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Abstract
Higher-order Singular Value Decomposition (HOSVD)

for tensor decomposition is widely used in multi-variate
data analysis, and has shown applications in several ar-
eas in computer vision in the last decade. Conventional
multi-linear assumption in HOSVD is not translation in-
variant — translation in different tensor modes can yield
different decomposition results. The translation is difficult
to remove as preprocessing when the tensor data has miss-
ing data entries. In this paper we propose a more general
multi-affine model by adding appropriate constant terms in
the multi-linear model. The multi-affine model can be com-
puted by generalizing the HOSVD algorithm; the model per-
forms better for filling in missing values in data tensor dur-
ing model training, as well as for reconstructing missing
values in new mode vectors during model testing, on both
synthetic and real data.

1. Introduction
Matrix decomposition for linear dimension reduction is

a widely used technique in high dimensional data analy-
sis. A matrix is a two-dimensional array; as a generaliza-
tion of matrix decomposition, tensor decomposition aims
to decompose a multi-dimensional array, a.k.a., an order-
N data tensor. The decomposition result produces a model
that expresses each data entry (scalar or vector) as a multi-
linear function of parameters in several lower dimensional
subspaces.

The conventional multi-linear model does not include
constant terms, making the model estimation sensitive to
large translation offset in the input data. In matrix decom-
position, Principle Component Analysis (PCA) deals with
the translation offset by incorporating a mean vector in the
model. In the case of tensor decomposition, the removal
of translation offset (or mean vector) is more intriguing as
each mode of the input tensor can have its own translation
offset. The estimation of the translation offsets can be fur-
ther complicated by the possible missing values in the input
data tensor, which are quite common in computer vision ap-
plications.

In this paper we present a multi-affine model that han-
dles the translation offset in each tensor mode in a princi-
pled fashion. Using Taylor expansion, we derive our multi-

affine model as a generalization of PCA with mean removal.
From the Taylor expansion perspective, we can show what
the nonlinear effects are that are neglected by both the multi-
linear and multi-affine model. We formulate the model train-
ing as an optimization problem and solve it using an alter-
nating SVD algorithm similar to the multi-linear HOSVD.
With small modifications, we extend this algorithm to deal
with data tensor with missing data.

The estimated model parameterizes vectors in each mode
as a multi-affine function of lower dimensional vectors.
Given a new mode vector with missing and noisy data en-
tries, this model allows us to fill in the missing values.
We show that the multi-affine model outperforms the multi-
linear model for this data completion task, especially when
the noise level and missing data rate is high.

1.1. Denotations

Throughout this paper, we use different font styles to dis-
tinguish between scalars, vectors, matrices and tensors:

x, y, z, · · · as scalars
x,y, z, · · · as vectors
X,Y, Z, · · · as matrices
X ,Y,Z · · · as tensors

We use 1 to denote the column vector
[
1 1 · · · 1

]T
.

In some places we specify the dimension of 1 as m by using
1m. We use

1̂m =
1m

|1m|
(1)

to denote the normalized 1m.

2. Related Work
Tensor decomposition has been well studied in the field

of applied mathematics [4, 3]. Give an order-N data tensor
T , the decomposition aims to find an outer product repre-
sentation of T ,

T = Q×1 U1 ×2 U2 · · · ×N UN (2)

where Q is also an order-N tensor and {Ui} are matrices.
Tucker’s first method is the most widely used algorithm

for multi-linear tensor decomposition, in which the decom-



position is achieved by minimizing the error term with re-
spect to Q and {Ui}

min
Q,{Ui}

|T − Q×1 U1 ×2 U2 · · · ×N UN |2 (3)

The algorithm minimizes this error term by updating eachUi

alternately while keeping other Uj , j 6= i fixed until it con-
verges. It is better known as Higher-Order Singular Value
Decomposition (HOSVD) today due to the work of De Lath-
auwer et al. [4].

Tensor analysis has found applications in many computer
vision and graphics problems, such as general factor analy-
sis [5], geometric analysis [1], texture modeling [7, 10], face
image recognition [9], 3D face transfer [8], and most re-
cently face contour modeling [6].

All these works use a multi-linear model to represent
their input data. Two common operations in these works are
training models with missing data and expressing a mode
vector as a multi-linear function of low dimensional param-
eter vectors. Our multi-affine model can potentially benefit
all these application problems. In our experiments, we show
that it works better than a multi-linear model for filling in
missing values in 2D face landmark data.

3. Multi-affine Model
We assume input data is sampled from a continuous un-

known function. The function can be a scalar or a vec-
tor valued function. Using Taylor expansion, we can de-
rive an affine model for the first order approximation and a
multi-affine model for the higher order approximation. The
affine model can be estimated using PCA and the multi-
affine model and its estimation are our major contributions.

3.1. First Order: Affine Model

A real valued scalar function f can be approximated by
its first order Taylor series if we ignore the higher order
terms in its Taylor expansion:

f(x) ≈ f(0) +∇f(0)Tx =
[
fx f0

] [x
1

]
(4)

where fx = ∇f(0)T, and f0 = f(0). This result can be
generalized for a vector function f as

f(x) ≈ f0 + fxx =
[
fx f0

] [x
1

]
(5)

where fx is the Jacobian matrix of f at 0, and f0 = f(0).
Let {yi = f(xi)} be a set of samples of the func-

tion f . We form two matrices Y =
[
y1 y2 · · · yn

]
,

X =
[
x1 x2 · · · xn

]
and assume {xi} is distributed

symmetrically around 0, i.e.,
∑n

i=1 xi = 0. Note that this
assumption is general, because we can redefine f by shfiting
the origin to the centroid of all {xi}. Under this assump-
tion, we can estimate f0 = y = 1

n

∑n
i=1 yi and apply SVD

(a) Core Matrix (b) Core Tensor

Figure 1: (a) The matrix that serves as the core matrix in
Eq. (6) for scalar functions. (b) The core matrix for scalar
functions now becomes a core tensor.
Best viewed electronically in color.

on Ỹ = Y − y · 1T to get fx. Note that each column in Ỹ
is yi − y, which is simply the result of the mean removal
operation in PCA.

3.2. Higher Order: Multi-Affine Model

We now discuss higher order approximation of the func-
tion. To simplify notation but without loss of generality, we
use an order-3 tensor as an example to illustrate multi-affine
tensor analysis.

Consider a real valued function f(x,y) with two groups
of variables. Taking into account the second order terms,
Eq. (4) becomes:

f(x,y) ≈f0 + fTx x+ fTy y

+
1

2

[
x
y

]T [
fxx fxy
fxy fyy

] [
x
y

] (6)

where fx, fy are the first order partial derivatives of f at 0,
f0 = f(0, 0) and fxx, fyy, fxy are the second order partial
and mixed derivatives of f at 0.

Note that in Eq. (6) fxy captures the interaction between
x and y. Assuming f ’s second order partial derivatives at 0
with respect to x and y is small, i.e., fxx ≈ 0 and fyy ≈
0, we ignore these two terms in Eq. (6) and keep only the
mixed derivative fxy, and the equation then becomes

f(x,y) ≈
[
x
1

]T [
fxy fx
fy f0

]
︸ ︷︷ ︸

Q

[
y
1

]
(7)

The structure of the core matrixQ in Eq. (7) is illustrated
in Figure 1a. If f(x,y) is a vector valued function, Eq. (7) is
valid for each component of f . Stacking the matrix Q in Eq.
(7) together forms an order-3 tensor Q (e.g., a cube, whose
structure is illustrated in Figure 1b. We can then write Eq.
(7) for the vector valued f(x,y) using the tensor product as
follows:

f(x,y) ≈ Q×1

[
xT 1

]
×2

[
yT 1

]
(8)

If we have a set of samples of {f(xi,yj)} with i =
1 · · ·mi and j = 1 · · ·mj , we can combine Eq. (8) for all



{(xi,yj)} into a single tensor product equation as follows.
Define an order-3 tensor T as

T (i, j, :) = f(xi,yj) (9)

then,
T ≈ Q×1

[
XT 1

]
×2

[
Y T 1

]
(10)

where the matrix X =
[
x1 x2 · · · xm1

]
, and the ma-

trix Y =
[
y1 y2 · · · ym2

]
.

In general, we might also want to decompose the data
tensor T along mode-3, i.e., mode-3 is no longer modeled
as a special mode. The vector valued function f(x,y) is
now viewed as a trivariate scalar valued function f(x,y, z),
where z is the component index of f . Then Eq. (10) be-
comes

T = Q×1

[
XT 1

]
×2

[
Y T 1

]
×3

[
ZT 1

]
(11)

where Z is defined in a similar way as X and Y in Eq. (10).
Performing the original HOSVD [4] on T does not give

a solution to the multi-affine model in Eq. (11), because of
the additional 1 vectors. In the next section, we show how
to extend HOSVD for the multi-affine model.

4. Training Algorithms

We now define the multi-affine model training problem.
Given an input order-N tensor T , we seek to find a core
tensor Q and matrices U1, U2, · · · , UN that minimizes the
following decomposition error

min
Q,{Ui}

∣∣T − Q×1

[
U1 1̂m1

]
· · · ×N

[
UN 1̂mN

]∣∣2
s.t. 1T

mi
Ui = 0, i = 1, 2, · · · , N (zero mean)

UT
i Ui = I, i = 1, 2, · · · , N (orthonormal)

(12)

where T is an m1 × m2 × · · · × mN tensor, Q is a
(k1 + 1) × (k2 + 1) × · · · × (kN + 1) tensor, Ui is of size
mi × ki and mi > ki for all i. The constraints are added to
reduce the ambiguity between core tensor Q and the basis
matrices {Ui}; they also lead to efficient model estimation
as shown later in Eq. (14) in this section. 1̂mi

is defined in
Eq. (1). Under these constraints, every matrix

[
Ui 1̂mi

]
is

orthonormal.
If there are missing elements in T (denoted as TU), we

also count them as the free variables of the optimization
problem. In this case Eq. (12) becomes

min
Q,{Ui},TU

∣∣T − Q×1

[
U1 1̂m1

]
· · · ×N

[
UN 1̂mN

]∣∣2
s.t. 1T

mi
Ui = 0, i = 1, 2, · · · , N (zero mean)

UT
i Ui = I, i = 1, 2, · · · , N (orthonormal)

(13)

(a) Before Unfold (b) After Unfold

Figure 2: Illustration of a mode-3 unfold operation. In gen-
eral, the mode-i unfold operation on a tensor T aligns all
the mode-i vectors of T in an index order, producing a large
matrix that has the same elements as in T .

4.1. Decomposition without Missing Data

We first present the algorithm to solve the decomposi-
tion problem without missing data, as defined in Eq. (12).
Our algorithm is a variant of HOSVD [4]. Specifically we
iteratively update one Ui while fixing other Uj , j 6= i till
convergence. However, special care must be taken to satisfy
the new constraints in Eq. (12).

We initialize all Ui with random orthonormal matrices
that are also orthogonal to 1̂mi

. Since all
[
Ui 1̂mi

]
are

orthonormal, updating U1 while fixing other Ui, i 6= 1 leads
to the following sub-problem of Eq. (12),

arg min
Q,U1

∣∣T − Q×1

[
U1 1̂m1

]
· · · ×N

[
UN 1̂mN

]∣∣2
=arg min

Q,U1

∣∣S −Q×1

[
U1 1̂m1

]∣∣2
(14)

where S = T ×2

[
U2 1̂m2

]T · · · ×N

[
UN 1̂mN

]T
The sub-problem becomes

min
Q,U1

∣∣S − [U1 1̂m1

]
Q
∣∣2

s.t. 1T
m1
U1 = 0, UT

1 U1 = I
(15)

where

S =unfold1(S)
Q =unfold1(Q)

(16)

In the above equation, the unfold operation of a tensor on
mode-i (unfoldi) converts a tensor to a matrix, as illustrated
in Figure 2.

To solve this sub-problem, we need to define a mean re-
moval operation on matrices first. Let sT be the row vector
containing the mean values of each column of S (in Matlab
notation, sT = mean(S, 1)), and define row-mean-removal
operation RM() on matrix S as

RM(S) = S − 1 · sT (17)

Under this definition, S can be separated as

S = RM(S) + 1 · sT (18)

Similarly, after applying RM() on the second term in Eq.
(15), it is separated as[

U1 1̂m1

]
Q = U1Qtop + 1̂m1

Qbottom (19)



where Qtop = Q(1:k1, :) and Qbottom = Q(k1 +1, :) follow-
ing the Matlab notation. Plug in Eq. (18) and Eq. (19), and
the objective function Eq. (15) becomes∣∣RM(S) + 1 · sT − U1Qtop − 1̂m1

Qbottom
∣∣2 (20)

Note that the elements of each column vector a in both
RM(S) and U1Qtop sum to zero, i.e., 1Ta = 0; so a is
orthogonal to all the column vectors in 1·sT and 1̂m1Qbottom.
As a result, the objective function Eq. (20) can be split as

|RM(S)− U1Qtop|2 +
∣∣1 · sT − 1̂m1Qbottom

∣∣2 (21)

U1 depends only on the first term in Eq. (20), and can be
solved by minimizing the following objective function.

min
Q,U1

|RM(S)− U1Qtop|2

s.t. 1T
m1
U1 = 0, UT

1 U1 = I
(22)

This optimization problem can be solved by matrix SVD

RM(S) = UVWT (23)

and updating U1 as U1 = U . Note that the constraints on U1

automatically hold:

• Since the elements of each column vectors in RM(S)
sum to zero, i.e., 1TRM(S) = 0, U1 must also satisfy
1TU1 = 0, provided the number of columns of U1 is
no larger than the rank of matrix RM(S).

• SVD guarantees that UT
1 U1 = I .

The same analysis applies for mode-2, mode-3, · · · , mode-
N . The algorithm for updating mode-i is summarized as
Algorithm 1,

Algorithm 1 Function: Update-Mode(i)

S ← T
for j 6= i do
S ← S ×j

[
Uj 1̂mj

]T
end for
[Ui, :, :]← SVD(RM(unfoldi(S)))

Updating {Ui} iteratively, the objective function will
keep decreasing and will eventually converge. Upon con-
vergence, we can get Q by the following equation

Q = T ×1

[
U1 1̂m1

]T · · · ×N

[
UN 1̂mN

]T
(24)

The complete work flow follows Algorithm 2. Since the
objective function in Eq. (12) decreases after each iteration
in Algorithm 1, it will finally converges to a local minimum.

Algorithm 2 Pseudo code describing the process of decom-
posing tensor T with the multi-affine model

Initialize U1, U2, · · · , UN ,Q
while not converge do

for i = 1 · · ·N do
Update-Mode(i) (Algorithm 1)

end for
end while
Q ← T ×1

[
U1 1̂m1

]T · · · ×N

[
UN 1̂mN

]T

4.2. Decomposition with Missing Data

In the presence of missing data, we need to update the
estimation of missing entries in each iteration as well. With
all Ui fixed, the optimization problem we need to solve for
the missing values becomes

min
Q,TU

∣∣T − Q×1

[
U1 1̂m1

]
· · · ×N

[
UN 1̂mN

]∣∣2 (25)

To solve for T and Q while fixing {Ui}, we put the ele-
ments in T and Q in column vectors t and q, respectively.
Since outer product operation ×i is a linear operation onQ,
Q×1

[
U1 1̂m1

]
· · ·×N

[
UN 1̂mN

]
can be viewed as a lin-

ear operation on q, denoted by Aq. We can also rearrange
the order of elements in t and A so that the entries corre-
sponding to known elements come after missing elements
in t and A. The optimization problem is then rewritten as
Eq. (26)

argmin
q,tU

∣∣∣∣[AU
AK

]
q−

[
tU
tK

]∣∣∣∣2
=argmin

q,tU
|AUq− tU|2 + |AKq− tK|2

(26)

where subscript “U” stands for “unknown” and “K” stands
for “known”. By using least square, we can solve q as q =
(AT

KAK)
−1AT

KtK, and then it follows that tU = AU · q.
The complete algorithm for decomposition with missing

data is described in Algorithm 3.

Algorithm 3 Pseudo code describing the process of de-
composing tensor T with missing data TU with multi-affine
model

Initialize U1, U2, · · · , UN ,Q, TU
while not converge do

for i = 1 · · ·N do
Update-Mode(i) (Algorithm 1)

end for
TU ←Minimizing Eq. (26) using least square

end while
Q ← T ×1

[
U1 1̂m1

]T · · · ×N

[
UN 1̂mN

]T



5. Reconstructing New Mode Vectors

The multi-affine model we learned from a training data
tensor can be used to recover missing data entries in a new
mode vector sampled from the same latent function.

5.1. Optimization Problem

Suppose v is a mode-1 vector of the model we learned,
namely

v = Q×1

[
U1 1m1

]
×2

[
w2

1

]T
· · · ×N

[
wN

1

]T
(27)

where wi ∈ Rki , i = 2, 3, · · · , N . Here we use 1 instead
of 1̂mi

to simplify notation since we can always perform
matrix transformation on Q to find an equivalent solution
that uses

{[
Ui 1

]}
instead of

{[
Ui 1̂mi

]}
.

Given a few observed data entries in v, we seek to solve
for the underlying parameters w2, w3, · · · , that generate v.
Let vK be the vector of known entries of v (i.e. with all
the unknown elements removed), and U1K be the matrix of
corresponding rows in U1. The modified objective function
is then

min
{wi}

∣∣∣∣∣vK −Q×1

[
U1K 1

]
×2

[
w2

1

]T
· · · ×N

[
wN

1

]T∣∣∣∣∣
2

(28)
The optimization problem in Eq. (28) can be solved by

alternately updating w2, w3, · · · , wN . Updating a certain
wi with the other variables fixed is simply a least square
problem. After solving the optimal parameters {wi}, the
vector v can then be reconstructed by Eq. (27).

5.2. Regularization

If the number of known data entries in v is less than the
sum of all dim(wi), the optimization problem in Eq. (28)
is under-constrained. Furthermore, even the observed data
entries may have noise; it is thus desirable to introduce a
regularization that constrains {wi} using prior knowledge.

Note that each mode-1 vector in a training data tensor has
corresponding rows in Ui as its {wi} parameter. Therefore,
rows of Ui can be viewed as examples of wi for new mode
vectors. Due to the zero-mean and orthonormal constraints
on
[
Ui 1̂mi

]
, for each column k in Ui, we have

µ̂ =
1

mi

mi∑
j=1

Ui(j, k) = 0 (29)

and

σ̂2 =
1

mi

∑
j=1

(Ui(j, k)− 0)2 =
1

mi
(30)

Therefore, we assume every entry of wi follows
N (0, 1/mi), and add a regularization term for {wi(k)} in

the optimization problem Eq. (28) as below:

min
{wi}

∣∣∣∣∣vK −Q×1

[
U1K 1

]
×2

[
w2

1

]T
· · · ×N

[
wN

1

]T∣∣∣∣∣
2

+λ

N∑
i=2

1

mi
|wi|2

(31)

where λ is a constant that controls the weight of the regular-
ization term. λ should be comparable to the variance of the
noise of vK.

Updating wi with other parameter vectors fixed remains
a least-square problem, so the alternating least square algo-
rithm in Section 5.1 still works.

Note that this regularization can be used in multi-linear-
model-based vector reconstruction in a similar way, which
forms an optimization problem:

min
{wi}

∣∣vK −Q×1 U1K ×2 w
T
2 · · · ×N wT

N

∣∣2+λ N∑
i=2

1

mi
|wi|2

(32)
However, the regularization term here is not reasonable and
lacks statistical foundation. The regularization terms in Eq.
(31) convey the belief that the vector v should not be very
far from the mean of all the mode-1 vectors in T . In the
limiting case, as λ → ∞, the solution of {wi} will become
0, in which case the reconstructed v using Eq. (27) will
become the mode-1 mean vector. In the multi-linear version
this nice property does not exist. Letting λ → ∞ leads to a
0-solution of {wi}, as well as a 0-solution of v.

5.3. Extension on Reconstructing Mode Vectors

Similar to Eq. (27), an m1 ×m2 mode-1, 2 matrix T (:, :
, i3, · · · , iN ) has a generative model as follows

T (:, :, i3, · · · , iN ) = Q×1

[
U1 1m1

]
×2

[
U2 1m2

]
×3

[
U3(i3, :) 1

]
×4 · · ·

×N

[
UN (iN , :) 1

]
(33)

Reconstructing a new mode-1, 2 matrix M thus can be done
by an optimization problem analogous to Eq. (31):

min
{wi}

∣∣∣∣∣MK −Q′ ×3

[
w3

1

]T
· · · ×N

[
wN

1

]T∣∣∣∣∣
2

+ λ

N∑
i=3

1

mi
|wi|2

(34)

whereQ′ = Q×1

[
U1K 1

]
×2

[
U2K 1

]
, and the subscript

“K” has the same meaning as in Eq. (28).
This extension can be generalized for reconstructing a

higher order sub-tensor in a similar way, for example, re-
constructing a mode-1, 2, 3 tensor is related to a generative



Figure 3: The figure demonstrates the exterior elements and
the interior elements of a 3× 5× 3 tensor. The exterior ele-
ments of a mode in a tensor is the set of elements whose sub-
scripts of that mode are equal to the dimension of that mode.
The interior sub-tensor excludes all exterior elements.
Best viewed electronically in color.

model

R = Q×1

[
U1 1m1

]
×2

[
U2 1m2

]
×3

[
U3 1m3

]
×4

[
w4

1

]T
· · · ×N

[
wN

1

]T
(35)

6. Experiments
The experiments are conducted on two data sets to com-

pare the performance of the multi-affine model and multi-
linear model. The first one is synthetic data, and the second
one is a set of landmarks describing the contours of faces
extracted from the CMU Multi-PIE Face Database [2].

6.1. Synthetic Experiment

The synthetic experiment is designed to show that if our
assumption is met, i.e. the translation offset cannot be ig-
nored, the multi-affine model outperforms the multi-linear
model in filling in the missing data in training data tensor
and in reconstructing the new mode vectors.

Given the dimension parameters, we first generate a core
tensor Q with every element as a random variable of (0, 1)
uniform distribution. Since only the exterior elements of
Q (see Figure 3) contribute to the constant offsets, we am-
plify the exterior elements of each mode with a factor of 10
respectively. We then generate matrices U1, · · · , UN with
every element drawn independently from N (0, 1). The data
tensor is then constructed by

T = Q×1

[
U1 1

]
· · · ×N

[
UN 1

]
+ ε (36)

where ε is the Gaussian noise.

6.1.1 Data Tensor Recovery

We randomly remove a certain number of values from T ,
and use both the multi-linear training algorithm and the
multi-affine training algorithm to recover them.

Note that the alternating optimization algorithm doesn’t
guarantee a global minimum, so both methods may fail to
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Figure 4: Experiment results on recovering missing values
in data tensor. 4a shows that multi-affine model succeeded
more times than multi-linear model. 4b shows that multi-
affine model training recovers missing values with smaller
residual errors. Best viewed electronically in color.
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Figure 6: Same comparison as Figure 5 but with large range
of noise level standard deviation. As the noise level in-
creases dramatically, the residual error of both multi-affine
and multi-linear models converges. The multi-affine model
results in much smaller limit residual error. See Section 5.2
for explanation. Best viewed electronically in color.

fit to the ground truth model and thus produce a wrong data
tensor. For each level of the missing data rate δ, we ran
both methods on 50 randomly generated training data ten-
sors. The results are shown in the Figure 4. The success rate
indicates the frequency that the algorithm can recover the
original data tensor. The residual error, measured on miss-
ing values, indicates the accuracy of missing value recovery
on successful tests.

In the experiment, the data tensor T is of size 12× 10×
8 × 6, and the core tensor Q is of size 7 × 6 × 5 × 3. The
noise on each element is a zero-mean Gaussian with 20.0 as
variance.

For a multi-linear model, Ui has one more column which
is not constrained to be 1. We believe the performance im-
provement of multi-affine model is due to the fact that it has
fewer free variables.

6.1.2 Vector Reconstruction

In this experiment we randomly generate mode-1 vectors
and make some of the entries missing. Then we use
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(a) δ = 0.2
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(b) δ = 0.4
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(c) δ = 0.6
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(d) δ = 0.8

Figure 5: Results of reconstructing missing data in new mode vectors using synthetic data. Residual errors are plotted against
the standard deviation of noise with increasing missing data rate δ from left to right. As the noise level and missing data rate
increase, the multi-affine model achieves noticeably smaller residual errors than multi-linear model.
Best viewed electronically in color.

both multi-linear and multi-affine models to reconstruct the
mode-1 vectors.

The mode-1 vectors are generated as follows

v = Q×1

[
U1 1

]
×1

[
w1

1

]T
· · · ×N

[
wN

1

]T
+ ε (37)

where elements of wi are drawn from N (0, 1) (same as
when we generate {Ui} for the training data tensor). The
noise term ε follows a zero-mean Gaussian distribution with
a variance of σ2, ranging from 0 to 100.

For each level of σ2, and each level of missing data rate
δ, we generated 100 mode-1 vectors and reconstructed them
by solving the optimization problem Eq. (32) (multi-linear)
and Eq. (31) (multi-affine), respectively. The weight of the
regularization term λ is chosen to be σ2. For each test we
recorded the root mean square residual errors on missing
values. The results are shown in Figure 5.

If the noise level keeps increasing and so does the reg-
ularization weight λ, the solution of wi will converge to
0 in both methods. Therefore, the residual errors of both
methods converge as shown in Figure 6. However in the
multi-linear case, the converged solution corresponds to a 0
reconstruction vector while in the multi-affine case, the limit
solution is the mode-1 mean vector, which is a much better
estimation and achieves much lower RMS error.

6.2. Experiment on Face Contours

We extracted the contour landmarks from the faces of 48
people in Multi-PIE [2] as our training data. For each person
we used 30 images with 5 poses and 6 expressions. The
contour landmarks consisted of 68 2D vertices, so the data
tensor T is an order-5 tensor of size 68×2×48×6×5. The 5
modes express vertices, dimension (2D vertices), identities,
poses and expressions, respectively.

We first trained a multi-linear model and a multi-affine
model out of this data tensor. Since the landmarks of some

face photos are unknown, the models were trained with
missing data. After the training, we used the model to re-
cover missing landmarks of face images that were not in the
training set.

Note that the landmarks of a single face image form a
68×2 matrix. Therefore, in our experiments, we reconstruct
mode-1, 2 matrices (as discussed in Section 5.3), rather than
new mode-1 vectors.

To evaluate our algorithm performance in the presence
of noise, we also added a certain amount of random pertur-
bation to the known landmark vertices. Figure 7 shows the
performance comparison of both the multi-linear model and
the multi-affine model on reconstructing the missing land-
mark locations, in terms of the root mean square errors. The
errors are calculated by measuring the distances of estimated
vertices from ground truth contours. Visual comparison of
some results are shown in Figure 8.

7. Conclusion

In this paper, we have proposed a multi-affine model to
handle arbitrary translation in different modes of tensor data.
This translation invariance property is desirable but unavail-
able in conventional multi-linear models. We also have gen-
eralized HOSVD to compute the multi-affine model from
an input tensor as well as to fill in its missing data. We
have shown that the multi-affine model can be used to re-
construct new mode vectors with noisy and missing data en-
tries. In particular, the regularization of the proposed multi-
affine model is more sensible and effective than that of the
multi-linear model for reconstructing new mode vectors. We
have applied this multi-affine model on synthetic data anal-
ysis and on a face contour modeling problem. The compari-
son results show that the multi-affine model outperforms the
multi-linear model in both filling in the missing values in
model training and reconstruction of new mode vectors in
model testing.
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(a) δ = 48/68
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(b) δ = 53/68
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(c) δ = 58/68
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(d) δ = 63/68

Figure 7: Results on reconstructing landmarks of face images that are not in the training set. Errors are plotted against the
standard deviation of noise with increasing missing data rate δ from left to right. Errors are measured by the distances of
estimated vertices from ground truth contours. As the noise level and missing data rate increase, the multi-affine model
achieves noticeably smaller errors than the multi-linear model. Best viewed electronically in color.

(a) Ground Truth (b) Multi-linear (c) Multi-affine

Figure 8: Results on face contour reconstruction. From left
to right, the three columns are the ground truth faces, the
faces reconstructed by the multi-linear model and the faces
reconstructed by the multi-affine model, respectively. In the
figure, the red vertices are known, and the blue ones are un-
known. Each input has only 5 known vertices, perturbed by
a noise with standard deviation of 5 pixels. Note that the
multi-affine reconstruction resembles the ground truth bet-
ter, in terms of face size and shape.
Best viewed electronically in color.
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