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Abstract
This paper proposes a new parallel execution model where pro-
grammers augment a sequential program with pieces of code called
serializers that dynamically map computational operations into se-
rialization sets of dependent operations. A runtime system executes
operations in the same serialization set in program order, and may
concurrently execute operations in different sets. Because serializa-
tion sets establish a logical ordering on all operations, the resulting
parallel execution is predictable and deterministic.

We describe the API and design of Prometheus, a C++ library
that implements the serialization set abstraction through compile-
time template instantiation and a runtime support library. We eval-
uate a set of parallel programs running on the x86_64 and SPARC-
V9 instruction sets and study their performance on multi-core, sym-
metric multiprocessor, and ccNUMA parallel machines. By con-
trast with conventional parallel execution models, we find that
Prometheus programs are significantly easier to write, test, and
debug, and their parallel execution achieves comparable perfor-
mance.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.3 [Language Constructs
and Features]: Concurrent programming structures

General Terms Languages, Performance

Keywords parallel computing, runtime system, serialization sets,
serializer

1. Introduction
Multicore processors have become prevalent in mainstream com-
puting. These processors require parallel execution of software to
improve performance. Meanwhile, modern programming practices,
including the use of object-oriented languages, dynamic libraries,
and managed runtime systems, have enabled rapid growth of the in-
formation technology industry. The vast complexity of current ap-
proaches to writing and debugging parallel programs threatens to
derail this success. To avoid a major disruption, we must identify
solutions that allow parallel execution of software without compro-
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mising programmer productivity. Ideally, such solutions should be
consistent with widespread programming practices and idioms.

Currently, the most widely used parallel execution models rely
on several decades of accumulated conventional wisdom. Typi-
cally, a programmer or compiler analyzes an application to de-
termine independence among computations, and encodes this in-
dependence statically in the program text. When these mostly-
independent computations must interact, they must be carefully
synchronized to ensure correct execution. This approach is epito-
mized by multithreaded programming, which is currently one of
the most widely used means for achieving parallel execution.

We believe it is time to reexamine this conventional wisdom,
for it poses several significant barriers to the effective utilization of
multicore processors. First, statically encoding independence in the
program may limit the exploitation of concurrency in client appli-
cations with irregular data access patterns [21]. Second, incorrect
synchronization may introduce data race errors, where the result
of a computation depends on the arbitrary interleaving of the op-
erations of multiple threads. Third, employing multiple threads of
control admits other types of errors not present in sequential exe-
cution, including deadlock, livelock, and priority inversion. Fourth,
the execution of multithreaded programs is nondeterministic, mak-
ing it difficult to identify, reproduce, and fix these new types of
errors. This increases both the cost of software development, and
the likelihood that latent bugs will manifest as failures in the field.
Lee speculates that if nondeterministic multithreading becomes the
de facto execution model for multicore processors, they “will be-
come widely known as the [machines] on which many programs
crash” [12].

Several observations inform the ideas presented in this paper.
First, more information about dependence relationships among
computations is revealed at run time than is available when the
program is written or compiled. Therefore, a dynamic parallel ex-
ecution model is preferable to a static one, as it will more effec-
tively exploit concurrency in an application. Second, the sequential
programming abstraction should be preserved whenever possible,
because it results in a predictable, determinstic execution. Third,
modern software design principles emphasize encapsulation and
modularity, which is analogous to the identification of independent
operations required for parallel execution.

Based on these observations, this paper proposes serialization
sets (Section 2), a new parallel execution model which presents
a programming abstraction that retains much of the simplicity of
sequential programming, and conveys dependence information to
a runtime system to facilitate opportunistic parallelization of in-
dependent computations. Programmers specify dependence calcu-
lations by writing additional code, called serializers, that dynami-
cally determine the data on which a computation operates. The run-
time system (in the form of library support or a managed runtime
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computational operations (x, y, z) are assigned to a delegate context, where they are applied to data (a, b, c, d). The delegate context applies
operations to the data in each set in a serial fashion, and parallelizes operations in different sets.

environment) executes the serializer before a computation occurs,
mapping operations on the same data to the same serialization set,
and computations on different data to different serialization sets.
Members of the same serialization set are executed sequentially to
honor data dependences, and members of different serialization sets
may be executed concurrently to exploit dynamic independence.
As a consequence of the serial ordering of operations on each data
structure, parallel execution of programs written with serialization
sets is deterministic. Furthermore, since data may only be modified
by a single owner, parallel execution is achieved without requiring
the programmer to correctly identify critical sections and protect
them with synchronization. Writing serializers places a modest ad-
ditional burden on the programmer, but is significantly easier than
reasoning about nondeterministic thread behavior. We believe that
serialization sets can provide programmers with a gentle path to
unlocking the performance potential of multicore processors, while
encouraging the use of modern programming languages and prac-
tices.

To study the implementation and performance of programs
parallelized with serialization sets, we have written a C++ li-
brary called Prometheus (Section 3). Using Prometheus, program-
mers write programs in a familiar, imperative, object-oriented lan-
guage. To achieve good parallel performance, Prometheus pro-
grams should strive to perform computations on private object state,
and structure programs hierarchically. In our experience, this dove-
tails nicely with the principles of encapsulation and modularity
inherent to object-oriented programming.

Prometheus uses C++ templates to instantiate run-time support
structures at compile time, and provides a run-time library that can
be adapted to the parameters of the execution environment, such
as the number and performance of cores (Section 4). Prometheus
also provides a library of useful programming tools, including pre-
written serializers, and a set of shared data structures. Finally,

Prometheus includes support for compiling executables into a de-
bugging version that simulates parallel execution, so that all devel-
opment and debugging is done on a sequential program.

We have evaluated the parallel execution of several applications
written in C++ using the Prometheus library on a variety of real
machines (Section 5), including multi-core, symmetric multipro-
cessors (SMPs), and cache-coherent non-uniform memory access
(ccNUMA) machines running the SPARC-V9 and x86-64 ISAs.
We study the scalability and performance limitations of Prometheus
programs, and compare our results with existing parallel program-
ming models.

2. Serialization Sets
To use serialization sets, the programmer divides program execu-
tion into two types of epochs: aggregation epochs, and isolation
epochs. Aggregation epochs comprise traditional sequential exe-
cution, and are the default mode. During isolation epochs, com-
putational operations execute in one of two abstract contexts—the
program context, and the delegate context. The program context
executes code according to standard sequential semantics. The pro-
grammer (or compiler) identifies potentially independent computa-
tional operations, and these may be assigned (or delegated) to the
delegate context, which executes them on behalf of the program
context.

In an isolation epoch, the programmer partitions data into a
number of disjoint domains. The type of these domains determines
the effects that are permitted during isolation: read-only data may
be freely accessed by any operation; privately-writable data may be
read and written only by its owner (for the sake of brevity, we will
use the term writable henceforth). The data partition is fixed during
a particular isolation epoch, but may be different in subsequent
isolation epochs. The program context initially owns all writable
data. When the programmer identifies a computational operation



for delegation, she associates it with a serializer, code that executes
at runtime to identify a serialization set for the operation. The
serialization set becomes the owner of the writable data accessed
by the operation until the program context reclaims ownership, or
the isolation epoch ends.

The programmer must specify the serializer such that all com-
putational operations on the same writable domain are mapped to
the same serialization set. She should also endeavor to have the
serializer map computations on different writable domains to dif-
ferent sets. The delegate context executes operations composing a
particular serialization set in serial order, i.e., the order they are
encountered during the execution of the program context. It may
execute members of different serialization sets concurrently to im-
prove performance. Executing these operations in parallel does not
affect the appearance of sequential semantics, because the writable
domains owned by various serialization sets are disjoint.

When operations on a particular writable domain are no longer
independent, the program context reclaims ownership of that do-
main, and may then safely intermingle operations on that domain
with other domains that it owns. Note that this transfer of owner-
ship need not be specified by the programmer, as it is implicit in the
presence of operations dependent on a particular writable domain.
At the end of an isolation epoch the program context reclaims own-
ership of all domains, and may resume traditional sequential exe-
cution.

Parallelization using serialization sets results in deterministic
execution that is indistinguishable from sequential execution of the
same set of operations. Specifically, data races cannot occur be-
cause each writable data element is accessed by at most one oper-
ation at a time. Other types of concurrency bugs such as deadlock,
livelock, and priority inversion, are also precluded, because there
is a single logical ordering of all operations, even if the delegate
context is overlapping execution of independent computations.

Figure 1 illustrates the execution of a program using serializa-
tion sets. In the first isolation epoch, disjoint data elements a and b
are designated as writable, and c and d are read-only. Operations x,
y, and z are identified as potentially independent and thus may be
assigned to the delegate context. For the purposes of this figure, we
assume the serializer is specified so that the data elements are all
mapped to different serialization sets (e.g., by using the address of
the particular element). This enables operations on a to be executed
concurrently with the operations on b, as well as with the operations
in the program context. All operations are allowed to read (but not
write) c and d, as shown in the figure. Synchronization inserted by
the runtime is depicted in gray.

The second isolation epoch in Figure 1 uses a different data
partition: this time b and d are writable, and a and c are read-only.
Operation z on data element d is independent of other operations in
the program context, and is thus assigned to the delegate context.
Later the program context needs to read part of data element d using
operation q. Because q has not been designated as independent, the
program context must first reclaim ownership of d as shown before
performing this operation. Later, when independent operation x is
reached, ownership is once again assigned to the delegate context
to re-enable concurrent execution of operations on this domain.

2.1 Specifying Serializers
Serializers provide a flexible mechanism for expressing depen-
dences between operations. The programmer or compiler needs no
a priori knowledge of the dependences between operations that are
delegated; executing the serializers dynamically determines the de-
gree of independence in the operations, which may vary depending
on the input to the program. The runtime system then utilizes this
information to automatically parallelize independent operations.

The serializer is written as a computational operation that iden-
tifies the serialization set when executed at runtime. There are two
possible types of serializer: internal serializers, and external seri-
alizers. The difference between these types is most easily under-
stood by considering the case where the operations being delegated
are function calls: an internal serializer is one associated with the
callee, while an external serializer is provided by the caller. An
internal serializer is associated with a particular data type, and au-
tomatically used when operations are delegated on that type. In-
ternal serializers are useful when identifying information is stored
with the data, or is not readily available at the delegation site.
The Prometheus library supports internal serializers via a virtual
method that is overriden by the programmer. One example of an
internal serializer built-in to Prometheus is a method that returns
the instance number of an object.

An external serializer is used to compute serialization set iden-
tifiers at the delegation site. This is useful when identifying infor-
mation is not stored inside a data type. For example, consider an
implementation of matrix multiplication, where a matrix object
stores an array of matrix_element objects in row-major order, and
each matrix_element implements a multiply method that com-
putes its new value from two input matrices. Note that the identify-
ing information for each matrix_element, i.e., its row and column
coordinates, would not typically be stored in the matrix_element
itself, but would rather be implicit in its location in the array of
matrix. In this case, using an external serializer, e.g., the index
of the matrix_element in the matrix array, is preferable because
the serializer uses a value that is readily available at the point of
delegation, but is not stored with the data being manipulated by the
delegated operation. Using an internal serializer would require stor-
ing the array index in each matrix_element object, which would
be redundant to information already stored in the matrix object,
unnecessarily wasting memory and diminishing locality.

While it is generally desirable to specify a serializer so that
disjoint data elements are mapped to different serialization sets, it
may be advantageous to map operations on different elements to
the same serialization set. Assigning data elements stored in the
same cache line to the same set ensures that they will be operated
on by the same processor, alleviating false sharing effects. It may
also be useful to assign data elements stored in contiguous memory
to the same serialization set to leverage the prefetching mechanisms
present in modern processors. Recalling our matrix multiplication
example, the row number could be used as the serializer for each
multiply operation, in order to improve the spatial locality of
these operations.

2.2 Effecting Shared State
A key aspect of any parallel execution model is how it manages
shared data that must be accessed by multiple processors (aside
from the trivial case of read-only data). Because the use of se-
rialization sets requires partitioning data into disjoint domains, it
might seem to overly restrict how sharing can occur. Indeed, lim-
iting how data is shared among processors is central to how this
model avoids traditional concurrency bugs. The remainder of this
section describes three techniques for effecting computation that
would require shared state using more conventional parallel mod-
els.

The first technique is to use different partitions of data in dif-
ferent isolation epochs, as shown in Figure 1. By alternating which
data is in read-only vs. writable domains in an iterative fashion,
serialization sets may achieve the effect of coarse-grain sharing.

The second technique leverages the fact that many operations
amenable to parallel execution are both associative and commuta-
tive, and thus may be performed in any order. We refer to these
as reducible, because operations may access a local version of the



Function / Method
Class Description
initialize ()
global Initializes the Prometheus run-time library.

terminate ()
global Shuts down the Prometheus run-time.

sleep ()
global Puts the threads used to implement the delegate context to sleep.

begin_isolation ()
global Begins a new isolation epoch. Wakes up delegate context processor resources if necessary.

end_isolation ()
global Synchronizes the program and delegate contexts, starts new aggregation epoch.

template <typename R, typename T, paramtypes..., argtypes...>
R call (R (&T::method) (paramtypes...), args...)
read_only <T> Calls method with specified arguments, returns value of type R. During an aggregation epoch, any method may be

called. During an isolation epoch, calling non-const methods results in an error.
reducible <T> Calls method with specified arguments on the current context’s view of the object, returns value of type R. The first call

in an aggregation epoch causes the reduce method to execute, reducing the multiple views of an isolation epoch to the
final view.

writable <T, S> Calls method with specified arguments, returns value of type R. Valid use includes calls to const methods when object
is in a read-only state, or calls to any method when object is in a private state. Other uses generate an error.

template <typename T, paramtypes..., argtypes...>
void delegate (void (&T::method) (paramtypes...), args...)
writable <T, S> Assigns a potentially independent method call to the delegate context in the serialization set computed by executing the

serializer method of class S. If object is in the read-only state, generates an error. Valid parameter types include native
types passed by value, and subtypes of shared passed by reference or pointer. Delegated methods must have a return
type of void and arguments must either be passed by value, or must be pointers or references to classes derived from
shared.

template <typename T, paramtypes..., argtypes...>
void delegate (ss_t serializer, void (&T::method) (paramtypes...), args...)
writable <T, S> Assigns a potentially independent method call to the delegate context in the serialization set specified by the serializer

argument. If object is in the read-only state, generates an error. Valid parameter types include native types passed by
value, and subtypes of shared passed by reference or pointer. Delegated methods must have a return type of void and
arguments must either be passed by value, or must be pointers or references to classes derived from shared.

template <typename T, paramtypes..., argtypes...>
void doall (vector <writable <T, S> > v, void (&T::method) (paramtypes...), args...)
writable <T, S>
(static)

Executes method on all objects in vector objs. The specified method must have a return type of void and arguments
must either be passed by value, or must be pointers or references to classes derived from shared.

Table 1: The Prometheus API.

data1, and a reduce (also known as a fold) operation is performed
to summarize these versions into the final result at the end of the
isolation epoch. The reduce operation on N elements is performed
using Ni−1/2 parallel operations at each step i. Reducible opera-
tions are used in many parallel execution models; notable exam-
ples in the realm of imperative programming are Google’s MapRe-
duce [4], Cilk’s inlets [5], and hyperobjects in Cilk++ [13]. We
note that many non-reducible operations may be transformed into
reducible operations by deferring the components of the operations
that do not commute or associate into the reduction itself.

The third technique leverages the observation that many opera-
tions on shared data are not allowed to execute concurrently un-
der parallel models such as multithreading. Critical sections are
used to ensure mutual exclusion, preventing simultaneous uncoor-
dinated accesses that could corrupt the shared data. In this case, the
data is never simultaneously accessed by multiple threads. Con-
sider a shared hash table: typically, a lock on the overall hash table
is acquired, protecting the metadata and structure of the hash table
while the desired data is located. Another lock is acquired on the
desired data element, and then the lock on the hash table itself is
released. The time spent in the hash table lock must necessarily be
short, lest the entire program be serialized through these accesses.

1 Because the local version is writable only by single processor, reducible
data is thus a special case of privately-writable data.

Using serialization sets, accesses to container data structures may
be performed in the program context, and then operations on the
underlying data assigned to the delegate context. Many operations
amenable to shared access in multithreading can be handled in this
way, since the necessarily brief accesses to the overall structure do
not unduly burden the program context. Furthermore, there is no
composability problem for these operations, since they are always
performed according to sequential semantics.

There are likely some sharing patterns that may not lend them-
selves to efficient implementation using serialization sets. In prac-
tice, we have found that many sharing patterns map nicely onto the
techniques described in this section.

3. The Prometheus C++ Library
This section describes Prometheus, a C++ template library that im-
plements the serialization set execution model. The use of C++ al-
lows programmers to write parallel applications in a familiar im-
perative, object-oriented language, using existing compilers and
libraries, and provides a path for parallelizing existing sequen-
tial programs. Templates are the C++ mechanism for generic
programming; briefly, the declaration template <typename A,
typename B, ...> before a class or function indicates a generic
specification that can be instantiated by the compiler when it en-
counters a use of the class or function, replacing A, B, ... with
the appropriate types. The use of templates affords Prometheus



Embarrassing parallelism
vector <writable <object_t> > objects;
writable <object_t>::doall (objects, &object_t::method, args…)

Task parallelismData parallelism
writable <object_A_t> object_A (args…);
object_A.delegate (&object_t:start ());
writable <object_B_t> object_B (args…);
object_B.delegate (&object_t:start ());

vector <writable <object_t> > objects;
for (i = 0; i < objects.size (); i++) {

objects[i].delegate (&object_t::method, args…);
}

Pipeline parallelismp p
vector <writable <object_t> > objects;
for (i = 0; i < objects.size (); i++) {

objects[i].delegate (&object_t::pipe_stage_1, args…);
objects[i].delegate (&object_t::pipe_stage_2, args…);
objects[i].delegate (&object_t::pipe_stage_3, args…);

}}

Figure 2: Prometheus implementation of common parallelization schemes.

several advantages. First, the compiler automatically synthesizes
the necessary code for run-time support based on the types used
for classes and methods involved in parallel execution. Second,
Prometheus operates above the type system (rather than casting
data through void pointers), allowing many programming errors to
be caught at compile time. Third, templates provide a mechanism to
implement the new language features needed for serialization sets
via template metaprogramming [2, 22], which provides a Turing-
complete language for compile-time execution.

3.1 The Prometheus API
Prometheus uses C++ objects to encapsulate data into disjoint do-
mains. Method calls serve as the granularity of operation that may
be delegated, and thus potentially executed in parallel. Prometheus
leverages the C++ type system to provide some enforcement of the
data partitioning requirements, but provides additional support for
detecting errors via template metaprogramming.

Prometheus provides a set of wrapper classes that implement the
different types of data domains. These classes inherit from the class
shared, and are specialized on type they wrap. The wrapper classes
wall off objects and mediate all method calls so that the safety of
operations on them can be monitored via a combination of static
and dynamic checks. Wrapped objects must be constructed inside
the wrapper class; they cannot be created by passing in a pointer or
reference to an existing object. This prevents the programmer from
accidentally using the unwrapped object to perform unchecked
calls. The programmer calls methods on wrapped objects using
the call interface, which accepts a pointer to the desired method
in the underlying object and the arguments to the method. After
performing the necessary checking, call executes the specified
method.

During an aggregation epoch, calls to all methods are allowed
through any wrapper type. During isolation epochs, the wrapper
classes provide special handling for calls according to the type of
the wrapper. The read_only wrapper allows only calls to const
methods2. The reducible wrapper performs the call on a local
view of the object that may differ in different invocations of meth-
ods on the object; the first call to a method in the following iso-
lation epoch executes the reduce method specified by the user to
summarize the effects of the parallel operations into the final state.
The writable wrapper allows an object to be treated as read-only
or privately-writable, but not both, for the duration of an isolation
epoch. When used as a read-only object, calls to const methods are
allowed anywhere, but calls to non-const methods generate an er-

2 In C++, const methods are not allowed to modify the data members of
an object.

ror. When used as a privately-writable object, independent methods
can be assigned to the delegate context via the delegate interface;
later calls through the call interface automatically reclaim owner-
ship of the object before executing. The writable wrapper main-
tains a state machine that signals an error if the object is treated as
read-only and privately-writable in the same isolation epoch.

The writable wrapper is also specialized on a class that im-
plements the serializer for the object. The programmer may select
from a set of predefined serializers provided by the Prometheus
library, or they may write their own. The predefined serializers in-
clude the object serializer, which serializes on the address of an ob-
ject, the sequence serializer, which serializes on the instance num-
ber of the object, and the null serializer, which is used when an
external serializer will be provided at the delegation site.

The key parts of the Prometheus API are shown in Table 1. In
addition to the wrapper class methods, the API provides methods to
initialize and terminate the Prometheus run-time. For long aggre-
gation epochs, the API provides a sleep method that can be used
to temporarily release the processor resources used by the delegate
context. Isolation epochs are delimited with the begin_isolation
and end_isolation methods.

Prometheus only allows delegation of methods with certain sig-
natures. The first requirement is that the return type must be void.
Allowing return values would require the program context to wait
for delegated methods to complete before continuing execution,
which is contrary to our goal of concurrency. To make potentially
independent methods suitable for delegation, programmers should
restructure them to store return values inside the object, and provide
an accessor method to read results at a later time.

Prometheus also restricts the types of arguments that may be
passed to delegated methods. Any argument may be passed by
value, although this is only advisable for primitive types, because
copying large structures is expensive. If an argument is passed
through a pointer or reference, its base type must be shared; in
other words, only wrapped objects may be passed by pointer or
reference. Furthermore, read_only arguments may only be passed
by const pointer or reference.

The goal of the wrapper classes and the restrictions on meth-
ods that may be delegated is to ensure that operations that may be
executed in parallel cannot interfere with each other, under the as-
sumption that the state of distinct objects does not overlap. This is
guaranteed for data inside the object, but if objects contain point-
ers to outside state they may interfere with each other. Therefore
Prometheus also provides a set of smart pointer types that can track
ownership of pointed-to objects, and detect errors when they are
accessed by more than one owner in an isolation epoch.



typedef prometheus::writable <file_t, sequence> ss_file_t; 

typedef prometheus::reducible_set <ss_file_t*> file_set_t;
typedef prometheus::reducible_map <const char*, link_t*> link_map_t;

A

int main(int argc char** argv) { class link t : public reducible item <link t> {

C
D

Bint main(int argc, char  argv) {
// start up Prometheus
prometheus::begin_isolation();
file_list_t file_list;
link_map_t link_map;

class link_t : public reducible_item <link_t>  {
private:

const char* url;
file_set_t file_set;

public:
link_t(const char* url, file_t* file) {

B

// begin parallel epoch
prometheus::parallel_begin();
find_files(argv[1], file_list, link_map);
// end parallel epoch
prometheus::end_isolation(); 

_ _
this->url = url;
file_set.insert(file);

}
file_set& get_file_set() {

return file_set;
}

E

J

// print out results
cout << link_map;

// shut down Prometheus
prometheus::terminate();

}
void add_file(file_t* file) {

file_set.insert(file);
}
virtual void reduce(link_t& link) {

file set.reducer(link.get file set());

HL

M

void find_files(const char* path, 
link_map_t& link_map) {

if(is_file(path)) {

prometheus::terminate();
}

file_set.reducer(link.get_file_set());
}

};
file_t::find_links(link_map_t& link_map) {
while(!eof()) {

const char* link text = find next link();
ss_file_t* file = new ss_file_t(path);

// delegate find_links method
file->delegate(&file_t::find_links,

link_map);        

_ _ _
if(link_map.find(link_text)) {

link_map[link_text]->call      
(&link_t::add_file, this)

else {
link_t* link = F

G

I
}
else { // path is a directory

// open directory & recurse on contents
}

}

new link_t(link_text, file);
link_map.insert(link_text, link);

}
} 

}

K

Figure 3: Prometheus example program: reverse_index (some details have been omitted for clarity).

Figure 2 gives sketches of several parallelization schemes, as
they would be implemented in Prometheus. However, serialization
sets do not restrict programmers to these methods, and give flexible
support for exposing dynamic independence in many other ways.

3.2 An example Prometheus program
Figure 3 shows a simplified Prometheus implementation of the
reverse_index benchmark. reverse_index recursively reads a
directory tree containing HTML files, extracts the links, and pro-
duces an index of all files that contain each link. This benchmark is
a C++ reimplementation of a program in the Phoenix suite [19].

The classes used in this benchmark include a file_t class,
which stores the path to a file, and implements all the neces-
sary operations on the file, including the find_links method.
The Prometheus implementation wraps the file_t class in the
writable wrapper (A), using the sequence serializer, which adds
an instance number to each object which will be used as the serial-
ization set identifier. Using the writable wrapper around file_t
allows for delegation of method calls on instances of this class. The
link_t class stores the URL of the link, as well as the set of files
in which the link has been found. Operations on link_t objects are
reducible, because adding files to the set in which the link has been
found can be performed in any order. Thus, the link_t is a sub-
class of reducible_item (B), an abstract base class that provides
the reduce interface. This program also uses two data structures
from the Prometheus library: a reducible_set (C) to store files
in the link class, and a reducible_map (D) to look up the link_t
object for a particular text link found in the file.

To parallelize reverse_index with serialization sets, our strat-
egy is to start an isolation epoch with begin_isolation, and re-
cursively traverse the specified directory using the find_files
function (E). When the program finds a file, it creates a new in-
stance of ss_file_t, and delegates the find_links method (F).
Delegation indicates that invocations of find_links on different
files are independent, allowing the runtime to parallelize them.
Note that with serialization sets, the parallel portion of the pro-
gram execution (searching files for links) is overlapped with the
sequential part of the program execution (locating the files). Since
the number of files is initially unknown, a typical thread-based im-
plementation would first have to locate all the files, then parcel
them into equally-sized sets to evenly distribute work to the threads.
This example demonstrates that, while fine-grained parallelization
must amortize overheads over smaller units of work, it can leverage
greater concurrency from the program.

The find_links method scans through the file searching for
links. When it finds a link, it checks the link map to see if the link
has been previously encountered; if it has, it adds the current file to
the existing link in the link map (G), (H). If the link has not been
seen before, a new link_t object is created (I), (J) and inserted
into the link map (K).

Once all the files have been located by find_files, the func-
tion returns, and then main calls the end_isolation method. This
causes the program context to wait until all outstanding methods
have completed in the delegate context, and then reverts to an ag-
gregation epoch. The next step in main is to print out the link
map (L), and this first use of the link map in an aggregation epoch



causes its reduce to be called. The reduction finds instances of
the same link in different views of the link map, and calls their
reduce method (M) to merge them together. The links are com-
bined by merging their file sets. When the reduction is complete,
the link map contains the final index from links to the files that
contain them.

The Prometheus implementation of reverse_index illustrates
how writing programs with serialization sets is different from using
traditional multithreading techniques. Rather than thinking about
threads of control and managing their interaction, serialization sets
require the programmer to encapsulate data into classes and struc-
ture programs hierarchically. This thought process is consistent
with the principles of object-oriented programming. Contrasted
with multithreaded programming, we believe this represents a sig-
nificant reduction in complexity.

3.3 Detecting and Debugging Errors
Because the execution of programs parallelized serialization sets is
deterministic, the process of finding and debugging errors is sig-
nificantly easier than it is in multithreaded programs. Prometheus
provides a mechanism to detect errors in the parallel execution, and
the capability to perform all development and debugging on a se-
quential version of the program.

There are two sources of errors in Prometheus programs. The
first is the use of an improper serializer that maps operations on
the same object to multiple serialization sets. This condition is
detected by tagging each object with the serialization set to which
it is mapped during the first delegation in an isolation epoch. If a
later delegation maps the object to a different serialization set, the
runtime will observe the discrepancy and signal an error. Note that
these errors are usually avoided by using the serializers that are
provided by Prometheus, which have been thoroughly tested on a
large number of programs.

The second type of error occurs when an operation violates the
partitioning of data, such as performing a write on a read-only
object. Many of these errors are caught by the static and dynamic
checking that is performed via the wrapper classes. However, C++
limits the safety that can be enforced on the data partitioning.
Using the wrapper classes, Prometheus is able to ensure that all
variables passed as arguments to a delegated function respect the
data partitioning rules. Unfortunately, we have not yet been able
to devise a way to ensure that global variables and pointer data
members are wrapped in the appropriate classes. If a programmer
neglects to use the wrapper classes in these cases, Prometheus is
unable to detect incorrect accesses on these kinds of variables. For
the small- to medium-size programs used for our evaluation, it is
straightforward to ensure the proper use of wrappers via inspection.
However, inspection is not a viable solution for large programs. We
plan to develop a lint-like tool that will inspect class specifications
to identify cases where unwrapped accesses to pointers or global
variables are performed in any class that has methods that may be
delegated. Since this may be done with a simple flow-insensitive
analysis, there is no significant technical obstacle to identifying this
kind of error.

All development and debugging of Prometheus programs is
done on a sequential execution of the program. Using a compile-
time flag, programs may be compiled into a debug version that
simulates a parallel execution by tracking the context and serial-
ization set of each operation. Debugging errors in serializers and
reductions is therefore no more difficult than debugging any other
type of sequential code. When the debug version executes correctly
for a given input, the parallel version will too (with the exception of
the current limitations with respect to global variables and pointer
members, which are detectable in other ways).

4. Implementation
There are two main components to Prometheus: a set of templates
that instantiate the data structures used for serialization sets, and
a runtime that orchestrates the parallel execution using these struc-
tures. The runtime currently supports x86 and x86_64 under Linux,
and SPARC-V9 under Solaris. The system-specific components are
confined to a few files to facilitate porting to other architectures.

The initialize function starts up the Prometheus runtime.
The initial thread of execution, or program thread, implements the
program context. The runtime detects the number of processors in
the system, and spawns a number of additional delegate threads to
implement the delegate context. The number of delegate threads
is one less than the number of processors by default, but may
be configured to some other number via an environment variable.
The program thread and delegate threads are bound to distinct
processors to ensure performance isolation.

The runtime then initializes a communication queue between
the program thread and each delegate thread. The communication
queue is based on FastForward [6], a cache-optimized lock-free
concurrent queue, which performs very low overhead data trans-
fers between processors. Prometheus augments FastForward with a
polymorphic interface to allow multiple types of data to be commu-
nicated via the same queue. Because the queues are single-producer
(the program thread) and single consumer (a delegate thread), the
only synchronization required is checking the full condition on the
producer side, and the empty condition on the consumer side. Ac-
cess to the communication queues is performance-critical, so these
conditions are checked in a spin loop rather than using blocking OS
synchronization, which would incur prohibitive overheads. The x86
and x86_64 implementations insert the PAUSE instruction in these
loops to limit consumption of processor resources on multithreaded
cores.

The communication queues serve three purposes. First, they
transfer the data needed to execute the method in the delegate
context. Second, they preserve the ordering of operations in the
same serialization set. Third, they provide buffering to help tolerate
bursts of operations mapped to the same serialization set.

The presence of a call to delegate in the program causes
the compiler to instantiate an invocation object for the specified
method call. The invocation object contains a pointer to the object
and method to be delegated, as well as the specified arguments. It
also contains the serialization set identifier to allow the runtime to
detect erroneous serializers. All invocation objects share a common
execute_method interface, and the different types of invocations
implement this interface to correctly call the method stored in
the invocation. Because the invocation ojbects are instantiated via
templates, many type errors (such as calling a method with the
wrong argument types) are detected at compile time. If we had
chosen to implement invocation objects with void pointers, these
errors would not be detected until run time.

The program thread executes delegate directives in four steps.
First, it executes the serializer to compute the serialization set
identifier for the method. Second, it performs delegate assignment,
which identifies the delegate thread that will execute the method.
Third, it allocates an invocation object of the appropriate class.
Fourth, the invocation object is inserted into the communication
queue for the designated delegate thread.

The current Prometheus implementation performs static dele-
gate assignment. It takes the modulus of the serialization set num-
ber and the number of virtual delegates. Because many programs
contain small sequential components, the program thread has little
work to do compared to the delegate thread, so Prometheus uses
the program thread to execute some of the delegated methods. Vir-
tual delegates allow runtime configuration of the assignment ratio
of serialization sets assigned to the program thread and the dele-



Program Source Description Baseline Inputs (S/M/L)
barnes-hut Lonestar [10] N-body simulation pthreads (1,000, 25) / (10,000, 50) / (100,000, 75) bodies, steps
blackscholes PARSEC [1] Financial analysis pthreads (16,384 / 65,536 / 10,000,000) options
dedup PARSEC [1] Enterprise storage pthreads (31 MB / 185 MB / 673 MB) file
freqmine PARSEC [1] Data mining OpenMP (250,000 / 500,000 / 990,000) transactions
histogram Phoenix [19] Image analysis pthreads (100MB / 400MB / 1.4GB) bitmap
kmeans NU-MineBench [17] Data mining OpenMP (5,000, 50 / 10,000, 100 / 50,000, 100) points, clusters
reverse_index Phoenix [19] HTML analysis pthreads (100 MB / 500 MB /1.0 GB) directory
word_count Phoenix [19] Text processing pthreads (10 MB / 50 MB / 100 MB) file

Table 2: Benchmarks used in experimental evaluation.

x86 Multicore x86 ccNUMA SPARC Multicore SPARC SMP
AMD Phenom 9850 AMD Opteron 8350 Sun Fire T2000 Sun Fire V880

Processor Type AMD Barcelona AMD Barcelona UltraSPARC T-1 UltraSPARC-III+
# Processors 1 4 1 8
Cores per Processor 4 4 8 1
Threads per Core 1 1 4 1
Total Execution Contexts 4 16 32 8
Clock Speed 2.5 GHz 2.0 GHz 1.0 GHz 900 MHz
Memory 8 GB 16 GB 16 GB 32 GB
OS Linux 2.6.18 Linux 2.6.25 Open Solaris Solaris 9

Table 3: Machine parameters used in experimental evaluation.

gate thread. The assignment ratio allows for run-time configuration
of work distribution to suit the environment the program is running
in.

The delegate threads execute a loop to repeatedly read in-
vocation objects from the communication queue. They call
execute_method on each object, which invokes the method. Upon
completion of the method, they deallocate the invocation object,
continuing on to the next entry in the queue.

Prometheus uses several special kinds of invocation objects to
coordinate the execution of the program thread and the delegate
threads. Synchronization objects are used by the program thread
to reclaim ownership of a data domain so that the program thread
may perform dependent computations on that object. When the
call interface of a writable object is invoked, it checks to see if
there are outstanding delegated method calls on that object. If there
are, it executes the object’s serializer, identifies the delegate thread
operating on the object, sends a synchronization object to that
thread, and waits for a response. When the delegate thread reaches
the serialization object, it will be the last object in the queue, since
the program thread has ceased sending invocations, ensuring that
all methods have completed on the object. The delegate thread then
invokes execute_method on the synchronization object, which
signals the program thread that it has regained ownership of the
object, and can safely execute its call. The same mechanism is used
by end_isolation to synchronize with all delegate threads, before
returning the program thread to an aggregation epoch.

Termination objects are used by the terminate function to send
messages to all delegate threads. Upon receiving this message,
the delegate threads have finished executing outstanding delegate
methods; they then signal the program thread that they have com-
pleted. Once the program thread receives replies from all delegate
threads, it is safe to terminate the program.

Reducible operations are handled by storing the thread identifier
of each delegate thread in thread-local storage. When methods on a
reducible object are called, they use the thread identifier to retrieve
the version of the object corresponding to that delegate thread.
Later, when the reduce method is called, it performs the reduction
to summarize the various versions into the final result.

While the current runtime implementation is fairly simple, it
yields very good performance on the programs we have studied so
far. In the future, we plan to extend the runtime to support recursive

delegation to improve programmability, and dynamic scheduling to
improve load balancing and multitasking performance.

5. Evaluation
Table 2 lists the programs used to evaluate our implementation of
serialization sets. We ported these benchmarks to Prometheus by
first rewriting them as idiomatic object-oriented C++ programs,
using standard template library (STL) data structures. We then
augmented them with serialization sets annotations. This required
some further modification of the programs—typically restructuring
classes to include additional state, so that methods calls could be
rendered independent, and thus suitable for delegation.

The programs were compiled with gcc-4.3.1 -O3
-march=barcelona for the AMD Barcelona/Linux platforms
and with gcc-4.2.1 -O3 -mcpu=v9 for the SPARC-V9/Solaris
platforms. All programs were compiled as 64-bit executables.
Note that we do not run freqmine on the SPARC machines
due to portability issues in the original benchmark code. The
dynamic checks performed by Prometheus were disabled for the
performance measurements in this section.

5.1 Experimental Results
Table 3 lists the four machine configurations used for our exper-
iments. We studied two systems based on the AMD Barcelona
processor, including a four-core AMD Phenom system and a four-
socket four-core AMD Opteron system (16 cores total)3. We also
measured two systems using SPARC processors, an UltraSPARC
T-1 (Niagara) based CMP system composed of eight cores with
four threads each, and an UltraSPARC-III based SMP machine. All
systems used a 64-bit OS capable of utilizing the full system mem-
ory.

There are several sources of overhead in Prometheus programs
that are not present in traditional parallel programs. Prometheus
introduces additional indirect calls, including internal serializers,
the execute_method interface of the invocation objects, and the
invocation of the method pointer stored in the invocation object.
Prometheus programs may also perform more memory operations,
due to the use of the communication queues. Thus we expect

3 We have also run the x86 benchmarks on Intel multicore systems with
similar results, but omit the results here for brevity.
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Figure 4: Performance of conventional parallel programs (CP) versus parallel execution of Prometheus programs (SS).
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Figure 5: Characterization of Prometheus programs on the 16-core AMD Barcelona system.

absolute performance of Prometheus programs to be slightly lower
than conventional parallel programs, although we expect similar
scalability.

Figure 4 shows the performance of conventional parallel pro-
grams (CP) and Prometheus programs (SS) normalized to the exe-
cution time of the original sequential program, not our C++ port.
The harmonic mean of the speedups is given in the final column.
Prometheus programs perform nearly as well as the conventional
parallel implementations in most cases, and actually perform better
for some benchmarks.

Several benchmarks exhibit performance disparities that are not
solely attributable to the additional overheads in Prometheus. The
freqmine benchmark is written in a very low-level hand-optimized
style, and we were unable to match its performance with an object-
oriented coding style. Our Prometheus implementation of kmeans
does not perform as well as the original benchmark due to the use of
an inferior algorithm. kmeans performs clustering of n-dimensional
data points by iteratively finding the nearest cluster point for each
data point, and then updating the mean of each cluster point. The
original benchmark iterates over the points and updates the cluster
points at the same time. The Prometheus implementation iterates

over the data points and cluster points separately. We believe we
can reduce the performance difference by computing partial sums
of the cluster means during clustering, and using a reduction to
summarize the results at the end of the computation.

Two of the Prometheus benchmarks perform better than their
conventional parallel counterparts. As described in Section 3.2,
reverse_index achieves better results by overlapping the direc-
tory recursion with finding links in the files; in the conventional
program, searching the files for links does not start until after the
entire directory has been read.

The Prometheus implementation of word_count performs sig-
nificantly better on the machines with four and eight execution con-
texts, and comparably for the machines with 16 and 32 contexts.
The baseline implementation maintains its dictionary of words in a
set of lists, and uses all processors in the system to merge different
pieces of the lists at the end of the program. The Prometheus im-
plementation uses a reducible map based on the STL data structure,
which performs quicker insertions during the word counting phase,
but cannot use all processors to perform the reduction that produces
the final results.
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Figure 5a breaks down the amount of time spent in each bench-
mark into aggregation, isolation, and reduction components, as
measured on the 16-core AMD Barcelona system. As expected,
better performance of the benchmarks generally correlates to a
higher percentage of time spent in isolation epochs, which al-
low parallel execution. Of the benchmarks that use reducible
objects, histogram spends a negligible amount of time, while
reverse_index and word_count spend about 30% of their exe-
cution time in reductions.

Figure 5b shows how the performance of the Prometheus bench-
marks on the 16-core AMD Barcelona system scales as larger
inputs are used. The one exception is dedup, which performs
fingerprint-based compression [1]. The speedup of this program
depends more on how much compression is needed for a particular
file, rather than the size of the file; in this case, the medium input
file achieves a significantly higher compression ratio than the small
and large files do.

Figure 6 shows the scaling of Prometheus programs on the
16-core AMD Barcelona system. The program with the greatest
amount of parallelism, blackscholes, achieves nearly linear scal-
ing. The barnes-hut and word_count benchmarks both achieve
super-linear speedups for smaller numbers of threads, but taper off
at higher thread counts. The least scalable benchmarks, dedup and
freqmine, do not see additional performance improvement beyond
roughly eight delegate threads. Since the conventional parallel ver-
sions of these programs show the same scaling limitations, we con-
clude that the lack of scalability is due to the algorithms they use,
and not a reflection of the scalability of Prometheus.

The scaling of histogram is particularly interesting. This
benchmark improves in performance up to 10 delegate threads,
but then rapidly falls off as more delegate threads are added. We
observed similar behavior in the original benchmark as well. (For
this reason, the numbers reported earlier for this benchmark use
the 10-thread configuration on this system.) Because this program
rapidly reads through large portions of memory, we hypothesize

that memory bandwidth becomes saturated beyond 10 delegate
threads, causing the performance to degrade.

6. Related Work
Like serialization sets, actors [8] and active objects [11] avoid data
races by performing operations on data in a single thread. Unlike
serialization sets, these models tie objects to a single thread of con-
trol, losing the flexibility to be used in different ways, and com-
municate via asynchronous message passing, resulting in nondeter-
ministic execution.

Halstead’s MultiLisp [7] introduced the notion of futures, which
execute an expression concurrently with the program. This process
is similar to delegating a method call, but since futures provide
no coordination on shared state, MultiLisp cannot safely futurize
multiple expressions that involve the same data.

The Jade [20] language statically divides a program into tasks,
and uses access specifications for the inputs and output variables of
a task to determine when a task is ready to execute. Access speci-
fications are similar to serializers in that they execute dynamically.
However, access specifications determine when data is ready for a
computational operation, while serializers are used to identify the
owner of data to which the operation should be sent. Access spec-
ifications must be written for every input and output variable of a
task, while only a single serializer is needed to delegate a method
call.

The inspector-executor model [3] computes dependence infor-
mation at runtime to schedule unstructured numerical computations
on distributed memory machines. An inspector examines all data
references made by a computation operation to determine what data
is required and the executor performs the actual computation. The
serializer differs from the inspector because it does not examine all
of the data accessed by a computation, but instead relies on the fact
that it is implicitly encapsulated in the state owned by a particular
object.



Cilk [5], Cilk++ [13], TBB [9], and OpenMP [16] provide a
sequential programming interface for writing multithreaded pro-
grams, but like threads, assume that tasks are independent. Explicit
synchronization is required to avoid data races on shared state.

Microsoft’s Task Parallel Library [15] and the .NET Thread-
Pool [14] provide mechanisms to delegate method calls to other
threads, but require manual synchronization of accesses to shared
memory.

Google’s MapReduce [4] exploits data parallelism by alter-
nately executing a function on each data element that maps it to
a key value, and then performing a reduction on all data with
the same key. MapReduce sacrifices generality for scalability, and
many kinds of applications are not amenable to the strict map-
reduce data flow.

Transactional Memory (TM) [18] provides atomic execution of
critical sections by dynamically detecting and undoing the results
of conflicting accesses. TM improves the ease of multithreaded
programming by providing composability, and extracts the perfor-
mance of fine-grained synchronization from coarse-grained syn-
chronization. TM is not a panacea, and still requires programmers
to correctly identify critical sections and reason about nondetermin-
ism.

7. Conclusion
Serialization sets offer a new approach to achieving parallel exe-
cution of programs, allowing programmers to more easily unlock
the power of multicore processors. Instead of requiring the pro-
grammer to reason about the nondeterministic execution of multi-
ple threads of control, they encourage hierarchical program struc-
ture, and encapsulation of state within objects. Programmers ex-
pose independence by providing succinct serializers which dynam-
ically classify operations into dependent sets, and allow a dynamic
runtime to schedule independent operations in parallel.

We have described Prometheus, our initial implementation of
the serialization sets model as a C++ template library. The results
are promising; Prometheus programs perform nearly as well—
and in a few cases, better—than threaded implementations, with
significantly lower programming and debugging complexity. In the
future, we plan to further study the applicability of serialization
sets to a broader class of applications, to improve Prometheus
runtime with dynamic scheduling capabilities, and to attempt to
provide a richer set of shared data structures without compromising
deterministic program execution.
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