Spectral Clustering with a Convex Regularizer on Millions of Images (Proofs)

Maxwell D. Collins Ji Liu Jia Xu
Lopamudra Mukherjee Vikas Sing

September 8, 2014

1 Proofs of Theorems

Theorem 1. Let V^{*} be a convergent point of the sequence $\left\{V_{t}\right\}$ generated from equation (5) of the main paper which is in a small ball with radius δ and denote $f\left(V^{*}\right)$ as f^{*}. Let ϕ be a positive value. If there exists a constant $\delta>0$ such that $\mathcal{P}_{\Omega}\left(V_{t}-\gamma_{t}\left(\hat{L}_{t} V_{t}+\partial g\left(V_{t}\right)\right)\right)$ is a nonexpansive projection, we have:
i) If the stepsize is chosen as $\gamma_{t}=\frac{\phi \delta}{\sqrt{\left((M+N)^{2}+\sigma^{2}\right) T}}$ and
$\bar{V}_{T}=\left(\sum_{t=1}^{T} \gamma_{t}\right)^{-1} \sum_{t=1}^{T} \gamma_{t} V_{t}$, then $\mathbb{E}\left(f\left(\bar{V}_{T}\right)\right)-f^{*} \leq\left(\phi+\phi^{-1}\right) \frac{\delta}{2} \Upsilon$.
ii) If the step size is chosen as $\gamma_{t}=\theta_{t} \frac{f\left(V_{t}\right)-f^{*}}{(M+N)^{2}+\sigma^{2}}$, then $\mathbb{E}\left(f\left(\tilde{V}_{T}\right)\right)-f^{*} \leq$ $\frac{\delta}{\sqrt{\theta_{\text {min }}}} \Upsilon$ where $\tilde{V}_{T}=\frac{1}{T} \sum_{t=1}^{T} V_{t}, \theta_{t} \in(0,2)$ and $\theta_{\min }=\min _{t} 1-\left(\theta_{t}-1\right)^{2}$.

Proof. Consider the expansion of $\left\|V_{t+1}-V^{*}\right\|_{F}^{2}$:

$$
\left\|V_{t+1}-V^{*}\right\|_{F}^{2}=\| \mathcal{P}_{\Omega}\left(V_{t}-\gamma_{t}\left(\left(L+\Delta_{t}\right) V_{t}+\partial g\left(V_{t}\right)\right)-\mathcal{P}_{\Omega}\left(V^{*}\right) \|_{F}^{2}\right.
$$

from the local nonexpansive projection property,

$$
\begin{align*}
& \leq\left\|V_{t}-\gamma_{t}\left(\left(L+\Delta_{t}\right) V_{t}+\partial g\left(V_{t}\right)\right)-V^{*}\right\|_{F}^{2} \\
& \leq\left\|V_{t}-V^{*}\right\|^{2}+\gamma_{t}^{2} \underbrace{\left\|\left(L+\Delta_{t}\right) V_{t}+\partial g\left(V_{t}\right)\right\|_{F}^{2}}_{T_{1}} \tag{1}\\
& -2 \gamma_{t} \underbrace{\left\langle\left(L+\Delta_{t}\right) V_{t}+\partial g\left(V_{t}\right), V_{t}-V^{*}\right\rangle}_{T_{2}} .
\end{align*}
$$

Take the conditional expectation of T_{1} and T_{2} in terms of Δ_{t} given V_{t} :

$$
\begin{align*}
& \mathbb{E}\left(T_{1}\right)=\left\|L V_{t}+\partial g\left(V_{t}\right)\right\|_{F}^{2}+\mathbb{E}\left(\left\|\Delta_{t} V_{t}\right\|_{F}^{2}\right)+2 \mathbb{E}\left\langle L V_{t}+\partial g\left(V_{t}\right), \Delta_{t} V_{t}\right\rangle \\
& \quad=\mathbb{E}\left(\left\|L V_{t}+\partial g\left(V_{t}\right)\right\|_{F}^{2}\right)+\mathbb{E}\left(\left\|\Delta_{t} V_{t}\right\|_{F}^{2}\right) \tag{2}\\
& \quad \leq(M+N)^{2}+\sigma^{2} \\
& \quad \mathbb{E}\left(T_{2}\right)=\mathbb{E}\left\langle L V_{t}+\partial g\left(V_{t}\right), V_{t}-V^{*}\right\rangle \geq \mathbb{E}\left(f\left(V_{t}\right)\right)-f^{*} . \tag{3}
\end{align*}
$$

Take the expectation of both sides of (1) in terms of all random variables, together with (2), and (3), we have

$$
\begin{equation*}
2 \gamma_{t}\left(\mathbb{E}\left(f\left(V_{t}\right)\right)-f^{*}\right) \leq \mathbb{E}\left\|V_{t}-V^{*}\right\|_{F}^{2}-\mathbb{E}\left(\left\|V_{t+1}-V^{*}\right\|_{F}^{2}\right)+\gamma_{t}^{2}\left((M+N)^{2}+\sigma^{2}\right) \tag{4}
\end{equation*}
$$

which implies that

$$
\begin{aligned}
& 2 \sum_{t=1}^{T} \gamma_{t}\left(\mathbb{E}\left(f\left(V_{t}\right)\right)-f^{*}\right) \leq \mathbb{E}\left\|V_{1}-V^{*}\right\|_{F}^{2}+\left((M+N)^{2}+\sigma^{2}\right) \sum_{t=1}^{T} \gamma_{t}^{2} \\
& \quad \leq \delta^{2}+\left((M+N)^{2}+\sigma^{2}\right) \sum_{t=1}^{T} \gamma_{t}^{2}
\end{aligned}
$$

Also note that

$$
\sum_{t=1}^{T} \gamma_{t}=\frac{\phi \delta \sqrt{T}}{\sqrt{(M+N)^{2}+\sigma^{2}}} \quad \sum_{t=1}^{T} \gamma_{t}^{2}=\frac{(\phi \delta)^{2}}{(M+N)^{2}+\sigma^{2}}
$$

and

$$
\left.\frac{\sum_{t=1}^{T} \gamma_{t} \mathbb{E}\left(f\left(v_{t}\right)\right)}{\sum_{t=1}^{T} \gamma_{t}}=\frac{\mathbb{E} \sum_{t=1}^{T} \gamma_{t} f\left(v_{t}\right)}{\sum_{t=1}^{T} \gamma_{t}} \leq \mathbb{E} f\left(\bar{V}_{t}\right) . \quad \text { (from the convexity of } f\left(V_{t}\right)\right)
$$

It follows that

$$
\begin{gathered}
\frac{\sum_{t=1}^{T} \gamma_{t}\left(\mathbb{E}\left(f\left(V_{t}\right)\right)-f^{*}\right)}{\sum_{t=1}^{T} \gamma_{t}} \leq \frac{\delta^{2}+\left((M+N)^{2}+\sigma^{2}\right) \sum_{t=1}^{T} \gamma_{t}^{2}}{2 \sum_{t=1}^{T} \gamma_{t}} \\
\Rightarrow \mathbb{E}\left(f\left(\bar{V}_{t}\right)-f^{*}\right) \leq \frac{\delta^{2}+\left((M+N)^{2}+\sigma^{2}\right) \sum_{t=1}^{T} \gamma_{t}^{2}}{2 \sum_{t=1}^{T} \gamma_{t}} \\
=\frac{\delta^{2}+\left((M+N)^{2}+\sigma^{2}\right) \frac{(\phi \delta)^{2}}{(M+N)^{2}+\sigma^{2}}}{2 \frac{\phi \delta \sqrt{T}}{\sqrt{(M+N)^{2}+\sigma^{2}}}} \\
=\left(\phi+\phi^{-1}\right) \frac{\delta \sqrt{(M+N)^{2}+\sigma^{2}}}{2 \sqrt{T}}
\end{gathered}
$$

proving the first claim. Next we prove the second claim. From (1), (2), and (3), we have

$$
\begin{aligned}
& \mathbb{E}\left(\left\|V_{t+1}-V^{*}\right\|_{F}^{2}\right) \leq\left\|V_{t}-V^{*}\right\|_{F}^{2}+\gamma_{t}^{2}\left((M+N)^{2}+\sigma^{2}\right)-2 \gamma_{t}\left(f\left(V_{t}\right)-f^{*}\right) \\
& \quad \leq\left\|V_{t}-V^{*}\right\|_{F}^{2}-\frac{\left(f\left(V_{t}\right)-f^{*}\right)^{2}}{(M+N)^{2}+\sigma^{2}}+\left((M+N)^{2}+\sigma^{2}\right)\left(\gamma_{t}-\frac{f\left(V_{t}\right)-f^{*}}{(M+N)^{2}+\sigma^{2}}\right)^{2} \\
& \quad \leq\left\|V_{t}-V^{*}\right\|_{F}^{2}-\frac{\left(1-\left(1-\theta_{t}\right)^{2}\right)\left(f\left(V_{t}\right)-f^{*}\right)^{2}}{(M+N)^{2}+\sigma^{2}} \\
& \quad \leq\left\|V_{t}-V^{*}\right\|_{F}^{2}-\frac{\theta_{\min }\left(f\left(V_{t}\right)-f^{*}\right)^{2}}{(M+N)^{2}+\sigma^{2}} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\frac{\theta_{\min }}{(M+N)^{2}+\sigma^{2}} \mathbb{E}\left(f\left(V_{t}\right)-f^{*}\right)^{2} \leq \mathbb{E}\left(\left\|V_{t}-V^{*}\right\|_{F}^{2}\right)-\mathbb{E}\left(\left\|V_{t+1}-V^{*}\right\|_{F}^{2}\right) \tag{5}
\end{equation*}
$$

Taking $t=0,1, \cdots, T-1$ in (5) respectively and summarizing all of them, we obtain

$$
\begin{aligned}
& \frac{\theta_{\text {min }}}{(M+N)^{2}+\sigma^{2}} \sum_{t=1}^{T} \mathbb{E}\left(f\left(V_{t}\right)-f^{*}\right)^{2} \leq \mathbb{E}\left(\left\|V_{1}-V^{*}\right\|_{F}^{2}\right) \leq \delta^{2} \\
\Rightarrow & T^{-1} \sum_{t=1}^{T} \mathbb{E}\left(f\left(V_{t}\right)-f^{*}\right)^{2} \leq \frac{\delta^{2}\left((M+N)^{2}+\sigma^{2}\right)}{T \theta_{\min }}
\end{aligned}
$$

Together with

$$
\begin{aligned}
& T^{-1} \sum_{t=1}^{T} \mathbb{E}\left(f\left(V_{t}\right)-f^{*}\right)^{2} \geq T^{-1} \sum_{t=1}^{T}\left(\mathbb{E}\left(f\left(V_{t}\right)\right)-f^{*}\right)^{2} \\
& \quad \geq\left(T^{-1} \sum_{t=1}^{T} \mathbb{E}\left(f\left(V_{t}\right)\right)-f^{*}\right)^{2} \geq\left(\mathbb{E}\left(f\left(\tilde{V}_{T}\right)\right)-f^{*}\right)^{2}
\end{aligned}
$$

The last inequality uses Jensen's inequality, that is, $\mathbb{E} f(x) \geq f(\mathbb{E}(x))$ holds for any convex function. We prove the second claim.

Denote $[t]$ as a subset of coordinates of $V \in \mathbb{R}^{n \times p}$, which is randomly selected at iteration t. To make our following discussion simpler, we assume that the size of $[t]$ is a constant and denote the ratio $R:=\frac{n p}{[t t] \mid}$. Consider the following update for V_{t+1}, also appearing in equation (9) of the main paper:

$$
\begin{equation*}
V_{t+1}=\mathcal{P}_{\Omega}\left(V_{t}-\gamma_{t} \partial_{[t]} f\left(V_{t}\right)\right) \tag{6}
\end{equation*}
$$

Theorem 2. Let V^{*} be a convergent point of the sequence $\left\{V_{t}\right\}$ generated from (6) which is in a small ball with radius δ and denote $f\left(V^{*}\right)$ as f^{*}. Let ϕ be a positive value. Let $\bar{\Upsilon}:=\frac{(M+N) R}{\sqrt{T}}$. If there exists a constant $\delta>0$ such that $\left.\mathcal{P}_{\Omega}\left(V_{t}-\gamma_{t} \partial_{[t]} f\left(V_{t}\right)\right)\right)$ is a nonexpansive projection, we have:
i) If the stepsize is chosen as $\gamma_{t}=\frac{\phi \delta}{(M+N) \sqrt{T}}$ and $\bar{V}_{T}=\left(\sum_{t=1}^{T} \gamma_{t}\right)^{-1} \sum_{t=1}^{T} \gamma_{t} V_{t}$, then $\mathbb{E}\left(f\left(\bar{V}_{T}\right)\right)-f^{*} \leq\left(\phi+\phi^{-1}\right) \frac{\delta}{2} \bar{\Upsilon}$.
ii) If the step size is chosen as $\gamma_{t}=\theta_{t} \frac{f\left(V_{t}\right)-f^{*}}{R(M+N)^{2}}$, then $\mathbb{E}\left(f\left(\tilde{V}_{T}\right)\right)-f^{*} \leq \frac{\delta}{\sqrt{\theta_{\min }}} \bar{\Upsilon}$ where $\tilde{V}_{T}=\frac{1}{T} \sum_{t=1}^{T} V_{t}, \theta_{t} \in(0,2)$ and $\theta_{\min }=\min _{t} 1-\left(\theta_{t}-1\right)^{2}$.

This theorem basically shows the convergence rate for (6) is $O(1 / \sqrt{T})$, which is the same as the full projection in (5) of the main paper. The speedup property is also similar: both convergence rates are proportional to $R . R$ is basically the inverse of the block size of $[t]$. Hence, when the block size increases x times, the required iterations to achieve the given accuracy decreases x times.

Proof. Consider the expansion of $\left\|V_{t+1}-V^{*}\right\|_{F}^{2}$:

$$
\begin{align*}
& \left\|V_{t+1}-V^{*}\right\|_{F}^{2}=\left\|\mathcal{P}_{\Omega}\left(V_{t}-\gamma_{t} \hat{\partial}_{[t]} f\left(V_{t}\right)\right)-\mathcal{P}_{\Omega}\left(V^{*}\right)\right\|_{F}^{2} \\
& \quad \leq\left\|V_{t}-\gamma_{t} \hat{\partial}_{[t]} f\left(V_{t}\right)-V^{*}\right\|_{F}^{2} \quad \text { (from the local nonexpansive projection property) } \\
& \quad \leq\left\|V_{t}-V^{*}\right\|^{2}+\gamma_{t}^{2} \underbrace{\left\|\hat{\partial}_{[t]} f\left(V_{t}\right)\right\|_{F}^{2}}_{T_{3}}-2 \gamma_{t} \underbrace{\left\langle\hat{\partial}_{[t]} f\left(V_{t}\right), V_{t}-V^{*}\right\rangle}_{T_{4}} . \tag{7}
\end{align*}
$$

Take the conditional expectation of T_{1} and T_{2} in terms of Δ_{t} given V_{t} :

$$
\begin{align*}
& \mathbb{E}\left(T_{3}\right)=\mathbb{E}\left(\left\|\partial_{[t]} f\left(V_{t}\right)\right\|_{F}^{2}\right) \leq \mathbb{E}\left\|\partial f\left(V_{t}\right)\right\|_{F}^{2}=\mathbb{E}\left\|L V_{t}+\partial g\left(V_{t}\right)\right\|_{F}^{2} \leq(M+N)^{2} \tag{8}\\
& \mathbb{E}\left(T_{4}\right)=\mathbb{E}\left\langle\partial_{[t]} f\left(V_{t}\right), V_{t}-V^{*}\right\rangle=\frac{1}{R} \mathbb{E}\left\langle\partial f\left(V_{t}\right), V_{t}-V^{*}\right\rangle \geq \frac{1}{R}\left(\mathbb{E}\left(f\left(V_{t}\right)\right)-f^{*}\right) . \tag{9}
\end{align*}
$$

Take the expectation on both sides of (7) in terms of all random variables, we have

$$
2 \gamma_{t}\left(\frac{1}{R}\left(\mathbb{E} f\left(V_{t}\right)-f^{*}\right)\right) \leq \mathbb{E}\left\|V_{t}-V^{*}\right\|^{2}-\mathbb{E}\left\|V_{t+1}-V^{*}\right\|_{F}^{2}+\gamma_{t}^{2}(M+N)^{2}
$$

The rest of the proof can follow the proof of Theorem 1 by simply treating $" \frac{1}{R}\left(\mathbb{E} f\left(V_{t}\right)-f^{*}\right) "$ as " $\mathbb{E} f\left(V_{t}\right)-f^{*} "$ in (4).

