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Abstract

This paper describes the synchronization and communication
primitives of the Cray T3E multiprocessor, a shared memory sys-
tem scalable to 2048 processors. We discuss what we have learned
from the T3D project (the predecessor to the T3E) and the ratio-
nale behind changes made for the T3E. We include performance
measurements for various aspects of communication and synchro-
nization.

The T3E augments the memory interface of the DEC 21164 micro-
processor with a large set of explicitly-managed, external registers
(E-registers). E-registers are used as the source or target for all
remote communication. They provide a highly pipelined interface
to global memory that allows dozens of requests per processor to
be outstanding. Through E-registers, the T3E provides a rich set of
atomic memory operations and a flexible, user-level messaging
facility. The T3E also provides a set of virtual hardware barrier/
eureka networks that can be arbitrarily embedded into the 3D
torus interconnect.

1 Introduction
The goal of kiloprocessor multiprocessing presents a number of
challenges. Fundamentally, it requires software capable ofexpos-
ing parallelism in an application, and hardware capable ofexploit-
ing that parallelism by providing the necessary communication
and synchronization support.

Parallelism may be exposed explicitly, using the message passing
model (e.g.: Parallel Virtual Machine (PVM) [14] or Message
Passing Interface (MPI) [31]), or implicitly, using the shared-
memory programming model (e.g.: High Performance Fortran
(HPF) [19] or the Alpha AXP architectural model [10]). The
shared-memory model is widely accepted as easier to use, and is
better suited for irregular, dynamic parallelism. The message pass-
ing model, however, is currently more portable (PVM and MPI
run on a wide variety of machines) and makes the detection of par-
allelism and optimization of data layout significantly easier for the
compiler.

For either programming model, however, the bestperformance is
likely to be delivered by a tightly-coupled, shared-memory sys-
tem. The choice of shared memory for the T3D and T3E was not
an endorsement of the shared memory programming model over
the message passing model, but was made because it minimized
synchronization and communication overhead.

As Amdahl’s Law illustrates, lower synchronization and commu-
nication overhead have the following direct results:

1. a greater number of processors can be used to solve a
given problem at a given efficiency, or

2. a finer granularity of work can be performed with a given
number of processors.

Depending upon the application, communication bandwidth or
communication/synchronization latency may drive the overhead.
A highly scalable multiprocessor must address both.

Most multiprocessors are built with commodity microprocessors,
which offer rapidly increasing performance and excellent price
performance. Microprocessors, however, are generally designed
for workstations and modestly parallel servers. A large-scale mul-
tiprocessor creates a foreign environment into which they are ill-
equipped to fit.

The most striking limitation of most microprocessors is their
memory interface. The interfaces are cache line based, making ref-
erences to single words (corresponding to strided or scatter/gather
references in a vector machine) inherently inefficient. More
importantly, they typically allow only one or a small number of
outstanding references to memory, limiting the ability to pipeline
requests in large systems. For example, the DEC 21064 [11] and
21164 [12], on which the Cray T3D and T3E are based, allow a
maximum of one and two outstanding cache line fills from mem-
ory, respectively.

Microprocessors often lack sufficiently large physical address
spaces for use in large-scale machines. The DEC 21064, for exam-
ple, implements a 33-bit physical address1, while the maximum
physical memory in the T3D, is over 128 GB.

TLB reach is another potential problem. A TLB that is sufficiently
large for a powerful workstation may be insufficient for a machine
with a thousand processors and a terabyte of physical memory.

Microprocessors are designed to cache data that they reference.
While this is usually beneficial, it is sometimes desirable to make
non-cached references to memory. When writing to another pro-
cessor’s memory in a message-passing program, for example, it is
far better for the data to end up in the recipient processor’s mem-
ory than in the sending processor’s cache!

In general, microprocessors are designed with an emphasis on
latency reduction rather than latency toleration. While this is an
effective approach for many codes, it is ineffective for scientific
codes with poor locality, and it does not support high-bandwidth
communication in large-scale multiprocessors.

This paper discusses the Cray T3E multiprocessor, which is based
on the DEC Alpha 21164 microprocessor. We describe the “shell”
that surrounds the processor to make it fit comfortably into a kilo-
processor machine, and discuss features designed to support
highly-parallel, fine-grained programming. The paper focuses on
communication and synchronization, giving little consideration to
the processor, network, memory system or I/O system.

1.  A 34th bit is used to distinguish between memory and I/O
space.
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The T3E is the second in a line of scalable multiprocessors, fol-
lowing the Cray T3D [8][35], which first shipped in late 1993.
Section2, discusses lessons from the T3D project. Section3 gives
a general overview of the T3E. Sections 4 through 7 discuss global
communication, atomic memory operations, message passing sup-
port and barrier/eureka synchronization. Section8 presents perfor-
mance measurements, Section9 discusses related work, and
Section10 concludes.

2 Lessons from the T3D
The T3D connects up to 2048 DEC Alpha 21064 microprocessors
via a 3D torus network, with two processors per network node.
Each processor contains up to 64 MB of local memory, and the
memories of all processors are accessible via a shared address
space.

To extend the 33-bit physical address space of the 21064, a “DTB
Annex”1 is maintained in the shell outside the processor. The
upper bits of a load or store address contain an index into the
Annex, and the corresponding Annex entry provides the PE bits
for the address. Although remote memory can be cached, the on-
chip cache tags will contain an Annex index rather than PE bits, so
the line must be flushed if the Annex entry is changed. A more
complete description can be found in [24] or [8].

The T3D has several strengths that have been carried forward into
the T3E. First among these is the shared address space. Although
the shared memory efficiently supports CRAFT [38], Cray’s ver-
sion of parallel Fortran, the most widely used programming mod-
els on the T3D have been PVM, and, for performance-critical
communication, Shmem [9]. Shmem is a shared-memory-based
message passing library that supports direct memory-to-memory
transfers without involving the operating system. Researchers at
Illinois have also found the shared memory instrumental in
achieving good messaging performance [22].

The interconnection network has also proven to be a strength. The
3D torus is wiring-efficient [1] and scales well to large numbers of
processors, providing sub-microsecond access latencies and a
bisection bandwidth of over 70 GB/s with 1024 processors. The
T3D is theonly machine with a complete set of published NAS
Parallel Benchmarks results for greater than 128 processors
(results up to 1024 processors have been published) [43].

The T3D barrier network consists of a four-wire-wide, degree-four
spanning tree over the entire machine. It provides full machine
barrier synchronization in less than 2µs2. While this has proven
useful, especially for CRAFT programs in which global synchro-
nization is quite frequent, it appears to be a case of over-engineer-
ing. We have yet to encounter an application in which barrier time
is a large fraction of total run-time, and the dedicated barrier net-
work is expensive. In addition, we have found the management of
the physical barrier resource to be burdensome.

The T3D has several weaknesses, many of which have been
reported in [3]. The largest of these is the relatively low single
node performance. This is caused by a fixed clock (150 MHz),
which has not tracked improvements in the 21064 processor, and
by lack of a board-level cache (each processor uses only its 8KB
on-chip data cache). This last feature, however, does allow the
T3D to provide significantly higher memory bandwidth; the
STREAM single processor copy benchmark on the 150 MHz T3D

1.  DTB stands for Data Translation Buffer, DEC’s term for a
TLB.
2.  Most of this time is in the library software; performance is
almost independent of machine size.

yields over 4 times the bandwidth of the DEC 2100 A500-4/200
using the same processor clocked at 200 MHz [29][28].

The T3D implements three different ways to access remote mem-
ory: direct loads and stores, an explicit prefetch queue that allows
up to 16 outstanding single-word references, and a block transfer
engine (BLT) that provides bulk, asynchronous data transfers
between processors’ memories. Load/store performance high-
lights the memory pipelining issue. Since only a single outstand-
ing cache line fill is allowed, sustainable load bandwidth is fairly
low (about 30 MB/s in a 256-processor machine). Sustainable
store bandwidth is much higher (about 120 MB/s, independent of
size), since the stores are acknowledged right away by the proces-
sor shell, and an unlimited number may be pipelined in the inter-
connect.

The prefetch queue is used by both the CRAFT compiler, to fetch
remote data in loops, and the Shmem libraries, to increase mem-
ory copy bandwidth. Its main limitation is that only a single
stream can be prefetched, making it difficult to coordinate its use
among multiple parties. Our compiler writers would have liked
multiple queues.

The BLT is shared between the two processors at a node and
requires a system call to use. It takes on the order of 1000 6-ns
processor clocks to start up a transfer, and as a result has been of
little use. Even if the BLT startup was more reasonable, its value
would be questionable. We have found that having three ways to
access remote memory is more of a liability than a benefit. It
means that the compiler, library and/or user must always decide
how to access memory, an optimization problem for which the
necessary information is seldom available.

The DTB Annex has proven useful for library routines, but diffi-
cult for the compiler to exploit. Without global information, the
Annex entries are generally set up each time they are used. Since
the overhead to change an Annex entry is small, a single entry
would have likely sufficed.

Several features in the T3D require special management, includ-
ing the barrier network and the two dedicated fetch_&_inc regis-
ters and one dedicated message queue at each processor. Since
these are special hardware resources, they must be protected by
the operating system. The message queue also requires OS
involvement on the receiving side, as user and OS messages share
the same queue, significantly increasing message latency. The Illi-
nois messaging implementation [22] didnot use the dedicated
messaging hardware.

The DTB Annex allows a single DTB entry to map a physical
page on all processors in a parallel program3, but every processor
must use thesame mapping. So while DTB coverage is signifi-
cantly amplified, memory management is inflexible; moving a
shared page on one processor requires stopping all processors in
the program and moving their pages too. This is similar to the
TLB shootdown problem [4], but significantly more expensive.

In summary, the shared memory and fast 3D network have been
very useful, and non-cached stores and the prefetch queue have
proven to be very effective for pipelined remote memory access.
But there are too many ways to access remote memory, remote
load bandwidth is poor, and several special-purpose hardware fea-
tures have proven cumbersome to manage and/or inflexible to use.
The design of the T3E was largely guided by these experiences.

3.  The software must explicitly manage the Annex, however,
to access all PEs.
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3 T3E overview
The T3E implements a logically shared address space over physi-
cally distributed memories (up to 2 GB per processor). Each pro-
cessing element (PE) contains a DEC Alpha 21164 processor
connected to a “shell”, consisting of a control chip, a router chip
and a local memory (see Figure1). The system logic runs at 75
MHz, and the processor runs at some multiple of this (initially 300
MHz).

Like the T3D, up to 2048 processors are connected by a bidirec-
tional 3D torus, but each node of the torus contains only a single
processor, and the network implements fully adaptive, minimal-
path routing [45]. The network links are time multiplexed at five
times the system frequency, and can deliver one 64-bit word of
payload each sysclock (13.3 ns).

The T3E is a self-hosted machine1 running Unicos/mk, a server-
ized version of Unicos based on the Chorus microkernel [7]. I/O is
based on the GigaRing channel [44], with sustainable bandwidths
of 267 MB/s input and output for every four processors.

Like the T3D, the T3E contains no board-level cache, but the
21264 processor has two levels of caching on chip: 8KB first level
instruction and data caches, and a unified, 3-way associative, 96
KB second level cache. As with the T3D, memory bandwidth is
higher than would be possible with a board-level cache. Measured
performance on the STREAM copy benchmark of 470 MB/s is
over twice that of the DEC 8400 5/300 (186 MB/s), which uses a
21164 processor running at the same frequency [29][28].

The 21164 allows two outstanding 64-byte cache line fills. Local
memory bandwidth is enhanced by a set of hardware stream buff-
ers. These buffers automatically detect consecutive references to
multiple streams, even if interleaved, and prefetch additional
cache lines down each stream. They can achieve much of the ben-
efit of a large, board-level cache for scientific codes at a small
fraction of the cost [36].

Only local memory is cached in the T3E. The on-chip caches are
kept coherent with local memory through an external backmap,
which filters memory references from remote nodes and probes
the on-chip cache when necessary to invalidate lines or retrieve
dirty data.

The T3E augments the memory interface of the DEC 21164
microprocessor with a large set (512 user plus 128 system) of
explicitly-managed, external registers (E-registers). All remote
communication and synchronization is done between these regis-
ters and memory.

The E-registers take the place of the T3D’s DTB Annex, prefetch
queue, block transfer engine and remote loads/stores. They also

1.  The T3D requires a Cray vector machine as a front end.

Figure 1. T3E PE block diagram
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facilitate the removal of dedicated fetch_&_inc registers and mes-
sage queues. Instead, synchronization variables and message
queues are stored in normal user memory, allowing them to be
managed via the existing address translation mechanism and sub-
stantially increasing their flexibility . In a similar vein, the dedi-
cated barrier/eureka network has been virtualized, easing the task
of managing the barrier trees and providing multiple logical bar-
rier networks.

The goals of the T3E design were to integrate and simplify the
various features of the shell, make messaging, synchronization
and memory management more flexible, and significantly increase
the amount of pipelining in the memory system, both for cache-
able references to local memory and non-cached references to
remote memory.

4 Global communication
This section explains the use of E-registers for global communica-
tion. E-registers provide two primary benefits over a more
straight-forward load/store mechanism for accessing global mem-
ory: they extend the physical address space of the microprocessor
to cover the full physical memory of the machine, and they radi-
cally increase the degree of pipelining attainable for global mem-
ory requests. They also provide efficient single-word bandwidth,
an integrated centrifuge for flexible data distribution, and a conve-
nient mechanism for messaging and atomic memory operations.

The 21164 implements a cacheable memory space and a non-
cacheable I/O space, distinguished by bit 39 of the 40-bit physical
address. Local memory loads and stores in the T3E use cacheable
memory space. Address translation takes place on the processor in
the usual fashion, and physical addresses are passed through the
shell directly to the memory.

The T3E uses I/O space to access memory-mapped registers,
including the E-registers. There are two primary types of opera-
tions that can be performed on E-registers:

• Direct loads and stores between E-registers and pro-
cessor registers.

• Global E-register operations.

Direct E-register loads/stores are used to store operands into E-
registers and load results from E-registers. Global E-register oper-
ations are used to transfer data to/from global (meaning remoteor
local) memory and perform messaging and atomic operation syn-
chronization.

4.1 Address translation for global references

For global E-register operations, a global virtual address (shown in
Figure2) and virtual PE number are formedoutside the processor
in the shell circuitry. The virtual PE number goes through a trans-
lation mechanism at the source processor to identify the physical
PE, and the global virtual address is transmitted across the net-
work, where it goes through a virtual-to-physical translation using
a global translation buffer at the target PE.

The T3E supports the data distribution features of many implicit
programming languages [38][19][6][13] via an integrated hard-
ware centrifuge. The virtual address for global references is

Figure 2. Global virtual address (GVA)
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formed using a mask, index and base. The mask bits indicate
which of the bits in the index represent PE bits, and which bits
represent address within a PE. For each bit set in the mask, the
corresponding bit in the index is extracted. The extracted bits are
compacted to form a virtual PE number, and the remaining bits are
compacted and added to the base to form a virtual address. Typi-
cally a base and mask are set up for each shared distributed array
and then the index is varied.

Figure3 illustrates the centrifuge operation for an array distrib-
uted over 64 PEs. The bits in the index corresponding to the ones
in the mask are pulled out to form the virtual PE number (PE 37 in
this case). The remaining bits of the index form an offset which is
added to the base. Since the PE field starts at bit 6, each successive
cache line (64 bytes) in the shared array maps to a new PE.

A typical “distributed memory” (message passing) program would
use a single mask and base for all E-register operations. The base
would be set to zero and the mask would have a block of set bits in
the upper part of the address. The index would thus contain a com-
plete address; the lower part would simply be a virtual address
within a PE, and a field in the upper part would represent a PE
number.

The full address translation path for a global E-register reference
is shown in Figure4. The operation is performed by performing a
store in I/O space. The address of the store encodes a command
(e.g.: read a word from remote memory into an E-register) and a
source or destination E-register. The 64-bit word written onto the
data bus includes theindex for the remote memory location and a
pointer to an aligned block of four E-registers containing the mask
and base for the centrifuge and up to two additional arguments.
Before performing the operation, the mask and base must have
been stored into the E-registers. This need only be done once for
each distributed array (or at least is done outside the inner loop). A
single general-purpose mask/base pair may also be set up for all
miscellaneous data references, or for all references in a message-
passing program as described above.

The index is centrifuged with the mask and base to produce a vir-
tual address and virtual PE number (this is the PE number that an
application uses; virtual PE space always goes from 0 ton-1 in an
n-processor job). The virtual address includes a virtual segment
number, which indexes into a segment translation table. The seg-
ment translation table produces a global segment (GSEG), a base
PE (which corresponds to section of the machine in which the
application is running), a PE limit and protection information. The
virtual PE is added to the base PE to produce a logical PE number,
which is presented to a routing lookup table to produce a physical
routing tag1.

00000000000000000000000000000000001110100101010000

Figure 3. HW centrifuge operation example: Array
interleaved by cache line over 64 PEs

00000000000000000000000000000000000000111111000000Mask

Index

Base

10010100000000000000000000000000001110010000

Virtual PE Offset

00001010000000001100000000000000000000

00001010000000001100000000001110010000Virtual

VSEG Segment Offset

049

Addr.

The segment lookup on the source node guarantees that user-gen-
erated addresses only access authorized GSEGs on authorized
PEs. Segment range violations are detected at the remote node.
The 6-bit GSEG space allows multiprogramming; different jobs
(with possibly common VSEGs) sharing memory at a node are
assigned different GSEGs.

The GSEG and segment offset form a GVA (refer to Figure2) that
is transmitted across the network with the reference. At the remote
node, the GVA goes through a translation to produce the actual
physical address at that node. The global translation buffer per-
forms page-based translation with flexible pages sizes (64 KB -
128 MB), and is hardware-loaded from a complete page table in
memory (so cannot fault under normal conditions).

The remote translation step allows each node to manage its own
physical memory; it can move its part of a shared segment inde-
pendently from the other processors. This eliminates TLB shoot-
downs entirely.

To further support this, an integrated hardware engine we call the
“magical memory mover” can perform a local memory copy oper-
ation in the background and allow memory requests to that page to
be servicedwhile the copy is in progress (the reference is serviced

1.  The logical PE to physical routing tag translation allows
spare PEs to be mapped in to replace broken PEs.

Figure 4. Address translation for global (E-register)
references
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from the old or new location depending upon whether that particu-
lar word has been transferred yet). This allows the operating sys-
tem to move a page of a shared segment without delaying any of
the processors in the parallel job accessing the page.

4.2 Get and Put operations
The global operations to read memory into E-registers or write E-
registers to memory are calledGets andPuts, respectively. There
are two forms of Gets and Puts: single word and vector. Both can
operate on either 32-bit or 64-bit words. Vector Gets and Puts
transfer 8 words, with an arbitrary stride. The stride operand is
stored in the block of E-registers that contains the mask and base.

Access to E-registers is implicitly synchronized by a set of state
flags, one per E-register. A Get operation marks the target E-regis-
ter(s) empty until the requested data arrives from memory, at
which time they are marked full. A load from an E-register will
stall if the E-register is empty until the data arrives. A Put from an
E-register will also stall if the E-register is empty until the data
becomes available. A global memory copy routine might perform
Gets from the source area of memory into a block of E-registers
and subsequently Put the data from the E-registers to the target
memory area. The implicit state flag synchronization protects
against the RAW hazard in the E-registers.

Since there are a large number of E-registers, Gets and Puts may
be highly pipelined. The bus interface allows up to four properly-
aligned Get or Put commands to be issued in a two-cycle bus
transaction, allowing 256 bytes worth of Gets or Puts to be issued
in 26.7 ns. This issue bandwidth is far greater than the sustainable
data transfer bandwidth, so the processor is not a bottleneck. Data
in a memory-to-memory transfer using E-registers does not cross
the processor bus; it flows from memory into E-registers and out
to memory again.

In addition to providing a highly-pipelined memory interface, the
E-registers provide special support for single-word load band-
width. Row accesses in Fortran, for example, can be fetched into
contiguous E-registers using strided vector Gets. The resulting
blocks of E-registers can then be loaded broadside into the proces-
sor in cache-line-sized blocks, making significantly more efficient
use of the bus than would be possible with normal cache line fills.

The maximum data transfer rate between two nodes using vector
Gets or Puts (as determined by the network) is 480 MB/s, and E-
register control logic further limits the bandwidth to something
less than this, depending upon the operation. At this rate Little’s
Law1 indicates that 128 E-registers provide sufficient pipelining to
hide the round-trip packet latencies plus command issue times (on
the order of 1-2µs).

5 Atomic memory operations
The T3E expands upon the atomic SWAP feature of the T3D to
provide a rich set of atomic operations. While SWAP operations in
the T3D can only be performed on dedicated SWAP registers,
atomic operations in the T3E can be performed on arbitrary mem-
ory locations, allowing an unlimited number of synchronization
variables, easing the job of the compiler, and removing the
involvement of the operating system.

Table1 lists the atomic memory operations (AMOs) provided by
the T3E. Fetch_&_inc, fetch_&_add, and compare_&_swap are
well known synchronization primitives. Masked_swap provides
test_and_set and clear operations on individual bits, by swapping

1.  N = X•R, where X≡ throughput, R≡ response time, and N
≡ number outstanding.

in ones or zeros in specified locations. It also provides a mecha-
nism to perform atomic byte (or other size) stores.

Herlihy has shown [17] that compare_&_swap is a universal prim-
itive, meaning that it can be used to construct a wait-free imple-
mentation2 of any sequential object (e.g.: shared work queues). It
is also necessary or beneficial for a variety of scalable synchroni-
zation algorithms [30][32]. Load-linked/store-conditional, imple-
mented in several architectures [10][41][27], is also a universal
primitive, and in fact can allow more straight-forward implemen-
tations of some concurrent objects [18]. However, most load-
linked/store-conditional implementations place restrictions on the
types of operations that can be performed in the critical section
(e.g.: no memory operations), and the primitive does not scale
well to large numbers of processors under variable contention.

To perform an AMO in the T3E, any necessary operands are first
written to E-registers. The operation is then triggered via a store to
I/O space, as described in Section4.1. The AMO command is
specified on the address bus. The necessary operands are read
from the aligned block of E-registers that is used for the mask and
base. An atomic memory operation packet is then sent to the spec-
ified global memory location, where the operation is performed.
The result is returned to the E-register specified on the address bus
of the AMO command.

Most AMOs in the T3E require a read-modify-write of DRAM,
resulting in a minimum repeat time of 11 sysclocks (147 ns) for a
given synchronization variable (8M AMOs per second). High
bandwidth fetch_&_inc operations are supported via a buffer at
the memory controller of each node. Successive fetch_&_incs to
the same word are satisfied out of the buffer, allowing a repeat
time as low as 13.3 ns, or 75 M fetch_&_incs per second.3

6 Messaging
Message queues in the T3D and T3E are intended to support dis-
tributed memory applications and inter-process communication
within the operating system.

The T3D provides a single message queue at each processor that is
shared by both user and system messages. The queue is of fixed
size (256 KB) and is located at a fixed location in memory. Mes-

2.  One in which no blocked (e.g. swapped out) process can
impede the progress of any other process.
3.  The buffer was originally intended to support all atomic
operations, but due to implementation constraints, only
fetch_&_incs were supported.

Atomic Operation
(operands) Description

Fetch_&_Inc

(none)

Add one to memory location and return
original memory contents.

Fetch_&_Add

(addend)

Add integer addend to memory location
and return original memory contents.

Compare_&_Swap

(comperand,
swaperand)

If comperand equals contents of
memory, then store swaperand into
memory. Return original contents of
memory.

Masked_Swap

(mask, swaperand)

For each bit set in mask, store
corresponding bit of swaperand into
memory. Return original contents of
memory.

Table 1. Atomic Memory Operations
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sages are 32 bytes plus header information. While the hardware
transmission latency involves only a single network traversal, all
incoming messages generate interrupts and are examined by sys-
tem software. This adds a significant latency penalty to message
receipt, calling into question the efficacy of using the special
mechanism rather than constructing message queues in normal
shared memory.

The T3E allows an arbitrary number of message queues to be cre-
ated by either user or system code. Queues are mapped into nor-
mal memory space and can be of any size up to 128 MB.
Messages are 64 bytes (no header is stored). The queues can be set
to interrupt on arrival, never interrupt (in which case messages are
detected via polling), or interrupt only when some threshold num-
ber of messages have arrived. T3E message queues integrate the
desirable features of message passing (one-way network traversal
latency, no distributed buffer management) with the flexibility of a
shared-memory implementation.

6.1 Message Queue Control Word

A message queue is created by simply constructing and storing a
Message Queue Control Word (MQCW) at the address of the
desired location of the queue. The 64-bit MQCW has four fields,
as shown in Figure5.

Tail is a relative offset that is added to the address of the MQCW
to identify the next available slot in the queue. Tail must be initial-
ized to a value greater than zero to avoid having the first arriving
message write over the MQCW. The Tail pointer has a granularity
of 64 bytes. It is incremented by one each time a message is stored
into the queue.

Limit is a 21-bit value that indicates the size of the message queue.
Sizes up to (221 - 2) 64-byte messages are supported. When a mes-
sage arrives, Limit is compared to Tail. If Tail ≥ Limit, the mes-
sage is rejected and the Tail pointer is not incremented. If Tail <
Limit, the Tail value is added to the global virtual address (GVA)
of the MQCW to generate a new GVA for the message. This GVA
is then translated by the GTB and checked for range errors prior to
storing the message. If the message is accepted, an ack is returned,
the message is stored and Tail is incremented. If the address is ille-
gal, a nack is returned.

Threshold is a soft limit which is generally set to a value≤ Limit.
When a message is accepted, Tail is incremented and compared to
Threshold. If Tail = Threshold, then an interrupt is delivered to the
local processor, and the Signal bit is set to facilitate identification
of the interrupting message queue. Messages are not rejected
when Tail ≥ Threshold.

6.2 Sending a message

Messages are transmitted by first assembling them in an aligned
block of 8 E-registers and then issuing a SEND command. A
SEND is similar to a Put command, except the memory address of
the SEND must be a valid MQCW in memory.

The block of 8 E-registers is delivered to the specified address,
where it is stored into the message queue as described in
Section6.1. The read-modify-write of the MQCW and storage of
the message are performed atomically, so no arbitration is required
when multiple processors are transmitting to the same queue.

063

Limit 21

42 21

Signal

Threshold 211 Tail 21

Figure 5. Message Queue Control Word

 2041 62

When the SEND is issued, the state flags associated with the 8 E-
registers are set to empty. When the response is received, if the
message was accepted, the flags are set to full, else the flags are set
to “full-send-rejected”. This can be detected by the sending pro-
cessor and the message can be retransmitted.

6.3 Message queue management

The head of a message queue (next unread message) is maintained
by software. As the local processor consumes messages, it incre-
ments its head pointer until equal to the tail pointer. The processor
is responsible for re-allocating message queue space when Tail
approaches (or reaches) Limit.

An atomic memory operation performed on a MQCW exactly
affects the flow of messages to the corresponding message queue.
If a swap is performed to redirect messages to a different portion
of the queue, for example, the returned MQCW will represent the
last message stored to the queue. No messages will be lost.

A typical algorithm for managing a message queue is as follows.
The processor first sets Tail and Limit to point to the first half of
the queue. As Tail approaches Limit, the processor performs a
SWAP to set Tail and Limit to point to the second half of the
queue. It then consumes the residual messages from the first half
of the queue. When Tail again approaches Limit, the processor
performs a SWAP to switch to the first half of the queue, and so
on. Other algorithms are of course possible.

The MQCW/SEND mechanism allows users to set up multiple
message queues of arbitrary size. Since message queues are held
in normal memory space, no special access protection need be
provided. By polling, users programs can use messaging with no
operating system intervention, significantly reducing overhead.
Measurements on the T3E have demonstrated one-way message
latencies (half of a round-trip message exchange) to PEs three net-
work hops away of 2.7µs, including software overhead.

7 Barrier/eureka synchronization
Barriers allow a set of participating processors to determine when
all processors have signalled some event (typically reached a cer-
tain point in their execution of a program). Eurekas allow a set of
processors to determine when any one of the processors has sig-
nalled some event. Users might use eurekas to signal the comple-
tion of a parallel search. The operating system might use eurekas
to interrupt some or all remote processors.

Barriers are heavily used in many parallel applications, and their
performance can affect the ability to the scale the application. As
an example, we have worked with proprietary meteorological
codes that perform on the order of one barrier every 200µs in a
128-processor system. At this rate, and additional 15µs to per-
form a software barrier (see Section8) would add over 7% to the
application runtime.

7.1 Barrier/Eureka Synchronization Units

The T3E provides a set of 32 barrier/eureka synchronization units
(BSUs) at each processor. The BSUs are accessible as memory-
mapped registers and are allocated and protected via the address
translation mechanism. A set of processors can be given access to
a particular BSU through which they can perform barrier and/or
eureka synchronization. Multiple disjoint sets of processors may
reuse the same logical BSU.

A BSU at a processor can be in one of several states. Processors
can read this state and perform operations on the BSU via load and
store operations. Tables 2 and 3 show a subset of the local states
and operations.
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Figure6 (a) shows the state transitions for a simple barrier. An
OP_BAR takes a given BSU from the S_BAR state to the S_ARM
state. When all participating processors have armed their barriers,
the network delivers completion notifications that takes the BSUs
to the S_BAR state, at which point the BSUs are ready for the next
barrier synchronization. The barrier can be made to interrupt upon
completion by joining it with the OP_BAR_I operation.

A simple, re-usable eureka event, shown in Figure6 (b), is a three-
state transition that includes a barrier to establish that all proces-
sors have seen the eureka before performing another eureka. Start-
ing in the S_BAR state, a single processor performs an OP_EUR.
This takes its BSU to the S_EUR state, and causes the network to
deliver eureka events to all other participating BSUs, taking them
to the S_EUR state as well. As processors observe the eureka, they
indicate this by performing an OP_BAR. The triggering processor
can perform a combined OP_EUR and OP_BAR using an
OP_EUR_B.

State Description

S_EUR A eureka event came

S_EUR_I A eureka came, interrupt signalled

S_ARM Barrier is armed

S_ARM_I Barrier is armed, an interrupt will occur on
completion

S_BAR Barrier just completed

S_BAR_I Barrier just completed, interrupt signalled

Table 2. Barrier/Eureka Synchronization Unit States

Operation Description

OP_EUR Send eureka

OP_INT Set to interrupt when a eureka event occurs

OP_BAR Arm Barrier

OP_BAR_I Arm Barrier, interrupt on completion

OP_EUR_B Send eureka and arm barrier

Table 3. Barrier/Eureka Synchronization Unit Operations

S_BAR S_ARM

OP_BAR

Barrier Completion

Figure 6. Simple barrier and eureka local transitions

S_BAR S_EUR

S_ARM

OP_EUR or
Eureka Notification

OP_BAR or
Barrier
Completion

OP_EUR_B

(a) Barriers

(b) Eurekas

Notification

Notification

OP_EUR_B

Once all processors have joined the barrier, the network delivers
barrier notifications that place all BSUs in the S_BAR state, ready
for the next eureka event. As with barriers, eurekas can optionally
be set to interrupt upon notification.

Note that the BSU interface allows “fuzzy” barriers, in which a
processor can perform unrelated work between joining a barrier
and checking for completion.

7.2 Embedded barrier/eureka trees

Rather than dedicate physical wires for barrier/eureka synchroni-
zation, the T3E embeds logical barrier/eureka networks into the
regular 3D torus interconnect. Small barrier/eureka packets are
passed over the network to signal events. Barrier/eureka packets
use their own virtual channel and are transmitted with highest pri-
ority. This scheme keeps global barrier/eureka latency to less than
that of a single remote memory reference, while making more effi-
cient use of limited network wires.

To embed the barrier/eureka trees in the network, each network
router maintains a register for each of the 32 BSUs. This register
allows the node to be configured as an internal node in the BSU’s
logical tree. The register indicates which of the six network direc-
tions plus the local processor are children in the tree, and which
direction (if any) is the parent. It also keeps track of the set of chil-
dren that have signalled a barrier.

When all children have signalled a barrier, or when any child sig-
nals a eureka, a corresponding signal is sent up to the parent (by
sending the parent a barrier/eureka packet), or, if the node is the
root of the tree, completion signals are sent to all of the children
(also via barrier/eureka packets). Completion signals are broadcast
hierarchically to all children in a barrier/eureka tree, and result in
appropriate changes to the child BSUs, optionally interrupting the
leaf processors.

8 Performance
This section presents performance measurements taken on early
hardware. These measurements do not represent a complete per-
formance profile of the T3E, but rather are intended to illustrate
the efficacy of the primitives discussed in this paper. The absolute
values of many of these measurements are likely to evolve, and, in
particular, the DRAM timing parameters of the measured systems
were set to less aggressive values than production systems will
use.

We used a series of small, micro-benchmarks to measure various
communication and synchronization latencies and throughputs.
Code was written in C and compiled using Cray’s standard T3E
compiler. Standard Shmem library routines were used for barriers,
atomic memory operations and memory-to-memory copies. Mes-
sage-passing was performed by manipulating the MQCW and
shared memory directly from the C code. The memory pipelining
and strided reference benchmarks used assembly-language kernels
in order to efficiently schedule Gets and loads.

With the exception of the barrier benchmark, all measurements
were taken on a 20-processor machine, with 300 MHz processors.
The barrier benchmark was run on a 64-processor machine built
with prototype parts running at 200 MHz (50 MHz sysclock);
results were scaled to reflect times on a full-speed system.

Figure7 shows the effect of pipelining on global memory band-
width. The benchmark loads an array of 16K entries (128 KB)
from a node three network hops away using vector Gets and E-
register loads. The number of E-registers used to hide the latency
is varied from 1 to 256. For 32 or more E-registers, a loop pream-
ble first issues Gets to all the E-registers. The main loop then
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repeatedly loads a block of 32 E-registers, issues Gets into the
vacated E-registers and increments the block pointers. A loop pos-
tamble loads the remaining E-registers values.

Realized Get bandwidth increases with the number of E-registers
used. Using 8 E-registers, the realized bandwidth is 32.8 MB/s.
The round trip latency (time to store out the vector Get command,
perform the Get operation from remote memory, load the 64 byte
result into processor registers, plus loop overhead) is thus 64B/
(32.8 MB/s) = 1.86µs. At this latency, 128 E-registers (1 kilobyte)
provide sufficient buffering to sustain the maximum transfer rate,
which appears to be limited by a bottleneck in the E-register con-
trol logic.

The relatively high latency for remote references1 will limit band-
width for smaller transfers. Figure8 shows the effect of startup
latency on realized bandwidth for memory-to-memory copies
using the shmem_get() and shmem_put() library calls. Source and
target nodes are three network hops away (average distance in a 64
processor machine).

The Get transfer performs stride-1 Gets from remote memory and
Puts to local memory. The Put transfer performs stride-1 Gets
from local memory and Puts to remote memory. The strided Get
transfer performs stride-10 Gets from remote memory and stride-1
Puts to local memory; each vector Get command is broken up into
8 single-word Get packets that traverse the network separately.

The stride-1 transfers achieve near asymptotic bandwidth for
lengths of about 16 KB and beyond. The N1/2

2 is approximately 1
KB. Due to the lower asymptotic rates, the strided Get transfer
achieves near peak bandwidth at about 4 KB, and has an N1/2 of
approximately 256 bytes.

1.  This is one metric by which the T3E is worse than the
ECL-based T3D.
2.  Length for which 1/2 asymptotic bandwidth is achieved.
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Figure 7. Effect of pipelining in the memory interface
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Figure 8. Effect of startup latency on realized bandwidth

Figure9 illustrates the ability to load strided (or gathered) data
into the microprocessor by first fetching it into aligned blocks of
E-registers using strided vector Gets. The graph shows the asymp-
totic bandwidth of local loads through E-registers vs. the stride of
the reference stream. With cacheable references, of course, real-
ized bandwidth falls off as stride increases because an increasing
fraction of the cache line is ignored, resulting in a large-stride BW
of only 1/8th (for an 8-word cache line) of the stride-1 bandwidth.
Using Gets, however, stride-independent bandwidth is possible.

The reduced bandwidth for certain strides in Figure9 is an artifact
of the local memory system, which contains 8 independent, sin-
gle-word banks. All strides up to 16 are shown, as well as 28, 31
and 32. Strides that are a multiple of 8 load all data from a single
bank, and strides that are a multiple of 4 load all data from a pair
of banks. Other strides use four or eight banks and achieve full
bandwidth.

As discussed in Section4, E-register data is loaded with I/O space
loads, which are less efficient than cacheable loads in the 21164
processor. Cacheable memory loads can be performed at roughly
twice the bandwidth of E-register loads in the T3E, so are prefera-
ble for stride-1 or stride-2 reference streams.

Figure10 shows the performance of atomic memory operations.
All 16 processors in this benchmark perform AMOs to the same
synchronization variable located at processor 0. The graph shows
average latency for an AMO vs. rate of operations. The maximum
sustained rate of fetch_&_add operations is approximately 4.5
Mops/s (222 ns per AMO). Fetch_&_inc has a lower latency, due

to its smaller network packet size and the fetch_&_inc buffer at
the memories, and has a substantially higher sustainable band-
width. Sixteen processors making one reference at a time were
unable to saturate the memory system. By making pipelined
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Figure 9. Performance of strided memory references using
E-registers
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requests, 16 processors were able to saturate the system at approx-
imately 26 M fetch_&_incs/s (39 ns per fetch_&_inc).

Figure11 shows the performance of the SEND/MQCW messag-
ing mechanism. In this benchmark, processors 1 through 15
exchange pairs of messages with processor 0. The graph shows
average round trip latency (processor x sends to processor 0, pro-
cessor 0 receives message and sends a response message back to
processor x, processor x reads the response message) vs. the rate
of message exchanges. Round trip latency is approximately 5.5µs
and a maximum exchange rate of 932M/s was achieved. This cor-
responds to an occupancy of 1.07µs at processor 0 to receive a
message and send a reply.

Figure12 compares the performance of a software barrier with the
T3E hardware barrier as the number of participating processors is
varied. The software barrier is an efficient, log2(n) stage barrier
based on Puts to shared memory. The latency shown is the average
time to perform a global barrier over 50 consecutive barriers. At
56 processors, the hardware barrier has approximately 1/7th the
latency of the software barrier. Extrapolation of the curves indi-
cates that this factor will be about 15 for a 1024-processor system.

9 Related Work and Discussion
We discussed the direct predecessor to the T3E in Section2. This
section discusses some other related work.

Early message-passing machines, such as the NCUBE [37] or
iPSC/2 [5], required operating system calls to perform any com-
munication between processors. More recent systems have pro-
vided user-level messaging facilities. The Connection Machine
CM-5, for example, provides a user-level network interface via
memory-mapping [46]. Message receipt, however, requires coop-
eration of the remote processor, interfering with its work and
necessitating tight coupling of the sending and receiving proces-
sors [22].

The Alewife project at MIT addressed that issue in its messaging
support by providing a fast interrupt mechanism in the Sparcle
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processor [2]. Similarly, the J machine [34] and the proposed
interface of Henry and Joerg [16], integrate message handling
mechanisms directly into the processors. These designs, of course,
prohibit the use of commodity processors. Other system designs,
such as the Intel Paragon [21], Meiko CS-2 [20] and *T [33] dele-
gate message processing to a dedicated coprocessor.

All of the above designs require that messages be processed in
order as they arrive. The T3E, on the other hand, deposits incom-
ing messages directly into their specified queues in user memory.
This decouples message receipt from the compute processor,
allowing it to process messages when it is ready, and allows effi-
cient receipt of messages not belonging to the current process. By
controlling the MQCW interrupt thresholds or polling frequency,
software can also listen to different message queues with varying
attentiveness. This mechanism combines the flexibility of shared
memory with the one-way latency of message passing. The price
for this flexibility can be increased latency over a more tightly
integrated design; all messages go through the local memory
before being consumed by the processor.

The mechanism in the T3E forsending messages is quite similar
to those in Alewife, the NIC (network interface chip) [16] and oth-
ers; the message is first assembled by writing it into a set of exter-
nal registers and then atomically launched into the network. This
mechanism is as fast as can be expected without custom modifica-
tion of the processor.

A number of other recent, large-scale machines have provided
direct, hardware support for shared memory. These include the
Stanford DASH [26], Kendall Square KSR-1 [23], MIT Alewife
and HP/Convex Exemplar. One noticeable difference between
these systems and the T3E is that they cache remote data, while
the T3E doesnot. These machines rely on locality of reference,
and provide very little pipelining in the global memory subsystem.
In addition, cache coherence interactions can degrade perfor-
mance of explicitly parallel codes with software-managed com-
munication.

The T3E instead emphasizes sustainable memory and communi-
cation bandwidth. E-registers support pipelined global memory
requests and the stream buffers and lack of a board-level cache
increase local memory bandwidth. Performance on the T3E is
likely to suffer by comparison on dynamic, irregular codes, and
shine on memory-intensive codes and/or codes with large amounts
of inherent communication.

We are not aware of other machines that include centrifuge sup-
port for controlling data distribution. The RP3 had a simpler
mechanism that allowed pages to be either allocated at one node or
interleaved across some number of nodes in their circular, dance-
hall interconnect [39]. The mechanism for performing E-register
commands in the T3E is similar to that in the NIC [16]. Both of
these designs use theaddress of a load or store to specify a com-
mand and an external register number. In the NIC, the data path is
used to move message data between the processor registers and
network interface messaging registers (similar to E-register loads
and stores in the T3E). The T3E also uses the data path for storing
global memory addresses for E-register operations. This method
of extending the physical address space of the microprocessor by
storing virtual addresses and using remote hardware translation is
unique as far as we know.

The Stanford FLASH [25] and Wisconsin Typhoon [42] designs
incorporate fully functional, programmable protocol processors at
each node. This provides the flexibility to implement any number
of protocols and communication/synchronization mechanisms.
While this is a particularly valuable feature for a research vehicle,
and offers the promise of protocols tailored for specific applica-
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tions, the performance of a protocol processor in unlikely to match
that of a hardwired implementation. The estimates in the FLASH
paper [25], for example, indicate that protocol processor occu-
pancy in most cases is just hidden by the transfer time for the 128-
byte cache lines. A smaller transfer unit or a faster memory pipe
would expose the processing latency and create a bottleneck. The
T3E provides support for single-word (8 byte) memory transfers,
necessitating the hardwired approach. The FLASH and Typhoon
projects also differ from the T3E in their focus on global cache
coherence and lack of emphasis on pipelining in the memory sys-
tem.

Previous machines have provided mechanisms for global proces-
sor synchronization. The CM5 has a separate control network that
provides barriers and other synchronization [46]. Our opinion (as
evidenced by the change from the T3D) is that the performance of
a separate dedicated network does not justify the cost.1 The CM-5
control network is also single user, requiring that it be drained and
saved on a context switch. T3E barrier state does not require sav-
ing on a context switch, and all synchronization variables are held
in normal user memory. The RP3 [39] and NYU Ultracomputer
[15] both included multi-stage combining networks in their
designs. While general combining networks are quite powerful,
they can be expensive and/or complex to implement (the IBM
group estimated that it would increase their switch cost by 6-42
times in the technology of the day [40]2 and later dropped the
combining network). The (inexpensive) T3E barrier network is of
course a special case of general combining networks. Coupled
with a rich set of atomic memory operations and scalable, soft-
ware synchronization algorithms [30][32] where necessary, this
appears to be a good solution.

10 Summary
This paper described the communication and synchronization fea-
tures of the Cray T3E, a distributed shared memory multiproces-
sor scalable up to 2048 processors using a high-bandwidth, 3D
torus interconnect. The T3E uses a commodity microprocessor
surrounded by a custom shell – based on a large set of external
registers (E-registers) – that allows the processor to fit more natu-
rally into a large-scale system.

E-registers provide two main features: they extend the address
space of the microprocessor to support very large machines, and
they dramatically increase the available pipelining in the memory
system. They also serve as the interface for message sending and
atomic memory operation synchronization.

The E-registers support up to several kilobytes of outstanding glo-
bal memory references and can efficiently support single word
accesses (strides and gathers). The integrated centrifuge and
remote address translation allow the entire physical memory of the
machine to be accessed without a TLB fault. The centrifuge sup-
ports simple addressing for message-passing codes (PE field in the
upper bits of the address) and more complicated distributions for
languages such as HPF.

Messaging in the T3E is tightly integrated with the shared mem-
ory and is performed at user level. Message queues reside in nor-
mal shared memory, and can be of arbitrary size and number.
Message transmission, however, involves only a single, one-way
traversal of the interconnect; arbitration for queue space, storage

1.  Another way to view this, is that for the same cost, overall
performance would be better served by dedicatingall the
wires to the primary communications network.
2.  Surely this would be less expensive today with the use of
high-density CMOS ASICs.

of the message, and notification of the remote processor (by inter-
rupt or by polled status) are performed atomically by the hard-
ware. Of course, using the shared memory and synchronization
primitives, other implementations of messaging such as “receiver-
pull” are possible.

The T3E provides a rich set of atomic memory operations, includ-
ing the universal primitive compare_&_swap. These operations
can be performed on any memory location and have an observed
sustainable rate of approximately one per 200 ns (one per 40ns for
fetch_&_inc).

Perhaps the most important synchronization primitive in the T3E
is the hardware barrier. The hardware barrier outperforms a hierar-
chical software barrier by a factor of 7 with 56 participating pro-
cessors, and extrapolations indicate that the factor will grow to
approximately 15 with 1024 participating processors. Moreover,
because the barrier trees are virtual, using packets over the exist-
ing data network, the hardware barrier is almost free. The only
cost is a set of registers and a small amount of logic on each of the
router and control chips.

Finally, a number of features have been designed to ease the task
of the operating system. Remote memory translation and the mag-
ical memory mover allow each node to independently manage its
own physical memory. This eliminates the TLB shootdown prob-
lem and significantly simplifies shared memory allocation. Virtu-
alizing the barrier networks relieves the burden of managing
access to the physical barrier network; there are multiple virtual
networks and their embedding is completely flexible. Lastly, sev-
eral features of the T3D have been moved from the system to the
user domain: bulk data transfer is now performed using E-regis-
ters, and message queues and synchronization variables are held in
normal user memory.
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