
Solid-State Cache Management

Mohit Saxena and Michael M. Swift
Department of Computer Sciences
University of Wisconsin-Madison
{msaxena,swift}@cs.wisc.edu

We describeFlashTier, a system architecture built upon
solid-state cache(SSC), a novel flash device with an interface
designed for caching.

1 Introduction

Solid-state drives (SSDs) composed of multiple flash
memory chips are often deployed as a cache in front of a
cheap and slow disks [5, 2, 7]. This provides the perfor-
mance of flash with the cost of disk for large data sets,
and is actively used by Facebook and others to provide
low-latency access to petabytes of data [3].

An SSD-backed cache, though, is limited by its nar-
row block interface and internal block management,
both of which are designed to serve as a disk replace-
ment [1, 8, 9]. Caches have at least three different be-
haviors than general-purpose storage. First, data in a
cache may be present elsewhere in the system, and hence
need not be durable. Thus, caches have more flexibility
in how they manage data than a device dedicated to stor-
ing data persistently. Second, a cache stores data from

File System

Block Layer

Cache Manager

miss

read read

hit

write−thru

SSC
write−back

Application

Disk Tier

evict

Figure 1: FlashTier Request Path: A cache manager
forwards block read/write requests to disk and solid-state
cache.

a separate address space, the disks’, rather than at na-
tive addresses. Thus, using a standard SSD as a cache
requires an additional step to map block addresses from
the disk into SSD addresses for the cache. If the cache is
to survive crashes, this map must be persistent. Third, the
consistency requirements for caches differ from storage
devices. A cache must ensure it never returns stale data,
but can also return nothing if the data is not present. In
contrast, a storage device provides ordering guarantees
on when writes become durable.

FlashTieris a caching system designed for a new type
of device, asolid-state cache (SSC)(see Figure 1). A
cache managerin the operating system storage stack au-
tomatically migrates data between the flash caching tier
and disk storage. This design provides a clean separation
between the caching device and its internal structures,
the system software managing the cache, and the disks
storing data.

FlashTier exploits the three features of caching work-
loads to improve over SSD-based caches. First,
FlashTier provides aunified address spacethat allows
data to be written to the SSC at its disk address. This
removes the need for a separate table mapping disk ad-
dresses to SSD addresses. In addition, an SSC uses inter-
nal data structures tuned for large, sparse address spaces
to maintain the mapping of block number to physical lo-
cation in flash.

Second, FlashTier providescache consistency guar-
anteesto ensure correctness following a power failure or
system crash. It provides separate guarantees for clean
and dirty data to support both write-through and write-
back caching. In both cases, it guarantees that stale data
will never be returned. Furthermore, FlashTier intro-
duces new operations in the SSC interface,evictto inval-
idate data, andexiststo test whether a block is present,
andcleanto indicate that data is clean and may be safely
evicted. As a result, cache software can always use data
from the SSC without verifying its freshness. FlashTier
ensures that internal SSC metadata is always persistent

1



 0

 20

 40

 60

 80

 100

 120

homes web mail

R
el

at
iv

e 
E

xe
cu

tio
n 

T
im

e 
(%

)

SSD SSC WB SSC WT

Figure 2:System Comparison: SSD cache compared to
SSC in both write-back and write-through modes.

and recoverable after a crash, allowing cache contents to
be used after a failure.

Finally, FlashTier leverages its status as a cache to re-
duce the cost of garbage collection. Unlike a storage
device, which promises to never lose data, a cache can
evict blocks when it is beneficial. For example, flash
must be erased before being written, requiring a garbage
collection step to create free blocks. An SSD must copy
live data from blocks before erasing them, requiring ad-
ditional space for live data and time to write the data. In
contrast, an SSC may instead evict the data, freeing more
space faster.

In addition, this design allows an SSC to beadaptive
to its workload: it may shift its internal use of flash re-
sources between capacity (storing more live data), en-
durance (spreading less data over more cells), and write
performance (providing more pre-erased blocks to accept
new data). Thus, in a workload with a low churn, it can
use the full capacity of the device. For a workload with
frequent changes to the working set, it may shift resource
to provide less cache capacity but greater performance
for adding data to the cache. This requires the SSC to
adapt its capacity at runtime provisioned for internal free
space and wear management.

2 Results

We implemented an SSC simulator and a cache manager
for Linux, and evaluate FlashTier on three real-world
traces collected from file, mail and web servers [6]. In
Figure 2, we compare the SSD cache against FlashTier
in write-back and write-through modes.

FlashTier outperforms the SSD cache by 39-71% in
write-back mode and by 37-64% in write-through mode.
FlashTier performs silent eviction that greatly reduces
the cost of garbage collection for writing new data.
Write-back caching performs better than write-through

mode because of a lower cost for writing data. A write-
back cache sends the writes to the SSD or SSC and lazily
copies it to disk, which reduces the cost of writing data.
The write-through configuration must write all data to
disk and SSD. This increases the cost of writing data and
the number of cache misses.

To isolate the impact of SSC consistency and silent
eviction mechanism on FlashTier performance, we sep-
arately disabled persistent metadata for the write-back
SSD cache. This configuration, which would lose
data in a crash, is 8% faster than the baseline sys-
tem. Thus, a portion of FlashTier’s improved perfor-
mance comes from the unified address space managing
clean/dirty metadata within the cache. The remaining
performance gain comes from FlashTier’s silent eviction,
which greatly reduces the cost of garbage collection.

Finally, we compare the memory usage of three dif-
ferent data structures for address translation within the
SSC used to store forward and reverse mappings for a
hybrid flash translation layer – sparse hash map (SHM),
dense hash map (DHM, also from Google [4]) and a
two-level page table (MPT). Similar to virtual memory
management, FlashTier exploits sparseness in SSC ad-
dress space incurred because of caching hot blocks from
a much larger disk logical block address space. We find
that SHM requires up to 70% less memory for storing
the mappings as compared to MPT. We also measure the
added value of sparseness by comparing against DHM.
DHM is comparable to MPT for homes and mail, and up
to 50% worse for web, because data is not dense enough
to leverage DHM’s memory representation.

References
[1] AGRAWAL , N., PRABHAKARAN , V., WOBBER, T.,

DAVIS , J., MANASSE, M., AND PANIGRAHY, R. Design
tradeoffs for ssd performance. InUSENIX(2008).

[2] EMC. Fully Automated Storage Tiering (FAST) Cache.
http://www.emc.com/about/glossary/
fast-cache.htm .

[3] FACEBOOK INC. Facebook FlashCache.https://
github.com/facebook/flashcache .

[4] GOOGLE INC. Google Sparse Hash. http://
goog-sparsehash.sourceforge.net .

[5] K GIL , T., AND MUDGE, T. N. Flashcache: A nand flash
memory file cache for low power web servers. InCASES
(2006).

[6] K OLLER, R., AND RANGASWAMI , R. I/o deduplication:
Utilizing content similarity to improve i/o performance. In
FAST(2010).

[7] OCZ. OCZ Synapse Cache SSD.
http://www.ocztechnology.com/
ocz-synapse-cache-sata-iii-2-5-ssd.
html .

[8] PRABHAKARAN , V., RODEHEFFER, T., AND ZHOU, L.
Transactional flash. InOSDI (2008).

[9] WU, M., AND ZWAENEPOEL, W. envy: A non-volatile,
main memory storage system. InASPLOS-VI(1994).

2


