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Abstract. Diffusion Tensor Imaging (DTI) provides estimates of local direc-
tional information regarding paths of white matter tracts in the human brain. An
important problem in DTI is to infer tract connectivity (and networks) from given
image data. We propose a method that infers high-level network structures and
connectivity information from Diffusion Tensor images. Our algorithm extends
principles from perceptual contours to construct a weighted line-graph based on
how well the tensors agree with a set of proposal curves (regularized by length
and curvature). The problem of extracting high-level anatomical connectivity is
then posed as an optimization problem over this curvature-regularizing graph –
which gives subgraphs which comprise a representation of the tracts’ network
topology. We present experimental results and an open-source implementation of
the algorithm.

1 Introduction

Diffusion-tensor imaging (DT-MR or DTI) is an imaging modality that measures the
diffusion of water molecules in brain tissues [1]. DTI exploits the fact that bundles of
neural tissues with a certain orientation preferentially restrict water diffusivity (espe-
cially perpendicular to the direction of the fibers), which is otherwise isotropic in an
unrestricted medium [1, 2]. The diffusion data is given as a 3 × 3 positive semidefinite
matrix at each voxel [3, 4], and provides an estimate of the microstructural organization
in the brain. DT-MR images are important to quantify how the neural fiber organization
varies with cognitive change, age, and diseases [5], and therefore are very promising in
the context of many neuroscience questions.

Research in DTI has extensively focused on the design of tools to facilitate the pro-
cess of obtaining (from raw DTI data) connectivity maps of the entire human brain; in
other words, the strength of connectivity in axonal brain networks. One approach to-
ward deriving such information is to calculate, as a first step, the “network pathways”
(or fiber tracts) between regions. This procedure is referred to as tractography [6–8]. It
is reasonable to expect that if the underlying diffusion signal is ideal, a simple stream-
line propagation process (along orientation specific diffusion) will lead to the desired
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Fig. 1: A color-map of the orientation of White Matter in an image with a selected region shown
in a red box (left); The vector field of the selected region and a possible pathway in red (right).

solution. That is, one sequentially follows the principal eigenvector of the diffusion ten-
sor at each voxel to reconstruct the underlying tract [9, 10], see Fig. 1. Unfortunately,
there is significant signal drop-off in areas where the diffusion is isotropic (common in
regions containing “crossing” fibers). Noise in the estimation of the tensors (or in the ac-
quisition itself) further exacerbates the problem of estimating the underlying pathway.
While several local methods have been proposed for tractography, they occasionally
make mistakes in the presence of noise and ambiguity (see [11] for a discussion). These
errors accumulate as the tracking proceeds, and may also mislead the process into pur-
suing erroneous paths [12]. Further, the tracking may get lost when it passes through
“uncertain” regions (i.e., where the magnitudes of the first and second eigenvectors are
similar). Such limitations are common in most local tractography methods which is
why recent work in this area suggests a preference toward strategies that lead to more
global solutions [13]. While this idea is interesting and seems to be an appropriate so-
lution to the problem, there is a significant associated cost. Many of the global methods
proposed in the literature are very computationally demanding, and some take more
than one month of processing time per image [13]. Our primary focus in this paper is to
come up with efficient methods for this problem: to infer reliable long range connec-
tions globally from (potentially erroneous or ambiguous) local orientation information.

1.1 Related Work

Local methods track fibers through a series of small steps, where each step provides an
estimate of the local fiber direction within a pre-specified neighborhood. The simplest
tractography methods, known as streamline tracking [14–16], employ path integration
based on the diffusion direction. Noise in the principal eigenvector (due to estimation
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or acquisition), however, may lead to significant inaccuracies in this streamline process.
To address this issue, Tensor Deflection (TEND) [11] takes into account the shape of
the diffusion tensor as well in each update step (i.e., not relying on only the principal
eigenvector). A number of subsequent papers have demonstrated that introducing some
degree of randomness/stochasticity in the local estimation process helps in reducing
errors, and yields better results in general [17].

Local methods described above have been extensively used in Neuroscience studies
using DTI data. However, in an effort to identify more subtle group-level differences
in statistical evaluations (which clearly require more accurate tractography solutions),
there is a great deal of interest in leveraging more global methods for this problem.
To this end, some authors have made use of Bayesian methods [18], while others have
proposed the incorporation of strong priors on the tracking by assuming probability
density models of the fiber directions [19, 20]. However, these strategies have certain
limitations, especially in cases where the pre-specified model is far from the actual
orientation distribution in the given image volume. A recently proposed technique for
this problem [13], Gibbs Tracking, formulates the problem as an energy minimization,
which is solved via a variant of Markov Chain Monte Carlo methods. The approach
is quite interesting and seeks to consider the entire image at once in order to handle
fiber crossings, while incorporating local agreement with the data and higher order con-
nectedness properties. Unfortunately, such algorithms are known to require significant
computational resources and turn out to be rather inefficient for practical applications.

The efficiency/quality trade-off described above is quite significant in many cases.
This has led a number of authors [21–24] to investigate the utility of concepts from
graph theory – that is, by constructing a weighted neighborhood graph over the voxels.
For example, in [24], the orientation distribution function at a given voxel is evaluated
for the vector in the direction of the outgoing edge, to obtain a weight which corre-
sponds to the likelihood that a tract connects the two voxels. Then, a simple shortest-
path algorithm on this graph finds the most probable tract between any pair of locations.
Observe that the success of such a method varies with the richness of the underlying
graph representation (e.g., whether it is curvature regularized or not, and how/whether
the higher order dependencies are modeled). It also raises the question whether more
powerful graph algorithms can lead to tangible improvements. We seek to address both
these issues in this paper.

A recent work that is relevant to ours is the method in [25]. Here, the authors model
tracts as helices between triplets of tensors. They introduce co-helicity to model the
setting where the orientations at each point in the triplet can be joined by a helix. Then,
a local search method is used to find orientations for each tensor that leads to the “most
probable” helices that match the data. The choice of a helix representation here seems
to be a distinct weakness. While our algorithm is similar to [25] in spirit, we present a
different geometrically based scheme for generation of primitives (which offers some
distinct advantages over [25]). Our most probable set of primitives is then optimized
globally rather than via local search.

The main contributions of this paper are: (i) We propose construction of line graph
primitives as basic building blocks of a tractography solution. Our strategy adapts ideas
from Perceptual Contours and Tensor Voting for the generation of a set of “proposal
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splines” to geometrically describe the local context in an image volume. (ii) We propose
a simple optimization model (equipped with connectivity and branching constraints) to
select a subset of edges from a curvature regularized graph to infer the final solution,
from the given data. (iii) We present results on a set of Diffusion Tensor images noting
that the proposed solution is of independent interest in the context of general Vision
problems dealing with connectivity inference (for example, see [26, 27]).

2 Preliminaries

Certain ideas from a body of Computer Vision literature (called perceptual contours)
can inform approaches to DTI connectivity and tractography; we briefly review the
relevant details, and then move to the presentation of our formalization.

2.1 Perceptual Contours/Perceptual Grouping

The use of energy functions that prefer connections or curves minimal length and cur-
vature has a long history in the perceptual contour literature [28]. Recent work has
exploited such functions in a graph setting (with different types of regularization) for
a variety of problems and applications [29–31]. For example, [31] presents a linear
program over a graph of region and boundary segments to find a segmentation of the
image – this minimizes an objective which includes curvature regularity on the bound-
ary. Tensor Voting [32] is a type of perceptual grouping which takes as input a tensor
field1. Each tensor field provides a distribution over normals rather than tangents. The
tensor voting algorithm consists of iterations where each member of a tensor field casts
a vote to its neighbors. The vote itself consists of a tensor based on the orientations
of “proposal curves”. In the case of the stick vote, which is the vote cast by a purely
anisotropic stick tensor, we simply consider a proposal curve between the voting ten-
sor and its neighbor with known orientation at all points. A stick vote is thus cast to
the neighboring tensor in the same direction as the proposal curve’s orientation at the
neighbor. The magnitude of the stick vote is scaled by a curvature regularity function
termed the saliency decay function:

exp

(
s2 + cκ2

σ

)
, (1)

where s and κ are the length and curvature of the proposal arc, and c and σ are
parameters expressing a neighborhood size. In the presence of uncertainty, the vote
consists of an integration over multiple proposal curves. The magnitude of the resulting
vote is then a function of how well the two tensors can be linked by simple and probable
proposal curves. We make use of this idea in our modeling next.

1 The term “tensor” here is used in a more general sense, but is similar in terms of interpretation
to the usage in the context of DTI.
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Fig. 2: Information in a triplet as described in Section 3.1. Probability distributions pi, pk and
unit tangents vi, vk not shown.

3 Weighted Line Graph

Our strategy is to encode curvature regularity in the context of weights on a certain line
graph over the tensor field. We will first outline a graph construction, and then discuss
how a proposal set of curves can be calculated. Later, in Section 4, we will describe the
optimization model to obtain our final solution.

3.1 Graph Construction

Consider a set of voxels V = {x1, ...,xn}. Over these voxels an orientation distribution
field is defined, so at xi we have a distribution function pi(v̂) corresponding to the
local probability that a fiber through xi has tangent along v̂ in that voxel. Adapting
DTI data to such a distribution can be done by using pi(v̂) ∝ v̂TDiv̂, where Di is the
symmetric PSD matrix representing the tensor at voxel i [33]. Note that the formulation
easily generalizes to other diffusion imaging modalities [34, 35].

We now define a neighborhood graph G = (V, E) over voxels in the input image.
For simplicity, we can assume that G is the complete graph Kn, though one may also
use a threshold to limit the number of edges introduced (i.e. E = {(ij) | ‖xi − xj‖ <
δ} for some δ). Let (E ,L) denote the line graph of G, the edge set L is the set of
pairs of edges of G which share a common endpoint. It is convenient to view an edge
((ij), (jk)) ∈ L as a triplet (ijk) ∈ L of vertices such that (ij) ∈ E and (jk) ∈ E ,
which elides the repeat of j. With the above notation in place, we can represent groups
of white matter tracts at a global level as subgraphs of L. If H ⊂ L is a tractography
and (ijk) ∈ H, this expresses the belief that there is a tract segment C which connects
the voxels xi,xj ,xk (in order) and passes through no other voxels in between, see Fig.
2 for an illustration. Using the line graph enables us to explicitly model the topology of
the tracts, as discussed in [36] and used in Section 4.1.

3.2 Minimum Energy Proposal Curves

To equip the graph, G, with edge weights we use an energy function over curves C
which consists of a weighted sum of total curvature and squared speed [37, 28].

E(C) =
∫ 1

−1
K · κC(t)2 + ‖C′(t)‖2dt, (2)
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Fig. 3: Plot of the proposal spline function (3) when in two dimensions. We take a set of splines
constructed and weighted as in section 3.2 passing through (−1, 0), (0, 0), (1, 0), with orientation
constraints ranging over a discretization of

[
0, π

2

]
. Lower-energy curves are shaded darker.

where K is a user-defined weighting constant which determines a neighborhood size.
This energy function serves as a regularizer to prefer shorter and smooth curves.

Given known orientations at each point in the triplet v̂i, v̂j , v̂k, we can propose a
most likely curve. This is equivalent to the proposal arc in tensor voting’s stick vote
[32] and is the basic building block in our weight construction. Briefly, given a family
of curves parameterized over [−1, 1], we can generate a proposal curve by choosing C
according to:

argmin
C

E(C)

subject to C(−1) = xi, C(0) = xj , C(1) = xk

C′(−1)
‖C′(−1)‖ = v̂i,

C′(0)
‖C′(0)‖ = v̂j ,

C′(1)
‖C′(1)‖ = v̂k,

(3)

whereE(·) denotes the energy. The proposal curves used here are cubic hermite splines
with two segments. The knots have positions xi,xj ,xk and derivativesmiv̂i,mj v̂j ,mkv̂k
respectively. Note that we must distinguish between an orientation and a tangent. The
tensors provide a distribution over orientations which we express as a unit vector v̂·,
parallel (or antiparallel) to the tangent of any proposal curve. The tensors provide no
information on the magnitudes m· of the tangents, so they are chosen to minimize the
curve energy in (2) through gradient descent. We calculate the gradient for m· by ap-
proximating the integral (the longer version of the paper includes all relevant details):

∂

∂m·
(E(C)) =

∫ 1

−1

∂

∂m·

(
KκC(t)

2 + ‖C′(t)‖2
)
dt (4)

Thus, given the positions and orientations at each point we can find a proposal spline
and its corresponding energy. An illustration is provided in Fig. 3.
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Fig. 4: Elements of the flow graph used in (7). Displayed is a source set of {i} and a neighbor-
hood graph G with the edes (ij), (jk), inducing the directed line graph edges (ijk), (kji). An
edge (S, (ij)) is added to introduce flow from the source to (ij).

3.3 Expected Curve Energy

The local information from the tensors in a triplet and (4) can now be used to calculate
weight for the corresponding line edge. If we call a solution to (3) Curve(x{i,j,k}, v̂{i,j,k}),
then by taking the expectation

wijk = E
v̂{i,j,k}∼p{i,j,k}

[
E(Curve(x{i,j,k}, v̂{i,j,k}))

]
(5)

This yields weights for our line edges, and are analogous to edge weights calculated
in other graph-based methods in tractography [21, 23, 24] and segmentation [30, 31].
Observe that it is possible to quickly calculate the weights for a large connectivity graph
over a regular grid (via a preprocessing step) by taking advantage of the fact that the
energy function is invariant to rigid body transformations of the corresponding curve.

4 Inferring Connectivity

We can find the most probable (least-weight) tracts connecting an arbitrary pair of
regions by solving an augmented min-cost flow problem over the digraph (Vf , Ef ).
Vf = E ∪ {S, T}, where S and T are nodes for the source and sink respectively. Ef
is the union of the symmetric digraph equivalent to the line graph L±, and a set of
edges (S, (ij)) or ((ij), T ) for all (ij) ∈ E incident to voxels in the source or sink set
respectively, see Figure 4. We set dv for v ∈ Vf to be the flow divergences:

de =


N if e = S

−N if e = T

0 if e = (ij) ∈ E
(6)

where we wish to recover N most-likely tracts.
We useαijk as indicator variables to give the presence of flow across voxel j moving

from i to k. A penalty for branching or crossing is imposed by adding variables βj
for each voxel j = {1, · · · , n}. Each βj is the total amount of flow passing across
that voxel. The model imposes a (user-specified) penalty of λ for each unit of flow
over 1. The effect is a hinge loss which produces topologically simple tractographies
with large groups of parallel tracts, except where the data strongly suggests that the
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Fig. 5: Illustration of continuation constraints described in Section 4.1.

reduction in the weight term introduced by a crossing (or branching) is greater than λ.
This hyperparameter encodes a prior based on the topology of the tracts, and can be
tuned by a qualitative analysis on how much branching is expected in the true tracts.

min
α,β

∑
(ijk)∈L±

wijkαijk + λ
∑
j∈V

βj (7)

subject to
∑

(kij)∈L±

αkij −
∑

(ijk)∈L±

αijk = d(ij) ∀(ij) ∈ Ef

βj ≥
∑

(ijk)∈L±

αijk ∀j ∈ V

βj ≥ 1 ∀j
αijk ∈ {0, 1} ∀(ijk) ∈ L±

We can solve the above IP using a number of solvers; from the solution the resulting
tractography is interpreted as H = {(ijk) ∈ L | α∗ijk + α∗kji ≥ 1} where α∗ is the
solution to (7). Note that the minimum-cost flow problem is a special case of (7) for
λ = 0, and can be solved exactly with the LP relaxation αijk ∈ [0, 1].

4.1 Continuation Constraints

We can derive a new model by modifying (7), relaxing the constraints on the endpoints
of the tracts. In such a relaxation, the flow constraints will be replaced with contin-
uation constraints similar to [31], see Fig. 5. The continuation constraints express the
dichotomy that for a given edge pair and direction, there is another edge pair the contin-
ues that tract, otherwise selecting this edge pair introduces at least one “endpoint” to the
tractography. We use variables γijk as indicator variables equal to 1 in such a situation
(i.e., for an endpoint), and 0 otherwise. Each γ incurs a penalty of µ, optionally relaxed
at a set of voxels M considered likely endpoints (i.e. the GM-WM boundary). This
hyperparameter allows for “soft” endpoint constraints, so that M can be specified ap-
proximately. Note that as µ→ +∞, the optimal γ∗ = 0 for all (ijk) ∈ L, and all tracts
found will either be cycles or end within M . The reverse of this is that if connecting a
tract will incur a penalty in the other remaining terms of less than µ, the corresponding
connection will be made in the optimal subgraph. Our model is given as
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min
α,β,γ

−
∑

(ijk)∈L

wijkαijk + λ
∑
j∈V

βsj + µ
∑

(ijk)∈L\L(M)

γijk

subject to αijk ∈ {0, 1}

βj ≥
∑

(ijk)∈L

αijk

γijk ≥ 0

γijk ≥ αijk −
∑
l

αlij

γijk ≥ αijk −
∑
l

αjkl,

(8)

where L(M) = {(ijk) ∈ L | i or k ∈ M}, and s ∈ {1, 2} is a hyperparameter
governing the kind of sparsity penalty. For instance, s = 2 penalizes high levels of
branching and crossing. Further, the binary constraint on αijk ∈ {0, 1} can be relaxed
to αijk ∈ [0, 1] (in which case we obtain a LP for s = 1 and QP for s = 2).

5 Experiments

Our experiments were designed to evaluate where the proposed model can reliably (and
efficiently) recover tract connections among different brain regions by incorporating
local geometric context within a global optimization model. To this end, we first com-
pared results from our algorithm relative to other streamline-based tracking methods
on a number of synthetic tensor datasets. These experiments are useful to answer if
the method can correctly resolve crossing fibers, as well as its applicability in general
curve inference problems. We also evaluated our results on a set of DT-MR images.
Since obtaining ground-truth data on such images is clearly impractical, our evalua-
tions were mainly qualitative – by focusing on pairs of some important regions (e.g.,
Corpus Callosum) we can reliably assess consistency between our solution and known
organizations of tracts in those regions. We present our experimental results next.

5.1 Simulated Data

Synthetic tensor fields were constructed from manually specified linear paths. At each
voxel along the line, we add the stick tensor in the direction of the ground truth line and
a random tensor of magnitude up to a given SNR (10:1 in our experiments). At voxels
containing a crossing we take the average of all of these tensors for the crossing tracts.
Finally, areas not occupied by a tract are filled with random noise.

In Fig. 6, we illustrate the necessity of a global approach to tractography by showing
an example where two fiber cross at an angle. A source set was placed at the lower-left
tract endpoints and a sink set was placed at the upper-right endpoints, the union of these
two sets was used to seed TEND [11]. Notice that due to partial voluming, the principal
diffusion direction in the region of the crossing is between the two tracts. Local methods
will typically infer tracts which follow this average direction and infer higher-curvature
tracts or leave the region occupied by the tracts entirely. This is compared relative to
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(a) (b)

Fig. 6: Comparison of local tractography (a) with ROI pair method from section 4 (b) on a basic
problem with a crossing.

Fig. 7: Demonstration of (8).

our global method which extracts the minimum-curvature tracts that match the ground
truth rather well.

We also demonstrate the usefulness of the model in (8) on such a synthetic dataset
in Fig. 7. WithM set to the tensors at the edges of the image, we infer the tracts with no
user intervention beyond specifying the appropriate hyperparameters for these artificial
tensor fields.

5.2 Anatomical Structures

Acquisition Setup. DT-MR images used in our evaluations were acquired with a GE
SIGNA 3-Tesla scanner. DW images were taken with 12 non-collinear diffusion di-
rections and a diffusion weighting factor of b = 1000s/mm2. Eddy current related
distortion and head motion of each data set were corrected, using standard methods.
Distortions from field inhomogeneities were corrected using field maps. From the raw
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data, tensor elements were estimated using methods available in Camino, and the data
was registered to a common template [38]. The resulting DTI images were then resam-
pled to 128×128×64 voxels, each of size 1.5 mm×1.75 mm×2.25 mm. White matter
was segmented using the FAST tool available as part of FSL [39]. The tract networks
inferred by our algorithm were restricted to lie within this mask.

We constructed a 6-neighborhood graph over the white matter region, and the graph
weights were calculated using (5). Source and sink sets were specified for two promi-
nent tract groups: the callosal and projective fibers [40]. We set the minimum flows to
recover a total of 200 pairs of tract endpoints, with 120 in the callosal fibers. Tracts
were extracted from the optimal line graph by finding the endpoint-to-endpoint paths
between voxels within the subgraph, using ideas discussed in Section 4.1. We find the
edge pair leading up to an endpoint as defined there, then repeatedly consider those edge
pairs which share the next edge. This leads to paths among the voxels, and B-splines are
then fit to the ordered sequence of their centers to obtain the final tracts. Representative
results of our method are presented in Figure 8. In general, our results are consistent
with known/expected connection pathways in these regions, as well as results obtained
via other methods. Some local artifacts are seen due to the low angular resolution of
a 6-neighborhood graph over the voxels. This can be addressed by considering a more
computationally-intensive higher-degree graph or by increasing the smoothing when
fitting B-spline streamlines during postprocessing.

We note, however, that the proposed method is global and is unaffected by vox-
els with crossing fibers (which occasionally leads to inaccuracies and errors in other
methods). In addition, while streamlines serve as a visualization of inferred tracks, our
core algorithm outputs a line graph from which a wide range of measures can be calcu-
lated. This includes overall connectivity between ROIs for use within group studies and
identifying points of crossing and branches.

6 Conclusions

In this paper, we have presented an algorithm for inferring tract connectivity informa-
tion from DT-MR images. Our algorithm constructs a line graph, whose edge weights
are calculated based on a set of proposal splines. This helps equip our algorithm with
local geometric context. Once such primitives are generated, a global optimization pro-
cedure gives the final tractography solution. Our global model is inspired by network
flow algorithms but includes additional constraints that penalize extensive branching
and encourage strong region-to-region connectivity. Such requirements are imposed to
ensure that the resultant solution is consistent with the topology of white matter tract
networks in the brain. We have presented experimental results on synthetic data as well
as on brain images, where the proposed method performs well. While extensive further
evaluations on a variety of datasets are still required to assess the advantages and lim-
itations of this method, and we believe that the proposed model provides a framework
for incorporation of local and global context for tractography. Our C++ implementation
will be made publicly available concurrently with publication.
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Fig. 8: A visualization of our tractography solution in six different views using Trackvis.

Fig. 9: Callosal fibers overlaid on automatic segmentation of the corpus callosum.

Fig. 10: Fibers from another subject using the same source and sink sets.
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