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Abstract

In canonical parallel processing, the operating system (OS) assigns
a processing core to a single thread from a multithreaded server
application. Since different threads from the same application of-
ten carry out similar computation, albeit at different times, we ob-
serve extensive code reuse among different processors, causing re-
dundancy (e.g., in our server workloads, 45-65% of all instruction
blocks are accessed by all processors). Moreover, largely indepen-
dent fragments of computation compete for the same private re-
sources causing destructive interference. Together, this redundancy
and interference lead to poor utilization of private microarchitec-
ture resources such as caches and branch predictors.

We present Computation Spreading (CSP), which employs
hardware migration to distribute a thread’s dissimilar fragments of
computation across the multiple processing cores of a chip multi-
processor (CMP), while grouping similar computation fragments
from different threads together. This paper focuses on a specific
example of CSP for OS intensive server applications: separating
application level (user) computation from the OS calls it makes.

When performing CSP, each core becomes temporally special-
ized to execute certain computation fragments, and the same core
is repeatedly used for such fragments. We examine two specific
thread assignment policies for CSP, and show that these policies,
across four server workloads, are able to reduce instruction misses
in private L2 caches by 27-58%, private L2 load misses by 0—-19%,
and branch mispredictions by 9-25%.

Categories and Subject Descriptors C.1.2 [Processor Archi-
tectures]: Multiple Data Stream Architectures (Multiprocessors);
B.3.2 [Memory Structures]: Design Styles— Shared Memory

General Terms Design, Performance, Experimentation

Keywords Cache Locality, Dynamic Specialization

1. Introduction

In the canonical model of assigning computation from multiple
threads to multiple processors, an entire software thread — includ-
ing any operating system calls it makes — is assigned to a sin-
gle processor for execution. This was, perhaps, the only practical
approach for traditional multiprocessors built from multiple chips.
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But since there is commonality among the computation performed
by the different threads (i.e., commonality in the code executed),
this distribution leads to inefficient use of the microarchitectural
structures of the individual processing cores, such as private in-
struction caches and branch predictors.

With emerging technology trends for chip-multiprocessors
(CMPs), ample opportunities exist for alternate solutions. These
trends include applications that exhibit large code and data foot-
prints and make extensive use of the operating system (OS) [8, 23],
and upcoming support for hardware migration of processor state,
similar to Intel’s Virtualization Technology (VT) [30]. In the light
of these trends, this paper proposes Computation Spreading (CSP),
a new model for distributing different fragments of a thread’s com-
putation across multiple processing cores in a CMP using hardware
thread migration. We define a computation fragment as an arbitrary
portion of a dynamic instruction stream. Conceptually, CSP aims to
collocate similar computation fragments from different threads on
the same core while distributing the dissimilar computation frag-
ments from the same thread across multiple cores. Each CMP core
thus becomes dynamically and temporally specialized for execut-
ing a set of specific computation fragments by retaining the states
(such as instruction cache contents and branch predictor entries)
necessary to perform each computation efficiently.

As a specific application of this model, we present two as-
signment policies which separate the execution of system calls
and interrupt handlers from the execution of user code, and dis-
tribute these two dissimilar computation fragments to different
CMP cores. Thread Assignment Policy (TAP) prefers to run the OS
(or user) portion of a thread on the same core repeatedly, aiming
to reduce OS and user interference while maintaining data and in-
struction locality for each software thread; Syscall Assignment Pol-
icy (SAP) prefers to run a particular system call (e.g., read()) on
the same core repeatedly, regardless of which thread made the call,
aiming to further improve instruction locality and take advantage of
any data structures shared among multiple dynamic instances of the
same system call. Both provision a subset of the processing cores
for executing user code, and the remainder for the OS.

Unlike previous research on separating OS and user execution,
which primarily considered one or more single-core processors [2,
18, 24, 25, 28], TAP and SAP are able to alleviate the interference
of separating dissimilar tasks and benefit from the symbiosis of
collocating similar tasks.

In this paper, we make several contributions:

e We examine the code reuse characteristics of four multithreaded
server workloads, plus a parallel make benchmark (pmake), and
explore the synergy of locating similar computation fragments
on the same cores. Our results show that most instruction blocks
are accessed by many, if not all, CMP cores, implying that they
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Figure 1. Code Commonality Characteristics for an 8-core CMP.
Each 64-byte static instruction block is marked Universal if ac-
cessed by all the cores, Common if accessed by more than one
core, and Exclusive if accessed by only one. The left bar shows the
commonality profile for the entire execution, the middle bar shows
commonality for only user code, and the right bar shows the com-
monality for OS code.

all execute similar computation fragments (albeit at different
times), and the canonical model of work distribution leads to
inefficient use of the aggregate cache space. (Section 2)

e We propose Computation Spreading (CSP), which distributes
a thread’s execution to multiple cores based on the similarity
of individual fragments of the computation performed by the
thread, and examine two specific assignment policies (TAP and
SAP) for spreading user and OS execution across different CMP
cores. (Sections 3 and 5)

e For the four server workloads, we demonstrate that TAP and
SAP can reduce L2 instruction misses by 27-58%, while L2
load misses see a 0-19% decrease. Branch mispredictions are
reduced by 9-25%, and on-chip interconnect bandwidth is re-
duced by 0-12%. Overall, these policies result in a performance
improvement of 1-20%. The results for pmake, a fifth, non-
server benchmark, are not as favorable. (Section 6)

2. Multiprocessor Code Reuse

In the canonical software architecture for multithreaded server ap-
plications, a software thread is launched to process an input data
item or request. Multiple threads are used to process multiple re-
quests. A thread is scheduled for execution on a single processing
core, and all the phases of execution for that thread are typically
run on that core (in the absence of OS-induced thread migration).
In a multiprocessor, concurrent threads execute on different cores,
if possible. Since these separate threads are likely to act on most
requests in a similar manner, they traverse through similar code
paths (possibly with different data) and end up executing the same
instruction blocks.

To quantify this code commonality, we profile instruction ac-
cesses for five multi-threaded workloads on a simulated 8-core
CMP, and examine how many processing cores fetch each (static)
instruction cache block.! Figure 1 shows this commonality for the
overall execution (left bar), application-level, user code (center)
and operating system code (right). Each bar shows the fraction of
64-byte instruction blocks fetched by a core that are fetched by all

! The workloads and our target CMP system are described in more detail in
Section 4. The length of these runs is shown in Table 4.
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Figure 2. Computation Spreading vs. the Canonical Model for
mapping computation fragments from a thread. A;, A2 and As

denote similar fragments from different threads;, A1, B1 and Ci
denote dissimilar fragments of the same thread.

the processing cores (Universal), by more than one core (Common),
and by only one core (Exclusive).

Several observations can be made from the figure. First, there is
a significant amount of commonality in the code executed on the
different cores, both for user code and system code. Second, there
is little code that is exclusively executed on a single processing
core. Third, we notice that the extent of universal sharing is more
pronounced for OS code than for user code in three benchmarks
(OLTP, pgbench, and pmake) while the opposite is true for Apache.
This extensive sharing of instruction blocks in database workloads
running on simultaneous multi-threaded (SMT) processors was
also observed by Lo, et al. [20], and for other server workloads
by Beckmann and Wood [9].

Commonality in the code executed by the different processing
cores results in the same instruction blocks being referenced by
different cores. This leads to two distinct outcomes: (i) reference
spreading [19], which refers to the multiple references to a single
cache block across multiple processors, leading to a cache miss in
each of those caches, and (ii) the replication of the code in multiple
caches and subsequent reduction in aggregate cache space. This
combined effect can drastically degrade the hit rate, especially for
applications with large instruction footprints.

In this paper, we propose using hardware migration to explore
different ways of distributing a thread’s computation across CMP
cores, and aim to provide a more cooperative framework to effi-
ciently utilize on-chip resources.

3. CSP: An Overview

The idea behind Computation Spreading (CSP) is to spread out
the dissimilar, and perhaps independent, computation fragments of
a single thread across multiple processing cores, and concentrate
similar fragments from multiple threads onto a single processing
core. A depiction of CSP is illustrated in Figure 2. Consider three
threads of execution: 7'1, T'2 and T°3. Each thread goes through
three specific fragments of computation during a given period of
time. In the canonical model for mapping computations, the entire
execution of a thread is mapped onto one processing core (for
example, 71 is mapped onto P1). In CSP however, the execution
is mapped according to the specific computation performed. In this
particular case, the similar computation fragments A1, A2 and A3
are all mapped to P1, and when any of the threads execute these
similar fragments, they are always executed on P1. Likewise, the
other computation fragments are mapped to P2 and P3. Thus,
dissimilar computation fragments (e.g., A1 and B;) are assigned
to different processing cores, allowing each core to specialize its



microarchitectural resources for a particular type of computation
fragment.

In general, a well-written, modular program is composed of a
set of fairly disjoint fragments (e.g., functions in high-level lan-
guage). Two fragments can be considered similar when they carry
out a related set of tasks, and thus traverse closely related code
paths and/or have frequent data communication. Likewise, two
fragments performing unrelated tasks, with little common code,
will be inferred as dissimilar (e.g., page fault handling and process
scheduling).

There are two key conceptual issues for CSP: dynamic special-
ization and data locality. By localizing specific computation frag-
ments on a single core, CSP allows that core to retain many pre-
dictive states necessary for the efficient execution of those frag-
ments (like instruction cache contents and branch predictor states).
Collectively, different CMP cores, with the same microarchitecture,
become dynamically and temporally specialized for different com-
putations, leading to more efficient overall execution.

Since CSP attempts to exploit code affinity as opposed to data
affinity[29], data locality can potentially suffer. However, different
parts of a large computation do not communicate arbitrarily. Thus,
it is possible to retain, and even enhance, the locality of data
references through careful selection of the computation fragments.

In this paper, we present a specific example of CSP where we
exploit the natural separation between user code and privileged, OS
code, and assign separate processing cores for carrying out these
distinct fragments of computation. It may be possible to identify
other, more general, fragments in various ways, such as profile
driven binary annotation or high-level directives from the appli-
cation itself. However, such general classification of computation
fragments is beyond the scope of this paper.

3.1 Technology Trends Enabling CSP

Modern server workloads, such as back-end databases and web
servers, make extensive use of the OS, and exhibit large instruction
and data working sets, which leads to many misses in the branch
predictors and caches that are in close proximity to the processing
cores [8, 23]. However, the very nature of these applications inspire
CSP and its ability to collocate computation fragments that can
utilize the predictive state already present in the caches and branch
predictors of a particular core.

While software trends make CSP promising, hardware trends
can make CSP feasible. Particularly important is the abundance of
cores on a single chip, and the orders of magnitude reduction in
communication latency between these on-chip cores as compared
to processors on separate chips. Together these trends allow CSP to
move threads among CMP cores at a much higher frequency than
a traditional OS would. Minimal additional hardware is required
for CSP, since much of the necessary support for these hardware
migrations already exists in the new generation chips from Intel and
AMD with their VT and SVM technologies, respectively [30, 1].
We discuss the specific mechanism we use for thread migration in
Section 5.2.1.

4. Evaluation Methodology

For this study, we use Simics [21], an execution driven, full-system
simulator which models a SunFire 6800 server in sufficient detail to
boot unmodified OSs and run unmodified commercial workloads.
In this section we further describe our simulation environment,
workloads, and evaluated CMP architecture.

4.1 Simulation Infrastructure

We have augmented Simics with a detailed, execution driven, out-
of-order (OOO) processor and memory timing model using the

We use the Surge client [7] to drive the open-source Apache
web server, version 2.0.48. We do not use any think time in
the Surge client to reduce OS idle time. Both client and
server are running on the same, 8-processor machine.

Apache

OLTP uses the IBM DB2 database to run queries from
TPC-C. The database is scaled down from TPC-C spec-
ification to about 800MB and runs 192 concurrent user
threads with no think time.

OLTP

Pgbench runs TPC-B-like queries on the open source Post-
greSQL 8.1betad4 database. The database is scaled to allow
128 concurrent threads.

pgbench

We use the Surge client again to drive the Zeus web server,

Zeus configured similarly to Apache.

Parallel compile of PostgreSQL using GNU make with the
-j 64 flag using the Sun Forte Developer 7 C compiler.
pmake | Runs do not include the any serial execution phases. Unlike
the server workloads, pmake consists of multiple processes
running in separate virtual address spaces.

Table 1. Workloads used for this study

2 instructions / cycle

8 stages

128 entries, OOO issue

64 entries each, w/ bypassing

32 entries, processor consistency

4k choice, 1k except, 6 tag bits

32kB, 2-way, 2-cycle, coherent

32kB, 2-way, 2-cycle, write-back

256kB, 4-way assoc, 10 cycle load-to-use,
4 banks, 4-stage pipelined, inclusive
8MB, 16-way, 75-cycle load to use, 8
banks, pipelined, exclusive
Point-to-point links, avg 25-cycle latency
105 cycle load-to-use

Fetch, issue, commit
Integer pipeline
I-Window & ROB
Load and store queues
Store buffer

YAGS branch predictor
Private L1 instr. cache
Private L1 data cache
Private L2 unified cache

On-chip shared L3 cache

On-chip interconnect
3-hop cache-to-cache

Main Memory | 255 cycle load-to-use, 40GB/sec

Table 2. Baseline processor parameters

Micro Architectural Interface (MAI). Wrong-path events, including
speculative exceptions, are faithfully modeled. Simics functionally
models UltraSparc IIICu CPUs, which implement the SPARC V9
ISA, and we use our timing model on top of it to enforce the timing
characteristics of a dual-issue, OOO processor (see Table 2).

The workloads we examine, which are running on Solaris 9, are
shown in Table 1. Each of these multithreaded applications expose
eight running threads to the hardware. In the baseline system, each
of these threads is mapped to a single core in our target eight core
CMP, similar to a typical, current generation CMP.

The SPARC architecture traps to the OS to handle all TLB
misses. This overhead is extremely large for our workloads (10—
30% of execution time), dwarfing other factors that traditionally
limit performance. Since most other modern architectures fill TLBs
in hardware, we did not want to bias our results (positively or
negatively) by incremental changes in TLB performance. Thus,
in all our simulations, we model an “infinite” sized TLB, which
records all active translations that have previously observed a miss.

4.2 Target System

We model an eight-core CMP, whose relevant configuration pa-
rameters are shown in Table 2. We choose to model a CMP with
medium-sized, private L2 caches because we believe that private
caches, in close proximity to a core, provide a favorable trade-off



Percent of Instr. Instr. Before Switch

Benchmark User 0OS User 0S
Apache 39% 61% 2.3k 3.6k
OLTP 84% 16% 9.3k 1.8k
pgbench 88% 12% 22.1k 2.9k
Zeus 26% T4% 1.7k 5.0k

pmake 83% 17% 24.2k 4.8k

Table 3. Breakdown of user and OS instructions, and the average
number of instructions executed before switching from one mode
to the other (excluding short TLB and register-window traps).

between aggregate on-chip capacity and latency. We also model an
8MByte, strictly exclusive, shared L3 cache.

The L2 caches maintain coherence using an invalidate-based,
MOSI directory protocol. The directory maintains shadow tags of
the private L2s, and is located at the appropriate L3 bank. We use
a point-to-point, crossbar-like interconnect which maintains FIFO
order among source-destination pairs.

4.3 Experimental Methodology

Due to inherent variability (primarily from interrupt processing and
OS scheduling decisions) as described by Alameldeen, et al. [4],
we add a small random variation to the main memory latency, and
run several trials of each benchmark per experiment. We generally
present average results, and include the 95% confidence interval on
performance graphs.

All workloads are run using functional simulation to warm
up the OS, applications and infinite TLB, then run for a shorter
amount of time to warm up the L3 cache before we begin timing
simulations. Private L1 and L2 caches are notr warmed up because
we cannot do so in a way that is beneficial to both the baseline
and our proposed schemes. Instead, we run timing simulations long
enough to incur 30-130 times as many L2 misses as there are L2
cache lines.

For Apache and Zeus, which have short, roughly uniform length
transactions, we run each trial for 1300 transactions. The other
benchmarks have long, asymmetric transactions, thus we run each
trial for 100M committed user instructions to reduce variability.
Our results, and other’s [33], demonstrate that for these types of
workloads, committed user instruction are a good proxy for work-
related metrics.

5. An Application of CSP: Separating User and
OS Execution

5.1 Why Target User and OS?

Targeting CSP at the user/OS code boundary is appealing for sev-
eral reasons. First, many commercial workloads spend a consid-
erable amount of time executing both user and OS code, and fre-
quently switch between the two (Table 3). Second, there is a clearly
defined separation between these two modes of computation that is
easy to identify and exploit with minimal profiling requirements.
Third, this clear separation leads to mutually exclusive instruction
cache contents and branch predictor states of user and OS code. By
collocating these OS and user fragments of computation, however,
the canonical model causes extensive destructive interference in
these two micro-architectural structures as observed by us and oth-
ers [2, 18]. And finally, though seemingly counter-intuitive, OS and
user fragments have limited data communications between each
other, and therefore have a reasonably independent data footprints.

Figure 3(a) illustrates the nature of data communication be-
tween OS and user computation in the CMP system we model.
Consider two threads running on two different cores in the canon-
ical model. Each thread performs both user and OS fragments
of computation; in all there are four separate types of fragments

( R\ ( R\
Thread 1 Thread 2
vr | AT T
: User | R\ User ;
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(a) Comparing Models
Benchmark A B C | % of Refs.
apache 1.78 | 5.58 | 1.00 4.89%
oltp 748 | 440 | 1.00 3.95%
pgbench 3.03 | 862 | 1.00 2.22%
pmake 442 | 1.04 | 1.00 1.69%
zeus 0.81 12.8 | 1.00 7.43%

(b) Relative Communication

Figure 3. Communication Profile between OS and User. Labels, in
both the figures, denote different types of communication: between
user computation fragments of two threads (A), OS fragments of
two threads (B) and between user and OS computation fragments
(C), both in the same and different threads. We show the relative
communication between these three groups in (b).

(two from each thread). The canonical model groups the user and
OS computation fragments of a given thread together on one core
(shown by the solid rectangles), whereas CSP groups user frag-
ments together, separate from OS fragments (shown by the dotted
rectangles).

The arcs represent communication between the various com-
putation fragments. Arc A, user-to-user communication, and arc
B, OS-to-OS communication, are both a result of directly access-
ing locks and data structures that are shared among threads. OS-
induced thread migration also contributes slightly to A and B. Arc
C is aresult of the OS reading and writing data structures passed as
pointers to or from a system call.

Figure 3(b) presents the amount of communication between var-
ious computation fragments, relative to the communication of user
code with OS code (the arcs labeled C). We define communication
in this example as any data access (load or store) to a cache line
whose previous access was from a different type of computation
fragment. For comparison, the last column shows the percent of all
data references represented by the sum of these three types of com-
munication. While this fraction is small, note that communication
between fragments on different cores always leads to a cache miss,
and is a major contributor to overall memory latency.

In every case except Zeus, there is more communication be-
tween user code on different threads than there is between user and
OS code (regardless of which thread). Similarly, in every case, we
see more communication between the OS code of different threads
than between user and OS code.

For an I/0 intensive, data streaming application such as Apache,
the fact that there is little communication between user and OS
code may seem counter-intuitive. But consider that Apache pre-
dominantly uses the sendfile() system call to tell the OS to copy
data from one file descriptor to another: the user code simply di-



rects the data copying, but the OS performs the copy entirely within
the OS computation fragment.

When choosing a boundary for spreading execution among
cores (which we must do in any model to achieve parallelism), it
appears logical, given the data in Figure 3(b), to divide user and
OS execution among cores rather than keep user code or OS code
from the same thread on a particular core and arbitrarily distribute
threads among cores.

5.2 Hardware Support for CSP

Much of the required support for CSP is already provided by the
new generation of chips from Intel and AMD using their VT and
SVM technologies, respectively [30, 1]. With the increasing popu-
larity of virtualization, it is likely that other vendors will also offer
support for hardware thread migration. As the microarchitecture
details of these technologies are not available, below we describe
the hardware support we assume for CSP, so that the computation
from a given thread can move between different CMP cores trans-
parently to the OS software.

5.2.1 Migrating Computation

To move the computation of a thread from one CMP core to an-
other, we need to move its state. We consider two specific types
of state a thread may carry: architected state and microarchitec-
tural state. Architected state consists of a thread’s memory and
register values and must be preserved. A thread’s memory state can
simply be communicated as needed via the on-chip coherence net-
work already present to support shared memory multiprocessing.
Registers, described in more detail below, must be saved and re-
stored, similar to an OS saving the state of a process when it is
context-switched. Microarchitectural state, consisting of predictive
state such as cached data and branch predictor entries, need not be
preserved for correctness.

The UltraSPARC IIICu architecture we model has a large num-
ber of architected registers. Including windowed GPRs, alternate
global, floating-point, privileged, ASI-mapped, and TLB control
registers, this comprises 277 64-bit registers, or 2.2kB (nearly half
of which is SPARC register windows). In other architectures with-
out register windows, register values are saved in the memory
across function calls, thereby reducing the architected register state.

While it is possible to build a fast switching network to com-
municate thread state between different CMP cores, we chose a
method requiring limited hardware support for a conservative esti-
mate of thread migration cost. Thus, when a thread executing user
code makes a system call, the hardware stores the registers one at
a time to the cache. Once that is complete, the appropriate OS core
loads the respective registers, again in a serial fashion. At the end
of the system call, the thread state is communicated back to the
user core. We have not optimized the cache coherence protocol in
any way for this transfer. Despite this, the runtime overhead of the
migration is relatively small (0.9-2.4% of runtime, discussed later
in Section 6).

5.2.2 Virtual Machine Monitor

We assume that a thin Virtual Machine Monitor (VMM) is running
underneath the OS software stack, which use the hardware mecha-
nism for transferring thread state through the memory subsystem.
The VMM sets aside a portion of the physical address space for
this register storage, and directs the state migration as required.
Interrupts are delivered to the VMM, which then routes them to
the appropriate CMP core. Note that, unlike VMMs which sup-
port multiple guest OSs, CSP does not require the virtualization of
memory, I/O devices, privileged instruction, or additional security
measures. Thus, the functions of the VMM (maintaining a mapping
of threads to cores and directing thread migration) are very simple,

and could be done in the hardware or simple micro-code with very
low overhead.

We fully model the cost of migrating computation in our eval-
uation of CSP, both due to the effects of caching thread state (by
competing for space with other data) and the latency of the mi-
gration itself. However, we do not model additional latency of the
VMM choosing the destination core of a migrating thread (which
we expect to be a very small fraction of the total migration cost).

Since we cannot simply pause a running thread in the hardware
without incurring excessive overheads in a multi-processor operat-
ing system (due to synchronization between different CPUs [31]),
we optimistically assume that we have up to four hardware contexts
for concurrently executing multiple threads. Therefore, when the
VMM decides to move the computation from a thread onto a core
which is already executing another thread, we simply allow the new
thread to concurrently run on that core (unless all of its hardware
contexts are occupied), sharing the caches and branch predictors
but maintaining its own reorder buffer. In the rare event, which has
minimal effect on OS synchronization overhead, when all the hard-
ware contexts are occupied, the migrating thread is paused until one
of them is again available. However, this concurrent execution also
leads to additional capacity and bandwidth pressure in the caches
that would not exist if the threads were run serially, which nega-
tively impacts our proposed schemes.

5.3 CSP Policies

Targeting CSP at OS and user executions provides us a simple
means to determine when the VMM should consider moving a
thread (as the thread enters or leaves the OS). User code invokes
the OS for several reasons, such as system calls, interrupts or
exceptions. SPARC V9 uses software handling of TLB misses
and register window fills and spills, and these short-running traps
dominate user-to-OS transitions. In this paper, we consider these
traps as user computations (unless a page fault occurs) since they
are short running and many other architectures handle them in the
hardware.

System calls, interrupts, and page faults — the events which
trigger thread migration in CSP — are relatively frequent and long-
running. Table 3 shows, on average, how many user instructions
pass between these events, and how many instructions are spent
processing these events. When these events occur, the core notifies
the VMM, which then migrates the computation to another CMP
core as dictated by the specific assignment policy. At the end of
the event handling, the VMM moves the computation back to its
original core.

In all of our simulations, we statically partition eight CMP cores
between the user and OS code based on their relative execution time
and cache behavior. For Apache and Zeus web servers, we provide
two user cores and six OS cores. For pgbench and OLTP database
workloads and for pmake, we use the opposite: six user cores and
two OS cores. We chose this distribution based on the relative time
spent in user and OS mode, respectively. However, this distribution
can also be determined dynamically after a brief but representative
profiling phase, which we leave for future work. We examine two
assignment policies in this paper.

Thread Assignment Policy (TAP): The most straight-forward
way for splitting user and OS execution from a thread is to maintain
a static mapping of OS and user cores for every thread. At any
given time, there are eight running threads to map onto two or
six cores, as the case may be. For example, Apache is provisioned
with two user cores, so four of the eight threads execute their user
fragments on one core, and the other four threads execute their user
portion on the second user core. The OS portion of the eight threads
needs to be spread across six cores. Since we use a mapping which
maintains strong thread affinity for the user or OS fragments, at



Bench. Instr. || L21 L2Ld | L2St | L3
MPKI| MPKI | MPKI | MPKI
Apache 94M 22 13 10 33
OLTP 120M 20 10 6.2 3.1
pgbench | 113M 7.2 7.1 1.6 52
Zeus 98M 16 14 12 11
pmake 120M 3.9 3.1 1.9 1.5

Table 4. Baseline Misses per Thousand Instructions (MPKI). In-
str. is total instructions for each trial. L2 I, L2 Ld, and L2 St MPKI
columns break down instruction, load and store misses in the uni-
fied L2. L3 MPKI comprises all off-chip misses. All results are com-
bined user and OS.

any given time, two OS cores each have the OS fragments of two
threads mapped to them, and four cores each have the OS fragments
of only one thread. Throughout this paper, we refer to this policy as
Thread Assignment Policy (TAP).

To prevent this load imbalance (on the cores) from creating
permanent performance asymmetry for some threads, the VMM
changes the mapping every few million cycles. This is necessary
because, as Balakrishnan, et al., showed [6], the throughput of these
workloads can be negatively affected by performance asymmetry of
individual threads.

Syscall Assignment Policy (SAP): Though TAP is straight-
forward, further dynamic core specialization is possible by group-
ing similar OS computation fragments onto a subset of the OS
cores, and spreading dissimilar OS fragments to the other OS cores.
The similarity of different OS fragments is simply detected by rec-
ognizing the specific system call (based on register %g1 in Solaris),
or interrupt handling routine, being invoked. For this study, we use
a static mapping of particular system calls (plus interrupts and page
faults) to cores. Our assignment policy allows a particular system
call to be mapped to one or more cores, and will only execute that
call on those cores. The policy also allows other system calls to be
mapped to the same cores. We refer to this policy as Syscall As-
signment Policy (SAP).

During startup, we provision the most common OS computation
fragments onto different cores based on their L1 data cache miss
component in the baseline (this matches well with the time spent
in those computation fragments). Other system calls that we detect
at runtime are assigned to a single core in a round-robin fashion.
This provisioning scheme aims to distribute the resource demands
across different OS cores evenly. Again, online profiling can be
used to perform dynamic assignment.

6. Results

Table 4 presents the number of instructions and L2 misses per
thousand instructions (MPKI) for the entire workload runs on the
baseline system. The poor locality of instruction references causes
more instruction misses in the private L2 caches than load misses,
making instruction locality critical for performance. Pmake has
many fewer L2 misses than the four server workloads, and as
such, instruction and data locality, especially at the L2, play a less
significant role.

6.1 Branch Prediction

By spreading dissimilar computations across multiple CMP cores,
CSP avoids destructive interference of multiple instruction streams
(OS and user code) in the branch predictor.Table 5 shows the
performance of the YAGS[11] predictor under different schemes.
With CSP, we observe a large reduction in mispredictions. For
Apache, TAP and SAP reduce the misprediction rate by 15% and
25% respectively. Also, we see that SAP significantly outperforms
TAP for Apache and Zeus.

Branch Misprediction Rates (%)
Benchmark Base TAP SAP SEP | SEP2X
Apache 6.82 | 5.65 5.09 7.09 5.38
17.14% | 25.33% | -4.06% 21.1%
OLTP 7.12 6.37 6.3 7.47 6.06
10.54% | 11.56% | -4.85% 14.87%
pgbench 3.09 2.81 2.73 2.89 2.65
9.09% 11.72% | 6.36% 14.17%
Zeus 5.54 4.96 4.49 6.06 4.85
10.56% | 18.95% | -9.38% 12.4%
pmake 5.19 5.31 5.29 5.79 491
222% | -1.82% | -11.4% 5.47%

Table 5. Branch misprediction rates relative to baseline. The top
row for each benchmark is Misprediction Rate (%), the bottom row
is improvement. SEP separates the baseline branch predictor into
user and OS halves; SEP 2X separates the predictor into user and
OS structures that are each the size of the baseline structures.
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Figure 4. L2 Instruction Misses

Previously, Li, et al., studied the destructive interference in a
gshare predictor caused by aliases between OS and user entries in
the branch predictor, and proposed to mitigate the problem by mod-
ifying the branch predictor in each core to use separate tables for
user and OS [18]. We model this scheme using a YAGS predictor
while retaining the same aggregate predictor space. This is shown
in Table 5 as SEP. YAGS does not suffer from the alias problem
inherent in their baseline gshare predictor, and as such, does not
benefit from separating the structures — in fact, except pgbench,
it performs worse due to its inability to dynamically adjust the rel-
ative number of entries used for user or OS. When separating the
predictor for each core into two parts that are each the size of the
baseline and twice the aggregate size (shown as SEP 2X), signifi-
cant improvement is achieved. But in nearly every case, SAP per-
forms favorably with SEP 2X despite having half the aggregate size
and, more importantly, not requiring any structural changes to the
predictor.

6.2 Instruction Cache Performance

Figure 4 shows the normalized L2 misses due to instruction ref-
erences. The three sets of bars for each benchmark represent the
baseline, TAP, and SAP respectively. Each set of bars is broken
down into the components of L2 misses: cache-to-cache transfers
from another L2, hits in the shared L3, and off-chip misses.
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Figure 6. L2 Store Misses

L2 instruction misses are reduced for every benchmark using
TAP, since we are spreading the user and OS references (which
are completely independent) across different cores and improving
locality. This reduction is greater than 25% for every benchmark
except pmake. Since SAP assigns the user code in the same way
as TAP, it can only affect OS instruction misses. Nonetheless, by
running particular system calls on particular cores, SAP further
decreases L2 instruction misses for Apache and Zeus.

The two web servers (Apache and Zeus) perform particularly
well with both TAP and SAP (up to 58% improvement for SAP),
while the performance benefits are more modest among the other
applications (27-30% for OLTP and pgbench and 7% for pmake).
This result is expected, as the two web servers spend a majority of
their time in the OS, and have large instruction miss components
from both user and OS. Neither SAP nor TAP improve pmake
significantly as it exhibits limited code reuse as evident from Figure
1. L1 instruction misses (not shown for brevity) increase by 7% for
pmake, and decrease by up to 20% for Zeus and Apache.

6.3 Data Cache Performance

Similar to instruction misses, we show the L2 load and store misses
in Figures 5 and 6, respectively. Again in each figure, the bars are
broken down into cache-to-cache transfers from another L2, hits
in the shared L3, and off-chip misses. It is important to note that
cache misses for lines holding thread state are not included in these
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Figure 7. L2 Store Cache-to-Cache Miss Breakdown

figures, though the additional cache misses incurred by normal data
lines due to competition with this extra state are included.

For nearly every benchmark, both TAP and SAP slightly in-
crease L1 load misses (20% for pmake and 0-12% for the rest,
data not shown), but at the L2 we find the opposite (except pmake):
Apache and OLTP, in particular, see 19% and 13% decrease in L2
load misses for TAP, respectively. However, we observe a slight rise
in store misses at the L2 for TAP, and a significant rise for SAP, due
to an increase in cache-to-cache transfers. OLTP does not have an
increase in store misses with SAP because the way we provision its
system calls makes SAP very similar to TAP.

To better understand this increase in store cache-to-cache trans-
fers, we classify these misses into three categories in Figure 7: false
communication, explicit communication between OS and user, and
other cache-to-cache transfers. The total height of the bars in Fig-
ure 7 is the same as the upper portion of the bars in Figure 6 (labeled
Another L2). We identify explicit communication between the OS
and user code when the OS reads or writes user data structures with
Sparc V9’s AS_USER ASIs. As expected, explicit user/OS commu-
nication results in negligible misses for the baseline, but even using
TAP and SAP this explicit communication is a small fraction of
write cache-to-cache transfers.

For TAP, more than 80% of the false communication is from the
OS making a function call, saving a register window, and incurring
a spill trap which spills a user register set. Since this spill accesses
the user’s stack space, which likely resides in a user core’s cache, it
results in a store cache-to-cache transfer (and later, a load cache-to-
cache transfer when the user code incurs a fill trap for this window).
Thus, the spill results in needless back-and-forth movement of reg-
ister window state (since hardware thread migration already moves
the register windows to the OS core) leading to additional over-
heads. The additional false communication for SAP compared to
TAP arises from accesses to the OS execution stack (including spill
traps) that use the same address region for a given thread regard-
less of which system call is executing (no data is actually shared
on the stack among different system calls). It is likely that the false
OS stack communication could be avoided by performing stack ad-
dress renaming (either in hardware, e.g. [17], or by modifying the
OS). For all benchmarks, we find that this false communication is
a significant factor contributing to the increase in store misses.

The Other category represents communication for which we
cannot make a determination. Clearly, much of it is likely to be in-
herent program communication which might be local in the canon-
ical model but not in TAP and SAP.
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Figure 9. Performance Comparison. Labels on TAP and SAP bars
represent the runtime overhead of thread migration

Though both pgbench and pmake show a large relative increase
in store cache-to-cache transfers, the baseline transfers are much
smaller than for the other workloads. Thus, the absolute increase in
store cache-to-cache misses is actually quite small.

6.4 On-chip Interconnect Bandwidth

Despite an increase in L2 store misses for most benchmarks, overall
L2 misses (which include both instruction and data) decrease for all
the server workloads when using both TAP and SAP.

This results in a noticeable improvement in the on-chip inter-
connect traffic and bandwidth used by these workloads (see Figure
8). This figure breaks down the interconnect bandwidth used into
three categories: (a) address messages (requests or responses that
do not include data), (b) data messages (data responses and write-
backs), and (c) cost of migrating register values between cores for
TAP and SAP (see Section 5.2). Except pmake, all other bench-
marks see a 0—12% reduction in bandwidth when using TAP or
SAP. The bandwidth used for thread migration is 6-12% of the to-
tal, despite the large architectural state described in the Section 5.2.

6.5 Performance Impact

Figure 9 shows the speedup using our techniques. CSP yields sig-
nificant improvements in the average memory response latency and
branch misprediction rates for all the benchmarks except pmake, di-
rectly impacting the runtime of these workloads. Apache and OLTP

see significant speedup, 20% and 8.6% for TAP and 18% and 9.4%
for SAP, respectively. Note that the speedups reported here opti-
mistically assume four hardware contexts to execute the different
threads as we described in Section 5.2.1.

The labels in the bars for TAP and SAP represent the directly
measurable overhead of thread migration, i.e., the number of cycles
it takes to store 2.2kB to the local cache and load it from the remote
cache. The cost of incurring additional cache misses for other data
is modeled, but not included in this label.

As a comparison, the fourth bar of Figure 9 shows the speedup
from a configuration where we separate each private cache and
branch predictor into separate structures used by the OS and user
code. The aggregate cache and predictor sizes at all levels remain
the same. As evident from this figure, simply separating the caches
and branch predictors to eliminate interference leads to worse per-
formance.

The performance of pmake, our only non-server workload, is
much less impressive than the rest. This result is primarily due to
two factors. First, pmake shows the least amount of code sharing,
especially among user code. Consequently, collocating user com-
putation leads to only marginal improvement in instruction locality
(Figure 4). Second, the component of data communication between
user and OS is substantially more in pmake than other applica-
tions (relative contribution of C in Figure 3(b)). Since OS-to-user
communication usually happens within a short interval, it typically
leads to local L2 hits in the baseline, while causing cache-to-cache
transfers in TAP and SAP. Moreover, especially for pmake, TAP
and SAP only save a subset of misses in the other categories, lead-
ing to additional data misses overall.

6.6 Code Reuse With TAP/SAP

In Figure 10, we again present the code commonality character-
istics for the baseline, this time alongside the two CSP schemes.
The Common portion from Figure 1 is further broken down into 2
cores and 3-6 cores shown in darkening shades of gray. In every
case the Universal section virtually disappears for TAP and SAP
(as expected). We see a significant increase in the fraction of code
used exclusively or by only 2 cores as we move from the baseline
to TAP and SAP.

Though we expect a more prominent increase in the codes
accessed exclusively or among only 2 cores (as we provision many
common system calls to two cores) in SAP, especially for the two
web-servers, the results in Figure 10 indicate otherwise. This is
mainly because using system call numbers alone is not sufficient for
identifying similar and dissimilar computation fragments (or code
paths). For example, consider two instances of the read() system
call. If they are invoked with different types of file descriptors (e.g.,
a network socket and a regular file), then they are likely to execute
substantially different code, though they are executed in the same
core in SAP. Likewise, a read() and write() to the same type of file
descriptor is likely to access similar code and data. To fully exploit
the potential of CSP, we would need to better distinguish different
computation fragments using a more sophisticated technique.

7. Future Work

In this paper, we explore a particular instance of CSP where we
distinguish between the user code execution and the OS code exe-
cution. This separation is compelling for server applications which
spend a substantial amount of time, and incur a substantial number
of instruction misses, in both user and OS code. For scientific or
other applications which tend to have little OS activity and few in-
struction misses, neither of the current policies, TAP or SAP, would
be advantageous. However, CSP is not limited to separating OS and
user computation: even within user code, for example, we can apply
hardware thread migration techniques to leverage similar benefits
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Figure 10. Code Reuse with TAP/SAP. Each bar is broken down
to show different degrees of reuse. From top to bottom these are:
Universal, 6-3 cores, 2 cores and Exclusive, respectively.

for instructions (especially with database workloads). Other class
of workloads, such as multimedia or scientific and single-threaded
applications, can also benefit from CSP by separating data refer-
ences between independent computation fragments and improving
branch predictions within each fragment.

The current hardware/OS interface limits the completeness of a
thorough CSP evaluation. First, as mentioned in Section 5.2.1, if
we arbitrarily pause the execution of a thread, the OS will waste
a significant number of cycles spinning on synchronization. OS
spins can be mitigated using the techniques described by Wells,
et al., [31], or eliminated through interface modifications, and we
intend to evaluate these ideas in future work. Second, when a thread
is paused waiting for the availability of an appropriate core, the
thread’s former core may be idle waiting for an appropriate thread.
This idle time occurs despite the fact that the OS likely has many
runnable threads waiting to be scheduled. Exposing all of these
runnable threads to the hardware, and letting the hardware choose
among them, can potentially alleviate this problem.

8. Related Work

Several recent studies propose to redesign a software application to
enforce staged execution, instead of monolithic execution. Such an
optimization can significantly improve the performance of server
applications, much of which is dominated by memory stall times
(with significant contribution from instruction stalls) [3, 13]. One
previous work which shares its key motivation with CSP in tar-
geting these stalls is Cohort Scheduling proposed by Larus and
Parkes [16]. They argued that the performance problems of server
workloads stem from the canonical software architecture of server
applications, which results in the execution of non-looping code
segments with little instruction and data locality. They propose a
new programming model to identify and group related computa-
tions and then subsequently schedule them to exploit the similar-
ity between successive computations. SEDA, proposed by Welsh,
et. al., decomposes an event-driven server application into multiple
stages and schedules them on different processors to enable code
reuse and modularity while improving performance and fairness of
the system [32]. Harizopoulos and Ailamaki [14] exploit the recur-
rence of common code paths in transaction processing by identify-
ing regions of code that fit in a L1 I-cache, and frequently context
switching among threads to reuse the cache contents. In TAP and
SAP, we simply distinguish between user and OS computation and
employ hardware thread migration to localize these computations

at the hardware level, without specific information about, or modi-
fications to, the software architecture of server applications.

Computation spreading is also quite similar in spirit to LARD
[22], which uses locality information at a front-end server to dis-
tribute web requests among back-end servers. Load balance is also
a major issue with LARD, however it is easier to address because
the number of requests is much greater than the number of servers.

Separating OS computation from the user computation is rem-
iniscent of the CDC 6600, which had one high performance Cen-
tral Processing Unit (CPU), and several lower performance, multi-
threaded Peripheral Processors (PPs) [27]. The intent was to run
threaded, I/0 bound, OS activities on the PPs, and save the CPU for
heavy computation. When technology eventually allowed an entire
processor to fit on one chip, however, the communication costs pro-
hibited executing OS and user code on separate chips.

There have been many studies of OS behavior, and its inter-
action with the user code on various micro-architectural features
[2, 5, 12, 18, 24, 25, 28]. The salient points of most of this re-
search are that 1) many cycles are spent executing operating system
code for server applications, 2) OS code has different behavior than
user code, and 3) the OS adversely affects many micro-architectural
structures through capacity and conflict interference. Our work cor-
roborates most of these claims, and we propose CSP as a potential
unified solution to these interference problems.

Several recent proposals aim to improve CMP memory value
communication. Most rely on coherence protocol optimizations
and/or alternate cache organizations [9, 10, 26]. In this paper, we
propose an orthogonal technique to achieve similar goals.

Recent proposals also advocate using heterogeneous CMP cores
to achieve performance and power benefits by scheduling the low
ILP phases on the slower cores [15]. CSP is a promising match for
such hardware, since different computation fragments (such as user
and OS) typically have different resource requirements.

9. Conclusions

In this paper, we examine the code reuse characteristics of several
multithreaded commercial workloads, and show that most instruc-
tion blocks are accessed by many, if not all, CMP cores. This im-
plies that they all go through similar phases of computation (albeit
at different times), and that the canonical model of work distribu-
tion leads to inefficient use of the aggregate cache space.

We present Computation Spreading (CSP), a new model for
distributing a thread’s computation across multiple cores in a
CMP. CSP employs hardware thread migration to spread dissimilar
phases of computation from a thread to multiple CMP cores, while
localizing similar phases of computation from different threads
onto a single core. We apply this technique to separate user com-
putation from the OS computation performed on behalf of the user,
and present two assignment policies for this application: TAP and
SAP. For four server workloads, both policies achieve a dramatic
reduction in L2 instruction cache misses (27% to 58%), while im-
proving L2 load misses, branch misprediction and on-chip inter-
connect bandwidth for our server workloads. Overall, they lead to
reasonable performance improvement of 1% to 20% and 3% to
18%, respectively. Results for pmake, a fifth, non-server bench-
mark, are not as favorable.

The work in this paper represents an initial foray into a subject
that can have significant consequences for the design of chip mul-
tiprocessors. While separating user and OS execution is interest-
ing for OS-intensive workloads, Computation Spreading has much
potential for further improvement for these and other classes of
workloads by more intelligently spreading independent computa-
tion within user or OS execution. In this manner, CSP has the po-
tential for completely altering the instruction stream executed on
different CMP cores, and will be the subject of much future work.
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