
Encoding Optimal Customized Coverage Instrumentation

Peter Ohmann
ohmann@cs.wisc.edu

David Bingham Brown
bingham@cs.wisc.edu

Naveen Neelakandan
neelakandan@cs.wisc.edu

Jeff Linderoth
linderoth@wisc.edu

Ben Liblit
liblit@cs.wisc.edu

University of Wisconsin–Madison
Madison, WI, USA

ABSTRACT
Program coverage is an important software quality metric. Coverage
is most commonly gathered in the testing lab during development.
However, developers also sometimes use inexpensive forms of pro-
gram coverage in production software. In the post-deployment sce-
nario, users often place very strict requirements on tracing overheads
and legal instrumentation strategies. This work deals specifically
with optimizing program coverage instrumentation strategies given
instrumentation requirements and limitations.

The problem of optimal customized coverage instrumentation is
known to be NP-hard, so a polynomial-time solver is unlikely to
exist. This particular report presents a fully-optimal approach to
solving the problem of customized program coverage instrumenta-
tion optimization. We encode our solution as a mixed-integer linear
optimization problem. We build up a mathematical model of the
constraints required to satisfy required coverage instrumentation
criteria, and present a complete model for solving the customized
coverage instrumentation problem.

1. INTRODUCTION
This report gives the full mathematical formulation for optimal

program coverage instrumentation. The report is not meant to
be read in isolation. Rather, it should be read alongside the full
conference paper [4], as this report glosses over many details that
are fully expounded in the original paper.

Program coverage is a common metric to measure the quality
of software or its test suite. However, more recently, researchers
have developed technologies to gather and use coverage data in
other contexts, including after initial software deployment [3, 5, 6].
Program coverage data for a particular program execution refers
to traced information on what portion of a program’s structure or
features were exercised. For this paper, we optimize instrumentation
for the binarized variants of structural coverage metrics; that is,
we optimize instrumentation where each coverage probe measures
the binary property of whether a program location is “covered” or
“uncovered.” We specifically focus on statement and edge coverage.

For a failing production run, a developer would ideally have full
coverage information at the finest possible granularity. However, for
many applications, full coverage tracing may impose high time or
memory overhead costs. Further, developers often do not require
coverage data for all program points. For example, they may focus
tracing on code features (e.g., call sites [2, 3]) likely to be useful
for debugging or program analysis. Further, deployed software is
usually already partially tested, so developers might desire coverage
only for newly-added code, or code not adequately tested before
release [5, 6]. Conversely, security-sensitive code, tightly-optimized
code, or code with strict real-time requirements may be off-limits

for monitoring. Deployed software, therefore, demands customized
instrumentation: coverage data for a subset of program locations
satisfying limitations on legal instrumentation points.

In this paper, we begin by formally defining the customized cov-
erage probing problem. Note that the problem is NP-hard, as proven
in the accompanying full conference paper [4]. We then present
an optimal solution to the problem. We walk through each of the
necessary constraints for satisfying customized coverage require-
ments, and construct a mixed-integer linear program (MILP) whose
solution identifies the optimal coverage set.

This paper is organized as follows. Section 2 formally defines the
Customized Coverage Probing Problem. Section 3 walks through
the full mathematical description of our solution as a mixed-integer
linear optimization problem. We conclude in section 4.

2. CUSTOMIZED COVERAGE
Our goal is to determine an optimal instrumentation plan to gather

customized, binarized program coverage information. More con-
cretely, we are given a single procedure’s control-flow graph (CFG),
G; some subset of the vertices in G for which the developer desires
information, D; and another subset of the vertices in G defining
legal observation points, I. The problem is to determine the cheapest
set of probes to insert into locations from I such that, for any given
path p through G, the set of probes encountered along p is sufficient
to determine which vertices from D were traversed along p.

The input to the problem is as follows:

• G = (V, E), a directed graph with vertices V and edges E
• e ∈ V , a unique source (or entry) vertex with in-degree 0
• I ⊆ V , a subset of vertices that may be probed (instrumented)
• ci , the cost of probing vertex i ∈ I, where ∀i ∈ I, ci > 0
• D ⊆ V , a set of “desired” vertices that must be “covered”
• X ⊆ V , a set of possible termination points

2.1 Problem Definition
Definition 1 For i, j ∈ V, i → j denotes the set of all paths from
i to j in G. If i = j, then the trivial path (crossing no edges) is
included in this set.

Definition 2 V (p) denotes the set of all vertices encountered along
path p, including the start and end vertices of p.

Definition 3 A set of vertices S ⊆ I is called a coverage set of D
if ∀x ∈ X and ∀p1, p2 ∈ e → x, V (p1) ∩ S = V (p2) ∩ S =⇒

V (p1) ∩ D = V (p2) ∩ D. That is, two partial executions that
encounter the same S vertices must encounter the same D vertices
as well. Contrapositively, paths that encounter different D vertices
must be distinguishable by encountering different S vertices as well.

1

mailto:ohmann@cs.wisc.edu
mailto:bingham@cs.wisc.edu
mailto:neelakandan@cs.wisc.edu
mailto:linderoth@wisc.edu
mailto:liblit@cs.wisc.edu

e α β x

d

...

Y1: all paths not crossing {d}

...

Y2: all paths not crossing {d}

pαβ : some path not crossing (S \ Y) ∪ {d}

pαd: some path

not crossing S \ Y
pdβ : some path

not crossing S \ Y

Figure 1: Pictorial representation of an ambiguous triangle

Problem Statement:
The Customized Coverage Probing Problem is to find a cover-

age set S of D such that
∑

s∈S cs is minimal.

3. MATHEMATICAL FORMULATION
Obtaining an optimal solution to the Customized Coverage Prob-

ing Problem is an NP-hard global optimization problem, as shown
in the accompanying conference paper [4]. We formulate our op-
timal solution as a 0–1 mixed-integer linear optimization problem.
First, we describe the sufficiency condition for a coverage set in
section 3.1. In section 3.2, we provide a detailed description of how
we construct the full formulation based on this condition.

3.1 Checking Sufficiency of Coverage Sets
Naïvely, from definition 3, we must examine all paths e → x (for

all x ∈ X) to check if a candidate set S ⊆ I is a coverage set of
D. Unfortunately, for any CFG containing a cycle, there may be
infinitely-many such paths. In this section, we present a simplified
sufficiency check for a candidate coverage set S ⊆ I that is based
on locating “ambiguous triangles” between observation vertices α
and β such that some d ∈ D may or may not occur along restricted
α → β paths. S is a coverage set of D if and only if S allows no
ambiguous triangles in G.

The condition is shown in fig. 1. Wavy lines represent paths
crossing 0 or more edges. The core of the formulation is the three
paths pαd , pαβ , and pdβ . The triangle formed by these three paths
corresponds to a smaller region of execution which, by its existence,
demonstrates that coverage data from S is not sufficient to determine
if d occurs on the path generating the coverage data. Observations
(i.e., vertices from S) are usually not allowed in an ambiguous
triangle, as coverage data at these observation points indicates which
path through the triangle was taken. However, vertices occurring
along paths from e to α (i.e., along paths in Y1) occur before the
triangle, while vertices along paths from β to some x ∈ X (i.e.,
along paths in Y2) occur after the triangle. Hence, any vertices along
any path in Y1∪Y2 (i.e., any vertices in the set Y) may re-occur within
the triangle, as they do not constitute new observations that provide
further detail about which vertices occurred during the execution
under investigation.

To formalize the above intuitions, we require one new definition:

Definition 4 (Connected Excluding) For Ψ ⊆ V and v1, v2 ∈ V,

let v1
<Ψ
−−−→ v2 denote the set of paths from v1 to v2 that do not cross

any edges with a source or target vertex ψ ∈ Ψ.

This definition includes trivial paths. That is, for v ∈ V , v
<Ψ
−−−→ v

is nonempty for any Ψ ⊆ V , even if v ∈ Ψ. With these definitions,
for all (α, β, d) triples where

α ∈ S ∪ {e} β ∈ S ∪ X d ∈ D \ S

we define the following sets:

Y1 = e
<{d }
−−−−→ α Pαd = α

<S\Y
−−−−−→ d

Y2 =
⋃

x∈X\{d }

β
<{d }
−−−−→ x Pαβ = α

<(S\Y)∪{d }
−−−−−−−−−−−→ β

Y =
⋃

π∈Y1∪Y2

V (π) Pdβ = d
<S\Y
−−−−−→ β

Then, set S is a coverage set of D if and only if:

Y1 = ∅ ∨ Y2 = ∅ ∨ Pαd = ∅ ∨ Pαβ = ∅ ∨ Pdβ = ∅

for all (α, β, d) triples defined above. Note that these five disjuncts
correspond precisely to the five necessary parts of the ambiguous
triangle pictured in fig. 1, and those necessary to form paths p1 and
p2 from definition 3. Specifically, by selecting appropriate

y1 ∈ Y1 y2 ∈ Y2 pαβ ∈ Pαβ pαd ∈ Pαd pdβ ∈ Pdβ

we can form the appropriate paths as

p1 = y1 ◦ pαβ ◦ y2

p2 = y1 ◦ pαd ◦ pdβ ◦ y2

Thus, if all five of the subpaths from the above disjunction exist for
any (α, β, d) triple, then S is not a coverage set of D.

3.2 Full Formulation
In this section, we describe each piece in the construction of the

full mathematical formulation of the optimization problem. The
MILP itself is shown in fig. 2. We focus on some of the key “widgets”
making up the different constraints in our formulation.

To begin, for notational convenience, we can define all possible
ambiguous triangles for all possible sets S ⊆ I as the set of triples
of vertices

T =
{
(α, β, d) ∈ (I ∪ {e}) × (I ∪ X) × D

}

Then, for each (α, β, d) ∈ T , we define an additional set of vertices
corresponding to set Y from section 3.1. These are vertices occurring
on paths from e to α or from β to a terminal vertex that do not cross
vertex d:

Yαβd =
⋃

x∈X,π∈e
<{d}
−−−−→α∪β

<{d}
−−−−→x

V (π)

The sets Yαβd can be constructed by simply checking basic graph
connectivity, and we define the numerical parameter

aαβdi =

{
1 if i ∈ Yαβd
0 otherwise

which is provided as input to our model.

2

The goal is to find S, a minimal-cost coverage set of D. We first
introduce the binary selection variables

zi = 1 iff i ∈ S

to represent the selected coverage set. Next, we use five sets of
binary variables, one for each path set in the characterization of a
coverage set from section 3.1, that, when set to 1, will force its set
of paths to be empty:

sαd = 1 will imply that e
<{d }
−−−−→ α = ∅

tβd = 1 will imply that β
<{d }
−−−−→ x = ∅ ∀x ∈ X \ {d}

uαβd = 1 will imply that α
<S\Yαβd
−−−−−−−−→ d = ∅

vαβd = 1 will imply that α
<(S\Yαβd)∪{d }
−−−−−−−−−−−−−−→ β = ∅

wαβd = 1 will imply that d
<S\Yαβd
−−−−−−−−→ β = ∅

Recall from section 3.1 that S is a coverage set of D if and only if at
least one of these 5 sets of paths is empty for all (α, β, d) ∈ T . To
force this condition, we thus introduce the constraint:

sαd + tβd + uαβd + vαβd + wαβd ≥ (1 − zd) ∀(α, β, d) ∈ T

The key widget in our formulation is the ability to model, for
G = (V, E), whether or not there exists a path between vertices
k and ` (i.e., is k → ` , ∅). From basic network flow theory,
k → ` , ∅ if and only if the inequality system

∑
j :(i, j)∈E

xi j −
∑

j :(j, i)∈E

xi j =

1 i = k
0 i , k, `
−1 i = `

(1)

xi j ≥ 0 ∀(i, j) ∈ E (2)

has a solution. Farkas’ Lemma, or basic linear programming duality
theory [1], states that this system does not have a solution if and
only if there exist dual multipliers ξ ∈ R |V | such that

ξi − ξ j ≥ 0 ∀(i, j) ∈ E (3)
ξk − ξ` ≤ −1. (4)

Note that, in this case, we can safely bound the dual multipliers in
the range [−1, 1].

We use this widget as the basis of building our model. Note that
we will require multipliers for many choices of starting nodes k and
ending nodes `. Specifically, for a fixed (α, β, d) triple, we must
enforce the non-existence of one of five different sets of paths (from
section 3.1), so we again define five sets of variables. These variables
are associated with the existence of a particular vertex i ∈ V along
each of the five paths; thus, for each class of variables, we require
one variable for each i ∈ V . For each (α, β, d) ∈ T , the following
are the vertex (dual) multipliers for the linear system (3)–(4).

θ
αβd
i

: dual multipliers associated with e
<{d }
−−−−→ α = ∅

η
αβd
i

: dual multipliers associated with β
<{d }
−−−−→ x = ∅ ∀x ∈ X \ {d}

π
αβd
i

: dual multipliers associated with α
<S\Yαβd
−−−−−−−−→ d = ∅

µ
αβd
i

: dual multipliers associated with α
<(S\Yαβd)∪{d }
−−−−−−−−−−−−−−→ β = ∅

λ
αβd
i

: dual multipliers associated with d
<S\Yαβd
−−−−−−−−→ β = ∅

Returning to the higher-level goal, recall that each of the s, t,
u, v, and w variables serves as a forcing variable, ensuring that

a particular subpath from the ambiguous triangle is ∅. To take
the simplest example, recall that if sαd = 1, we wish to enforce

that e
<{d }
−−−−→ α = ∅. Thus, we must remove vertex d from the

flow network given by (1). In the dual formulation, the equivalent
operation is to remove the inequality (3) for all (i, d) ∈ E and for
all (d, j) ∈ E. Loosely, we model this constraint by removing all
incoming and outgoing edges for d from G for these paths. Finally,
our model should exclude e → α paths only when sαd = 1 (recall:

sαd directly implies the condition e
<{d }
−−−−→ α = ∅). Thus, we need

only enforce the forcing dual flow constraint (4) when sαd = 1.
Algebraically, replacing the upper bound in (4) with 1 − 2sαd will
serve this purpose, since, as previously stated, all dual multipliers
are bounded between [−1, 1]. Putting this logic together gives us the
dual flow system

θ
αβd
i

− θ
αβd
j

≥ 0 ∀(α, β, d) ∈ T ,∀(i, j) ∈ E | i , d, j , d

θ
αβd
e − θ

αβd
α ≤ 1 − 2sαd ∀(α, β, d) ∈ T

The remaining dual flow systems for η, π, µ, and λ are defined
in a similar fashion. However, there are some important and sub-
tle differences. One complication arising in the definition of the
variables π (which corresponds to Pαd), µ (which corresponds
to Pαβ), and λ (which corresponds to Pdβ), is that we must ex-
clude the set of vertices S \ Y from the appropriate flow networks.
Specifically, we want constraint (3) to be redundant when either
i ∈ S \ Yαβd or j ∈ S \ Yαβd . Note that i ∈ S \ Yαβd is equivalent
to zi − aαβdi zi = 1, since zi indicates that i ∈ S and aαβdi indi-
cates that i ∈ Yαβd . Thus, for example, in the flow system for the
variables π, constraint (3) is modified to be of the form

π
αβd
i

− π
αβd
j

≥ −(zi − aαβdi zi) − (z j − aαβdj z j)

∀(α, β, d) ∈ T ,∀(i, j) ∈ E.

If tβd = 1, we wish to enforce that there is no path from β
to any termination point that avoids passing through d. That is,

β
<{d }
−−−−→ x = ∅ for all x ∈ X \ {d}. To model this requirement, we

introduce a special sink vertex χ with new edges (x, χ) for each
x ∈ X \ {d}. Note that we cannot make this transformation once
over the original CFG, G, since the incoming edges for χ depend on
our choice of d. After the transformation, there will be at least one
path in β → x for some x ∈ X if and only if the expanded network
has a path from β → χ. That is,

⋃
x∈X\{d } (β → x) , ∅ if and

only if β → χ , ∅. Thus, in the flow system for the variables η,
constraints (3)–(4) are modified to be of the form

η
αβd
i

− η
αβd
j

≥ 0 ∀(α, β, d) ∈ T ,∀(i, j) ∈ E | i , d, j , d

η
αβd
β
− η

αβd
χ ≤ 1 − 2tβd ∀(α, β, d) ∈ T

η
αβd
x − η

αβd
χ ≥ 0 ∀(α, β, d) ∈ T ,∀x ∈ X | x , d

The vertex χ is only relevant for these η constraints, and, thus, is
not in V (for purposes of any other constraints).

In the end, our objective is to minimize cost∑
i∈V

ci zi

subject to the top-level constraint

sαd + tβd + uαβd + vαβd + wαβd ≥ (1 − zd) ∀(α, β, d) ∈ T

3

min
∑
i∈V

ci zi

subject to

sαd + tβd + uαβd + vαβd + wαβd ≥ 1 − zd ∀(α, β, d) ∈ T

θ
αβd
i

− θ
αβd
j

≥ 0 ∀(α, β, d) ∈ T ,∀(i, j) ∈ E | i , d, j , d

θ
αβd
e − θ

αβd
α ≤ 1 − 2sαd ∀(α, β, d) ∈ T

η
αβd
i

− η
αβd
j

≥ 0 ∀(α, β, d) ∈ T ,∀(i, j) ∈ E | i , d, j , d

η
αβd
β
− η

αβd
χ ≤ 1 − 2tβd ∀(α, β, d) ∈ T

η
αβd
x − η

αβd
χ ≥ 0 ∀(α, β, d) ∈ T ,∀x ∈ X | x , d

π
αβd
i

− π
αβd
j

≥ −(zi − aαβdi zi) − (z j − aαβdj z j) ∀(α, β, d) ∈ T ,∀(i, j) ∈ E

π
αβd
α − π

αβd
d

≤ 1 − 2uαβd ∀(α, β, d) ∈ T

µ
αβd
i
− µ

αβd
j

≥ −(zi − aαβdi zi) − (z j − aαβdj z j) ∀(α, β, d) ∈ T ,∀(i, j) ∈ E | i , d, j , d

µ
αβd
α − µ

αβd
β

≤ 1 − 2vαβd ∀(α, β, d) ∈ T

λ
αβd
i

− λ
αβd
j

≥ −(zi − aαβdi zi) − (z j − aαβdj z j) ∀(α, β, d) ∈ T ,∀(i, j) ∈ E

λ
αβd
d

− λ
αβd
β

≤ 1 − 2wαβd ∀(α, β, d) ∈ T

zi ∈ {0, 1} ∀i ∈ V

sαd, tβd, uαβd, vαβd,wαβd ∈ {0, 1} ∀(α, β, d) ∈ T

θ
αβd
i

, π
αβd
i

, µ
αβd
i

, λ
αβd
i

∈ R ∀(α, β, d) ∈ T ,∀i ∈ V

η
αβd
i

∈ R ∀(α, β, d) ∈ T ,∀i ∈ V ∪ { χ}

Figure 2: The complete MILP formulation

which, as stated earlier, asserts that one of the 5 subpaths forming
an ambiguous triangle is ∅. From section 3.1, this further implies
that S = {i ∈ V such that zi = 1} is a coverage set of D.

With all of the above in place, we put all constraints together,
resulting in the full MILP shown in fig. 2. Note that the input is
precisely that from section 2, along with the precomputed set T , and
the precomputed Y set represented by numerical parameter a. All
constraints are defined over all triples in T . From the optimal model
satisfying the constraints from fig. 2 (i.e., the model that minimizes
the cost function), we can then extract the optimal coverage set as
S = {v ∈ I such that zv = 1}.

4. CONCLUSION AND FUTURE WORK
Binarized program coverage information is used in a wide variety

of scenarios, from the testing lab to post-deployment monitoring.
Different situations yield very different requirements for coverage, as
well as different run-time overhead restrictions. We present a system
that allows users to specify customized coverage criteria: desired
coverage locations, as well as the set of locations that are valid for
instrumentation. In this paper, we detail the constraints necessary for
an instrumentation plan to satisfy these conditions. Then, we present
a mixed-integer linear optimization problem whose solution yields
the optimal instrumentation plan based on user-provided conditions.

While this approach is guaranteed to provide a provably-optimal
result relative to a provided cost model, solving time is quite slow in

practice. More details can be found in our associated full conference
paper [4], where we evaluate two approaches that approximate this
optimal result1. However, we are also examining ways to more
efficiently compute an optimal result. We are investigating refine-
ments to both the above model and the sufficiency conditions from
section 3.1. In the future, research could also focus on using in-
expensive analyses (including control-flow dominance and loop
properties) which might speed up the expensive search for optimal
coverage sets performed by MILP solvers.

5. ACKNOWLEDGMENTS
This research was supported in part by DARPA MUSE award

FA8750-14-2-0270 and NSF grants CCF-0953478, CCF-1217582,
CCF-1318489, and CCF-1420866. Opinions, findings, conclusions,
or recommendations expressed herein are those of the authors and
do not necessarily reflect the views of the sponsoring agencies.

6. REFERENCES
[1] G. Dantzig. Linear Programming and Extensions. Princeton

University Press, Princeton, NJ, 1963.

1An implementation of our optimal approach, as well as both ap-
proximations, are provided as part of our instrumenting C/C++
compiler, csi-cc. The source code is available at http://pages.cs.wisc.
edu/~liblit/ase-2016-b/code/

4

http://pages.cs.wisc.edu/~liblit/ase-2016-b/code/
http://pages.cs.wisc.edu/~liblit/ase-2016-b/code/

[2] A. Nishimatsu, M. Jihira, S. Kusumoto, and K. Inoue.
Call-mark slicing: an efficient and economical way of reducing
slice. In Proceedings of the 21st international conference on
Software engineering, ICSE ’99, pages 422–431, New York,
NY, USA, 1999. ACM. URL
http://doi.acm.org/10.1145/302405.302674.

[3] P. Ohmann and B. Liblit. Lightweight control-flow
instrumentation and postmortem analysis in support of
debugging. In 28th International Conference on Automated
Software Engineering (ASE 2013), Palo Alto, California, Nov.
2013. IEEE and ACM.

[4] P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and
B. Liblit. Optimizing customized program coverage. In 31st
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2016), Singapore, Singapore, Sept. 2016.
IEEE and ACM.

[5] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma
system: continuous evolution of software after deployment. In
Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA ’02, pages
65–69, New York, NY, USA, 2002. ACM. URL
http://doi.acm.org/10.1145/566172.566182.

[6] C. Pavlopoulou and M. Young. Residual test coverage
monitoring. In B. W. Boehm, D. Garlan, and J. Kramer, editors,
Proceedings of the 1999 International Conference on Software
Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22,
1999., pages 277–284. ACM, 1999. URL
http://portal.acm.org/citation.cfm?id=302405.302637.

5

http://doi.acm.org/10.1145/302405.302674
http://doi.acm.org/10.1145/566172.566182
http://portal.acm.org/citation.cfm?id=302405.302637

	Introduction
	Customized Coverage
	Problem Definition

	Mathematical Formulation
	Checking Sufficiency of Coverage Sets
	Full Formulation

	Conclusion and Future Work
	Acknowledgments
	References

