Skill Acquisition via Transfer Learning
and Advice Taking

Lisa Torrey', Jude Shavlik!, Trevor Walker' and Richard Maclin?

! University of Wisconsin, Madison WI 53706, USA
2 University of Minnesota, Duluth, MN 55812, USA

Abstract. We describe a reinforcement learning system that transfers
skills from a previously learned source task to a related target task. The
system uses inductive logic programming to analyze experience in the
source task, and transfers rules for when to take actions. The target task
learner accepts these rules through an advice-taking algorithm, which
allows learners to benefit from outside guidance that may be imperfect.
Our system accepts a human-provided mapping, which specifies the sim-
ilarities between the source and target tasks and may also include advice
about the differences between them. Using three tasks in the RoboCup
simulated soccer domain, we demonstrate that this system can speed up
reinforcement learning substantially.

1 Introduction

Machine learning tasks are often addressed independently, under the implicit
assumption that each new task has no relation to the tasks that came before. In
some domains, particularly reinforcement learning (RL) ones, this assumption
is often incorrect since tasks in the same domain tend to be related. Even tasks
that are quite different in their specifics may have general similarities, such as
shared skills; that is, conditions under which an agent should take an action.
Our goal is to transfer general skills from a source task in order to speed up
learning in a new but similar target task.

For example, suppose an RL soccer player has learned, in a source task, to
keep the ball from its opponents by passing to its teammates. In the target task,
suppose it must learn to work with teammates to score goals against opponents.
If this player could apply its passing skills from the source task, it might master
the target task more quickly.

Even when RL tasks have shared skills, transfer between them is a difficult
problem because differences in action sets and reward structures create differ-
ences in shared skills. For example, the passing skill in the source task above
is incomplete for the target task, where passing needs to cause progress toward
the goal. This indicates that RL agents using transferred information must con-
tinue to learn, filling in gaps left by transfer. Since transfer might also produce

Appearing in ECML’06. This research is partially supported by DARPA grant
HR0011-04-1-0007 and US NRL grant N00173-06-1-G002.

3 > 5
& > (3
S 3
o 9]
o) ()
KeepAway BreakAway MoveDownfield

Fig. 1. Snapshots of RoboCup soccer tasks.

partially irrelevant or incorrect skills, RL agents must also be able to modify or
ignore transferred information that is imperfect.

One way to facilitate transfer is for a human observer with basic domain
knowledge to provide a mapping between source and target tasks. A mapping
describes the structural similarities between the tasks, such as correspondences
between player objects in the example above. It might also include simple advice
that reflects the differences between the tasks. In our example, tips like “prefer
passing toward the goal” and “shoot when close to the goal” would be helpful.

We present a system for transfer learning in RL called AI? (Advice via Induc-
tion and Instruction). It constructs relational transfer advice by using inductive
logic programming to analyze experience in the source task and learn skills in
first-order logic. The user contributes a mapping between the tasks that may
include user advice. The target-task learner considers the advice while learning
and can follow it, refine it, or ignore it according to its value.

The AI? approach performs transfer at a higher level of abstraction than
some previous approaches [14, 15]. For this reason, it performs well in transfer
scenarios involving more distant tasks. We present empirical results in the chal-
lenging RoboCup simulated soccer domain, demonstrating significantly faster
learning in the target task BreakAway [15] after performing user-guided transfer
from the source tasks KeepAway [9] and MoveDownfield (see Figure 1).

2 Reinforcement Learning in RoboCup

In reinforcement learning [13], an agent navigates through an environment trying
to earn rewards or avoid penalties. The environment’s state is described by a
finite number of features, and the agent takes actions to cause the state to
change. In (-learning, the agent learns a @-function to estimate the value of
taking an action from a state. An agent’s policy is typically to take the action
with the highest @-value in the current state, except for occasional exploratory
actions. After taking the action and receiving some reward, the agent updates
its Q-value estimates for the current state. AI® uses the SARSA and TD())
reinforcement learning algorithms designed by Sutton [11,12].

In the RoboCup learning task of M-on-N KeepAway [9], the objective of
the M reinforcement learners called keepers is to keep the ball away from N

hand-coded players called takers. The game ends when an opponent takes the
ball or when the ball goes out of bounds. The learners receive a +1 reward
for each time step their team keeps the ball. Keepers without the ball follow a
hand-coded strategy to receive passes.

In the original KeepAway task, the keeper who has the ball can choose only
to hold it or pass to a teammate. We introduce a new version called Mobile
KeepAway, in which this keeper can also move (inwards, outwards, clockwise and
counterclockwise with respect to the field center). With more realistic movement,
this version may transfer better to other games.

Our KeepAway state representation is based on the one designed by Stone
and Sutton [9]. The keepers are ordered by their distance to the learner k0, as
are the takers. The features are listed in Table 1.

Note that our logical variables are capitalized and typed (Player, Keeper,
etc.). For simplicity we indicate types by variable names, leaving out terms like
player(Player), keeper(Keeper), etc. Constants are uncapitalized.

A second RoboCup task is M-on-N BreakAway [15], where the objective of
the M reinforcement learners called attackers is to score a goal against N — 1
hand-coded defenders and a hand-coded goalie. The game ends when they suc-
ceed, when an opponent takes the ball, when the ball goes out of bounds, or
after a time limit of 10 seconds. The learners receive a +1 reward if they score a
goal, and zero reward otherwise. Attackers without the ball follow a hand-coded
strategy to receive passes. The attacker who has the ball may choose to move
(ahead, away, left, or right with respect to the goal), pass to a teammate, or
shoot (at the left, right, or center part of the goal).

Our BreakAway state representation is the one presented in Torrey et al. [15].
The attackers are ordered by their distance to the learner a0, as are the defenders.
The features are listed in Table 1.

We also introduce a third RoboCup task called M-on-N MoveDownfield,
where the objective of the attackers is to move toward the opposing team’s
goal while maintaining possession of the ball. The game ends when they cross a
vertical line on the field, when an opponent takes the ball, when the ball goes out

Table 1. RoboCup task feature spaces.

KeepAway features BreakAway and MoveDownfield features
distBetween(k0, Player) dist Between (a0, Player)

distBetween(Keeper, ClosestTaker) distBetween(Attacker, ClosestDefender)
angleDefined By (Keeper, k0, ClosestTaker)| angleDefinedBy(Attacker, a0, ClosestDefender)
xPosition(Object) xPosition(Object)

yPosition(Object) yPosition(Object)

distBetween(Keeper, fieldCenter) distBetween(Attacker, goalCenter)

distBetween(a0, GoalPart)
angleDefinedBy (GoalPart, a0, goalie)
angleDefinedBy (topRight, goalCenter, a0)
distBetween(Attacker, goalie)
angleDefined By (Attacker, a0, goalie)
timeLeft

of bounds, or after a time limit of 25 seconds. The learners receive symmetrical
positive and negative rewards for horizontal movement forward and backward.
Attackers without the ball follow a hand-coded strategy to receive passes. The
action set and feature set are the same as in BreakAway, except without the
shoot actions and most of the features involving the goal.

Our system discretizes each feature in these tasks into 32 intervals called
tiles, each of which is associated with a Boolean feature. For example, the tile
denoted by distBetween(a0, al)j1p,20) takes value 1 when af is between 10 and
20 units away from a0 and 0 otherwise. This enhancement of the state space is
used in RoboCup by Stone and Sutton [9], and we adopt it to give our linear
@-function model the ability to represent more complex functions.

These three RoboCup games have substantial differences in features, actions,
and rewards (and therefore @-values), but they all require the skill of passing
the ball among teammates without losing it to the opponents.

3 AI?: Transferring Skills

Because RL agents learn to take actions, a natural human interpretation of
RL is that the agents acquire skills. However, what they typically acquire is
a @-function, which is highly task-specific and does not readily translate into
discrete skills. Some researchers have therefore proposed methods for transferring
an entire Q-function or policy [14, 15].

We present an approach that does not use the @-function to perform transfer.
Instead, it analyzes games played in the source task to learn skills in first-order
logic. By learning high-level concepts, AI? favors the transfer of general, behav-
ioral information over the specific, low-level details of the @-function.

In the AI? framework, games are collections of state-action pairs where the
action is the classification of the state. It uses these pairs as training examples
to learn to classify states. For example, from traces of KeepAway games, AI?
can learn the concept “states in which passing to a teammate is a good action.”

AT? can be used when a new task arises in a domain and data from an old task
already exists. To use it, the user identifies which skills should be transferred,
provides a mapping that relates logical objects in the source task to those in the
target task, and optionally gives advice about new or transferred skills.

Table 2. The AI? algorithm.

GIVEN DO
Game traces from source task For each skill to transfer:
List of skills to be transferred Collect training examples
Object mapping between tasks Learn rules with Aleph
User advice (optional) Select rule with highest F'(3) score

Translate rule into transfer advice

Learn target task with all advice

Trai ni ng exanpl es Skill concept

State 1: 1,8 pass(Teanmmate) : -
— di st Bet ween(kO, Teammat e) > 14,
di st Bet ween(kO0, k1) = 10 ILP di st Bet ween(k0,t0) < 7.
di st Bet ween(kO, k2) = 15
di st Bet ween(k0,t0) = 6 ‘ Mappi ng
B Advi ce
action = pass(k2) IF distBetween(a0,a2) > 14
outcome = caught (k2) di st Bet ween(a0, d0) < 7
THEN prefer pass(a2)

Fig. 2. Example showing how AI? transfers skills.

Given this information, AI? performs transfer automatically. From existing
game traces in the source task, the system learns skill concepts and translates
them into advice for the target task. It then applies both the transfer advice and
the user advice to learning in the target task.

Table 2 summarizes the AI? algorithm in high-level pseudocode. Figure 2
illustrates the transfer part of this algorithm with an example from RoboCup.

Each advice item is a conjunction of conditions and a constraint to be ap-
plied if the conditions are met, as shown in Figure 2. Advice need not be followed
exactly; it can be refined or even ignored if it disagrees with the learner’s expe-
rience, using the advice-taking algorithm of Maclin et al. [5], which we explain
in Section 4. As we demonstrate with an experiment in Section 5, this provides
some protection against imperfect transfer.

3.1 Learning Skills

ATI? uses inductive logic programming (ILP) to learn skills. ILP is a method for
learning first-order conjunctive rules that works with data described by logical
relations, such as the RoboCup feature space as presented in Section 2.

A first-order rule, unlike a propositional rule, can contain variables like Team-
mate in Figure 2. The advantage of first-order rules is that they are more general.
For example, the rule pass(Teammate) is likely to capture the essential elements
of the passing skill better than rules for passing to specific teammates. We expect
these common skill elements to transfer better to new tasks.

An advantage of ILP in general is that it can accommodate background
knowledge for a domain. Our system allows a sophisticated user to define new
predicates and add them to the search space. For example, we added predicates to
the RoboCup domain to represent aggregate features like “the average distance
to an opponent.” Defining such mid-level concepts sometimes results in simpler
rules.

There are several ILP algorithms for searching the space of possible rules [6].
AI? uses the Prolog-based Aleph software package [8], which can conduct both
random and heuristic search in the hypothesis space. It selects the rule it finds
with the highest F(8) score (a generalization of the more familiar F(1) metric;
we use (32 = 0.1).

no
‘ action = pass(Teammate) ? ‘

‘ yes

‘ outcome = caught(Teammate) ? F

no N
yes s | SOMeE action good?

no

pass(Teammate) good? | — ‘ yes
‘ yes no | pass(Teammate)
— clearly bad?
pass(Teammate) no :
clearly best? —
‘ yes v yes

Positive example for Reject Negative example
pass(Teammate) example for pass(Teammate)

no

Fig. 3. Example showing how AI? selects training examples.

To produce datasets for this search, AI? examines states from games in the
source task and selects positive and negative examples. In a positive example,
several conditions must be met: the skill was performed, the desired outcome
occurred, the expected @Q-value (using the most recent Q-function) is above a
minimum score minQ,,s and is at least ratio,,s times the predicted @-values
of other actions. In a negative example, some other action was performed, the
highest @-value is above a minimum score minQ;eg, and the expected @Q-value
of the skill being learned is at most ratio,., times the highest @-value in that
state and is below a maximum score marQ pey-

The standard settings in AI? are ratiopes = 1.05 and rationcq = 0.95, since
we have found that @-values in stochastic domains like RoboCup are often not
widely separated. The other parameters are set by the system so that there are
at least 100 positive and 100 negative examples, which we have found to be
enough to learn reasonable rules. Figure 3 illustrates the sorting process with an
example from RoboCup.

3.2 Mapping Skills

To produce advice for the new task, the system translates source-task objects
into target-task objects based on the user-provided mapping. For example, a
reasonable mapping from 4-on-3 KeepAway to 3-on-2 BreakAway might relate
each keeper to an attacker and each taker to the defender.

Not all the objects in the target task need to appear in the mapping. Objects
in the source task may be left out too; in this case AI? will simply not include
those objects in rules. Examples in the mapping above are the BreakAway goalie
and the KeepAway fieldCenter. Similarly, the ILP algorithm will leave out of the
search space any predicates in the domain that are not shared by both tasks.

The KBKR advice-taking algorithm ultimately requires advice that is propo-
sitionalized for a specific task. Therefore, the final step AI? takes in the mapping
process is to propositionalize the rules.

First it instantiates skills like pass(Teammate) for the target task. For 3-on-2
BreakAway, this would produce two rules, pass(al) and pass(a2). Next it deals

with any other conditions in the rule body that contain variables. For example,
a rule might have this condition:

10 < distBetween(a0, Attacker) < 20

This is effectively a disjunction of conditions: either the distance to al or
the distance to a2 is in the interval [10,20]. Since disjunctions are not part of
the advice language, AI? uses tile features to represent them. Recall that each
feature range is divided into Boolean tiles that take value 1 when the feature
value falls into their interval and 0 otherwise. This disjunction is satisfied at
least one of several tiles is active; e.g. for 3-on-2 BreakAway:

distBetween(a0, al)[o,20) + distBetween(a0, a2)10,209] > 1

If these exact tile boundaries do not exist in the target task, AI? adds new tile
boundaries to the feature space. Thus transfer advice can be expressed exactly
even though the target task feature space is unknown at the time the source
task is learned.

It is possible for multiple conditions in a rule to refer to the same variable.
For example:

distBetween(a0, Attacker) > 15,
angleDefined By (Attacker, a0, ClosestDefender) > 25

Here the variable Attacker represents the same object in both clauses, so the
system cannot propositionalize the two clauses separately. Instead, it defines a
new Boolean background-knowledge predicate:

newFeature(Attacker, ClosestDefender) :-
Dist is distBetween(a0, Attacker),
Ang is angleDefinedBy(Attacker, a0, ClosestDefender),
Dist > 15, Ang > 25.

It then expresses the required condition using the new feature; e.g. for 3-on-2
BreakAway:

newFeature(al, d0) 4+ newFeature(a2, d0) > 1

AI? adds these new Boolean features, which could be considered multi-
dimensional tiles, to the target task. Thus transfer advice can actually enhance
the feature space of the target task.

3.3 User Advice

Users can optionally include advice in the source-target mapping to further guide
transfer by pointing out the differences between the tasks. For example, the
passing skills transferred from KeepAway to BreakAway make no distinction
between passing toward the goal and away from the goal. Since the new objective
is to score goals, players should clearly prefer passing toward the goal. A user
could provide this guidance by instructing the system to add a condition like
this to the pass(Teammate) skill:

distBetween(a0, goal) - distBetween(Teammate, goal) > 1

Alternatively, an expert user could make use of the system’s ability to define
new features in the target task. The advantage of this approach is that formally
defining the feature allows it to be tiled. To do this, the user would first write
the definition in Prolog:

diffGoalDistance(Teammate, Value) :-
DistTeammate is distBetween(Teammate, goal),
DistAO is distBetween(a0, goal),
Value is DistA0 - DistTeammate.

Then the user would instruct the system to add to the pass(Teammate) rule:
diffGoalDistance(Teammate) > 1

User advice may also describe new skills that will be needed in the target task.
An example is the shoot skill in BreakAway, which is an important difference
from the KeepAway source task. This type of user advice is not required in AIZ,
but it provides a natural and powerful way for users to facilitate transfer.

4 Advice Implementation

The rules produced by transfer or provided by users are likely to be imperfect
and may even be incorrect. Therefore, obeying them exactly could prevent ef-
fective learning. AI? instead treats advice as a soft constraint: an RL agent can
selectively refine or ignore advice if it disagrees with the agent’s experience in
the target task.

AI? incorporates advice into (-learning using a linear optimization method
called KBKR. The linear optimizer creates a @-function by finding, for each
action, a weight for each state feature so that the (-value of each state-action
pair in the training set is approximately the weighted sum of the features. It
does so by minimizing the following quantity:

ModelSize + C x DataMisfit + p x AdviceMisfit

Here ModelSize is the sum of the absolute values of the feature weights,
DataMisfit is the disagreement between the learned function’s outputs and the
training examples, and AdviceMisfit is the disagreement between the learned
function’s outputs and the advice constraints. The numeric parameters C' and
u specify the relative importance of minimizing disagreements versus finding a
simple model. AI? decays i over time, so that advice fades as the learner gains
experience and no longer requires guidance. When p becomes essentially zero,
AI? stops applying advice altogether.

As training progresses, this linear program is resolved after every 25 games.
See Maclin et al. [5] for more details.

5 Empirical Results

We present results for AI? skill transfer between several RoboCup games. These
are challenging transfer scenarios because the games have very different reward
structures, as described in Section 2. We also include a study of how the KBKR
advice-taking algorithm handles imperfect and incorrect advice. Our player code
for these experiments is based on the University of Amsterdam Trilearn players.

5.1 Skill Transfer Experiments

In our first experiment, we use AI% to perform transfer from 4-on-3 Mobile
Keepaway to 3-on-2 Break Away. The skill we transfer is pass(Teammate), and we
use the mapping described in Section 3.2. We assume the user encourages passing
toward the goal by adding the diffGoalDistance condition from Section 3.3, and
approximates some new skills in BreakAway as follows:

IF distBetween(a0, goalLeft) < 10 AND
angleDefinedBy(goalLeft, a0, goalie) > 40
THEN prefer shoot(goalLeft) over all actions

IF distBetween(a0, goalRight) < 10 AND
angleDefined By (goalRight, a0, goalie) > 40
THEN prefer shoot(goalRight) over all actions

IF distBetween(a0, goalCenter) > 10
THEN prefer moveAhead over moveAway and the 3 shoot actions

In our second experiment, we perform transfer from 3-on-2 MoveDownfield to
3-on-2 Break Away using a similar mapping. The skills we transfer are pass(Teammate)
and moveAhead, and we assume the user advice includes only the shoot skills
above. That is, we assume that passing forward and moving ahead are learned
in MoveDownfield, so the user does not need to provide this guidance.

We now analyze the results for the first experiment in detail. AI? learned
the following rule from Mobile KeepAway:

pass(Teammate) :-
distBetween(k0, Teammate) > 14,
angleDefined By(Teammate, k0, ClosestTaker) € [30, 150],
distBetween(k0, Taker) < 7,
distBetween(k0, Player) < 11.

This rule indicates that it is good to pass when an opponent is too close, a
teammate is somewhat far away, and no opponent is blocking a pass. AI? trans-
lates this rule into two items of transfer advice, one per BreakAway teammate,
and adds in the user advice.

Figure 4 compares learning curves in BreakAway with and without AI? trans-
fer from Mobile KeepAway. It also shows learning curves with the transferred
skills and the user advice separately, so that we can analyze their individual

0.6

0.5

0.4

0.3

0.2

Probability of Goal

0.1

Al2 transfer
Transfer skills only
User advice only

No transfer X

1000

2000 3000
Training Games

4000

5000

Probability of Goal

0.6

0.5

0.4

0.3

0.2

0.1 g

0
0

M-KeepAway transfer
KeepAway transfer
MoveDownfield transfer

No tfansfer X

1000

2000 3000
Training Games

4000

5000

Fig. 4. Learning curves for BreakAway
with transfer from Mobile KeepAway.

Fig. 5. Learning curves for BreakAway
with transfer from several tasks.

contributions. Each curve is an average of 10 independent runs with C' = 1500
and mu = 10, and each data point is smoothed over the last 500 games (or all
previous games if there are fewer than 500).

Using the transferred skills alone, the scoring probability is higher at the
90% confidence level, based on unpaired ttests, up to 2500 games. With the
full AI? system, scoring is more probable at the 95% confidence level at nearly
every point. The full system also performs significantly better than either the
transferred skills or user advice alone at the 95% confidence level; transferred
skills and user hints together perform better than the sum of their parts.

For the second experiment, Figure 5 compares learning curves in BreakAway
with and without AI? transfer from MoveDownfield. The AI? transfer curve
for Mobile KeepAway is duplicated here, and we also include results for trans-
fer from the original 3-on-2 KeepAway task [9] to compare the performance of
AI? transfer in the two KeepAway variants. As expected, Mobile KeepAway
transfers slightly than non-mobile KeepAway. However, both variants as well
as MoveDownfield do successfully transfer to BreakAway using AI?, causing a
higher scoring probability at the 95% confidence level at nearly every point.

5.2 Experiments with Imperfect Advice

To demonstrate that AI? can cope with imperfect and incorrect advice, we in-
clude a third experiment: transfer with intentionally bad user advice. We perform
transfer from Mobile KeepAway to BreakAway with the opposite of the user ad-
vice above. With its inequalities reversed, this bad advice instructs the learner
to pass backwards, shoot when far away from the goal and at a narrow angle,
and move when close to the goal.

Figure 6 shows the results of this advice, both in AI? transfer and alone.
This experiment shows that while bad advice can decrease the positive effect of
transfer, it does not cause the AI? system to impact learning negatively. On its
own, bad advice does have an initial negative effect, but KBKR quickly learns
to ignore the advice and the learning curve recovers completely.

0.6 T T T T
0.5
0.4

0.3

0.2 Al2 good advice

Al2 bad advice -------
Bad advice only - N
Noladvice .

Probability of Goal

0.1

0 1000 2000 3000 4000 5000
Training Games

Fig. 6. Learning curve for BreakAway with bad user advice.

6 Related Work

Our approach builds on several previous methods for providing advice to rein-
forcement learners. Maclin and Shavlik [4] develop an IF-THEN advice language
to incorporate rules into a neural network for later adjustment. Driessens and
Dzeroski [1] use human guidance to create a partial initial Q-function for a rela-
tional RL system. Kuhlmann et al. [3] propose a rule-based advice system that
increases (-values by a fixed amount.

Another aspect of our work is extracting explanatory rules from complex
functions. Sun [10] studies rule learning from neural-network based reinforcement
learners. Fung et al. [2] investigate extracting rules from support vector machines.

We also address knowledge transfer in RL. Singh [7] studies transfer of knowl-
edge between sequential decision tasks. Taylor and Stone [14] copy initial Q-
functions to transfer between KeepAway games of different sizes. In Torrey
et al. [15] we introduce transfer from KeepAway to BreakAway using the Q-
function; we advise each action when its @-value under the mapped model is
highest. In contrast, in this work we learn advice rules in first-order logic to
transfer individual skills, working with KeepAway game traces rather than Q-
functions. By doing so, we achieve better transfer.

A more detailed study of transfer learning in RoboCup is available online as
UW Machine Learning Group Working Paper #06-2.

7 Conclusions and Future Work

Reinforcement learners can benefit significantly from the user-guided transfer of
skills from a previous task. We have presented the AI? system, which transfers
shared skills by learning first-order rules from agent behavior and translating
them with a user-designed mapping. This system does not assume a similar
reward structure between the source and target tasks and provides robustness to
imperfect transfer through advice-taking. Our experimental results demonstrate
the effectiveness of this approach in a complex RL domain.

A challenge that we have encountered in RL transfer learning is that differ-
ences in action sets and reward structures between the source and target task
make it difficult to transfer even shared actions. Changing the game objective or
adding a new action changes the meaning of a shared skill. We have addressed
this problem with user guidance, using human domain knowledge to help apply
transferred skills and encourage the learning of new skills. In the future we hope
to reach similar levels of transfer with less user guidance.

We believe that the underlying issue is the separation of general from specific
information in a source task. In RL transfer learning we want to transfer only
general aspects of skills in a domain, filtering out task-specific aspects. Our use
of ILP to learn general, first-order skill concepts is a step toward this goal. A
future step we are considering is learning skills from multiple games in a domain,
which we believe may lead to more general rules and therefore better transfer.

References

1. K. Driessens and S. Dzeroski. Integrating experimentation and guidance in rela-
tional reinforcement learning. In Proc. ICML, 2002.

2. G. Fung, S. Sandilya, and B. Rao. Rule extraction from linear support vector
machines. In Proc. KDD, 2005.

3. G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik. Guiding a reinforcement
learner with natural language advice: Initial results in RoboCup soccer. In AAAT
Workshop on Supervisory Control of Learning and Adaptive Systems, 2004.

4. R. Maclin and J. Shavlik. Creating advice-taking reinforcement learners. Machine
Learning, 22:251-281, 1996.

5. R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Giving advice about
preferred actions to reinforcement learners via knowledge-based kernel regression.
In Proc. AAAI 2005.

6. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming 19,20, pages 629-679, 1994.

7. S. Singh. Transfer of learning by composing solutions of elemental sequential tasks.
Machine Learning 8 (3-4), pages 323-339, 1992.

8. A. Srinivasan. The Aleph manual. http://web.comlab.ox.ac.uk/oucl/research/areas
/machlearn/Aleph/aleph.html, 2001.

9. P. Stone and R. Sutton. Scaling reinforcement learning toward RoboCup soccer.
In Proc. ICML, 2001.

10. R. Sun. Knowledge extraction from reinforcement learning. New Learning
Paradigms in Soft Computing, pages 170-180, 2002.

11. R. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning 3, pages 9-44, 1988.

12. R. Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In Proc. NIPS, 1996.

13. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

14. M. Taylor and P. Stone. Behavior transfer for value-function-based reinforcement
learning. In Proc. AAMAS, 2005.

15. L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Using advice to transfer knowledge
acquired in one reinforcement learning task to another. In Proc. ECML, 2005.

