
PDE-based Image Compression

Markus Peloquin, Leland Jefferis
{markus@cs,jefferis@math}.wisc.edu

Dec. 18, 2009

1 Introduction

Image compression is a branch of computer science concerned with taking an arbitrary image
and compressing it down to its smallest possible size without loosing to much information
about the exact starting image. The purpose of image compression is to reduce the file size
of an image so that it may be transfered more quickly over a network or simply take up less
space in storage.

In general, different compression methods are better suited to specific types of images
(say photographs or computer graphics). Galić et al. focus on photographs [2]. Some of
the methods being tested in her paper are ones that we reproduced in more detail than the
paper supplied, and are described below.

2 PDE-Based image compression

The general approach to these methods is laid out in the following steps:

1. Take the starting image and select a subset of the pixels to be stored according to some
algorithm.

2. Compression Store these pixels in as condensed a way as possible.

3. Decompression Interpolate these stored pixels using a PDE smoothing operator of some
kind to restore the image over the whole grid.

2.1 Selecting a subset of pixels

This step of the process we will approach in two different ways. Two simplistic methods are
to take a random scattering of pixels in the original picture, or to uniformly select them.
However, it will turn out to be more beneficial to choose a denser concentration of points
near the natural occurring edges in the picture; in other words, areas where the image’s
color gradient is changing quickly. There is a preexisting algorithm for selecting these points
called the B-tree triangular coding method [1].

1

2.1.1 B-tree triangular coding

The BTTC algorithm is a simple and efficient algorithm to sample points closest to areas of
highest curvature. It works by dividing the image’s surface into right triangles. Whenever
a triangle’s linear interpolation is too far from the original image by some threshold ε, the
triangle is subdivided into two right triangles. The points chosen are then close to the areas
of high curvature.

The time complexity is O(n lg n) for an image with n pixels. The B-tree structure also
allows for efficiently doing the linear interpolations of all the triangles (Θ(n)), though this
is inconsequential for our goals.

2.2 Storing the pixels

We will not bother with optimizing this step since we are mostly interested in the recovery
process in the following step. General-purpose data compression like Deflate or Lzma can
be used to compress the representation.

2.3 PDE interpolation

Recovering the image is done by treating the final image as the steady state of some diffusion
process taken over the data points. Generally speaking we write

∂tu = L[u] (1)

Where L[u] is some kind of smoothing operator. For the sake of our tests, we chose to
try two of the three suggested operators in the paper, namely the Laplacian ∇2u and the
biharmonic −∇4u. As mentioned before, we solve the above system for the steady state
solution by setting the left hand side of (1) to zero. But before we move to setting this up,
we first need to talk about how we are going to decompose the image.

Since we are dealing with color images, suppose that we had a 512 × 512 pixel image.
We break this down into its red, green, and blue layers so that we have three 512×512 grids
of data to store. After the subset of pixels has been chosen, we will interpolate the points
for each of the layers individually and then put them back together to recreate the original
image.

With this in mind, we set out to discretize the smoothing operators in order to recover
our image. Note that for now, we assume that we have already selected our subset of pixels
by some method, random or otherwise.

3 Discretization of the smoothing operators

To discretize the Laplacian, we used the standard five point stencil. To discretize the bi-
harmonic operator, we had to use a 13 point diamond with the weights as seen in Figure
1.

2

Figure 1: Stencils

(a) 5 point for ∇2 (b) 13 point for ∇4

We claim that this 13 point discretization for the biharmonic operator is second order
accurate which we justify below with error analysis and numerical simulation.

First we start with error analysis. Note that the biharmonic operator can be written:

∇4u = uxxxx + 2uxxyy + uyyyy. (2)

So we need to find discretization for each of the 3 pieces in (2) and then add them together.
For the uxxxx term we use the following discretization:

uxxxx(xi, yj) ≈
1

h4
(Ui−2,j − 4Ui−1,j + 6Ui,j − 4Ui+1,j + Ui+2,j). (3)

Similarly,

uyyyy(xi, yj) ≈
1

h4
(Ui,j−2 − 4Ui,j−1 + 6Ui,j − 4Ui,j+1 + Ui,j+2). (4)

The above is an extension of the second order central difference with the coefficients given
by alternating sine binomial coefficients. A quick Taylor expansion will verify the truncation
error is indeed order h2. To get the 2uxxyy term we could start with a general 9 point stencil
and do Taylor expansions and although we did do this, there is a cleaner way using previously
derived results. We use the formula for the 5 point and 9 point stencil given in LeVeque [3].

∇2
5u = ∇2u+

1

12
h2(uxxxx + uyyyy) +O(h4)

∇2
9u = ∇2u+

1

12
h2(uxxxx + 2uxxyy + uyyyy) +O(h4)

3

If we take a difference we can get a formula for 2uxxyy:

∇2
9u−∇2

5u =
1

12
h22uxxyy +O(h4)

12

h2
(∇2

9u−∇2
5u) = 2uxxyy +O(h2).

Doing the above algebra gives

2uxxyy(xi, yj) ≈
1

h4

[
8Ui,j − 4(Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1)

+2(Ui+1,j+1 + Ui−1,j+1 + Ui+1,j−1 + Ui−1,j−1)
]
.

Now combining everything together:

uxxxx(xi, yj) + 2uxxyy(xi, yj) + uyyyy(xi, yj) ≈
1

h4

[
20Ui,j

−8(Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1)

+2(Ui+1,j+1 + Ui−1,j+1 + Ui+1,j−1 + Ui−1,j−1)

+(Ui+2,j + Ui−2,j + Ui,j+2 + Ui,j−2)
]
.

(5)

(5) corresponds exactly to the stencil shown in Figure 2(b). Note that from the above
analysis we expect that this method be order h2. To verify this we ran a numerical test on
the function f(x, y) = ex+y, comparing the exact solution with the numerical result at the
point (3, 2). The error for various grid resolutions is shown in Figure 2. The result verifies

Figure 2: h vs. error on a log-log scale

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1
 1

E
rr

o
r

h

Approximation
h

2

that the method is order O(h2). Note that the machine error becomes an issue near h = .001
because in the code for the biharmonic stencil, there is division and multiplication by h4.

4

3.1 Note on implementation

For boundary conditions, the paper’s suggestion was to use mirrored boundary conditions.
This means that at each of the boundaries, the image’s pixels across the boundary would
appear in reverse. At the right boundary, for example, UN+1,j = UN,j and UN+2,j = UN−1,j,
where N is the grid size. We instead chose to repeat the boundary pixels outward since it
was simpler, and near -boundary pixels would have less influence over the boundary pixels.

Now finally, we use the Gauss-Seidel with SOR to solve for the linear system that arises
from our discretization. This was the approach used by Galić, and it was also very convenient
to implement since the linear system is more implicit. In practice, a more efficient solver may
be used, but we were more interested in the quality of the image. The Python implementation
of biharmonic Gauss-Seidel is included in Appendix A.

4 Results

As was mentioned earlier, there are multiple ways to choose the subset of pixels that will
be stored in the compression step. We experimented with both choosing random pixels and
storing pixels according to the BTTC algorithm. Below is a summary of results where we
vary the pixel selection method, the smoothing operator used and the percentage of total
pixels stored for compression. All test were run on Lena, the conventional test image in
image processing.

Figure 3: Lena Söderberg: Playboy centerfold from November 1972

4.1 Pixel selection

After selecting the set of pixels either randomly or according to BTTC, we create an image
based from those pixels by assigning to every pixel in the grid the color of its closest neighbor

5

in the chosen set. As it happens this is simply the L1 Voronoi diagram.

Figure 4: Voronoi Diagrams

(a) Random: 5% of pixels stored (b) Random: 7% of pixels stored (so same count
as BTTC32)

(c) BTTC, ε = 32 (d) BTTC, ε = 16

Figure 4 demonstrates that the BTTC algorithm better resolves the naturally occurring
edges in the image than a random or uniform selection of pixels.

6

4.2 Harmonic operator—∇2

The results of applying the harmonic operator to each of the four initial conditions in the
previous section are shown in Figure 5.

Figure 5: Harmonic Smoothing

(a) Random: 5% of pixels stored (b) Random: 7% of pixels stored

(c) BTTC, ε = 32 (d) BTTC, ε = 16

The images created using BTTC are superior to the ones created with random points.
The most notable difference being near the natural edges of the image. Also note that in
Figure 6(c), Lena has lines on her shoulder that are residual from the BTTC initial condition.

7

4.3 Biharmonic operator—∇4

The results of applying the biharmonic operator to the four initial conditions are shown in
Figure 6.

Figure 6: Biharmonic Smoothing

(a) Random: 5% of pixels stored (b) Random: 7% of pixels stored

(c) BTTC, ε = 32 (d) BTTC, ε = 16

Again, the images created using BTTC are superior to the ones created with random
points. In Figure 7(c) we notice some strange dark artifacts appearing around the circum-
ference of Lena’s hat and that the image is in general blotchy when compared to the harmonic
smoothing. But these artifacts are reduced significantly when the error threshold is lower as

8

in Figure 7(d).

4.4 Error analysis

Table 1 shows the error in the image approximations. It should be noted that the compressed
files have the same number of points, and so should have the same compressed size. In terms
of the average error (essentially the 1-norm), the best approximation is biharmonic with
biharmonic smoothing, but you would not know by looking at it. Visually, the BTTC
approximations look the best. This is confirmed by its low RMS error (essentially the 2-
norm). In particular, the BTTC images with harmonic smoothing both have the lowest RMS
error and the best perceived quality.

7% Random BTTC16

Average RMS Average RMS
Harmonic 7.50 12.9 8.23 11.4
Biharmonic 6.81 12.2 9.25 14.7

Table 1: Errors of image approximations

5 Conclusion

In doing error analysis for the two smoothing operators, it was found that in the case of
choosing random pixels, the RMS error was very similar. In the case of using BTTC,
however, the biharmonic seemed to have a significantly higher RMS error. But since we only
did tests with a single image, it is hard to draw any solid conclusion.

The biggest criticism of PDE-based compression that we have is in the implementation.
We used Python to code the PDE solver and found that decompressing an image took on
the order of minutes with results that are not nearly as good as JPEG. The BTTC16 image
is 83% larger than a perceptibly perfect JPEG compression. The Lzma-compressed size of
the BTTC16 is 29.5% of the PNG, which is slightly encouraging.

Perhaps with optimization of the code in C/C++, use of a faster PDE solver, and a
better smoothing operator, this method for compression could start to approach usefulness.
But even with the more sophisticated smoothing operator used in [2], the paper admitted
that what they had accomplished was, at that stage, purely for expository purposes and
needed refining. Even so, at the end of [2], the authors sounded more optimistic about the
potential of PDE-based image compression than we are currently. We believe the use of
PDEs for smoothing is probably best left to image processing.

9

A Implementation

The code for our biharmonic smoother follows. One small variation from Gauss-Seidel is
that odd iterations start in the bottom-left corner, even iterations in the upper-right.

Listing 1: The SOR biharmonic smoother.
def filter_biharmonic(dimen, iter, u, const):

(width, height) = dimen

omega = 1.5

precompute index lists
i_vals = range(width)
i_rev = range(width)
i_rev.reverse()

j_vals = range(height)
j_rev = range(height)
j_rev.reverse()

map from (position, stencil index) => position
positions are in natural
map = numpy.zeros((width * height, 12))
stencil (natural ordering)
coeff = [1, 2, -8, 2, 1, -8, -8, 1, 2, -8, 2, 1]

construct just the map
k = 0
for j in j_vals:

for i in i_vals:
left = i
lleft = i > 1
right = i < width - 1
rright = i < width - 2
below = j
bbelow = j > 1
above = j < height - 1
aabove = j < height - 2

if left:
if below:

map[k,1] = k - width - 1
else:

map[k,1] = k - 1
if lleft:

map[k,4] = k - 2
else:

map[k,4] = k - 1
map[k,5] = k - 1
if above:

map[k,8] = k + width - 1
else:

map[k,8] = k - 1
else:

if below:
map[k,1] = k - width

else:
map[k,1] = k

map[k,4] = k
map[k,5] = k
if above:

map[k,8] = k + width
else:

10

map[k,8] = k
if right:

if below:
map[k,3] = k - width + 1

else:
map[k,3] = k + 1

map[k,6] = k + 1
if rright:

map[k,7] = k + 2
else:

map[k,7] = k + 1
if above:

map[k,10] = k + width + 1
else:

map[k,10] = k + 1
else:

if below:
map[k,3] = k - width

else:
map[k,3] = k

map[k,6] = k
map[k,7] = k
if above:

map[k,10] = k + width
else:

map[k,10] = k
if below:

if bbelow:
map[k,0] = k - 2 * width

else:
map[k,0] = k - width

map[k,2] = k - width
else:

map[k,0] = k
map[k,2] = k

if above:
map[k,9] = k + width
if aabove:

map[k,11] = k + 2 * width
else:

map[k,11] = k + width
else:

map[k,9] = k
map[k,11] = k

k += 1

do the smoothing
iter_num = 0
while iter_num < iter:

print ’ iter %d/%d’ % (iter_num+1,iter)

bottom-left => top-right
k = 0
for j in j_vals:

for i in i_vals:
if not const[k]:

sum = 0
for n in range(12):

sum += coeff[n] * u[
map[k,n]]

u[k] += omega * (sum * -.05 - u[k])
k += 1

11

iter_num += 1
if iter_num >= iter:

break
print ’ iter %d/%d’ % (iter_num+1,iter)

top-right => bottom-left
for j in j_rev:

for i in i_rev:
k -= 1
if not const[k]:

sum = 0
for n in range(12):

sum += coeff[n] * u[
map[k,n]]

u[k] += omega * (sum * -.05 - u[k])
iter_num += 1

References

[1] Distasi, R., Nappi, M., Vitulano, S., Image compression by B-tree triangular coding.
IEEE Transactions on Communications 45.9, 1997.

[2] Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H., Towards PDE-based
image compression. Lecture Notes in Computer Science, vol. 3752, pp. 37–48, 2005.

[3] LeVeque, Randall J., Finite difference methods for ordinary and partial differential equa-
tions, SIAM, Philadelphia, 2007.

12

