadar and Xiangyu Zhang (Eds.). ACM, 270–282. https://doi.org/10.
1145/3460319.3464818

[19] Scott McPeak, Charles-Henri Gros, and Murali Krishna Ramanathan.
2013. Scalable and incremental software bug detection. In Joint Meet-
ing of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ES-
EC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013,
Bertrand Meyer, Luciano Baresi, and Mira Mezini (Eds.). ACM, 554–
564. https://doi.org/10.1145/2491411.2501854

[20] Rashmi Mudduluru and Murali Krishna Ramanathan. 2014. Efficient
Incremental Static Analysis Using Path Abstraction. In Fundamental
Approaches to Software Engineering - 17th International Conference,
FASE 2014, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings (Lecture Notes in Computer Science, Vol. 8411), Stefania
Gnesi and Arend Rensink (Eds.). Springer, 125–139. https://doi.org/10.
1007/978-3-642-54804-8_9

[21] Rajdeep Mukherjee, Omer Tripp, Ben Liblit, and Michael Wilson. 2022.
Static Analysis for AWS Best Practices in Python Code. In 36th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2022, June
6-10, 2022, Berlin, Germany (LIPIcs, Vol. 222), Karim Ali and Jan Vitek
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:28.
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14

[22] Lori L. Pollock and Mary Lou Soffa. 1989. An Incremental Version of
Iterative Data Flow Analysis. IEEE Trans. Software Eng. 15, 12 (1989),
1537–1549. https://doi.org/10.1109/32.58766

[23] Philipp Dominik Schubert, Richard Leer, Ben Hermann, and Eric Bod-
den. 2019. Know your analysis: how instrumentation aids understand-
ing static analysis. In Proceedings of the 8th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2019,
Phoenix, AZ, USA, June 22, 2019, Neville Grech and Thierry Lavoie
(Eds.). ACM, 8–13. https://doi.org/10.1145/3315568.3329965

[24] Amazon Web Services. 2023. CodeGuru Rules. https://docs.aws.
amazon.com/codeguru/detector-library/.

[25] Amie L. Souter and Lori L. Pollock. 2001. Incremental Call Graph
Reanalysis for Object-Oriented Software Maintenance. In 2001 In-
ternational Conference on Software Maintenance, ICSM 2001, Florence,
Italy, November 6-10, 2001. IEEE Computer Society, 682–691. https:
//doi.org/10.1109/ICSM.2001.972787

[26] John Toman and Dan Grossman. 2017. Taming the Static Analysis
Beast. In 2nd Summit on Advances in Programming Languages, SNAPL
2017, May 7-10, 2017, Asilomar, CA, USA (LIPIcs, Vol. 71), Benjamin S.
Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 18:1–18:14. https://doi.
org/10.4230/LIPIcs.SNAPL.2017.18

Received 2023-03-10; accepted 2023-04-21

46

https://codeql.github.com
https://semgrep.dev
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-unchecked-batch-failures/
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-unchecked-batch-failures/
https://docs.aws.amazon.com/codeguru/detector-library/java/check-uncaught-exceptions/
https://docs.aws.amazon.com/codeguru/detector-library/java/check-uncaught-exceptions/
https://docs.aws.amazon.com/codeguru/detector-library/java/check-uncaught-exceptions/
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-polling-instead-of-waiter/
https://docs.aws.amazon.com/codeguru/detector-library/java/aws-polling-instead-of-waiter/
https://docs.aws.amazon.com/codeguru/detector-library/java/missing-pagination/
https://docs.aws.amazon.com/codeguru/detector-library/java/missing-pagination/
https://docs.aws.amazon.com/codeguru/detector-library/java/deprecated-method/
https://docs.aws.amazon.com/codeguru/detector-library/java/deprecated-method/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1109/TPDS.2020.3036190
https://doi.org/10.1007/978-3-642-54013-4_26
https://doi.org/10.1007/978-3-642-54013-4_26
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1109/ASE.2015.28
https://doi.org/10.1145/2983990.2984023
https://doi.org/10.1145/3460319.3464818
https://doi.org/10.1145/3460319.3464818
https://doi.org/10.1145/2491411.2501854
https://doi.org/10.1007/978-3-642-54804-8_9
https://doi.org/10.1007/978-3-642-54804-8_9
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.1109/32.58766
https://doi.org/10.1145/3315568.3329965
https://docs.aws.amazon.com/codeguru/detector-library/
https://docs.aws.amazon.com/codeguru/detector-library/
https://doi.org/10.1109/ICSM.2001.972787
https://doi.org/10.1109/ICSM.2001.972787
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18

	Abstract
	1 Problem Setting
	2 Background
	2.1 Intermediate Graph Representation
	2.2 Rules

	3 Motivating Example
	4 Optimization Strategies
	4.1 Caching
	4.2 Configuration Indexing

	5 Evaluation
	5.1 Input Dataset
	5.2 Experimental Setup
	5.3 Experiment 1: Configuration Indexing
	5.4 Experiment 2: Caching and Scope Customization

	6 Related Work
	7 Conclusion
	References

