
THE SEQUOIA 2000 STORAGE BENCHMARK

Michael Stonebraker, Jim Frew, Kenn Gardels and Jeff Meredith
Electrical Engineering and Computer Science Department

University of Cal#ornia, Berkeley

Abstract

This paper presents a benchmark that concisely captures the

data base requirements of a collection of Earth Scientists working

in the SEQUOIA 2000 project on various aspects of global

change research. This benchmark has the novel characteristic

that it uses real data sets and real queries that are representative

of Earth Science tasks. Because it appears that Earth Science

problems are typical of the problems of engineering end scientific

DBMS users, we claim that this benchmark represents the needs

of this more general community. Also included in the paper are

benchmark results for three example DBMSS: GRASS, IPW and

POSTGRES.

1. INTRODUCTION

There have been numerous benchmarks oriented toward

DBMS performance in a variety of application areas. Perhaps the

most famous one, TP1 [ANON85] is oriented toward business

data processing, and has spawned a collection of derivative

benchmarks, the most recent being TPC-A, TPC-B and TPC-C.

These benchmarks represent the typical needs of a transaction

processing user of a DBMS. They consist of short update-

oriented transactions that will stress the transaction system and

the basic overhead of simple command processing. Another

benchmark [CA’IT92] is oriented toward electronic computer

aided design (ECAD) applications. It contains a set of more

complex commands that have high locality of reference on a tiny

(main memory) data se~ and it stresses the efficiency of a client-

server DBMS connection in a very specialized environment (i.e.

security can be ignored). An extensive collection of other

DBMS-onentcd benchmarks is contained in [GRAY91].

We feel that there is a broad application ere~ namely

engineering and scientific data bases, that has special needs not
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addressed by any of the above benchmarks. This community is

typified by Earth Scientists, whose DBMS needs we are trying to

support in the SEQUOIA 2000 research project [STON92].

Earth Scientists are usually geographers, hydrologists, oceanogra-

ptiers, or chemists by background, end are united by common

problems concerning our survivability on Earth. They investigate

issues surrounding global warming, ozone depletion, environ-

ment toxification, species extinctio~ etc.

Loosely speaking, Earth Science research can be divided into

three categories:

field studies

remote sensing

simulation

Researchers who perform field studies usually obtain geographic

dat~ typically in data sets of the fornx

{ (longitude, latitude, elevation, array-of-vahtes) )

For example, one SEQUOIA 2000 group at the Santa Barbara

Campus has collected extensive field data from the Antarctic

Ocean about the effect of ozone depletion on ocean organisms

[SMIT91]. Such data consist of various ocean characteristics at

various depths for speciiic geographic locations.

Researchers in remote sensing focus on analyzing and inter-

preting satellite imagery. Such imagery can be thought of as a

four dimensional array of values of the form

value (longitude, latihrde, wavelength band, time)

For example, the Thematic Mapper (TM) sensors on the Landsat

satellites sample the Earth’s surface on a 30 meter by 30 meter

grid, in 7 wavelength bsnds, repeating every 15 dsys. For more

information on the requirements of remote sensing users, the

interested reader is directed to [LOHM83].

Climate modelers use general circulation models (GCMS) for

simulating regional or global phenomena. Such models are simi-

lar to computational fluid dynamics (CFD) models in that they

tile the study area and then compute a collection of state vari-

ables for each tile at time T+l based on the state in the tile at time

T and that of neighboring tiles at time T. The output of such

simulation models is an array of values of output parameters such
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as temperature and barometric pressure as a function of time

array-of-values (longitude, latitude, elevation, time)

Because GC!MS are so computationally intensive, Ed Scientists

wish to save all GCM simulation output for extensive periods of

time, Subsequent analysis and visualization efforts cart use these

stored data, rather than requiring a model rerun.

The characteristics of the Earth Science (ES) applications we

have been discussing are:

1) massive size

ES data bases usually include substantial numbers of images and

simulation outpu~ and are extremely large. For example, the four

main SEQUOIA 2000 ES research groups collectively would like

to store about 10 ** 14 bytes (100 Tbytes) of data. Or consider

the NASA Earth Observation System (EOS), a collection of satel-

lites to be launched in the late 1990’s to support the needs of the

ES community. Collectively, these satellites will send 1 Tbyte of

data per day back to ground stations. The ground storage and

distribution system (EOS/DIS), currently being built by a govern-

ment contractor, is charged with storing all EOS data for 15

years, When completed, this data base will be some 10 ** 16

bytes (10 petabytes), and will be the Earth’s largest database.

We see that database size in the ES community is often much

larger than the modest size of TP1 benchmark data bases, The

Cattell benchmark is even more modest in its size requirements.

2) complex data types

ES data bases often include multi-dimensional arrays, geometries

for spatial objects, and other complex data types. How well any

DBMS performs in this environment is largely determined by its

support for arrays, spatial objects and complex objects. Such

types are rarely present in other benchmarks, which limbs their

relevance to the ES community.

3) sophisticated searching

ES data base applications include the requirement of searching

arrays and spatial data for desired information. B-trees are rarely

adequate for the search needs of this community. On the other

hand, most other benchmarks can be adequately addressed by

systems relying exclusively on B-tree indexing.

Because other benchmarks do not address the community of

users we are trying to support in SEQUOIA 2000, we have

chosen to create a new benchmark. The purpose of our bench-

mark is twofold. Fws~ SEQUOIA 2000 Computer Scientists

need a standard baseline case on which to judge new technical

ideas. Second publication of this benchmark should heighten

awsreness in the DBMS community of ES needs, Although

DBMS research has yielded spatial access methods e.g.

~V84, GUTM84, LOME90] and spatial query languages e.g

[ROUS85], little of thii work has found its way into real general

purpose systems. We hope that this benchmark will cause system

builders to focus more energy in the direction of ES users.

We have created the following benchmark to abstract the

kinds of data SEQUOIA 2000 researchers use and the operations

they wish to perform. This benchmark is driven by user needs

and is not trying to make any particular DBMS look good or bad.

We know of no DBMS that works well on the benchmark in this

paper. It should be considered a target for DBMS software to

strive for.

Although we are specifically targeting this benchmark to the

needs of ES users, it appears that it represents the needs of a

broad class of engineering and scientific DBMS users. For exam-

ple, Geographic Information Systems (GIS) users, such as

governmental agencies and utility companies, wish to store spa-

tial data from satellite imagery and other sources; they resemble

the field studies and remote sensing ES users discussed above.

Other engineering and scientific DBMS users include physicists,

chemists and biologists doing research at the National Labora-

tories, and members of the technical staff at industrial firms, such

as aerospace and petroleum companies, concerned with engineer-

ing applications. Such users typically store large data arrays, and

their needs appesx to be similar to the simulation users described

above. In ~ELL88] one can find additional information on the

concerns of this class of users.

The remainder of this paper is organized as followx In Sec-

tion 2 we present the data base that we use in the benchmark.

Section 3 presents the operations that must be pwformed. Sec-

tion 4 turns to the environment in which the benchmark should

run and the reporting requirements for benchmark results. Sec-

tion 5 runs the benchmark on three target DBMSS and presents

benchmark performance on this collection of DBMSS.

2. BENCHMARK DATA

2.1. Introduction

ES researchers typically focus on problems at the following

four scales

local i.e. a river drainage basin

regional i.e. a study area of one or two states

national i.e. a study area of one country

Earth the study area is the whole world

In addition, most studies that use remote sensing or simulation

data tile the study area into rectangular cells, and then record data

for each tile. There are three popular granularities for tile size:

coarse tile size of several kilometers; typical of simulation out-

put.

medium: tile size of one kilometer; typical for studies using the

Advanced Very High Resolution Radiometer (AVHRR) sensor

&ta,

fine: tile size less than 100 meters, typical for studies using

Thematic Mapper (TM) sensor data.

3



The data set size for any particular study depends crucially on the

scale of the problem and the granularity of the data, and this can

vw OWI many orders of magnitude. To capture this diversity,

we propose three different benchmarks, each of which contains

the same data for a different size study area, as follows:

regional benchmark:

This benchmark typifies the needs of an Earth Scientist working

on a regional problem, such as vegetation classification in the

state of California. The geographic region in the benchmark is a

1280 km x 800 km rectangle encompassing the states of Cdlfor-

nia and Nevada.

national benchmark:

This benchmark typifies the needs of an Earth Scientist working

on a problem of national scale. The benchmark geographic

region is a rectangle covering the United States that is 5500 km x

3000 km.

Some satellites have a me.dhtrn tile size close to that of

AVHRR, while others have a fine tile size, e.g. Thematic Mapper

CM) which uses 30 meter tiles. To have a single data set that

best represents the general characteristics of satellite data sets, we

have chosen to reduce the tile size of AVHRR to 0.5 km x 0.5

km. To accomplish this reduction, we have oversampled

AVHRR data to produces the &sired factor of 4 data expansion.

The regional version of the benchmark therefore contains

2 x 1280x2x 800= 4,096,000 tiles

for each of which we record

(5 observations)* (2 bytes) =10 bytes

The 26 observations over 1 year thereby constitute 1.064 Gbytes

of data.

The national data set has the same data as the regional data set

for an area dtat is 16.1 times as large, so it is about 17 Gbytes.

The Edt data set covers an area 100 times as large and is nearly

2 Tbytes.

Point Data

Earth benchmark:

Some Earth Scientists study problems on the scale of the entire

Earth. The final benchmark study area is the entire globe.

Because we are distributing real Earth Science data for this

benchmark to any interested parties, we focus on the regional and

national benchmarks, which can be feasibly sent to a researcher

on 8mm tapes. Distribution of the Earth data set will have to

await better tape densities. In thk paper we do not precisely

define the largest data se~ but leave it for a future exercise.

ES researchers deal with four kinds of data routinely in their

work.

raater data

point data

polygon data

directed graph data

For the study region, we include the names and locations of

specific geographic features that have a point location. This data

se~ available from the USGS Geographic Names Information

System (GNIS), contains a collection of character string names

and their location. For the regional benchmark locations have

been reprocessed into the ssme Lambert Aziiutbal Equal Area

projection noted above. Specifically, each geographic point is

represented by a pair of 32 bh integers, representing respectively

the distance in meters that the point is east and north of an origin

located at 100 degrees West longitude, 45 degrees North latitude.

There are 76,584 entries in the regional benchmark, and each

name is a variable length string, with average length of 16 bytes.

Since each geographic point is represented as a pair of 32 bit

integers, this data set is a collection of records with an average

length of 24 bytes and occupies about 1.83 Mbytes. The national

benchmark has about 15 times as many points and is requires

27.5 MbyteS.

Our benchmark includes a representative of each class as follows:

Polygon Data

Raster Data

We have chosen to include data from the Advanced Very High

Resolution Radiometer (AVHRR) sensor on the NOAA satellites.

This sensor decomposes the entire Earth into 1.0 km x 1.0 km

tiles. As distributed on CD-ROM by the United States Gcologi-

CSI Survey (USGS), these tiles art? aligned with a Lambert

Azimuthal Equal Area map projection.

For each tile, five onboard sensors capture 10-bit values

corresponding to the energy observed in each of five wavelength

bands. The satellite observes each tile twice per day; however

the USGS publishes the data every two weeks, using values from

a composite of passes that ensures that the data for each tile is

from a cloud-free observation. Our benchmark therefore contains

26 data sets, enrresponding to 52 weeks of elapsed time.

For polygonal data we have chosen to use a data set consisting of

regions of homogeneous landuse/lan&over, available from

USGS. Again, we have chosen to reprocess the data into the

same co-ordinate system as the point and raster data. Each record

in thk &ta set is a polygon, consisting of a variable number of

points, represented as pairs of integers, together with an integer

encoding for one of 37 landuse/landcover type. Since the aver-

age polygon has 50 sides, this data set has an average record size

of 204 bytes. There are 93,607 polygons in the regional bench-

mark occupying 19.1 Mbytes, and about 1.4 million polygons in

the national benchmark requiring 286 Mbytes.

Directed Graph Data
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Ottr last data set represerm information for a directed graph.

Here we have chosen to use another USGS data set containing

information about drainage networks. Here, each river is

represented as a collection of segments. Each segment is

represented as a non-closed polygon with a beginning node and

ending node. For each segmen~ the data set records segment

geometry and the segment identifier. For the regional bench-

mark, there are 286,300 segments consuming 47.8 Mbytes, and

for the national benchmark there are akmtt 6.5 million segments

reqttiriig 1.1 Gbytes.

The complete regional data set is a little over 1 Gigabyte and

is well suited to deployment on a disk storage system. The

national benchmark is around 18 Gigabytes. Although it is psi-

ble to buy enough dwk space to hold thk benchmsr~ the inten-

tion of the designers is that this be a tertiary memory data set on

either an optical disk robot or a tape robot. The Earth benchmark

is multiple terabytes, and can only be deployed on the hmgest of

current commercial tape robot devices.

Over the rest of this decade as hardware prices decline, we

expect the regional benchmark will move to a main memory data

set, the national benchmark to a dwk data set and the Earth

benchmark to art “easy” tertiary memory data set. We have pttr-

posely designed the benchmark for durability in the face of tech-

nological change. Many other benchmarks, must be scaled in

later years because of increasing storage capacities at all levels of

a storage system. For example, the Wkconsin benchmark

~ITT83] originally designed as a disk benchmark, must now be

substantially scaled to avoid fitting entirely in main memory. We

wished to avoid the necessity of downstream scaling.

The data set for the regional benchmark is available now, and

we are assembling the national benchmark. The data is formatted

in a straightforward manner, complete with documentation. It is

expected that benchmark users will design the schema of their

choice and then convert the data appropriately.

3. THE BENCHMARK QUERIES

In this section we present the 11 queries that form the bertch-

mark. In each case, we write the query in words and also express

it in POSTQUEL [MOSH92]. The POSTQUEL queries use the

following POSTGRES schema

create RASTER (time = irtt4, location = box,

band = int4, data = int2[][])

create POINT (name = char[], location= point)

create POLYGON (landuse = rnt4, location= polygon)

create GRAPH (identifier = int4, segment = open-polygon)

In this schema, we use the point, open-polygo% box, and polygon

data types with the obvious interpretation. Each is internally

represented as a collection of points, represented as a pair of

integers. For each of the five frequencies, the AVHRR data are

logically a large two-dimensional array. We have chosen te

chunk this array into smaller sub arrays for storage convenience.

Therefore, the data type int2[][] stores the AVHRR data elements

for each location in the subarray, and the location field in the

RASTER class gives the bounding rectangle for each subarray.

Collectively, the subttrrays cover the entire study region. For the

regional benchmark, chtmking is an optional feature since each

turay is 8 Mbytes. On the national benchmark, chunking is

highly desirable since each array is 129 Mbytes.

Users are free to use any schema they wish, as long as

AVHRR elements iwe 16 bit objects and geographic points are

pairs of 32 bit objects. Also, users are free to decompose each

AVHRR image into multiple subimages, as we have indicated

above, if that suits their needs better.

The remainder of this section presents the 11 benchrtmk

queries. They are grouped into five collections:

data load

raster queries

polygon and point queries

spatitd joins involving one or more types of objects

recursion

The queries use the following constants:

RECTANGLE: a geographic rectangle of size 100km x 100km

randomly placed in the study region

BAND a random wavelength band

TIME a random time

LANDUSE: a random landuselkmdcover type

LOCATION a random geographic point in the study area

POINT-NAME the name of a random point in the POINT class

I.NT- 1: an integer, set for this benchmark at 64

FLOAT-1: a floating point number, set for thii benchmark at 1.0

FLOAT-2: a floating point number, set for this benchmark at 10.0

For each task we show the code that is required in the query

language, POSTQUEL [MOSH92J for the schema discussed ear-

lier. This is done to assist the reader in understanding the seman-

tics of the operation.

3.1. Data Load

Query 1: Create and load the data base and build any neces-

sary secondary indexes.

Earth Scientists expend much effort loading new data into their

computer systems. This activity, usually disregarded in other

benchmarks, is included as Query 1. It is common knowledge

that commercial systems differ by as much as a factor of 10 in the

speed with which they can load data and build indexes. In many

cases the low performance systems enter data by running one

insert query per record while the high performance ones have a

stresming “bulk” copy facility that interacts with a lower level

of the DBMS. Query 1 will expose such performance differ-

ences .

It is appropriate to begin timing Query 1 after the tape con-

taining the benchmark has been copied to disk. Otherwise, Query

1 will presumably run at the speed of tlte tape reader. Once the
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data have been copied to disk timing for Query 1 should record

the elapsed time to load the data into the system being tes~ per-

forming whatever data conversions are &stied, and building any

secondary in&xes.

For POSTGRES we implemented the schema discussed ear-

lier and used the standard copy utility included in the system to

convert from the neutral representation of the raw data into this

schema. We chose to build R-tree [GUTM84] indexes on loca-

tion in the POINT and POLYGON classes and on segment in the

GRAPH class. We also require B-tree indexes on time and band

for RASTER, name for POINT, aud name for POLYGON.

Lastly, we use an index on the functiotL size, operating on

polygon locations in one query. The POSTGRES timing for

Query 1 includes the time to run the copy cmnrnand for the four

input data sets and the time to build the 8 indexes noted above.

3.2. Raster Queries

Earth Scientists who deal with satellite data run many queries

on raster data. This section presents examples of three of their

common queries. Query 2 is a time travel query, namely:

Query 2: Select AVHRR data for a given wavelength band and

rectangular region ordered by ascending time.

retrieve (clip (RASTER.data, RECTANGLE), RASTER. time)

where RASTER.band = BAND

order by ascending time

Here, the two constants are run-time parameters that denote

respectively a rectangle corresponding to the desired geographic

rectangle and the wavelength band required. The query then

returns 26 raster images for the appropriate wavelength band,

each clipped to the correct rectangle, ordered by ascending calen-

dar time. In effec~ the user wants to play a time-travel movie of

the images to watch what happens to the study rectangle as time

increased. The 26 images are each 80K bytes, so the query

returns about 2.1 Mbytes of data to the application program.

Tming for this query must include returning the data to an

application program; however, the application need not put the

data on the screen. We are attempting only to test the storage and

retrieval components of a system and not the visualization

software that displays results. This topic is the subject of a

separate benchmark, currently under construction [OLS093].

The third query performs a spectral analysis as follows:

Query 3: Select AVHRR data for a given time and geographic

rectangle and then calculate an arithmetic function of the five

wavelength band values for each cell in the study rectangle.

retrieve (raster-avg (clip (RASTER. data), RECTANGLE) )

where RASTER.time. TIME

Here, raster-avg is a user-dethted function that computes a

weighted average of the individual cell values in RASTER .data.

The intent of this query is for the function applied, e.g. sum, aver-

age, sum over restricted frequencies, etc. be a run-time parameter

– it is not allowed for the person performing the benchmark to

precompute the answer to this query during the execution of

Query 1. The reason for thii restriction is that Earth Scientists

typically run many different weighted averages for a given study

area, looking for the one that produces the best output.

The fourth query changes the spatial resolution of a raster

image.

Query 4: Select AVHRR data for a given time, wavelength band

and geographic rectangle. Lower the resolution of the image by a

factor of 64 to a cell size of 4km x 4km and store it as a new

DBMS object.

retrieve into FOG-1 (time = RASTER.time,

location = RASTER.location, band = RASTER.ban~

&ta = lower-res ( clip (RASTER.data, RECTANGLE), INT-l))

where RASTER .time. TIME and RASTER.band = BAND

Here, RECTANGLE is a rectangle corresponding to the viewing

region of interes~ INT-l specifies the amount of resolution

reduction+ here 64, and BAND and TIME give the wavelength

band and time of interest.

This operation is useful in creating abstracts of raster data.

Earth Scientists need to browse through massive amounts of data

and it is useful for them to see much of it at low resolution and

then zoom into areas of particular interest. Hence, many scien-

tists wish to have raster data at multiple levels of detail.

3.3. Point and Polygon Queries

Data obtained from field studies are often about geographic

points or polygons. Many researchers also classify raster data

into polygons that have a common characteristic (e.g. land use,

snow cover). It is natural to have queries for these kinds of

objects and there are three in our benchmark.

The tint one is a conventional non-spatial subletting of

POINT data on a non-spatial attribute, namely

Query 5: Find the POINT record that has a specific name.

retrieve (POINT.all)

where POINT,name = POINT-NAME

To satisfy this query, a system must have some sort of non-spatial

indexing (B-tree, haahing, ete.) and be able to assemble spatial

and non-spatial amibutes for output.

The next query performs a natural spatial subsettbtg opera-

tion on the polygon data.

Query 6: Fmd all the polygons that intersect a specific rectangle

and store them in the DBMS.

retrieve into FOO-2 (POLYGON.all)
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where POLYGON.location II RECTANGLE

Here, II is a user-defined “polygon intersects rectangle” operator

that returns true if the location of the polygon intersects the rec-

tangle specified by RECTANGLE.

This query requires a spatial index of some sort, and will be

difficult to execute efficiently on a system that only supports B-

trees. Like Query 4, it requires the ability to dynamically create

new data base tables or classes, a property not found in all

DBMSS.

The last query is a combination query that has both spatial

and non-spatial restrictions.

Query 7: Fmd all polygons that are more than a specitic size and

within a specific circle.

retrieve (POLYGON.all)

where size (POLYGON.location) > FLOAT- 1 and

POLYGON.location <1> circle (LOCATION, FLOAT-2)

Here, FLOAT-1 is the threshold polygon size, set for this bench-

mark at 1 square km, while LOCATION and FLOAT-2 define a

circle. SpecMcally, LOCATION is the center and FLOAT-2 is

the radius, set for this benchmark at 10 km. The operator, <1>,

returns tme if the polygon which is the left operand is tilde the

circle which is the right operand. Efficient execution of this

query requires a query optimizer that can evaluate the expected

selectivity of both the spatial and the non-spatial clause, and then

choose the more restrictive one to evaluate first. For the bench-

mark data most polygons are larger thrm 1 square km, so the

clause that spatially subsets the data should be preferentially

used.

3.4. Spatial Joins

Many Earth Scientists require the ability to comelate (or join)

multiple kinds of data. In this section we present three bench-

mark queries that join data of one spatial type to those of a dt-

ferent spatial type.

Query 8 finds the polygons that intersect a rectangle of

interest. The rectangle is defined to have a center which is a

named geographic point of interest. This query performs a com-

plex spatial join of the POINT and POLYGON data sets.

Query 8: Show the landuse/landcover in a 50 km quadrangle sur-

rounding a given point.

retrieve (POLYGON.landuse, POLYGON.location)

where POLYGON.location II make-box (POINT.location, 50)

and POINT.name = “POINT-NAME

This query finds all polygons that intersect the rectangle of

interest. POINT-NAME is the name of the point that lies at the

center of a 50 km by 50 km rectangle of interest. The function

make-box creates this rectangle from the center point and the

length of each side. The operator II returns true if a polygon

intersects the rectangle of interest.

Query 9 performs a join between raster data and polygon data.

Query 9: Find the raster data for a given landuse type in a study

rectangle for a given wavelength band and time.

retrieve (POLYGON.locatio~ clip (RASTER. data,

POLYGON.location))

where POLYGON.hmduse = LANDUSE

and RASTER.band = BAND artd RASTER.time = TIME

Here, LANDUSE gives the landuse classification that is desired

while BAND and TIME specify the wavelength band and time of

the desired raster data. The join is implicit in the arguments of

the clip fonction.

The last query is a join between point and polygon data as fol-

lows:

Query 10: Find the names of all points within polygons of a

specific vegetation type and create this as anew DBMS object.

retrieve into FOG-3 (POINT.name)

where POINT.location II POLYGON.location

and POLYGON.landuse = LANDUSE

The operator II is the’ ‘point inside polygon” operator.

Note that in this sectio~ the meaning of II has been context-

sensitive. POSTGRES allows tokens like II to be overloaded, so

they can be used to mean different things for different operand

types.

3.5. Recursion

Earth Scientists often want to trace drainage basins or irriga-

tion networks. This involves resticted recursive queries on net-

work data. Our last query embodies this sort of activity, and is

termed the Dunsmuir spill query after an incident during 1991

in which a Southern Pacific freight train derailed and spilled toxic

chemicals into the Sacramento River near the town of Dunsmuir,

California. After such an incident, an Earth Scientist would like

to find all the waterways into which the spilled chemicals could

flow. For naturally occurring waterways, this answer is usually

“downstream” in the same waterway. However, waterway data

in California often represent irrigation networks, where there may

be many places downstream from a given point.

Query 11: Find all segments of any waterway that ire within 20

km downstream of a specific geographic point.

retiieve into temp (GRAPH. identifier, GRAPH.segmen~ partial-

length (GRAPH,segment, LOCATION))

where LOCATION *&* GRAPH.segment

append* to temp (GRAPH.identitier, GRAPH. segment,

length = temp.length + length (GRAPH.segment)



where end(temp.segment) = begin (GRAPH .segment)

and GRAPH.identier notin ( temp. identifier]

and temp.length c 20

Here, the first query identifies the segment on which the initial

spill point, LOCAlTON, is located. It also, calculates the dis-

tance from the spill point to the end of the segment in the func-

tioq partial-length. The operator *&* returns true if a point is on

a specific segment. The second append cmnrnand runs an

indefinite number of times, signified by the *, and stops when no

new segments get added in an iteration. Each iteration adds one

or more segments and the distance they are from the initial spill

point. The iteration ceases when all segments are more than 20

km from the spill point.

This command should be taken as an indication of the kinds

of recursive queries that real scientists wish to run. The

interested reader should note that computation is required in the

middle of the recursion, that the scope of the recursion is rela-

tively small, and that the semch space cart be radically pruned at

the beginning (for example by eliminating all segments more

than 20 km from the spill point). In fac$ the technique used to

perform the recursion is much less important than the utilization

of input pruning. Optimiiing this query will require different

capabilities than available in current systems with recursive pro-

cessing such as LDL [CEHM91].

4. BENCHMARK CONSTRAINTS AND REPORT-

ING CONVENTIONS

There are several points that we wish to make in this section.

First, it is permissible to run the benchmark on any combination

of hardware and software that the user desires. The result of the

benchmark should be reported as a collection of 11 numbers indi-

cating the elapsed time for each task. The retail price of the

hardware on which the benchmark is run should also be reported.

If the entire benchmark can be rurL then a single overall perfor-

mance number indicating elapsed time per unit hardware cost

should be reported

performance = (total elapsed time for the benchmark)/

(retail price of hardware)

In this way, the benchmark can be run on any machine horn a PC

to a supercomputer.

If users can only run part of the benchmark, either because

their systems are not powerful enough to express the other tasks

or because the programming of the task would be too dtiticult to

accomplish, then they should report the results for the queries

that could be run.

Second the result of each query in the benchnuwk is either a

new object stored in the data base (Queries 4, 6 and 9), or the

appropriate data returned to the application program, which can

discard them As noted earlier, there is no requirement that the

data be displayed on the screen – this is a storage benchmark,

not a visualization benchmark.

Third, the benchmark can be coded in any language appropri-

ate for performing this task. For example, to run the benchmwk

against a RDBMS, then it should be transliterated into SQL. TO

run against an 00DBMS, it should be recast in the query

language of the particular system. If the query is run using some

low level algorithmic interface to a DBMS, then numbers must

also be reported for the same task performed using the high-level

declarative interface.

Finally, Earth Scientists fall somewhere in a middle ground

regarding concern for security. On the one hand, they are not as

security conscious as applications that store financial dat~ how-

ever, they grimace at any system with no security. A package

that executes the DBMS in the same protection domain as the

application program will not fulfill the minimum needs of this

community. Therefore, any system that does not run the applica-

tion in a separate protection domain from the DBMS must clearly

note thii fact.

5. BENCHMARK RESULTS

It would be natural to nm our benchmark on one of the popu-

lar commercial relational DBMSS. Since none offer a spatial

access method or support for arrays, we would have to simulate

these features. To use B-trees for spatial indexing, we would

have to transform two-dimensional spatial data into a one-

dimensional structure suitable for B-tree in&xing. Z transforms

[OREN86] are one of several techniques that could accomplish

thk task. However, Queries 6, 7, 8, 9, and 10 deal with spatial

areas and not points. To solve any of these queries one must

investigate multiple intervals in the onedmensional space,

thereby slowing performance.

To simulate arrays, we could simply use the binary large

objects (blobs) present in many DBMSS. However, the only

operations available for blobs are storing and retrieving them, and

all raster operations would have to be programmed with user

space code. Moreover, the spatial joins in Queries 8, 9, and 10

would have to be programmed by executing some sort of join

strategy implemented within rut application program. This would

entail a fair amount of programming, as well as being very slow.

Rather than engaging in a lot of programming to produce

extremely poor results, we have elected not to test this class of

products. For the same reasons, we have omitted current object-

oriented DBMSS, all of which lack a spatial access method and

array support.

Instead, in this section we focus on three freely-available sys-

tems, widely used in the Earth Science community, that offer

support of one sort or another for spatial objects. These are

GRASS: a public domain geographic information system written

by the U.S. Army Corps of Engineers Construction Engineering

Research Laboratory (CERL).

IPW: A raster-oriented image processing package written at the

University of California, Santa Barbara [FREW90].
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POSTGRES: a next-gateration DBMS prototype written at the

University of Califomi% Berkeley.

In Figure 1, we report the results for the regional benchmark.

The tirst two systems were run on a DECsystem 5900 with 2

Gbytes of disk space and 128 Mbytes of main memory, which

retails for $67,300. The third was run on a SUN IPX with 32

Mbytes of main memory and 2 Gbytes of disk space, retailing for

$12,000. The Sun machine is about 2/3 the speed of the DEC

machine and has a comparable performance disk system.

The POSTGRES benchmark was executed on Version 4.0 by

Ioadmg the data into a data base consisting of the schema from

Section 3, using the POSTGRES copy utility. Then, the queries

that appeared in the text of the previous section were run, except

Query 11. Although the recursion operator (*) was available in

an earlier version of POSTGRES, the support code was buggy,

and it is not available in the current release. As a resul~ Query

11 requires an application program algorithm, a solution we felt

violated the spirit of the benchmark.

Also, the R-tree access currently has a bug for the polygon

data that caused POSTGRES to crash on Queries 6, 7 and 8.

Rather than delay this repor~ we have chosen to report numbers

do not benefit from R-tree search on POLYGON.location. With

R-tree indexing all three of these queries will take at most a few

seconds.

IPW consists of a collection of UNIX shell commands that

manipulate raster images, assumed to be stored one per file, in a

specific format. These facilities allow IPW to perform the

required data load and queries 2-4. The remainder of the queries

are extremely difficult or impossible using IPW, so no loading of

the point or polygon data was attempted. AVHRR data were

loaded, one file per wavelength band per time period, and the file

name connoted this fact. Query 2 was accomplished by specify-

ing the file containing the correct wavelength band and time and

then using the IPW command that subsets a raster image. Query

3 was performed by assembling the correct collection of subset-

ted images and then combining them with the IPW weighted

average command. Query 4 was accomplished by the windowing

operation followed by a subsampling operation.

As required in the benchmark reporting section, it should be

carefully noted that IPW does not meet the minimum security

requirements of the benclummk.

The basic GRASS unit of manipulation is a map, which can

be either in raster or vector format. Raster maps are stored one

per UNIX file in a standard array representation, with a header

containing assorted information about the map. Vector maps are

also stored one per file with points, lines and polygons encoded in

a straightforward way.

Queries 2-4 can be performed using GRASS raster capabili-

ties. Specifically, Query 2 is performed by identifying the correct

map manually, and then clipping the map to the correct size.

Query 3 is performed using a clip followed by a weighted aver-

age. Finally, Query 4 is accomplished using the GRASS clip and

subssmpling commands. Since GRASS has no notion of

character string attributes, Query 5 cannot be performed.

Even though GRASS supports vector maps, it has no query

facilities for them, so queries 6-7 are difficult to perform. To get

a correct answer, the point and polygon data were converted to

raster format a grid was superimposed on top of the vector dat%

and a value indicating the polygon identifier was recorded in each

raster cell that lay within the polygon. A similar technique was

used for the point data. In both cases, the technique will not

extend to data sets containing overlapping polygons. Queries 6

and 7 were then accomplished by creating a raster map contain-

ing the correct subletting regiom using the technique above, and

then intersecting the data map with the subletting map. One rea-

son the load time is so long for GRASS is that the polygon data

and point data are stored redundantly in raster format at load

time. Although this technique accomplishes the given task, it is

clearly an obtuse way to compensate for missing capabilities in

GRASS.

As required in the benchmark reporting section, it should be

carefully noted that GRASS does not meet the minimum security

requirements of the benchmark.

6. CONCLUSIONS

There are several points that should be no:ed about this

benchmark. The first point to be made about the benchmark data

is the number of sides in a polygon. The benchmark contains one

polygon with 5184 nodes, and each system must be prepared to

deal with polygons with a vast number of sides. Any system that

limits objects to 4K or even 8K will have a problem with these

data.

Second, the fastest system on raster data is IPW. It is a care-

fully tailored set of UNIX routines, hand optimized for

efficiency; a low-functiorL high performance (’‘lean and mean”)

alternative. Its performance advantage relative to GRASS is
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primarily because it clips images by carefully reading ordy the

data that will qualify. GRASS, on the other hand, reads an image

in its entirety to create the clipped region. IPW also beats

POSTGRES, but for a different reason. Namely, IPW is careful

to pipeline data between functions in Queries 3 and 4, whereas

POSTGRES writes temporary data to disk between the two ftmc-

tion invocations.

‘fltir~ notice that rasteritig polygon data, as GRASS does,

offers superb performance. Unfortunately, this technique will not

accommodate overlapping polygons. Fortunately, our benchmark

does not contain any, so this special tectilque will work

correctly.

Fourth, notice that POSTGRES used a B-tree search on

polygon sizes in Query 7. This yields a time worse than that of

Query 6, where a sequential search over POLYGON is per-

formed. JO Query 7 the POSTGRES optimizer incorrectly

chooses a non-clustered index lookup rather than a sequential

search. Moreover, as noted earlier, the optimal query would use

the spatial access method anyway. Query 7 illustrates some of

the challenges faced by art optimizer on this benchmark.

Lastly, the landuse data in this benchmark have a “Swiss

cheese” characteristic. For example, Central Park is a polygon

of landuse type “park” completely contained in another polygon,

New York City, classified as “city.” The polygons in our data

set have an arbitrary number of such “holes” in them. The

current POSTGRES implementation of polygons does not sup-

port “Swiss cheese polygons,” so Query 10 could not coded as

mentioned in Section 3. Instead, a separate class of HOLES had

to be created, and the query expanded to perform a three-way

jok checking that a point of interest was not in a hole. Obvi-

ously, this leads to the poor performance by POSTGRES on

Query 10, and the POSTGRES polygon type should be extended

to support holes.
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