
CARP: Handling silent data errors and site failures in an integrated program and
storage replication mechanism

Lanyue Lu†, Prasenjit Sarkar, Dinesh Subhraveti, Soumitra Sarkar∗, Mark Seaman, Reshu Jain, Ahmed Bashir
Rice University†, IBM Almaden Research Center, IBM Watson Research Center∗

Email: ll2@rice.edu, psarkar@almaden.ibm.com, {dineshs,sarkar,seamanm,jainre,abashir}@us.ibm.com

Abstract
This paper presents CARP, an integrated program and

storage replication solution. CARP extends program repli-
cation systems which do not currently address storage er-
rors, builds upon a record-and-replay scheme that handles
nondeterminism in program execution, and uses a scheme
based on recorded program state and I/O logs to enable
efficient detection of silent data errors and efficient recovery
from such errors. CARP is designed to be transparent to
applications with minimal run-time impact and is general
enough to be implemented on commodity machines. We
implemented CARP as a prototype on the Linux operating
system and conducted extensive sensitivity analysis of its
overhead with different application profiles and system pa-
rameters. In particular, we evaluated CARP with standard
unmodified email, database, and web server benchmarks and
showed that it imposes acceptable overhead while providing
sub-second program state recovery times on detecting a
silent data error.

1. Introduction

Service downtime is one of the major reasons for revenue
loss in enterprises that is typically addressed by providing
redundant software and hardware. One approach to provid-
ing software redundancy is to mirror the state of a running
program to a set of replicas such that, in case of a failure,
one of the replicas assumes the place of the previously
running application instance. This provides the paradigm
of continuously available replica programs, where a replica
can take over the functionality of the failed primary without
any service downtime [1], [2]. Also, this technique avoids
the costly task of starting a new application instance on a
different machine.

However, program replication is not sufficient if critical
applications have to survive site failures. In the event of a
site failure, the program as well as its underlying storage
has to be replicated to a different site in a synchronized
manner. It is not possible to implement program and storage
replication with continuous availability (transition to the
replica program upon detection of a failure in the primary
without application outage) by separately leveraging pro-
gram replication and storage replication, where the latter

could be implemented using synchronous storage system of
Logical Volume Manager (LVM) mirroring. One needs a
more integrated approach as described in Section 2.2.

Integrating storage replication introduces a new set of
complications. Specifically, two types of errors need to be
handled to prevent replica divergence: hard errors and silent
data errors. Hard errors include complete disk failures [3]
and latent sector errors [4], which are due to the mechanical
characteristics of hard drives. Silent data errors [5] represents
a class of errors where the read data returned by the storage
system does not match the data that was last written to the
same disk address. While hard errors are detectable and
easier to recover from using standard program replication
techniques, silent data errors are not detected by conven-
tional protection techniques and are growing in magnitude
due to increasing disk capacities. The byte error rate of
silent data error is 10−7 reported in [6]. The percentages
of disks affected by silent data error per year for nearline
and enterprise class disks are 0.466% and 0.042% respec-
tively [5]. Traditional program replication techniques do not
handle silent data errors, and the execution of a program
replica which operates on corrupted data will eventually
diverge from other copies. In other words, if undetected,
the corrupted data can contaminate the program state.

In this paper, we introduce Continuously Available Repli-
cated Programs (CARP), an integrated program and stor-
age replication system that provides high availability, data
replica consistency, and also implements an efficient scheme
for program replicas to detect and recover from silent data
errors. CARP addresses a problem that is fundamentally
broader in scope than that of file system and database
management schemes, which handle silent error detection
and correction but do not address application-level recov-
ery from site failures. CARP extends program replication
systems which do not address storage errors, builds upon
a record-and-replay scheme that handles nondeterminism in
program execution, and introduces recorded program state
and I/O logs to enable efficient detection of silent data errors
(without a continuous checksumming overhead) as well as
efficient recovery from such errors. We targeted three key
goals for CARP: (i) efficiency in that the system should
only introduce minimal overhead for the replication; (ii)
fast recovery in that the replica programs should quickly



recover from the corruption introduced by silent data errors;
(iii) transparency in that the system should not require
applications to be modified since the source code of most
commercial applications is not available.

We implemented CARP as a prototype on commodity
Linux machines and conducted a series of micro-benchmark
experiments to determine its sensitivity to different applica-
tion profiles and system parameters. We also ran unmodified
email, database, and web application benchmarks on top of
CARP to measure its overhead in real-life situations. Our
results show that the overhead of CARP in these applications
ranges from 11% to 40%, with a recovery time of less than
a second in response to silent data errors.

The rest of the paper is organized as follows: Section 2
presents a high-level overview of CARP. Section 3 describes
the detailed architecture of CARP with particular emphasis
on the algorithm to detect and recover from silent data
errors and site failures. Sections 4.1 and 4.2 present the
results of our micro-benchmark experiments and the real-life
behavior of CARP respectively. Related work is introduced
in Section 5, and we present conclusions in Section 6.

2. Overview of CARP

2.1. Program Replication

The program replication technique that CARP builds on
is called Record and Replay (RR) [7]. In principle, CARP
can be built on top of any program replication system
that provides similar capabilities, such as [8], [9]. RR is
designed to support the recording and subsequent replay
of the execution of unmodified applications running on
multiprocessor systems. Multiple instances of an application
are simultaneously executed in separate virtualized environ-
ments called Containers, which facilitate state replication
between the application instances by resolving resource
conflicts and providing a uniform view of underlying op-
erating system resources across all replicas. In general, RR
addresses the replication of relevant operating system state
information including the state maintained within the kernel,
such as network state to preserve network connections across
failures, as well as the state resulting from non-deterministic
interleaved accesses to shared memory in SMP systems and
asynchronous order of writes.

The underlying RR system addresses each source of non-
determinism visible to the application and ensures its deter-
ministic replay. In particular, nondeterminism originating in
the system calls is addressed by serializing them, recording
the result along with their relative order and playing back
the same result and order. This approach addresses nondeter-
minism due to system calls such as gettimeofday, and
also interleaved asynchronous writes. Nondeterminism
due to concurrent accesses to shared memory is addressed by
efficiently recording shared memory accesses and enforcing
identical interleaving. Nondeterminism originating within

the network stack is addressed by recording the state of
the application sockets prior to each nonabortable send and
restoring it on failover. Kernel state which is not directly
visible to the application is not explicitly replicated.

A key limitation of RR is that it addresses program
replication without considering the storage system state.
CARP considers the storage related issues and in particular,
extends RR to support recovery from silent data errors in a
replicated program environment.

2.2. Integrated Replication
As mentioned in Section 1, a combined storage and pro-

gram replication mechanism is required in order to recover
cleanly from a site failure. For example, if an application
and its associated storage both fail at the primary site, the
mechanism must ensure a synchronized switch-over to a
replica site. Otherwise, if the program replication mechanism
performs a failover first, the program may be started at a
replica site with inconsistent storage data. In particular, all
writes in the operating system buffer cache that are not yet
committed to disk in the primary must also be reflected
across replicas in order for the program to recover correctly.

Motivated by the need to integrate storage and program
replication, we investigated three possible mechanisms that
can provide continuous availability and immunity to site
failures. The first mechanism is based on LVM mirroring,
which replicates the data writes between the LVM layers
in primary and replica to keep the contents of the logical
volumes synchronized. The second mechanism uses general
block level synchronous replication [10] between the pri-
mary and replica storage systems to attain the same goal. In
both of these mechanisms, only storage system writes are
replicated, not the contents of the buffer cache. In the third
mechanism, the program and its replicas are responsible
for storage replication. The program replicas access local
storage independently, and by virtue of having their exe-
cutions synchronized using program replication techniques,
their respective storage remains identical.

Of the three mechanisms considered above, only the third
can support continuous application availability upon site
failure. With the first two schemes, the application on the
secondary node cannot mount a file system on the replica
volume since it is read only and being constantly updated
to reflect changes in the primary. Therefore, the secondary
application’s read/write operations have to be monitored
and its input data is supplied from the primary using the
program replication channel. However, on failure of the
primary node, the only recovery option is to mount the
secondary’s file system on the replica volume after changing
it to read-write state, at which time the file system will
be oblivious of the secondary application’s open file states.
This problem can be addressed by restarting the application,
but that would violate the continuous availability constraint.
The third scheme works since it ensures that all replica file



systems have the same data, and the loss of uncommitted
writes at the primary site does not result in loss of data at
replica sites, allowing failover to the secondary application
without a restart.

A simple overview of the CARP architecture is shown in
Figure 1. Although the principles underlying CARP can be
extended to multiple replicas, for simplicity and to reflect our
prototype implementation, we consider the case of a single
secondary replica supporting a primary application. In the
description of the design, we assume without the loss of
generality that program A and its clone B run on different
hosts, each in an RR Container. Each program is backed
by a file system and back-end storage environment, and
the two environments are equivalent in that the file system
name-space relevant to programs A and B are identical.
A and B each issue system calls (e.g., open, close, read,
write) on separate files of the same name on each host,
and each host’s file system stores the underlying data on a
separate storage system. A replication link between the two
containers is used to exchange program state information
(needed for program replication) as well as I/O-related
information (needed to handle silent data errors) to ensure
the deterministic execution of program B with respect to A.
CARP is transparent by design and works with unmodified
applications since CARP operates only by intercepting file
system calls made by these applications.

Figure 1. An architectural overview of CARP

2.3. Silent Data Errors
An integrated program and storage replication mechanism

must deal with new issues introduced by storage replication,
particularly those that may potentially contaminate program
memory and cause program replicas to diverge. Silent data
errors represent one such issue that is understood to occur
whenever a read or write disk head seeks data improperly.
Silent data errors are largely workload dependent and high-
light an important limitation of conventional error-handling
techniques, which offer protection from issues that are
largely orthogonal to those posed by silent data errors [5].

CARP implements silent error detection using checksum-
ming. The checksum is stored independently of the data and
computed after all layers of the storage stack have completed

processing the data. Recovery from silent data errors requires
multiple copies of the data to identify the correct copy.
In the program replication environment, recovery involves
restoring not only the correct data but also the program state
that has been affected by corrupt data.

In the next section, we describe how CARP combines
an integrated program and storage replication mechanism
with checksumming to provide quick, low overhead recovery
from silent data errors.

3. Architecture and Design
We first describe a simple approach to detect silent data

errors. Assuming the executions of programs A and B are
synchronized at time T , when A reads data from a file on its
host, a checksum of that data is computed and communicated
to the RR Container of program B. When B performs the
corresponding read operation from its local file system, the
checksum computed on the data read is compared with that
sent by A’s Container. Any discrepancy in the checksums
indicates a silent data error.

Exchanging checksum information on every read can be
expensive, especially given that silent data errors are rela-
tively rare. CARP implements an optimized version of this
approach where the checksum exchange overhead is amor-
tized over a number of read operations. Instead of checking
for possible silent data errors on every read, checksum
comparison is performed periodically in one of three ways:
(a) Periodic cross-Container checking of read checksums.
(b) Before writing data to the external environment. (c) After
detection of the divergence of execution states between the
program replicas by the RR program replication system.

This periodic checksum comparison is referred to as a
CARP checkpoint and is distinct from the RR program
replication checkpoint. In the rest of the paper, the term
checkpoint refers to the CARP checkpoint. On detection of
a silent data error, the state of the program instance that used
corrupt data would no longer be valid and has to be restored
to the current state of the surviving instance. For efficiency,
CARP only restores the state of the program that may have
been polluted by the corrupt data. It tracks the side effects
of program execution - the virtual memory pages updated,
and the read and write operations performed - between
periodic checkpoints. Tracking of updated virtual memory
pages allows efficient program memory state recovery from
silent data errors without requiring a complete restart.

The rest of the section provides the detailed design of
CARP with respect to the various phases involved.

3.1. Initialization
For each execution cycle, the initial condition that must be

ensured is that the contents of all existing files to be accessed
by programs A and B are identical and error-free. A simple
approach for checking this is to calculate the checksum of
the complete file when it is first opened by a program, and



to subsequently compare it with the checksum computed
by the Container of the replica program instance when it
executes the open call. During execution, the content of each
file accessed by programs A and B are kept synchronized
and therefore, a similar check is not necessary when each
program terminates.

Ideally, this initial condition would only have to be
checked the very first time the program replicas are run.
However, running the check at the beginning of each exe-
cution cycle improves robustness since it eliminates human
errors (such as running only one copy without replication,
which could cause file contents to diverge).

The initialization phase is invoked at the start of the
execution cycle of programs A and B. Each program
maintains a set of in-memory state variables. The run-
ning read checksum variable serves as a unique signature of
all data read by the program since the previous checkpoint,
or since the start of the program if no checkpoint has been
performed yet. It is updated continuously after every read
request. The dirty pages list variable keeps track of all
virtual memory pages updated by the program since the last
checkpoint (or program start). The read operations queue
variable keeps track, in temporal order, of the set of read
operations (on all files) performed by the program instance
since the previous checkpoint (or program start).

The primary program A also maintains one
write operations log for each file that is created or
updated by the program. This log serves as the third copy
of each file and is persisted on the file system of the
primary server. The log is maintained in memory during
program execution (with appropriate cache flushing policy)
for efficiency. CARP stores the write operations log and
the original data on different disks in A. This greatly
reduces the probability of both copies of the data in
different disks having silent data errors at the same time.
The write operations log file for a data file is cached
appropriately into an in-memory hash table for efficient
reference.

3.2. Read and Write Processing
The read and write processing phases are executed on each

program instance during the processing of each read and
write system call. CARP intercepts every read and write sys-
tem call (file, offset, length) issued by the program instance.
In case a read or write is done through a memory map,
the processing phases are conducted when the respective
pages are read or written from the storage by instrumenting
the kernel buffer cache. The algorithm itself is agnostic to
the level at which file accesses are intercepted. For efficient
checksum computation and storage space usage, we chose
to calculate the data checksum at the page level instead
of the whole file or data block level. If the application
only accesses a small part of a big file, then file-level
checksum computation is not efficient. However, a block-

level checksumming strategy requires multiple checksum
computations for typical references, as well as a larger
checksum storage overhead. For these reasons, we calculate
the checksum at the page level, using the page size of 4
KB in Linux. For both read and write operations, all pages
(of a configured size) of file data that completely contain
the region of data being read or written are accessed. If the
operation is targeted at the end of the file such that the last
page boundary in the file contains less than a page of data,
then only the partial page is accessed.

Read processing involves computing the signature of
the request and the checksum of the actual data read.
For every file page accessed, CARP creates a new
read operations queue entry to record the tuple <request
signature, read data checksum>. The request signature is the
tuple <file, page no, length>. The data read is also used to
update the running read checksum variable.

The write processing phase is performed only on pro-
gram A (the primary instance). The write operations log
is updated with an entry per page which records the in-
formation <request signature, data checksum>. Each in-
memory write operations log is flushed to disk in a lazy
fashion: there is no dependency between the flushing of a
page and that of its checksum record, but when a close
or fsync call is issued on a file, the corresponding in-
memory write operations log entries should be flushed to
maintain sync-on-close semantics for the log. When the file
is closed or deleted by the application, CARP keeps the in-
memory write operations log until the next checkpoint. If
no errors are detected at the checkpoint, then CARP frees the
write operations log in memory for the closed or deleted
file. For a deleted file, the write operations log on disk is
also deleted at the checkpoint.

One key concern in checksum computation is the impact
on the overhead of CARP. Cryptographic hash functions
such as MD5 and SHA1 which provide strong collision
resistance and unpredictability are used to compute the
checksum. However, these functions are also compute in-
tensive and can steal cycles from the application if invoked
repeatedly. In the implementation of CARP, we evaluated
two methods: a software MD5 implementation and the
hardware CRC32 instruction [11]. The latter is a new feature
of Intel SSE 4.2 instruction set that only needs 0.4 cycles
to compute the checksum on one byte of data as opposed to
5-15 cycles in a typical software implementation [11].

3.3. Virtual Memory Tracking
Tracking of virtual memory page updates enables efficient

program restart on detection of a silent data error. If virtual
memory tracking is not in place, the program that accessed
dirty (corrupted) data would have to be restarted from a RR
program replication checkpoint of the surviving program in-
stance, and all its memory pages would have to be replaced.
This form of checkpoint restart would be expensive for an



application with a large memory footprint. The use of virtual
memory tracking allows us to limit memory page refreshes
to those which are potentially affected by a silent data error.
Our scheme can result in some virtual memory pages of the
failed program being replaced even if they are not affected
by corrupted file data being read. However, our experimental
evaluation demonstrates that the overall benefit of virtual
memory tracking outweighs the overhead of the scheme.

We evaluated two methods of virtual memory tracking in
CARP. The first method is illustrated in [2] and is based on
intercepting page faults. At the beginning of a checkpoint,
CARP changes the access control setting on all virtual mem-
ory pages of the program to READ ONLY. During normal
program execution, each update to a new virtual memory
page by the program results in an access control type of
page fault. Upon detection of the page fault, the CARP trap
handler modifies the page permissions to READ WRITE
and adds the page address to the dirty pages list for error
recovery purposes. Tracking page faults can be expensive for
applications that have large memory footprints. The second
method evaluated in CARP addresses this problem by using
a page table scanning method, where the dirty bit in the page
table is used to identify the virtual memory pages modified
by the application in between checkpoints. At the start of
a checkpoint, CARP clears all the dirty bits of pages in the
application’s memory space. When the program modifies a
virtual memory page, the hardware automatically marks the
dirty bit for that page in the page table. Once a silent data
error is detected on a checksum mismatch, CARP scans the
page table of the application’s memory space to find the dirty
pages since the last checkpoint. A performance comparison
between the two methods is discussed in Section 4.1.

3.4. Silent Data Error Detection
The overall process of silent data error detection and

recovery is illustrated in Figure 2. The periodic checking
mechanism works as follows. During the processing of read
system calls, for every N read calls processed (where N
is a configured value), the current running read checksum
value is sent to the replica. In the CARP scheme, since there
is a clearly defined primary copy, e.g., program A, this is
sent from A to B. If the two values do not match, then a
silent data error has occurred in one of the instances and
error recovery is initiated. Checking is also enforced before
sending output to the user and during program termination
regardless of N .

All data written by a program instance must be checked
against its replica for the possibility of divergence caused by
a read error. This is important because any communication
of erroneous information to the external world can result in
an irreversible action by an end user or a dependent program.
Therefore, the second checking mechanism leverages the
Container’s ability to trap system calls that write to the
console or a network pipe (socket). On detecting such

a system call, the mechanism performs a cross-Container
validation of the checksum of the data written to ensure that
the two copies are writing identical data. If the checksums
do not match, the recovery phase is initiated.

Figure 2. The overview of silent data error detection and
recovery process

The third checking scheme exploits the program replica-
tion mechanism in RR, which can detect that program B
has issued a monitored system call that A never issued, thus
indicating that state divergence has occurred. Though it is
possible that something other than a silent data error caused
this divergence, CARP assumes that a silent data error is the
cause and initiates error recovery.

A key concern about the above mechanisms is the
communication overhead between the replicas. Exchanging
synchronous network messages between the primary and
the secondary is not advisable as message latency on the
networks can add to CARP overhead. Instead, we use
an asynchronous scheme for exchanging state information
between the replicas. Once the state information is sent,
the primary continues its execution without waiting for a
response. When the result of the comparison is returned, the
primary decides whether to continue execution or perform
recovery processing.

During a checkpoint, the comparison of the run-
ning read checksum between replicas may not yield any
evidence of a silent data error, in which case CARP clears the
in-memory read operations queue and the dirty pages list
variables, and clears the dirty bit of each virtual memory
page of the program. The state of the program at this point
is marked as a known good state. The read processing, write
processing and virtual memory tracking phases are then
repeated.

3.5. Storage and Program Recovery

The recovery phase is invoked when a silent data error
is detected, implying the presence of corrupted data in one
of the two systems. For CARP to determine which file is
correct requires the use of a third copy as a tie-breaker. The
write operations log serves as the source of checksums of



the data file content, and is used to determine the correct
version of the data file to use to replace the corrupted file.

The recovery steps are performed in a synchronized
fashion between the two Containers. First, the algorithm
traverses the read operations queue on both A and B,
comparing the request signature (file name, page number
and length) and data checksum value of each entry. If the
request signatures match but the checksums do not, then
one instance has corrupted data and the algorithm proceeds
to correct the content of the corrupted file. To identify the
corrupted file, CARP retrieves the checksums corresponding
to the pages read from the write operations log on the
primary and compares the checksums with those obtained
by actually reading those pages from the files on both
machines. The file whose page checksums match the ones
from the write operations log has the correct copy of the
pages and that copy is used to replace those pages in the
corrupted copy of the file. Since we assume that the file
systems of the primary and secondary nodes are checksum
identical at the beginning of execution cycle, thus the reads
of blocks that are not written to are also guaranteed to be
identical. The algorithm continues the comparison step for
subsequent entries in the read operations queue. Since the
RR program replication system can detect all divergences
in program state between A and B, the request signatures
in the read operations queue for programs A and B are
guaranteed to be identical.

Once the effects of silent data error have been corrected
on the individual file systems, the virtual memory pages in
the dirty pages list of the correct program are copied to the
corrupted program instance. All registers and other critical
resources (e.g., file descriptors) from the correct program
instance are also copied to the corrupted copy. While CARP
restores only memory pages that potentially contain corrupt
data, it does not attempt to restore the kernel state incre-
mentally. Application’s state is dominated by its memory
footprint. Kernel state itself is negligible in comparison and
it is checkpointed in its entirety and restored. Next, each
CARP instance clears the in-memory read operations queue
and dirty pages list variables, clears the dirty bits of all
virtual memory pages of the program, and resumes program
execution.

It is theoretically possible that there is a mis-
match between the primary, the secondary and the
write operations log for a page, making the determination
of the correct copy unresolvable. In that case the efficient
recovery scheme described above is not feasible and both
programs have to be restarted from a previous RR program
replication checkpoint. Since this scenario indicates multiple
silent data errors occurring in close temporal proximity and
affecting the same page, we believe that the probability of
this event is very small.

3.6. Site Failure Detection and Recovery
CARP is built on top of RR, which provides the ba-

sic infrastructure for communication (and synchronization)
of state information between the primary and secondary
nodes. RR depends on distributed systems techniques (IBM’s
RSCT [12]) to reliably alert it when its partner node has
failed. RSCT implements a heartbeat-based topology ser-
vices abstraction on top of which a group services abstrac-
tion is provided. The group services mechanism forms the
basis of a group-membership-based majority quorum. The
system has been adapted in the past to include a disk-
based quorum determination algorithm for 2-node clusters,
which uses disk-based heartbeating and a role-based backoff
protocol to decide which node is in charge after a failure.
The overall scheme only works well in a LAN environment.

Because the RR secondary flushes and commits the event
log before the primary releases any information to the
external world, the secondary’s state is always sufficiently
synchronized with that of the primary to enable it to take
over upon primary failure. If the primary is told that the
secondary is dead, program execution continues on the
primary without replication. If the secondary is told that
the primary is dead, then IP address takeover by issuing a
reverse ARP packet on the network must first be carried
out, which the secondary can do reliably since the quorum
algorithm above ensures that the primary is dead (possibly
because it shut itself down).

The failback operation involves restarting the application
on the (old) primary and restoring replication from the
(old) secondary. This includes the file system state, the
RR runtime, the RR-RR communication link, and the (old)
secondary’s application execution state. To restore the file
system state on the (old) primary node from the (old) sec-
ondary, a well known file system replication technique as in
Coda is used. Once the file systems are synchronized, the RR
runtime system is started on the (old) primary node and the
communication link with the RR on the (old) secondary node
is reestablished. Next, the execution state of the secondary
application is set to STOPPED, and file system replication
is terminated since any further data synchronization will
be achieved by CARP + RR replication. A full checkpoint
of the secondary application is created using the local RR
runtime, transmitted to the primary node’s RR runtime over
the network link, and restored in the primary node in the
STOPPED state. Finally, the application is resumed (its
execution state changed to RUNNING) on both nodes, at
which point program and storage replication using RR +
CARP is restored and failback is complete.

4. Evaluation
We have implemented the CARP prototype in the Linux

2.6.18 kernel as a loadable kernel module, which provides
the full functionality of checksum comparison, virtual mem-
ory page tracking, storage and program state recovery. To



understand the sources of overhead, we first evaluated CARP
using a detailed micro-benchmark analysis with different
application profiles and system parameters. To validate the
hypotheses of low overhead and quick recovery of CARP
in real application environments, we tested with unmodified
Internet email, database and web server benchmarks. All the
experiments were conducted on two commodity servers with
quad-core Intel Xeon 3.0 GHz processors, 2 GB of main
memory, 80 GB SAS disk and 1 GBps Broadcom Netxtreme
network interface.

Parameter Default
Number of reads between checkpoints 50
Total number of operations 100,000
Read/write ratio between checkpoints 0.5
Number of dirty memory pages generated be-
tween reads

5

Application memory usage 1 MB
Application file size 1 MB

Table 1. Micro-benchmark parameters and default values

We used the execution time overhead of CARP over
the baseline (bare machine) and baseline-RR (RR program
replication system), and the number of memory pages trans-
ferred for application recovery as the principal metrics of
comparison. The first metric indicates the penalty imposed
on applications to run in the CARP environment. The second
metric is the principal factor that determines how fast an
application can recover from a silent data error assuming a
well provisioned network that is typical in disaster recovery
scenarios. We also report on other metrics such as the
disk space and memory overheads imposed by CARP. The
evaluation of handling site failures is our future work.

4.1. Micro-benchmark Evaluation
This section explores the parameter space to identify the

overhead of CARP. Our micro-benchmark issues a series of
reads and writes to a test file with an equal number of ran-
dom and sequential accesses, while generating dirty pages at
random memory locations between successive reads. There
are several configuration parameters which we varied to
evaluate the sensitivity of CARP to these parameters. These
parameters and their default values are shown in Table 1.

We compared four variants of CARP: baseCARP,
baseCARP+asyn, baseCARP+asyn+crc and base-
CARP+asyn+crc+pte. The baseCARP sends synchronous
network messages for exchanging the checksum at each
checkpoint, uses software MD5 to compute the checksum,
and marks the virtual memory pages read-only to track
the dirty memory pages using the page fault handler.
The baseCARP+asyn adds the optimization of sending
asynchronous messages for checksum exchange. The
baseCARP+asyn+crc adds the use of the hardware CRC32
instruction for computing the checksum instead of MD5.
Finally, the baseCARP+asyn+crc+pte adds the mechanism
of scanning the page table to track the dirty memory
pages instead of trapping page faults. In the following

experiments, we will use C1 to C4 to denote the above four
versions of CARP.

 0

 2

 4

 6

 8

 10

 12

 14

 16

baseline

C1-10

C2-10

C3-10

C4-10

baseline

C1-100

C2-100

C3-100

C4-100

baseline

C1-1000

C2-1000

C3-1000

C4-1000

Ti
m

e 
(s

ec
on

d)

baseline
network

dirty page
checksum

baseline-RR

Figure 3. Analysis of the overheads for checkpoint frequen-
cies

The total execution time of CARP in the micro-
benchmarks is partitioned to four parts: network delay, dirty
page tracking, checksum and baseline-RR. The network
delay overhead is that of exchanging the checksum between
the primary and the replica. The dirty page tracking over-
head is that of detecting the dirty memory pages since last
checkpoint. The checksum overhead is that of checksum
computation and management. The baseline-RR overhead
is that of executing the benchmark in the RR program
replication environment on which CARP is based. While
the baseline is running the benchmark on the bare machine
without RR or CARP.

4.1.1. Effect of Checkpoint Interval. A value of N for
the checkpoint interval implies that the primary and the
replica exchange the checksum for every N read operations.
With a default set of parameters, we varied N from 10 to
1000. As Figure 3 shows, the total execution time of the
CARP variants is partitioned into four parts as discussed in
our experimental methodology. The execution time of the
baseline is not affected by the variation of N. The total
execution time of all the CARP variants decrease with an
increase in N because a larger value of N leads to less
frequent checkpointing, which results in less network delay
and dirty page tracking overhead. For a value of 10 for N,
the execution time of C1 is 10.23 times that of the baseline-
RR, while for C4 the execution time is 1.84 times that of
the baseline-RR. For a value of 1000 for N, the execution
time of C1 is 4.16 times that of the baseline-RR, while for
C4 the execution time is 1.33 times that of the baseline-RR.
C4 significantly outperforms C1 due to the optimizations
described in Section 4.1 above. For N = 1000, we find that
the network delay and dirty page tracking overheads are very
small for all the CARP variants, but the checksum overheads
of C1 and C2 are still 10.57 times that of C3 and C4 due to
use of hardware CRC instructions rather than performing
the MD5 calculation in software. For comparison of the
baseline, for N = 1000, the execution time of C4 is 3.5 times
of the baseline, since this experiment is very system call
intensive, leading to big overhead of interception of system



 0

 2

 4

 6

 8

 10

 12

 14

 16

baseline

C1-5
C2-5

C3-5
C4-5

baseline

C1-50

C2-50

C3-50

C4-50

baseline

C1-500

C2-500

C3-500

C4-500

Ti
m

e 
(s

ec
on

d)

baseline
network

dirty page
checksum

baseline-RR

Figure 4. Analysis of the overheads for dirty memory
pages between reads

 0

 5

 10

 15

 20

 25

 30

 35

baseline

C1-1
C2-1

C3-1
C4-1

baseline

C1-10

C2-10

C3-10

C4-10

baseline

C1-100

C2-100

C3-100

C4-100

Ti
m

e 
(s

ec
on

d)

baseline
network

dirty page
checksum

baseline-RR

Figure 5. Analysis of the overhead for memory pool sizes
(MB)

call by RR system. The overhead of CARP is acceptable in
the real applications which is shown in Section 4.2.

4.1.2. Effect of Dirty Memory Pages. The benchmark
performs operations which generate dirty virtual memory
pages between successive reads. With an increase in the
ratio of dirty memory page operations between reads, the
relative number of file system calls in the benchmark is
lower, leading to a lower overhead of checkpointing, but
a higher overhead of dirty page tracking. Both the baseline-
RR and baseline execution time increase because the number
of memory operations increases, leading to increase of
total benchmark processing time. As Figure 4 shows, with
an increase in the ratio of dirty memory pages generated
between reads from 5 to 500, the overhead of all the
CARP variants decreases accordingly. When the ratio of dirty
memory page generated between reads is 5, the execution
time of C1 is 5.59 times that of the baseline-RR, while that
of C4 is 1.66 times that of the baseline-RR. When the ratio
is 500, the execution time of C1 is 1.72 times that of the
baseline-RR, while that of C4 is only 1.12 times that of
the baseline-RR. For comparison of the baseline, for the
ratio of 500, the overhead of C4 is 21.3% of the baseline.
So, if the application contains a small percentage of file
system calls, the overhead of CARP over the baseline can
be within an acceptable range. The reason why the dirty page
tracking overhead does not increase significantly is that the
memory pool size is only 1 MB and the dirty memory page
operations will touch nearly all the memory pages of the
pool when the ratio of dirty pages generated between read
operations is 5. When this ratio is 500, a similar phenomenon
occurs resulting in similar overhead. Performance analysis
with various memory pool sizes is presented next.

4.1.3. Effects of Memory Pool Size. We measured the
sensitivity of the CARP variants as the memory pool size
of the benchmark is varied from 1 MB to 100 MB. This
experiment has the potential to compare the virtual memory
tracking mechanisms as the dirty page tracking overhead
is proportional to memory pool size given a fixed ratio of
dirty memory page operations generated between reads. As

Figure 5 shows, the execution time of C1 grows by a factor
of 4 while that of C4 grows by a factor of 1.5 in this
experiment reflecting lower overhead for the virtual memory
tracking mechanism involving page table entries. We can see
that the dirty page tracking overhead increases significantly
with a larger memory pool size for the virtual memory
tracking method involving page fault handling [2]. When
the memory pool size changes from 1 MB to 100 MB, the
dirty page tracking overhead of C1 to C3 grows by a factor
of about 25, while the dirty page tracking overhead of C4
only increases by a factor of 2, reflecting a lower overhead
of the virtual memory tracking mechanism involving page
table entries. Compared with the baseline, the execution time
of C4 is 3.6 times of the baseline, since this experiment is
also system call intensive (the ratio of dirty memory page
operations between reads is 5).

4.1.4. Micro-benchmark Overhead Summary. In this sec-
tion, the overhead of the most optimized CARP variant
C4 has an average of 26% and a minimum of 12.0%
over the baseline-RR. For system call intensive experiments,
the execution time of C4 is very high compared with the
baseline as the experiments shown above. While this gives
us an initial estimate under a large spectrum of parameters
and provided insight for optimizations in CARP, testing with
real life applications gives a better idea of the overhead
in practical situations. For disk space overhead, the size
of write operations log for each file is only 0.3% of the
file size because there is a log entry for each file page
in the write operation log for its checksum. For memory
usage overhead, CARP maintains a hash table to store the
write operations log in memory for fast access. In this
micro benchmark, for a file size of 1 MB, the extra memory
usage is 3 KB, which is a small percentage of the memory
used by the benchmark.

4.2. Macro-benchmark Evaluation
As mentioned earlier, an evaluation of CARP in several

representative real applications will give a better insight
into the overheads. In that vein, we chose three bench-
marks: Postmark file system I/O benchmark, PostgreSQL



 0

 20

 40

 60

 80

 100

 120

 140

1000 10000 50000 100000

Ti
m

e 
(s

ec
on

d)

Number of transactions

baseline
baseline-RR

CARP

(a) Variable number of transactions (x-axis)

 0

 50

 100

 150

 200

 250

1 2 4

Ti
m

e 
(s

ec
on

d)

Number of clients

baseline
baseline-RR

CARP

(b) Variable number of clients (x-axis)

Figure 6. The execution time of the baseline and CARP for PostgreSQL

database benchmark and Apache web server benchmark. We
used the most optimized variant of CARP (C4) with the
default system parameter of 50 as the checkpoint interval,
and compared it to the baseline (bare machine) and the
baseline-RR (RR program replication system) with respect
to execution overhead. We also calculated recovery times by
measuring the transfer time of sending dirty memory pages
over a long-distance gigabit link when a silent data error is
encountered; the experiment also validated that the program
behaves correctly after recovery. Finally, we measured disk
and memory overhead of CARP, but they are not reported as
the overhead is minimal (< 5%). Due to space limitations,
the results of the Postmark benchmark are not shown here.

4.2.1. PostgreSQL. PostgreSQL [13] is an object-relational
client-server database management system that supports
standard SQL transactions. The server process manages the
database files, accepts connections to the database from
client applications, and performs actions on the database on
behalf of the clients. The pgbench benchmark is a client
application of PostgreSQL, which runs queries similar to
those of the TPC-B benchmark on the database.

CARP monitors the server process of PostgreSQL to
intercept the read and write operations to the database files.
In Figure 6(a), we varied the number of transactions from
1000 to 100,000 for one client. The execution overhead of
CARP is 8.6% to 11.1% slower than that of the baseline-RR,
while 18.6% to 30.4% slower than that of the baseline. The
average dirty memory pages generated in each checkpoint
is 8.3% of the total.

To test the overhead of CARP in a multi-client environ-
ment, we varied the number of clients from 1 to 4 with
50,000 transactions for each client as seen in Figure 6(b).
The overhead of CARP ranges from 8.1% to 10.4% over
the baseline-RR and 25.7% to 40% over the baseline in
this experiment. The number of average dirty memory pages
generated for each process is 6.1% of the total. The results
above show that the execution overhead and recovery times
of CARP meets our goals in the pgbench benchmark.

4.2.2. Apache Httpd. We are also interested in the behavior
of CARP in web server applications. The Apache HTTP
Server [14] accepts HTTP requests from the clients and

sends back the requested data. The httperf benchmark [15]
measures web server performance by generating web re-
quests and measuring the resultant response rates.

 0

 5

 10

 15

 20

 25

 30

5000 10000 20000 40000
Ti

m
e 

(s
ec

on
d)

Number of connections

baseline
baseline-RR

CARP

Figure 7. The execution time of the baseline and CARP for
httperf

In the experiment illustrated in Figure 7, the number of
HTTP requests from one client to the web server was varied
from 5,000 to 40,000. The overhead of CARP ranges from
3.4% to 4.2% over that of the baseline-RR and 37% to 40%
over the baseline. Since the HTTP workload involves inten-
sive TCP/IP message processing, only a small percentage of
time is for the I/O processing, leading to a smaller overhead
of CARP over the baseline-RR in httperf compared to that
in Postmark and PostgreSQL. The number of average dirty
pages for each Apache server process is 6.3% of that of
the total. Consequently, we achieve low recovery times for
CARP in the web benchmark.

5. Related Work
A lot of work has been devoted to the development of

checkpointing techniques for rollback recovery in program
replication. Remus [2] describes a system that incrementally
checkpoints the virtual machine state at a high frequency
between the primary host and a secondary host. Outputs of
the virtual machine are buffered until the next checkpoint
is committed to the passive backup machine. These check-
pointing mechanisms only focus on program replication and
replay to handle the site failures, but cannot detect or correct
silent data errors of storage systems. Byzantine fault-tolerant
systems [16] use state machines for program or storage
replication, requiring the program or storage to either be
deterministic, or to only support limited nondeterminism.



However, CARP implements integrated program and storage
replication and supports both program and storage-level
nondeterminism such as multi-threading and silent data
errors.

To address silent data errors, the T10 standards committee
has proposed the SCSI Block Command Standard-3 [17]
as an enhancement to the SCSI protocol. However, the
proposal does not cover the detection of all types of silent
data errors such as dropped writes [18]. Teradata’s Database
System [19] replicates the DBMS on a cluster of failback
mirrors. It periodically compares the primary and failback
copies of data, reports any discrepancies, and reconstructs
the corrupted copy from the good replica. Tandem’s Non-
Stop Server [1] provides fault tolerance of enterprise-class
applications using a combination of hardware and software
solutions. They reinforce the system through component
redundancy and extensive error checking using both trans-
parent and non-transparent mechanisms. All of the above
mechanism are based on high end hardware or software
systems, such as advanced disk arrays or expensive database
clusters. In contrast, CARP can be deployed on systems
running on commodity hardware and can handle a wider
range of applications.

Several commercial file systems handle silent data errors.
Sun’s ZFS [20] and Google’s GFS [21] implement end-
to-end checksumming of all data and constantly verified
data correction on each read operation. They recover the
corrupted data from a replica copy. CARP also uses a
checksum mechanism and a third copy to detect and recover
from silent errors. However, CARP addresses a broader and
more complex problem than file systems do, that of silent
data error detection and correction in the context of program
replication. It implements a more efficient error detection
scheme that does not incur the overhead of checksum com-
putation for every data read, and leverages saved program
state in both replicas to enable efficient recovery when a
silent error is detected.

6. Conclusions
This paper presents CARP, a transparent low-overhead

integrated program and storage replication solution that pro-
vides efficient detection and recovery from silent data errors.
CARP addresses a problem that is fundamentally broader
in scope than that of file system and database management
schemes that handle silent error detection and correction. We
implemented CARP on Linux and demonstrated acceptable
overhead and quick recovery times (< 1s) with unmodified
email, database and web benchmarks on detecting a silent
data error.

References

[1] W. Bartlett and L. Spainhower, “Commercial Fault Tolerance:
A Tale of Two Systems,” in IEEE Transactions on Depend-
able and Secure Computing, Jan. 2004.

[2] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield, “Remus: High Availability via Asynchronous
Virtual Machine Replication,” in NSDI, 2008.

[3] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure Trends
in A Large Disk Drive Population,” in FAST, 2007.

[4] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler, “An Analysis of Latent Sector Errors in Disk
Drives,” in SIGMETRICS, 2007.

[5] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dussea, “An Analysis of
Data Corruption in the Storage Stack,” in FAST, 2008.

[6] B. Panzer-Steindel, “Data Integrity, CERN IT Group,” 2007.

[7] P. Bergheaud, D. Subhraveti, and M. Vertes, “Fault Toler-
ance in Multiprocessor Systems Via Application Cloning,” in
ICDCS, 2007.

[8] C. Basile, Z. Kalbarczyk, and R. Iyer, “A Preemptive Deter-
ministic Scheduling Algorithm for Multithreaded Replicas,”
in DSN, 2003.

[9] M. Russinovich and B. Cogswell, “Replay for Concurrent
Non-deterministic Shared-memory Applications,” in PLDI,
1996.

[10] J. Orcutt, “Data replication strategies,” 2005, sun Microsys-
tems White Paper.

[11] S. R. King, F. Berry, and M. E. Kounavis, “Performing A
Cyclic Redundancy Checksum Operation Responsive to A
User-level Instruction,” Intel Corporation Patent, 2007.

[12] “Reliable Scalable Cluster Technology (RSCT),”
www.redbooks.ibm.com/abstracts/tips0090.html?Open.

[13] “PostgreSQL,” http://www.postgresql.org.

[14] “The Apache HTTP Server Project,” http://httpd.apache.org.

[15] D. Mosberger and T. Jin, “httpperf: A tool for measuring web
server performance,” Performance Evaluation Review, 1998.

[16] M. Castro and B. Liskov, “Practical Byzantine Fault Toler-
ance,” in OSDI, 1999.

[17] M. Evans, “Information Technology-SCSI Block
Commands-3(SBC-3),” http://www.t10.org/cgi-
bin/ac.pl?t=f&f=sbc3r17.pdf, 2008.

[18] J. L. Hafner, V. Deenadhayalan, W. Belluomini, and K. Rao,
“Undetected Disk Errors in RAID Arrays,” in IBM Journal
of Research and Development. VOL.52, 2008.

[19] J. Dietz and L. Hedegard, “The Benefits of
Enabling Fallback in The Active Data Warehouse,”
www.teradata.com/tdmo/v07n01/pdf/AR5201.pdf, 2007.

[20] J. Bonwick, “ZFS,” in LISA, 2007.

[21] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” in SOSP, 2003.


