Synchronization and Communication
in the T3E M ultiprocessor

Steven L. Scott

Cray Research, Inc.

sls@craycom

Abstract

This paper describes the symenization and communication
primitives of the Cay T3E multipocessara shaed memory sys-
tem scalable to 2048 pcessos. W discuss what we have learned
from the T3D mject (the pedecessor to the T3E) and tledio-
nale behind banges made for the T3E.aNhclude performance
measuements for various aspects of communication andhsgnc
nization.

The T3E augments the memory interface of the DEC 2116d-micr
processor with a lage set of eplicitly-manayed, eternal iegisters
(E-registers). E-egisters are used as the saue or taget for all
remote communication. Therovide a highly pipelined interface
to global memory that allows dozens efjuests per picessor to
be outstandingThrough E-ggisters, the T3E pvides a rid set of
atomic memory opations and a fleible, userlevel messging
facility. The T3E also pwvides a set of virtual hdware barrier/
eureka networks that can be arlgtily embedded into the 3D
torus inteconnect.

1 | ntroduction

Depending upon the application, communication bandwidth or
communication/synchronization latgnmay drve the @erhead.
A highly scalable multiprocessor must address both.

Most multiprocessors araultt with commodity microprocessors,
which ofer rapidly increasing performance anxkcellent price
performance. Microprocessors,wever, are generally designed
for workstations and modestly parallel senv. A lage-scale mul-
tiprocessor creates a foreigrnvennment into which the are ill-
equipped to fit.

The most striking limitation of most microprocessors is their
memory inter&ce. The intedces are cache line based, making ref-
erences to singleards (corresponding to strided or scattattigr
references in a ector machine) inherently irffefient. More
importantly they typically allov only one or a small number of
outstanding references to memdigniting the ability to pipeline
requests in laje systems. &t example, the DEC 21064 [11] and
21164 [12], on which the Cray T3D and T3E are basedyallo
maximum of one and twoutstanding cache line fills from mem-
ory, respectiely.

The goal of kiloprocessor multiprocessing presents a number of Microprocessors often lack digiently lamge plysical address

challenges. Fundamentaliy requires softwre capable ofxpos-
ing parallelism in an application, and haahe capable adxploit-
ing that parallelism by prading the necessary communication
and synchronization support.

Parallelism may bexposed #plicitly, using the message passing
model €.g.: Parallel Mrtual Machine (PVM) [14] or Message
Passing Intedice (MPI) [31]), or implicitly using the shared-
memory programming modek.§.: High Performance dttran
(HPF) [19] or the Alpha AXP architectural model [10]). The

shared-memory model is widely accepted as easier to use, and i

better suited for irgular, dynamic parallelism. The message pass-
ing model, hwever, is currently more portable (PVM and MPI
run on a wide ariety of machines) and mesthe detection of par-
allelism and optimization of data layout significantly easier for the
compilet

For either programming model, Wever, the besperformances
likely to be deliered by a tightly-coupled, shared-memory sys-
tem. The choice of shared memory for the T3D and TaE mot

an endorsement of the shared memory programming muedel o
the message passing modelt l\as made because it minimized
synchronization and communicationeshead.

As Amdahls Law illustrates, laver synchronization and commu-
nication awerhead hee the follaving direct results:

1. agreater number of processors can be used te aolv
given problem at a gén eficiengy, or

2. afiner granularity of wrk can be performed with avgin
number of processors.

spaces for use in Ilge-scale machines. The DEC 21064, fare-
ple, implements a 33-bit phical address while the maximum
physical memory in the T3D, isver 128 GB.

TLB reach is another potential problem. A TLB that idisigntly
large for a pwerful workstation may be insfi€ient for a machine
with a thousand processors and a terabyte ygipal memory

Microprocessors are designed to cache data thwtrédierence.
While this is usually beneficial, it is sometimes desirable toemak

Jon-cached references to memadfyhen writing to another pro-

cessors memory in a message-passing program,Xamgle, it is
far better for the data to end up in the recipient processwm-
ory than in the sending processocache!

In general, microprocessors are designed with an emphasis on
lateny reduction rather than latendoleration. While this is an
effective approach for mancodes, it is indéctive for scientific
codes with poor localityand it does not support high-bandwidth
communication in lage-scale multiprocessors.

This paper discusses the Cray T3E multiprocessgch is based
on the DEC Alpha 21164 microprocesséke describe the “shell”
that surrounds the processor to mitkfit comfortably into a kilo-
processor machine, and discuss features designed to support
highly-parallel, fine-grained programming. The paper focuses on
communication and synchronizationyigg little consideration to
the processonetwork, memory system or 1/O system.

1. A 34th bit is used to distinguish between memory and I/O
space.

ASPLOS-VII, Cambridge, MA, October 2-4, 1996

The T3E is the second in a line of scalable multiprocessors, fol- yields oser 4 times the bandwidth of the DEC 2100 A500-4/200
lowing the Cray T3D [8][35], which first shipped in late 1993. using the same processor cledkat 200 MHz [29][28].

Section2, discusses lessons from the T3D project. Segtigies

a general eerview of the T3E. Sections 4 through 7 discuss global
communication, atomic memory operations, message passing sup-
port and barrier/eureka synchronization. SecBqgmesents perfor-
mance measurements, Sectrdiscusses related ork, and
Section10 concludes.

The T3D implements three tBfent ways to access remote mem-

ory: direct loads and stores, axpbcit prefetch queue that aiks

up to 16 outstanding singleand references, and a block transfer

engine (BO) that proides lilk, asynchronous data transfers

between processors’ memories. Load/store performance high-

lights the memory pipelining issue. Since only a single outstand-
. ing cache line fill is allwed, sustainable load bandwidth &srly

2 L essonsfrom the T3D low (about 30 MB/s in a 256-processor machine). Sustainable

The T3D connects up to 2048 DEC Alpha 21064 microprocessors store bandwidth is much higher (about 120 MB/s, independent of

via a 3D torus netark, with two processors per netwk node. size), since the stores are ackiexlged right way by the proces-
Each processor contains up to 64 MB of local memanyg the sor shell, and an unlimited number may be pipelined in the inter-
memories of all processors are accessible via a shared addressonnect.

space. The prefetch queue is used by both the CRAFT compdeetch

To extend the 33-bit pysical address space of the 21064, a “DTB remote data in loops, and the Shmem libraries, to increase mem-
Annex’! is maintained in the shell outside the proces3be ory copy bandwidth. Its main limitation is that only a single
upper bits of a load or store address contain arxiimte the stream can be prefetched, making ifidifit to coordinate its use

Annex, and the corresponding Annentry pravides the PE bits among multiple parties. Our compiler writerowid have liked
for the address. Although remote memory can be cached, the on-multiple queues.

chip cache tags will contain an Anniadex rather than PE bits, so The BLT is shared between the dwprocessors at a node and
the line must be flushed if the Annentry is changed. A more requires a system call to use. Iteakon the order of 1000 6-ns

complete description can be found in [24] or [8]. processor clocks to start up a transéerd as a result has been of
The T3D has seeral strengths that 1@ been carried forard into little use. Een if the BIT startup vas more reasonable, italue

the T3E. First among these is the shared address space. Althoughvould be questionable. é\hare found that héng three vays to

the shared memory fefiently supports CRAFT [38], Crag’er- access remote memory is more of a liability than a benefit. It

sion of parallel Brtran, the most widely used programming mod- means that the compilelibrary and/or user mustvahys decide
els on the T3D ha& been PVM, and, for performance-critical how to access memaryan optimization problem for which the
communication, Shmem [9]. Shmem is a shared-memory-based necessary information is seldowadable.

message passing library that supports direct memory-to-memory The DTB Anne has preen useful for library routinesub diffi-
transfers without wolving the operating system. Researchers at it for the compiler toloit. Without global information, the
llinois have also found the shared memory instrumental in Annex entries are generally set up each time the used. Since

achieving good messaging performance [22]. the overhead to change an Annentry is small, a single entry
The interconnection netwk has also pren to be a strength. The ~ would have likely suficed.
3D torus is wiring-efcient [1] and scales well to lge numbers of Several features in the T3D require special management, includ-

processors, prading sub-microsecond access latencies and a jng the barrier netark and the tw dedicated fetch_&_inc gés-
bisection bandwidth ofwer 70 GB/s with 1024 processors. The tgrs and one dedicated message queue at each pro&igser

T3D is theonly machine with a complete set of publishedS\ these are special hardve resources, tiiemust be protected by
Parallel Benchmarks results for greater than 128 processors ie operating system. The message queue also requires OS
(results up to 1024 processors@deen published) [43]. involvement on the recang side, as user and OS messages share
The T3D barrier netark consists of a fouwire-wide, dgree-four the same queue, significantly increasing message Jateine Illi-
spanning tree \@r the entire machine. It proles full machine nois messaging implementation [22] didt use the dedicated
barrier synchronization in less tharug. While this has pnen messaging hardave.

useful, especially for CRAFT programs in which global synchro- The DTB Anne allows a single DTB entry to map a ysfical
nization is quite frequent, it appears to be a casearangineer- page on all processors in a parallel progf'r,atmt every processor

ing. We hare yet to encounter an application in which barrier time st use thesame mapping. So while DTB aerage is signifi-
is a lage fraction of total run-time, and the dedicated barrier net- ¢y amplified, memory management is ixitiéee; moving a
work is &pensve. In addition, we he found the management of ghared page on one processor requires stopping all processors in

the plysical barrier resource to berdensome. the program and nwing their pages too. This is similar to the
The T3D has seral weaknesses, marof which hae been TLB shootdevn problem [4], bt significantly more xpensve.
reported in [3]. The Igest of these is the relatly low single In summary the shared memory andst 3D netwrk have been
node performance. This is caused by adixlock (150 MHz), very useful, and non-cached stores and the prefetch queee ha
which has not tra@d impraements in the 21064 processand proven to be ery efective for pipelined remote memory access.
by Iac_k of a board-leel ca_che (each processor uses only its 8KB gyt there are too mgrways to access remote memorgmote
on-chip data cache). This last featureweeer, does allo the load bandwidth is popand seeral special-purpose hareve fea-

T3D to provide significantly higher memory bandwidth; the yres hge prosen cumbersome to manage and/or iiile to use.
STREAM single processor cpfpenchmark on the 150 MHz T3D ¢ design of the T3Eas lagely guided by thesexperiences.

1. DTB stands for Datar@nslation Bufer, DEC’s term for a

TLB.
2. Most of this time is in the library sofaie; performance is 3. The softvare must eplicitly manage the Anne however,
almost independent of machine size. to access all PEs.

3 T3E overview facilitate the remeal of dedicated fetch_&_inc gésters and mes-

)) . sage queues. Instead, synchronizati@miables and message
The T3E implements a logically shared address spzzreptysi- queues are stored in normal user memalipwing them to be
cally distrituted memories (up to 2 GB per processor). Each pro- managed via thexisting address translation mechanism and sub-
cessing element (PE) contains a DEC Alpha 21164 processor giantially increasing their fiébility. In a similar ein, the dedi-
connected to a “shell’, consisting of a control chip, a router chip cated barrier/eureka netvk has been virtualized, easing the task

and a local memory (see Figurp The system logic runs at 75 of managing the barrier trees andiding multiple logical bar-
MHz, and the processor runs at some multiple of this (initially 300 yier networks.

MHz).
) The goals of the T3E design were to grege and simplify the

various features of the shell, neaknessaging, synchronization

3 64 MB t - L 9 ;
D g <= Control 2 GB ° and memory management moreiftde, and significantly increase
SR the amount of pipelining in the memory system, both for cache-

able references to local memory and non-cached references to

v remote memory

= router F— 4 Global communication
— ——» Bidirectional
D a— *—— 3D torus This section gplains the use of E-gésters for global communica-
interconnect tion. E-rgisters pruide two primary benefits ver a more
u u straight-forvard load/store mechanism for accessing global mem-
ory: they extend the pisical address space of the microprocessor

. . to cover the full plysical memory of the machine, and yhadi-
Figure 1. T3E PE block diagram cally increase the deee of pipelining attainable for global mem-
) o ory requests. Thealso preide eficient single-vord bandwidth,
Like the T3D, up to 2048 processors are connected by a bidirec- an intgyrated centrifuge for fiéble data distribtion, and a core-
tional 3D torus, bt each node of the torus contains only a single njent mechanism for messaging and atomic memory operations.
processqgrand the netark implements fully adapte, minimal-

path routing [45]. The netwk links are time multipbeed at five The 21164 implements a cacheable memory space and a non-
times the system frequepcand can defier one 64-bit wrd of cacheable I/0 space, distinguished by bit 39 of the 40-pgtipd
payload each sysclock (13.3 ns). address. Local memory loads and stores in the T3E use cacheable
])) memory space. Address translatioresklace on the processor in

The T3E is a self-hosted machtneinning Unicos/mk, a seev- the usual dshion, and pysical addresses are passed through the
ized \ersion of Unicos based on the Chorus mierakl [7]. I/O is shell directly to the memory
based on the GaRing channel [44], with sustainable bandwidths .
of 267 MB/s input and output forery four processors. The T3E uses I/O space to access memory-mappistens,

.] including the E-rgisters. There are twprimary types of opera-
Like the T3D, the T3E contains no boardelecache, bt the tions that can be performed on Eyisters:
21264 processor hasavievels of caching on chip: 8KB firstuel))
instruction and data caches, and a unified ag-@associatie, 96 + Direct loads and stores between Biseers and pro-
KB second legel cache. As with the T3D, memory bandwidth is cessor rgisters.
higher than wuld be possible with a boardvd cache. Measured * Global E-rgister operations.

performance on the STREAM cpfpenchmark of 470 MB/s is
over twice that of the DEC 8400 5/300 (186 MB/s), which uses a
21164 processor running at the same frequé2@][28].

Direct E-reister loads/stores are used to store operands into E-
registers and load results from Egigters. Global E-igister oper-
ations are used to transfer data to/from global (meaning remote
The 21164 allws two outstanding 64-byte cache line fills. Local local) memory and perform messaging and atomic operation syn-
memory bandwidth is enhanced by a set of hardvgtream iff- chronization.

ers. These Uffers automatically detect consewetireferences to

multiple streams, wen if interleaed, and prefetch additional 4.1 Addresstrangation for global references

cache lines don each stream. Thiecan achiee much of the ben-

efit of a lage, board-leel cache for scientific codes at a small For global E-reister operations, a global virtual address (shin
fraction of the cost [36]. Figure2) and virtual PE number are formeutside the processor

i)) in the shell circuitryThe virtual PE number goes through a trans-
Only local memory is cached in the T3E. The on-chip caches are |ation mechanism at the source processor to identify thsiqsi

kept coherent with local memory through arieenal backmap, PE, and the global virtual address is transmitted across the net-
which filters memory references from remote nodes and probes yqrk where it goes through a virtual-toysical translation using

the on-chip cache when necessary t@lidate lines or retriee aglobal trandation buffer at the taget PE.

dirty data.

The T3E augments the memory inteé of the DEC 21164 63 3837 3230 0
microprocessor with a lge set (512 user plus 128 system) of | | || Segment Offset 3,
explicitly-managed, ®ternal r@isters (E-rgisters). All remote T GseG

communication and synchronization is done between thgse re I:l Must be zero 6

ters and memory

The E-rgisters tak the place of the T3B’'DTB Anne, prefetch
queue, block transfer engine and remote loads/storey. alke

Figure 2. Global virtual address (GVA)

The T3E supports the data distrion features of manimplicit
programming languages [38][19][6][13] via an igtated hard-
ware centrifuge. The virtual address for global references is

1. The T3D requires a Cragetor machine as a front end.

formed using a mask, indeand base. The mask bits indicate
which of the bits in the inderepresent PE bits, and which bits
represent address within a PErFach bit set in the mask, the
corresponding bit in the ingds extracted. The xracted bits are

21164 Microprocessor

compacted to form a virtual PE numpand the remaining bits are
compacted and added to the base to form a virtual addsgss. T Data Bus + Address BUS*
cally a base and mask are set up for each shared wlisttiarray Ponter Address Index
o X C d |E-
and then the indeis varied. l g o | omman reﬁ

Figure3 illustrates the centrifuge operation for an array distrib-
uted aver 64 PEs. The bits in the indeorresponding to the ones

in the mask are pulled out to form the virtual PE number (PE 37 in
this case). The remaining bits of the irderm an ofset which is
added to the base. Since the PE field starts at bit 6, each stecessi

E-Registers

cache line (64 bytes) in the shared array maps tovdke Virtual Addresssg Virtual PE;,
49 0 I'SEGg] Segment Offsets, |
Mask [00000000000000000000000000000000000000111111000000]
) 4
Index [00000000000000000000000000000000001110[100101[010000] Segment Base PEp ;G.
ion|PE limit
Translation < | Logical PE;,
Table >
Prot.
[00000000000000000000000000001110010000] [1oo0107] Outgoing Put data L$O[I;|UP
)) able
Offset Virtual PE Incoming Get data GSEGg Offsetg,

Physical

Base [00001010000000001100000000000000000000] roliting tag

Local y

Virtual [55001020000000001100000000001110010000]

dr."VseG Segment Offset Network
Remote
Figure 3. HW centrifuge operation example: Array v
interleaved by cache line over 64 PEs [ssecq Segment Offsets,
Global Virtual Addresssg
A typical “distributed memory” (message passing) prograouha Global
use a single mask and base for all §istr operations. The base Translation
would be set to zero and the mastuld have a block of set bits in X7
the upper part of the address. The indeuld thus contain a com- lPhysicaI Addressz;
plete address; theer part vould simply be a virtual address
within a PE, and a field in the upper paxuld represent a PE Figure 4. Address translation for global (E-register)
number references

The full address translation path for a global gster reference
is shavn in Figure4. The operation is performed by performing a
store in 1/0 space. The address of the store encodes a command

(eg.: read a wrd from remote memory into an Egister) and a The 6-bit GSEG space alls multiprogramming: diérent jobs

source or destination Egister The 64-bit vord written onto the (with possibly common VSEGs) sharing memory at a node are
data lus includes théndex for the remote memory location and a assigned dferent GSEGs.

pointer to an aligned block of four E-gesters containing the mask

and base for the centrifuge and up t@ tadditional aguments. The GSEG and genent ofset form a G (refer to Figure2) that
Before performing the operation, the mask and base must ha is transmitted across the neik with the reference. At the remote
been stored into the Egisters. This need only be done once for node, the GX goes through a translation to produce the actual
each distribited array (or at least is done outside the inner loop). A physical address at that node. The global translatidfeibper-
single general-purpose mask/base pair may also be set up for allforms page-based translation withxitde pages sizes (64 KB -
miscellaneous data references, or for all references in a message128 MB), and is hardare-loaded from a complete page table in
passing program as described\aho memory (so cannogfilt under normal conditions).

The inde is centrifuged with the mask and base to produce a vir- The remote translation step aile each node to manage itsro
tual address and virtual PE number (this is the PE number that anPhysical memory; it can me its part of a shared grent inde-

The sgment lookup on the source node guarantees thagaser
erated addresses only access authorized GSEGs on authorized
PEs. Sgment range violations are detected at the remote node.

application uses; virtual PE spacways goes from 0 to-1 in an pendently from the other processors. This eliminates TLB shoot-
n-processor job). The virtual address includes a virtuginsat downs entirely

number which indees into a sgment translation table. Thegse To further support this, an ingeated hardare engine we call the
ment translation table produces a globaynsent (GSEG), a base “magica| memory meer” can perform a local memory gppper-

PE (which corresponds to section of the machine in which the gation in the background and allanemory requests to that page to

application is running), a PE limit and protection information. The pe servicedvhile the cop is in progress (the reference is serviced
virtual PE is added to the base PE to produce a logical PE number

which is presented to a routing lookup table to produceysiqdd

routing tag. 1. The logical PE to pisical routing tag translation alls
spare PEs to be mapped in to replace dmdREs.

from the old or ne location depending upon whether that particu- in ones or zeros in specified locations. It alsovisles a mecha-

lar word has been transferred yet). Thiswbdahe operating sys- nism to perform atomic byte (or other size) stores.
tem to mee a page of a sharedgseent without delaying anof
the processors in the parallel job accessing the page. Atomic Operation
42 Get and Put " (operands) Description
. and Put operations :
) P])) Fetch_&_Inc Add one to memory location and retugn
The global operations to read memory into gisters or write E- (none) original memory contents.

registers to memory are callégets andPuts, respectiely. There
are two forms of Gets and Puts: singlend and ector Both can Fetch_&_ Add Add integer addend to memory locatid
operate on either 32-bit or 64-bitovds. \éctor Gets and Puts (addend) and return original memory contents.
transfer 8 werds, with an arbitrary stride. The stride operand is

stored in the block of E-gisters that contains the mask and base. | Compare_& Swap | If comperand equals contents of
memory then store saperand into

]

Access to E-misters is implicitly synchronized by a set of state (comperand, memory Return original contents of
flags, one per E-gister A Get operation marks the ¢t E-rgis- swaperand) memory

ter(s) empty until the requested data \esi from memory at - -

which time thg are markd full. A load from an E-gister will Maslked_Svap For each bit set in mask, store
stall if the E-rgister is empty until the data ares. A Put from an (mask, svaperand) corresponding bit pf'saperand into
E-register will also stall if the E-gister is empty until the data memory Return original contents of
becomesailable. A global memory cgproutine might perform memory

Gets from the source area of memory into a block ofgisters Table 1. Atomic Memory Operations

and subsequently Put the data from the dgtsters to the tget

memory area. The implicit state flag synchronization protects Herlihy has shen [17] that compare_&_sap is a uniersal prim-

against the RAV hazard in the E-mgsters. itive, meaning that it can be used to constructi-free imple-

mentatiod of ary sequential objecie(g.: shared wrk queues). It
is also necessary or beneficial foraigety of scalable synchroni-
zation algorithms [30][32]. Load-lirdd/store-conditional, imple-

transaction, alleing 256 bytes wrth of Gets or Puts to be issued ~ Mented in seeral architectures [10][41][27], is also a wesal
primitive, and in &ct can allev more straight-fonard implemen-

in 26.7 ns. This issue bandwidth & fyreater than the sustainable . .
b tations of some concurrent objects [18]. wdmer, most load-

data transfer bandwidth, so the processor is not a bottleneck. Data It . > o
P aI|nked/st0re-cond|t|onal implementations place restrictions on the

in a memory-to-memory transfer using Eyigters does not cross . X " X
the processorus; it flaws from memory into E-gisters and out types of operations that can be performed in the critical section
' (e.g.: no memory operations), and the privitdoes not scale

to memory agin. X -

N .) o) well to laige numbers of processors undariable contention.
In addition to preiding a highly-pipelined memory intexte, the i)
E-registers proide special support for singleend load band- To perform an AMO in the T3E, gmecessary operands are first
width. Rav accesses indftran, for aample, can be fetched into Written to E-reisters. The operation is then triggered via a store to
contiguous E-rgisters using stridedector Gets. The resulting /O space, as described in Sectbh. The AMO command is
blocks of E-reisters can then be loaded broadside into the proces- SPecified on the addressish The necessary operands are read
sor in cache-line-sized blocks, making significantly mofieieht from the aligned block of E-gisters that is used for the mask and

use of the bs than wuld be possible with normal cache line fills, ~ ©ase. An atomic memory operation peicis then sent to the spec-
ified global memory location, where the operation is performed.

The maximum data transfer rate between twdes usingeactor The result is returned to the Egister specified on the addressb
Gets or Puts (as determined by the ekl is 480 MB/s, and E- of the AMO command.

register control logic further limits the bandwidth to something))))
less than this, depending upon the operation. At this rate &ittle’ Most AMOs in the T3E require a read-modify-write of DRAM,

Since there are a g number of E-gisters, Gets and Puts may
be highly pipelined. Theus interfice allevs up to four properly-
aligned Get or Put commands to be issued in adwle hus

Law? indicates that 128 E-gésters prwide suficient pipelining to resulting in a minimum repeat time of 11 sysclocks (147 ns) for a
hide the round-trip paek latencies plus command issue times (on given synchronization ariable (8M AMOs per second). High
the order of 1-21s). bandwidth fetch_&_inc operations are supported viaiffeb at

the memory controller of each node. Sucees$etch_&_incs to
5 Atomic memory operations the same wrd are satisfied out of theuffer, allowing a repeat

) time as lov as 13.3 ns, or 75 M fetch_&_incs per secdnd.
The T3E e&pands upon the atomic W feature of the T3D to

provide a rich set of atomic operations. While S\bperations in 6 M gi ng

the T3D can only be performed on dedicatedABWaegisters,)))
atomic operations in the T3E can be performed on arbitrary mem- Message queues in the T3D and T3E are intended to support dis-
ory locations, allwing an unlimited number of synchronization tributed memory applications and infenocess communication

variables, easing the job of the compilend remuing the within the operating system.

involvement of the operating system. The T3D preides a single message queue at each processor that is
Tablel lists the atomic memory operations (AMOs)\ided by shared by both user and system messages. The queue isdof fix
the T3E. Fetch_&_inc, fetch_& add, and compare_&asware size (256 KB) and is located at a€iklocation in memoryMes-

well knovn synchronization primites. Maskd_svap praides
test_and_set and clear operations orviddal bits, by svapping

2. One in which no blo@d €.g. swapped out) process can
impede the progress ofyanther process.

3. The lbiffer was originally intended to support all atomic
1. N = Xe<R, where * throughput, R= response time, and N operations, bt due to implementation constraints, only

= number outstanding. fetch_&_incs were supported.

sages are 32 bytes plus header information. While the hegsdw When the SEND is issued, the state flags associated with the 8 E-

transmission latencinvolves only a single netwk traversal, all registers are set to emptWhen the response is reg, if the
incoming messages generate interrupts andxamiaed by sys- message as accepted, the flags are set to full, else the flags are set
tem softvare. This adds a significant latgngenalty to message to “full-send-rejected”. This can be detected by the sending pro-
receipt, calling into question thefiehgy of using the special cessor and the message can be retransmitted.

mechanism rather than constructing message queues in normal

shared memory 6.3 M essage queue management

The T3E allovs an arbitrary number of message queues to be cre- The head of a message queue(nmread message) is maintained
ated by either user or system code. Queyes are mapped into norpy seftware. As the local processor consumes messages, it incre-
mal memory space and can be ofy asize up to 128 MB. ments its head pointer until equal to the tail poirfée processor

Messages are 64 bytes (no header is stored). The queues can be sgf responsible for re-allocating message queue space veien T
to interrupt on arxial, never interrupt (in which case messages are approaches (or reaches) Limit.

detected via polling), or interrupt only when some threshold num-
ber of messages v arrved. T3E message queues grtge the
desirable features of message passing (caenetvork traversal
lateng, no distriluted luffer management) with the fibility of a
shared-memory implementation.

An atomic memory operation performed on a MQCWaatly
affects the flav of messages to the corresponding message queue.
If a swap is performed to redirect messages to ferifit portion

of the queue, fonemple, the returned MQCW will represent the
last message stored to the queue. No messages will be lost.

6.1 M essage Queue Control Word A typical algorithm for managing a message queue is asvallo

The processor first setailand Limit to point to the first half of

the queue. As dil approaches Limit, the processor performs a

SWAP to set @il and Limit to point to the second half of the

' queue. It then consumes the residual messages from the first half
of the queue. Whenall agnin approaches Limit, the processor

A message queue is created by simply constructing and storing a
Message Queue ControloMd (MQCW) at the address of the
desired location of the queue. The 64-bit MQCW has four fields
as shovn in Figure5.

6362 a2 4 2120 0 performs a SWP to switch to the first half of the queue, and so
M Tail 5, | Limit 5; | Threshold 5, | on. Other algorithms are of course possible.
- signal The MQCW/SEND mechanism alls users to set up multiple
message queues of arbitrary size. Since message queues are held
Figure 5. Message Queue Control Word in normal memory space, no special access protection need be

provided. By polling, users programs can use messaging with no
Tail is a relatie ofset that is added to the address of the MQCW OPerating system inteention, significantly reducing verhead.
to identify the ngt available slot in the queueail must be initial- Measurements on the T3Eveademonstrated oneay message
ized to a wlue greater than zero teaid having the first arsing latencies (half of a round-_trlp m_essagermnge) to PEs three net-
message writever the MQCW The il pointer has a granularity ~ WOrk hops way of 2.7ps, including softare overhead.

of 64 bytes. It is incremented by one each time a message is store . . .
into the queue. % Barrier/eureka synchronization

Limit is a 21-bit alue that indicates the size of the message queue. Barriers allov a set of participating processors to determine when
Sizes up to @1 - 2) 64-byte messages are supported. When a mes- all processors ha signalled somevent (typically reached a cer-

sage arwies, Limit is compared toall. If Tail > Limit, the mes- tain point in their gecution of a program). Eurekas afla set of
sage is rejected and thailTpointer is not incremented. Ifail < processors to determine wheryame of the processors has sig-
Limit, the Tail value is added to the global virtual addressAy ~ halled someeent. Users might use eurekas to signal the comple-
of the MQCW to generate aweGVA for the message. This GV tion of a parallel search. The operating system might use eurekas

is then translated by the GTB and chetkor range errors priorto {0 interrupt some or all remote processors.

storing the message. If the message is accepted, an ack is returne@arriers are hadly used in map parallel applications, and their
the message is stored arallTs incremented. If the address isille- performance can fct the ability to the scale the application. As
gal, a nack is returned. an «ample, we hee worked with proprietary meteorological
Threshold is a soft limit which is generally set tosire< Limit. codes that perform on the order of one barnere 200ps in a
When a message is accepteai) i incremented and compared to ~ 128-processor system. At this rate, and additionglid 3o per-
Threshold. If il = Threshold, then an interrupt is delied to the form a softvare barrier (see Secti@) would add wer 7% to the

local processorand the Signal bit is set tadilitate identification application runtime.
of the interrupting message queue. Messages are not rejected] o)
when il = Threshold. 7.1 Barrier/Eureka Synchronization Units

5 di The T3E preides a set of 32 barrier/eureka synchronization units
6. Sending a message (BSUs) at each processdthe BSUs are accessible as memory-
Messages are transmitted by first assembling them in an alignedmapped rgisters and are allocated and protected via the address
block of 8 E-rgisters and then issuing a SEND command. A translation mechanism. A set of processors canvamgiccess to
SEND is similar to a Put commandeept the memory address of ~ @ particular BSU through which thean perform barrier and/or
the SEND must be alid MQCW in memory eureka synchronization. Multiple disjoint sets of processors may

The block of 8 E-rgisters is deliered to the specified address, reuse the same logical BSU.

where it is stored into the message queue as described inA BSU at a processor can be in one ofesal states. Processors
Section6.1. The read-modify-write of the MQCW and storage of ~can read this state and perform operations on the BSU via load and
the message are performed atomicaityno arbitration is required ~ Store operations.ables 2 and 3 shoa subset of the local states
when multiple processors are transmitting to the same queue. and operations.

State Description
S_EUR A eureka gent came
S_EUR_I | A eureka came, interrupt signalled
S_ARM Barrier is armed
S_ARM_I | Barrier is armed, an interrupt will occur on
completion
S_BAR Barrier just completed
S BAR | Barrier just completed, interrupt signalled

Table 2. Barrier/Eureka Synchronization Unit States

Operation Description
OP_EUR Send eureka
OP_INT Set to interrupt when a eurekeeat occurs
OP_BAR Arm Barrier
OP_BAR_I Arm Barrier, interrupt on completion
OP_EUR_B | Send eureka and arm barrier

Table 3. Barrier/Eureka Synchronization Unit Operations

Figure6 (a) shavs the state transitions for a simple barrien
OP_BAR takes a gren BSU from the S_BR state to the S_ARM
state. When all participating processorseharmed their barriers,
the netvork delivers completion notifications that &skthe BSUs

to the S_BRR state, at which point the BSUs are ready for the: ne
barrier synchronization. The barrier can be made to interrupt upon
completion by joining it with the OP_MAR_1 operation.

A simple, re-usable eurekaent, shavn in Figure6 (b), is a three-
state transition that includes a barrier to establish that all proces-
sors hae seen the eureka before performing another eureka. Start-
ing in the S_B\R state, a single processor performs an OP_EUR.
This tales its BSU to the S_EUR state, and causes theorletay
deliver eureka eents to all other participating BSUs, taking them
to the S_EUR state as well. As processors obkdbereureka, tlye
indicate this by performing an OPAR. The triggering processor
can perform a combined OP_EUR and ORRBusing an

OP_EUR_B.
@

Barrier Completion
Notification

OP_BAR

(a) Barriers

OP_EUR or
Eureka Notification

Barrier
Completion
Notification

(b) Eurekas

Figure 6. Simple barrier and eureka local transitions

Once all processors @ joined the barriethe network delivers
barrier notifications that place all BSUs in the 8RBstate, ready
for the nat eureka eent. As with barriers, eurekas can optionally
be set to interrupt upon notification.

Note that the BSU inteate allovs “fuzzy” barriers, in which a
processor can perform unrelatednw between joining a barrier
and checking for completion.

7.2 Embedded barrier/eureka trees

Rather than dedicate ysical wires for barrier/eureka synchroni-
zation, the T3E embeds logical barrier/eureka pdtw into the
regular 3D torus interconnect. Small barrier/eureka peclare
passed eer the netwrk to signal eents. Barrier/eureka paets
use their wn virtual channel and are transmitted with highest pri-
ority. This schemedeps global barrier/eureka latgrto less than
that of a single remote memory reference, while making mére ef
cient use of limited neterk wires.

To embed the barrier/eureka trees in the ngtweach netark
router maintains a gister for each of the 32 BSUs. Thigjister
allows the node to be configured as an internal node in thesBSU’
logical tree. The m@ister indicates which of the six nedvk direc-
tions plus the local processor are children in the tree, and which
direction (if ary) is the parent. It alsodeps track of the set of chil-
dren that hee signalled a barrier

When all children h&e signalled a barrieor when an child sig-

nals a eureka, a corresponding signal is sent up to the parent (by
sending the parent a barrier/eureka paglor if the node is the

root of the tree, completion signals are sent to all of the children
(also via barrier/eureka pagts). Completion signals are broadcast
hierarchically to all children in a barrier/eureka tree, and result in
appropriate changes to the child BSUs, optionally interrupting the
leaf processors.

8 Performance

This section presents performance measuremenrdgs @ik early
hardware. These measurements do not represent a complete per-
formance profile of the T3E,ub rather are intended to illustrate
the eficagy of the primitves discussed in this pap&he absolute
values of may of these measurements areslikto evolve, and, in
particular the DRAM timing parameters of the measured systems
were set to less aggressivalues than production systems will
use.

We used a series of small, micro-benchmarks to measu@s
communication and synchronization latencies and throughputs.
Code vas written in C and compiled using Cragtandard T3E
compiler Standard Shmem library routines were used for barriers,
atomic memory operations and memory-to-memory copies. Mes-
sage-passing as performed by manipulating the MQCW and
shared memory directly from the C code. The memory pipelining
and strided reference benchmarks used assembly-langergsk

in order to diciently schedule Gets and loads.

With the eception of the barrier benchmark, all measurements
were talen on a 20-processor machine, with 300 MHz processors.
The barrier benchmarkag run on a 64-processor machingtb
with prototype parts running at 200 MHz (50 MHz sysclock);
results were scaled to reflect times on a full-speed system.

Figure7 shavs the efiect of pipelining on global memory band-
width. The benchmark loads an array of 16K entries (128 KB)
from a node three netwk hops way using ector Gets and E-
register loads. The number of Egisters used to hide the latgnc
is varied from 1 to 256.46t 32 or more E-mgisters, a loop pream-
ble first issues Gets to all the Higters. The main loop then

repeatedly loads a block of 32 Egisters, issues Gets into the Figure9 illustrates the ability to load strided (oatbered) data
vacated E-rgisters and increments the block pointers. A loop pos- into the microprocessor by first fetching it into aligned blocks of

tamble loads the remaining Egisters alues. E-registers using stridedector Gets. The graph she the asymp-
350 — totic bandwidth of local loads through Egisters vs. the stride of
= 300 the reference stream. itV cacheable references, of course, real-
% ized bandwidthdlls of as stride increases because an increasing
S 2504 fraction of the cache line is ignored, resulting in gdastride BW
= 2004 of only 1/8th (for an 8-wrd cache line) of the stride-1 bandwidth.
g 150 Using Gets, haever, stride-independent bandwidth is possible.
T 100- 450
50— @ 400
0 N S S B S m— S 350
1 2 4 8 16 32 64 128 256 T__’ 300
Numer of E-registers used % 250+
Figure 7. Effect of pipelining in the memory interface 2 200+
® 150—
Ko}
Realized Get bandwidth increases with the number ofEters = 1004
used. Using 8 E-gisters, the realized bandwidth is 32.8 MB/s. 8 50
The round trip latenc(time to store out theeetor Get command, - 0
perform the Get operation from remote memdogd the 64 byte T T T T 1
result into processor gesters, plus loop v@rhead) is thus 64B/ 1 2 4 8 16 32
(32.8 MB/s) = 1.86us. At this lateng, 128 E-rgisters (1 kilobyte) Stride (words)
provide suficient huffering to sustain the maximum transfer rate,)))
which appears to be limited by a bottleneck in thedgster con- Figure 9. Performance of strided memory references using
trol logic. E-registers
The relatvely high lateng for remote referencésill limit band- The reduced bandwidth for certain strides in Figuig an artifct
width for smaller transfers. FiguBshavs the efect of startup of the local memory system, which contains 8 independent, sin-

lateny on realized bandwidth for memory-to-memory copies gle-word banks. All strides up to 16 are s as well as 28, 31
using the shmem_get() and shmem_put() library calls. Source andand 32. Strides that are a multiple of 8 load all data from a single
tamget nodes are three netik hops way (average distance ina 64 bank, and strides that are a multiple of 4 load all data from a pair

processor machine). of banks. Other strides use four or eight banks and \actiigl
3504 & 4 pyt bandwidth.
300 © O Get O/Qﬁ-_g;gg%_g As discussed in Sectiagh E-rayister data is loaded with 1/0O space
m - K loads, which are lessfigfient than cacheable loads in the 21164
m 250- ~** Get(stride) £ processarCacheable memory loads can be performed at roughly
2 200— , twice the bandwidth of E-gister loads in the T3E, so are prefera-
% 9// ble for stride-1 or stride-2 reference streams.
'% 150)/ Figure10 shavs the performance of atomic memory operations.
S 100+ /C{ All 16 processors in this benchmark perform AMOSs to the same
4] 50 synchronization ariable located at processor 0. The graptwsho
n average latencfor an AMO vs. rate of operations. The maximum
0- T T — T sustained rate of fetch_&_ add operations is approximately 4.5
8 16 64 256 1K 4K 16K 64K 256K 1M Mops/s (222 ns per AMO). Fetch_&_inc has wéo lateny, due
Transfer size (bytes 3.2
Figure 8. Effect of startup lat - |) d bandwidth 287 77 Fechan
igure 8. Effect of startup latency on realized bandwi
g P 4 'g\ 2.4+ § —®—® retch_inc
The Get transfer performs stride-1 Gets from remote memory and 2] 2.0+ 6000000000000
Puts to local memoryThe Put transfer performs stride-1 Gets & 16 ° . . ° o ° ° °
from local memory and Puts to remote memdrye strided Get % 1.2
transfer performs stride-10 Gets from remote memory and stride-1 = 0.8
Puts to local memory; eaclestor Get command is brek up into 0.4
8 single-vord Get packts that treerse the netark separately 0.0 T T T T T T T T)
The stride-1 transfers achi near asymptotic bandwidth for o 1 2 3 4 5 6 7 8 9
lengths of about 16 KB and yend. The N~ is approximately 1 Atomic ops per sec (millions)

KB. Due to the laver asymptotic rates, the strided Get transfer
achieves near peak bandwidth at about 4 KB, and has;goN
approximately 256 bytes.

Figure 10. Atomic memory operation performance

to its smaller netark paclet size and the fetch_&_inaffer at

the memories, and has a substantially higher sustainable band-
1. This is one metric by which the T3E isnse than the width. Sixteen processors making one reference at a time were
ECL-based T3D. unable to saturate the memory system. By making pipelined

2. Length for which 1/2 asymptotic bandwidth is acad

requests, 16 processors were able to saturate the system at approyprocessor [2]. Similarlythe J machine [34] and the proposed

imately 26 M fetch_&_incs/s (39 ns per fetch_&_inc).

Figurell shavs the performance of the SEND/MQCW messag-
ing mechanism. In this benchmark, processors 1 through 1
exchange pairs of messages with processor 0. The grapls sho
average round trip lategqprocessor x sends to processor 0, pro-

interface of Henry and Jogr[16], intgrate message handling
mechanisms directly into the processors. These designs, of course,

5 prohibit the use of commodity processors. Other system designs,

such as the InteldPagon [21], Meik CS-2 [20] and *T [33] dele-
gate message processing to a dedicated coprocessor

cessor O recees message and sends a response message back té\ll of the abae designs require that messages be processed in
processor X, processor x reads the response message) vs. the rateder as thg arrive. The T3E, on the other hand, deposits incom-

of messagexehanges. Round trip latenis approximately 5.pls
and a maximumxhange rate of 932M/sag achieed. This cor-
responds to an occupanof 1.07 s at processor 0 to receia
message and send a reply

8 —
7 -
6—
5
4 -
33—
2 —
1 -
0

Latency (us)

I I I I I I I I I 1
0 100 200 300 400 500 600 700 800 900 1000

Message pairs per sec (thousands)
Figure 11. Messaging performance

Figure1l2 compares the performance of a safewbarrier with the
T3E hardvare barrier as the number of participating processors is
varied. The softare barrier is an B€ient, log2(n) stage barrier
based on Puts to shared memditye lateng shavn is the aerage
time to perform a global barriewer 50 consecute barriers. At

56 processors, the hardre barrier has approximately 1/7th the
lateny of the softvare barrier Extrapolation of the cues indi-
cates that thisactor will be about 15 for a 1024-processor system.

& O goftware

—®—®- Hardware o

Latency (us)

18
16
14
12
10
8
6
4
2
0

! ! LI LI LI !
6 8 12 16 24 32 56

Numer of PEs
Figure 12. Barrier performance

9 Redated Work and Discussion

We discussed the direct predecessor to the T3E in S&ctidns
section discusses some other relatedkw

ing messages directly into their specified queues in user memory
This decouples message receipt from the compute progcessor
allowing it to process messages when it is ready allovs efi-

cient receipt of messages not belonging to the current process. By
controlling the MQCW interrupt thresholds or polling frequenc
software can also listen to &éfent message queues withrying
attentveness. This mechanism combines thgibiiity of shared
memory with the one-ay lateng of message passing. The price
for this flexibility can be increased latepamver a more tightly
integrated design; all messages go through the local memory
before being consumed by the processor

The mechanism in the T3E feending messages is quite similar
to those in Alavife, the NIC (netwrk interface chip) [16] and oth-
ers; the message is first assembled by writing it into a setef e
nal registers and then atomically launched into the petwThis
mechanism is agt as can bexpected without custom modifica-
tion of the processor

A number of other recent, gg-scale machines V& proiided
direct, hardvare support for shared memoifhese include the
Stanford ASH [26], Kendall Square KSR-1 [23], MIT Abafe
and HP/Cowmex Exemplar One noticeable dérence between
these systems and the T3E is thaytbache remote data, while
the T3E doeswot. These machines rely on locality of reference,
and pride \ery little pipelining in the global memory subsystem.
In addition, cache coherence interactions cagratke perfor-
mance of gplicitly parallel codes with softare-managed com-
munication.

The T3E instead emphasizes sustainable memory and communi-
cation bandwidth. E-gisters support pipelined global memory
requests and the strearffiers and lack of a boardel cache
increase local memory bandwidth. Performance on the T3E is
likely to sufer by comparison on dynamic, ig@lar codes, and
shine on memory-intenst codes and/or codes withdaramounts

of inherent communication.

We are not ware of other machines that include centrifuge sup-
port for controlling data distrition. The RP3 had a simpler
mechanism that aleed pages to be either allocated at one node or
interleaved across some number of nodes in their circdiamce-

hall interconnect [39]. The mechanism for performing gister
commands in the T3E is similar to that in the NIC [16]. Both of
these designs use thddress of a load or store to specify a com-
mand and anxternal rgjister numberin the NIC, the data path is
used to mee message data between the procesgpstees and
network interface messaging gesters (similar to E-igister loads

Early message-passing machines, such as the NCUBE [37] orand stores in the T3E). The T3E also uses the data path for storing

iPSC/2 [5], required operating system calls to perform @m-
munication between processors. More recent systenes fa-
vided useilevel messagingafilities. The Connection Machine
CM-5, for xample, proides a uselevel network interface via
memory-mapping [46]. Message receiptwieeer, requires coop-
eration of the remote processanterfering with its wrk and
necessitating tight coupling of the sending and vé&ugiproces-
sors [22].

The Alewife project at MIT addressed that issue in its messaging
support by preiding a fast interrupt mechanism in the Sparcle

global memory addresses for Eister operations. This method
of extending the pysical address space of the microprocessor by
storing virtual addresses and using remote hareiranslation is
unique asdr as we kne.

The Stanford FLASH [25] and Mtonsin ¥phoon [42] designs
incorporate fully functional, programmable protocol processors at
each node. This pvides the flgibility to implement ag number

of protocols and communication/synchronization mechanisms.
While this is a particularlyaluable feature for a researoshicle,

and ofers the promise of protocols tailored for specific applica-

tions, the performance of a protocol processor in ahylito match

that of a hardwired implementation. The estimates in the FLASH
paper [25], for gample, indicate that protocol processor occu-
pang in most cases is just hidden by the transfer time for the 128-
byte cache lines. A smaller transfer unit oaatér memory pipe
would epose the processing latgnand create a bottleneck. The
T3E provides support for single-avd (8 byte) memory transfers,
necessitating the hardwired approach. The FLASH amdhdon
projects also diér from the T3E in their focus on global cache
coherence and lack of emphasis on pipelining in the memory sys-
tem.

Previous machines & pravided mechanisms for global proces-
sor synchronization. The CM5 has a separate controbnletiivat
provides barriers and other synchronization [46]. Our opinion (as
evidenced by the change from the T3D) is that the performance of
a separate dedicated netl does not justify the costThe CM-5
control netvork is also single usgrequiring that it be drained and
sared on a contd switch. T3E barrier state does not require sa
ing on a contet switch, and all synchronizatiomrables are held

in normal user memoryrhe RP3 [39] and NYU Ultracomputer
[15] both included multi-stage combining nefks in their
designs. While general combining nerks are quite peerful,

they can be gpensve and/or comple to implement (the IBM
group estimated that itauld increase their switch cost by 6-42
times in the technology of the day [ﬁoind later dropped the
combining netwrk). The (in&pensve) T3E barrier netark is of
course a special case of general combining orédsv Coupled
with a rich set of atomic memory operations and scalable, soft-
ware synchronization algorithms [30][32] where necessiig
appears to be a good solution.

10 Summary

This paper described the communication and synchronization fea-
tures of the Cray T3E, a distuted shared memory multiproces-
sor scalable up to 2048 processors using a high-bandwidth, 3D
torus interconnect. The T3E uses a commodity microprocessor
surrounded by a custom shell — based on gelaet of ternal
registers (E-rgisters) — that allws the processor to fit more natu-
rally into a lage-scale system.

E-registers pruide two main features: tlyeextend the address
space of the microprocessor to suppenyviage machines, and
they dramatically increase thevailable pipelining in the memory
system. The also sere as the intedce for message sending and
atomic memory operation synchronization.

The E-rgisters support up toeeral kilobytes of outstanding glo-
bal memory references and caffiogntly support single ard

accesses (strides anditigers). The inggrated centrifuge and
remote address translation a&lithe entire pysical memory of the
machine to be accessed without a TlaBIf. The centrifuge sup-

ports simple addressing for message-passing codes (PE field in thd]

upper bits of the address) and more complicated disiits for
languages such as HPF

Messaging in the T3E is tightly irgeted with the shared mem-
ory and is performed at usevé. Message queues reside in nor-
mal shared memoryand can be of arbitrary size and number
Message transmission, wever, involves only a single, oneay
traversal of the interconnect; arbitration for queue space, storage

1. Another vay to viev this, is that for the same costeoall
performance wuld be better seed by dedicatingll the
wires to the primary communications netk.

2. Surely this wuld be lessxpensve today with the use of
high-density CMOS ASICs.

10

of the message, and notification of the remote processor (by inter-
rupt or by polled status) are performed atomically by the hard-
ware. Of course, using the shared memory and synchronization
primitives, other implementations of messaging such as eeei
pull” are possible.

The T3E proides a rich set of atomic memory operations, includ-
ing the urversal primitve compare_&_sap. These operations
can be performed on ywmemory location and ka an obserd
sustainable rate of approximately one per 200 ns (one per 40ns for
fetch_&_inc).

Perhaps the most important synchronization primith the T3E

is the hardware barrierThe hardware barrier outperforms a hierar-
chical softvare barrier by aactor of 7 with 56 participating pro-
cessors, andxé&apolations indicate that thedtor will graw to
approximately 15 with 1024 participating processors. M@go
because the barrier trees are virtual, using g@aolver the eist-

ing data netwrk, the hardwre barrier is almost free. The only
cost is a set of gisters and a small amount of logic on each of the
router and control chips.

Finally, a number of features V@ been designed to ease the task
of the operating system. Remote memory translation and the mag-
ical memory mwuer allov each node to independently manage its
own physical memoryThis eliminates the TLB shootdo prob-
lem and significantly simplifies shared memory allocatianuy
alizing the barrier netorks relizves the brden of managing
access to the phical barrier neterk; there are multiple virtual
networks and their embedding is completelyifide. Lastly sev-

eral features of the T3D @ been meed from the system to the
user domain: bk data transfer is mo performed using E-ggs-
ters, and message queues and synchronizaitables are held in
normal user memory

Acknowledgements

Design of the T3E as a lage undertaking wolving lots of tal-
ented people. Credit for much of thenk presented in this paper
belongs to the other architects of the T3Ey&®@berlin and Rick
Kessler Thanks also to Mark Birrittella, Eric Fromm, Dan Hen-
drickson, Randy &ssint and Gig Thorson for their designark
and architectural contrittions. Thanks to Bill Dally for his con-
sultation on this project. Karl Feind and AlVBis were particu-
larly helpful in obtaining performance measurements for this
paper The work presented in this papeaw supported in part by
the Adwnced Research Projects Aggnmder Agreement No.
MDA972-95-3-0032 dated 12 Januat95.

References

Agarwal, A., “Limits on Network Performancg,|EEE Trans. on
Parallel and Distributed Systems, pp. 398-412, Octobgei991.

Agarwal, A., R. Bianchini, D. Cha#n, K. L. Johnson, D. Kranz,
J. Kubiatawicz, B.-H. Lim, K. Maclenzie and D. ¥ung, “The
MIT Alewife Machine: Architecture and Performaric®roc.
22nd International Symposium on Computer Architecture, pp 2-
13.

Arpaci, R. H., D. E. CullerA. Krishnamurtly, S. G. Steinber
and K. ‘elick, “Empirical Ewaluation of the CR¥-T3D: A
Compiler Perspeate”, Proc. 22nd International Symposium on
Computer Architecture, pp 320-331, June 1995.

Black, D. L., R. FRashid, D. B. Golub, C. R. Hill and R. V
Baron, “Translation Lookaside Bfdr Consisteng A Software
Approach’, Proc. ASPLOSHII, pp. 113-122, April 1989.

(2]

(3]

(4

(5]

(6]

(71

8

[9]

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(28]

[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]

Bradley, D. K., “First and Second Generation Hypercube
Performancé, Technical Report UIUCDCS-R-88-1455,
University of lllinois at Urbana-Champaign, September 1988.

Chapman, B., PMehrotra and H. Zima, “@nna rtran - A
Fortran Language Extension for Disuted Memory
Multiprocessors, ICASE, NASA Langley Research Center
1991.

Chorus SystemsCHORJS kernel v3 r4.2 Specification and
Interface CS/TR-91-69.1, 1993.

Cray Research, IncCRAY T3D System Ahitectue Overviey,
1993.

Cray Research, Inc.,Application
Refeence ManuglSR-2165, 1994.

Digital Equipment Corporation,Alpha AXP Achitectue
Handbook 1994.

Digital Equipment Corporation, DECdip
Microprocessor Halware Refeence Manual1992.

Pogrammers Library

21064-AA

Digital Equipment CorporationAlpha 21164 Miaprocessor
Hardware Refeence Manugl1995.

Fox, G., S. Hiranandani, K.¢fnedy C. Koelbel, U. KremerC.-
W. Tseng and M.-YWu, Fortran D Languge SpecificationRice
University, 1991.

Geist, A., A. Bguelin, J. Dongrra, R. Manchek, Wliang and V
SunderamPVM: A Uses’ Guide and Wtorial for Networled
Parallel Computing MIT Press, 1994.

Gottlieb, A., R. Grishman, C.. Kruskal, K. P McAuliffe, L.
Rudolph and M. Snir“The NYU Ultracomputer - Designing an
MIMD Shared Memory Brallel Computet IEEE Trans. on
Computes, C-32, pp. 175-189, February 1983.

Henry D. S. and C. FJoeg, “A Tightly-Coupled Processor
Network Interface; Proc. Ffth International Confeznce on
Architectual Support for Pogramming Languges and
Operating Systemsp. 111-122, October 1992.

Herlihy, M., “Wait-Free Synchronizatich. ACM Trans. on
Programming Languges and Systemsgpp. 124-149, January
1991.

Herlihy, M., “A Methodology for Implementing Highly
Concurrent Data Objects. ACM Trans. on Pogramming
Languages and Systempp. 745-770, Neember 1993.

High Performance dttran Forum, High Rerformance Brtran
Languaye Specification &fsion 1.1 Rice Unversity, November
10, 1994.

Homewvood, M. and M. McLaren, “Meilk CS-2 interconnect
Elan-Elite desigfi,Proc. Hot InteconnectsAugust 1993.

Intel CorporationParagon XP/S Ryduct Overvie, 1991.

Karamcheti, Vand A. A. Chien,A Comparison of Architectural
Support for Messaging in the TMC CM-5 and the Cray T3D”,
Proc. 22nd International Symposium on ComputethAecture,

pp 298-307, 1995.

Kendall Square ReseardfSR-1 €cnical Summaryl1992.

KoeningerR. K., M. Furtng and M. Walker, “A Shared-Memory
MPP from Cray ResearéhDigital Technical burnal, 6(2):8-21,
1994.

Kuskin, J., D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. BaxtterHorowitz, A.
Gupta, M. Rosenblum and J. HennesShe Stanford FLASH
Multiprocessof, Proc. 21st International Symposium on
Computer Achitectuie, pp 302-313, April 1994.

Lenoski, D., J. Laudon, K. Gharachorloo, A. Gupta and J.
Hennessy“The Directory-Based Cache Coherence Protocol for
the DASH Multiprocessat Proc. 17th International Symposium
on Computer Ashitecture, pp 148-159, 1990.

11

(27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

[39]

(40]

[41]

[42]

(43]
[44]

[45]

[46]

May, C., E. Silha, R. Simpson, H.aNen, editorsThe RPwerPC
Architecture: A specification for a mefamily of RISC mtessos,
Morgan Kaufmann Publishers, Inc., San Francisco, 1994.

McCalpin, J. D., “Memory Bandwidth and Machine Balance in
Current High Performance Computérs]EEE Tednical
Committee on Computer éhitectue Nevs December1995.

McCalpin, J. D., “STREAM ‘standard’ resultshttp://
perel andra. cns. udel . edu/ hpc/ streant , July 1996.

Mellor-Crummeg, J. M. and M. L. Scott, Algorithms for
Scalable Synchronization on Shared-Memory Multiprocessors,
ACM Trans. on Computer Systen®(1), pp. 21-65, February
1991.

Message &ssing Intedice PBrum, “MPI: A Message-#ssing
Interface Standard, International durnal of Superomputing
Applications and High &formance Computing/4, 1994.

Michael, M. M. and M. L. Scott, “Simple,ast, and Practical
Non-Blocking and Blocking Concurrent Queue Algoritims,
Proc. 15th A£M Symposium on Principles of Distied
Computing May 1996.

Nikhil, R. S., G. M. Rpadopoulos and Arvind, “TA
Multithreaded Massely Parallel Architecturé, Proc. 19th
International Symposium on Computechitectue, pp 156-167,
May 1992.

Noakes, M. D., D. A. Wdllach and WJ. Dally “The J-Machine
Multicomputer: An Architectural BEaluation”, Roc. 20th
International Symposium on Computeciiitectue, pp 224-235,
May 1993.

Numrich, R. W, R L. Springer and J. C. Peterson, “Measurement
of Communication Rates on the Cray T3D Interprocessor
Network,” High Rerformance Computing and Networkjng
International Confegnce and ExhibitionMunich, Germanp,
April 18-20, 1994, Proc. &lume 2: Netwrking and ®ols, W
Gentzsch and U. Harms, eds. Springerlag, 1994, pp. 150-157.

Palacharla, S. and R. EeKsler “Evaluating Stream Biérs as a
Secondary Cache ReplaceméentProc. 21st International
Symposium on Computerdhitecture, pp 24-33, April 1994.

Palmer J. F, “The NCUBE &mily of high-performance parallel
computer systenis, Proc. Thid Confeence on Hypeube
Concurent Computes and Applicationspp. 847-851, January
1988.

Pase, D., TMacDonald and A. Meltzef'The CRAFT fortran
Programming Modél, Scientific Pogramming \Vol. 3, pp. 227-
253, 1994.

Pfister G. F W. C. Brantlg, D. A. Geoge, S. L. Harey, W. J.
Kleinfielder, K. P McAuliffe, E. S. Melton, VA. Norton and J.
Weiss, “The IBM ResearchaPallel Processor Prototype (RP3):
Introduction and Architecture Proc. International Confemce
on Rarallel Processingpp. 764-771, Aug. 1985.

Pfister G. and V A. Norton, “Hot Spot Contention and
Combining in Multistage Interconnection Netks,, IEEE
Trans. on Computsy C-34, pp.943-948, October 1985.

Price, C.MIPS IV Instruction SeMIPS Technologies, Inc., Re
3.2, Septembef995.

Reinhardt, S. K., J. R. Larus and D.o¥d, “Tempest and
Typhoon: User Leel Shared Memoty Proc. 21st International
Symposium on Computerdhitecture, pp 325-336, April 1994.

Saini, S. and D. H. Baije “NAS Parallel Benchmarks Results 3-
95", Report MS-95-011, April 1995.

Scott, S., “The GigRing Channél, IEEE Micro, pp 27-34,
February 1996.

Scott, S. and G. Thorson, “The Cray T3E Natkv Adaptve
Routing in a High Performance 3®@rhis; HOT Interconnects 1Y
Stanford Un¥ersity, August 1996.

Thinking Machines CorporationCM5 Tednical Summary
November 1992.

