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ommercial relational Database Management Systems (DBMSs) 
are oriented toward efficient support for business data processing 
applications where large numbers of instances of fixed format 

records must be stored and accessed. The traditional transaction manage- 
ment and query facilities for this application area will be termed data 
management,  and are addressed by relational systems. ~ .. . . . . . . . .  

To satisfy the needs of  users out- 
side of  business applications, 
DBMSs must be expanded  to offer  
services in two other  dimensions, 
namely object management and 
knowledge management. Object 
management  entails efficiently 
storing and manipulat ing nontradi-  
tional data types such as bitmaps, 
icons, text, and polygons. Object 
management  problems abound in 
CAD and many other  engineer ing 
applications. 

Knowledge management  entails 
the ability to store and enforce a 
collection of  rules  that are part  of  
the semantics of  an application. 
Such rules describe integrity con- 
straints about the application, as 
well as allowing the derivation of  
data that is not directly stored in the 
database. 

We now indicate a simple exam- 
ple which requires services in all 
three dimensions. Consider  an ap- 
plication that stores and manipu-  
lates text and graphics to facilitate 
the layout of  newspaper  copy. Such 
a system will be naturally integrated 
with subscription and classified 
advert isement  data. Billing custom- 
ers for these services will require  
tradit ional  data management  ser- 
vices. In addit ion,  this application 
must store nontradi t ional  objects 
including text, bitmaps (pictures), 
and icons (the banner  across the top 
of  the paper).  Hence, object man- 
agement  services are required.  Fi- 
nally, there  are many rules that 
control newspaper  layout. For ex- 
ample,  the ad copy for two major 
depa r tmen t  stores can never be on 
facing pages. Suppor t  for such 
rules is desirable in this application. 

A second example requir ing all 

three services is indicated in [6]. 
Hence, we believe that most  real- 
world data management  problems 
that will arise in the 1990s are in- 
herently three dimensional,  and 
require  data, object, and knowl- 
edge management  services. The  
fundamenta l  goal of  POSTGRES 
[12, 23, 26] is to provide suppor t  
for such applications. 

To accomplish this objective, ob- 
ject  and rule management  capabili- 
ties were added  to the services 
found in a tradit ional  data man- 
ager. In  the next two sections we 
describe the capabilities provided in 
these two areas. Then,  we turn to 
the novel no-overwri te  storage 
manager  that we implemented  in 
POSTGRES, and the notion of  t ime 
travel that it supports.  The  section 
on the POSTGRES implementat ion 
continues with some of  the philoso- 
phy that guided the construction of  
POSTGRES. Next, we discuss the 
current  status of  the system and 
indicate its cur rent  per formance  on 
a subset of  the Wisconsin bench- 
mark  [2] and on an engineer ing 
benchmark  [4]. The  final section of  
this article provides a collection of  
conclusions. 

The  POSTGRES DBMS has 
been under  construction since 
1986. The  initial concepts for the 
system were presented in [23] and 
the initial data model  appea red  in 
[ 19]. Our  storage manager  concepts 
are detailed in [21], and the first 
rule system that we implemented  is 
discussed in [25]. Our  first "demo- 
ware" was operat ional  in 1987, and 
we released Version 1 of  
POSTGRES to a few external  users 
in June  1989. A critique of  Version 
1 of  POSTGRES appears  in [26]. 

Version 2 followed in June  1990, 
and it included a new rules system 
documented  in [27]. We are now 
delivering Version 2.1, which is the 
subject of  this article. Fur ther  in- 
formation on this system can be 
obtained f rom the reference man- 
ual, the POSTGRES tutorial [12] 
and the release notes. 

POSTGRES is now about 
180,000 lines o f  code in C and has 
been written by a team consisting of  
a full-time chief  p rog rammer  and 
3 - 4  part- t ime students. I t  runs on 
Sun 3, Sun 4, DECstation, and Se- 
quent  Symmetry machines and can 
be obtained free of  charge over the 
internet  or  on tape for a modest  
reproduct ion  fee. 1 

The POSTGRES Data Model And 
0uery Language 
Tradi t ional  relational DBMSs sup- 
por t  a data model  consisting of  a 
collection of  named relations, each 
attr ibute o f  which has a specific 
type. In  current  commercial  sys- 
tems possible types are floating- 
point  numbers ,  integers, character  
strings, money, and dates. It is com- 
monly recognized that this data  
model  is insufficient for future data 
processing applications. In  design- 
ing a new data model  and query 
language, we were guided by the 
following three design criteria. 

• orientation toward database ac- 
cess from a query language. 

We expect POSTGRES users to in- 
teract with databases primari ly by 
using the set-oriented query lan- 

IFor details on obtaining POSTGRES, please 
call or write: Claire Mosher, 521 Evans Hall, 
University of California, Berkeley, CA 94720; 
(415) 642-4662. 
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guage, POSTQUEL. Hence, inclu- 
sion of  a query language, an opti- 
mizer and the corresponding 
run-t ime ..system was a pr imary de- 
sign goal. 

It is also possible to interact with 
a POSTGRES database by utilizing 
a navigational interface. Such inter- 
faces were popular ized by the 
CODASYL proposals of  the 1970s 
and are used in some o f  the recent 
object-oriented systems. Because 
POSTGRES gives each record a 
unique identif ier  (OID), it is possi- 
ble to use the identif ier  for one rec- 
ord  as a data item in a second rec- 
ord. Using optionally definable 
indexes on OIDs, it is then possible 
to navigate from one record to the 
next by runn ing  one query per  nav- 
igation step. 

In  addit ion,  POSTGRES allows a 
user  to def ine functions (methods) 
to the DRMS. Such functions can 
intersperse statements in a pro- 
g ramming  language, query lan- 
guage commands,  and direct  calls 
to internal  POSTGRES interfaces, 
such as the get_record rout ine in 
the access methods.  Such functions 
are available to users in the query 
language or  they can be directly 
executed. The  latter capability is 
t e rmed fast path,  because it allows a 
p rog rammer  to package a collec- 
tion of  direct calls to POSTGRES 
internals into a user-executable 
function. 'This will suppor t  highest 
possible per formance  by bypassing 
any unneeded  port ion of  
POSTGRES functionality. 

As a result, a POSTGRES appli- 
cation p rog rammer  is provided 
great  flexibility in style of  interac- 
tion, since he or  she can intersperse 
queries, navigation, and direct 
function execution. This will allow 
the p rog rammer  to use the query 
language and obtain data indepen-  
dence and automatic optimization 
or  to selectively give up these bene- 
fits to obtain h igher  performance.  

• Or ienta t ion  toward  mul t i l ingua l  
access .  

We could have picked our  favorite 
p rogramming  language and then 

tightly coupled POSTGRES to the 
compiler  and run-t ime environ- 
ment  of  that language. Such an 
approach  would offer  pers i s t ence  
for variables in this p rogramming  
language, as well as a query lan- 
guage integrated with the control 
statements of  the language. This 
approach has been followed in 
ODE [1] and many of  the recent  
object-oriented DBMSs. 

Our  point  of  view is that  most 
databases are accessed by programs 
written in several different  lan- 
guages, and we do not  see any pro- 
g ramming  language Esperanto on 
the horizon. Therefore ,  most pro-  
g ramming  shops are mul t i l ingua l  
and require  access to a database 
from different  languages. In addi-  
tion, database application packages 
that a user might  acquire, for ex- 
ample  to pe r fo rm statistical or  
spreadsheet  services, are often not 
coded in the language being used 
for developing in-house applica- 
tions. Again, this results in a multi- 
lingual environment .  

Hence, POSTGRES is p rogram-  
ming language neutral ,  that is, it 
can be called from many dif ferent  
languages. Tight  integration o f  
POSTGRES to any part icular  lan- 
guage requires compiler  extensions 
and a run-t ime system specific to 
that p rog ramming  language. An- 
o ther  research group has built an 
implementat ion of  persistent CLOS 
(Common LISP Object System) on 
top of  POSTGRES [28] and we are 
planning a version of  persistent 
C + +  in the future.  Persistent 
CLOS (or persistent X for any pro-  
g ramming  language, X) is inevita- 
bly language specific. The  run-t ime 
system must map the disk represen-  
tation for language objects, includ- 
ing pointers,  into the main memory  
representat ion expected by the lan- 
guage. Moreover,  an object cache 
must be mainta ined in the p rogram 
address space, or  per formance  will 
suffer badly. Both tasks are inher-  
ently language specific. 

We expect  many language- 
specific interfaces to be built for 
POSTGRES and believe that  the 

query language plus the fast path 
interface available in POSTGRES 
offers a powerful,  convenient  ab- 
straction against which to build 
these p rogramming  language inter- 
faces. The  reader  is directed to 
[22], which discusses our  approach  
to embedding  POSTGRES capabili- 
ties in C + + .  

• s m a l l  n u m b e r  o f  c o n c e p t s  
We tried to build a data  model  with 
as few concepts as possible. The  re- 
lational model  succeeded in replac- 
ing previous data models in part  
because of  its simplicity. We wanted 
to have as few concepts as possible 
so that users would have min imum 
complexity to contend with. Hence,  
POSTGRES leverages the following 
four  constructs: classes; inheri-  
tance; types; and  functions. In  the 
next subsection we briefly review 
the POSTGRES data  model. Then,  
we turn  to a short  descript ion of  
POSTQUEL and fast path. 

The POSTGRES Data Model 
T h e  fundamenta l  notion in 
POSTGRES is that o f  class 2, which 
is a named collection of  ins tances  
of  objects. Each instance has the 
same collection of  named attributes 
and each at tr ibute is of  a specific 
type.  Moreover,  each instance has a 
unique (never-changing) ident if ier  
(OID). 

A user can create a new class by 
specifying the class name, along 
with all at tr ibute names and their  
types, for example:  

create EMP (name = c12, 
salary = float, age = int) 

A class can optionally inher i t  
data  elements from other  classes. 
For  example,  a SALESMAN class 
can be created as follows: 

create SALESMAN 
(quota = float) inherits EMP 

21n this section the reader can use the words 
class, constructed type, and relation inter- 
changeably. Moreover, the words record, in- 
stance, and tuple are similarly interchangea- 
ble. In fact, previous descriptions of the 
POSTGRES data model (i.e., [19], [25]) used 
other terminology than this article. 
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In  this case, an instance of SALES- 
MAN has a quota and inherits all 
data elements from EMP, namely 
name, salary and age. We had the 
standard discussion about whether 
to include single or multiple inheri- 
tance and concluded that a single 
inheritance scheme would be too 
restrictive. As a result, POSTGRES 
allows a class to inherit  from an ar- 
bitrary collection of other parent 
classes. When ambiguities arise be- 
cause a class inherits the same attri- 
bute name from multiple parents, 
we elected to refuse to create the 
new class. However, we isolated the 
resolution semantics in a single rou- 
tine, which can be easily changed to 
track multiple inheritance seman- 
tics as they unfold over time in pro- 
gramming languages. 

There  are three kinds of classes. 
First a class can be a real (or base) 
class whose instances are stored in 
the database. Alternately, a class 
can be a derived class (or view or 
virtual  class) whose instances are 
not physically stored but  are mate- 
rialized only when necessary. Defi- 
nition and maintenance of views is 
discussed in the subsection "Rule 
System Applications." Finally, a 
class can be a version of another 
class, in which case it is stored as a 
differential relative to its parent 
class. Again, the subsection "Rule 
System Applications" discusses in 
more detail how this mechanism 
works. 

POSTGRES contains an exten- 
sive type system and a powerful 
notion of functions. There  are 
three kinds of types in POSTGRES: 
base types; arrays of base types; and 
composite types, which we discuss 
in turn. 

Some researchers, e.g., [17, 20], 
have argued that one should be 
able to construct new base types 
such as bits, bitstrings, encoded 
character strings, bitmaps, com- 
pressed integers, packed decimal 
numbers,  radix 50 decimal num- 
bers, money, etc. Unlike many 
next-generation DBMSs which 
have a hard-wired collection of base 
types (typically integers, floats and 

character strings), POSTGRES con- 
tains an abstract data type (ADT) 
facility whereby any user can con- 
struct arbitrary new base types. 
Such types can be added to the sys- 
tem while it is executing and re- 
quire the defining user to specify 
functions to convert instances of 
the type to and from the character 
string data type. Details of the syn- 
tax appear in [12]. Consequently, it 
is possible to construct a class, 
DEPT, as follows: 

Create DEPT (dname = c10, 
manager = c12, 
floorspace = polygon 
mailstop = point) 

Here, a DEPT instance contains 
four attributes. The  first two have 
familiar types while the third is a 
polygon indicating the space allo- 
cated to the department,  and the 
fourth is the geographic location of 
the mailstop. 

A user can assign values to attri- 
butes of base types in POSTQUEL 
by either specifying a constant or a 
function which returns the correct 
type, for example: 

replace DEPT 
(mailstop = "(10,10)" 
where DEPT.dname = "shoe" 

replace DEPT (mailstop = 
center (DEPT.polygon)) 
where DEPT.dname = "toy" 

Arrays of base types are also sup- 
ported as POSTGRES types. 
Therefore,  if employees receive a 
different salary each month,  we 
could redefine the EMP class as: 

create EMP (name = c12, 
salary = float[12], age = int) 

Arrays are supported in the 
POSTQUEL query language using 
the standard bracket notation, for 
example, 

retrieve (EMP.name) 
where EMP.salary[4] = 1000. 

replace EMP 

(salary[6] = salary[5]) 
where EMP.name = "Jones" 

replace EMP 
(salary = "12, 14, 16, 18, 20, 19, 
17, 15, 13, 11, 9, 10") 
where EMP.name = "Fred" 

Composite types allow an appli- 
cation designer to construct com- 
plex objects, that is, attributes 
which contain other instances as 
part or all of their value. Hence, 
complex objects have a hierarchical 
internal structure, and POSTGRES 
supports two kinds of composite 
types. First, zero or more instances 
of any class is automatically a com- 
posite type. For example, the EMP 
class can be redefined to have attri- 
butes, manager  and coworkers, 
each of which holds a collection of 
zero or more instances of the EMP 
class: 

create EMP (name = c12, 
salary = float[12], 
age = int, manager  = EMP, 
coworkers = EMP) 

Consequently, each time a class is 
constructed, a type is automatically 
available to hold a collection of in- 
stances of the class. 

In  the above example, manager 
and coworkers have the same struc- 
ture for each instance of EMP. 
However, there are situations in 
which the application designer re- 
quires a complex object that does 
not have this rigid structure. For 
example, consider extending the 
EMP class to keep track of the hob- 
bies that each employee engages in. 
For example, Joe might engage in 
windsurfing and softball while Bill 
participates in bicycling, skiing, and 
skating. For each hobby, we must 
record hobby-specific information. 
For example, softball data includes 
the team the employee plays on, his 
or her position and batting average 
while windsurfing data includes the 
type of board owned and mean 
time to getting wet. It is clear that 
hobbies information for each em- 
ployee is best modeled as a collec- 
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tion of  zero or more instances of  
var ious  classes. Moreover,  each 
employee can have differently 
s t ructured instances. To accommo- 
date this diversity, POSTGRES 
supports  a final constructed type, 
set, whose value is a collection of  
instances from all classes. Using this 
construct,  hobbies information can 
be added  to the EMP class as fol- 
lows: 

add  to EMP (hobbies = set) 

In  summary,  complex objects are 
suppor ted  in POSTGRES by two 
composite types. The  first, indi- 
cated by a class name, contains zero 
or  more  instances of  that class while 
the second, indicated by set, holds 
zero or  more  instances of  any 
classes. 

Composite types are suppor ted  
in POSTQUEL by the concept of  
pa th  express ions .  Since manager  in 
the EMP class is a composite type, 
its elements can be hierarchically 
addressed by a nested dot notation. 
For  example,  to find the age of  the 
manager  of  Joe,  one would write: 

retrieve (EMP.manager.age) 
where EMP.narne = "Joe" 

ra ther  than being forced to per-  
form some sort of  a join.  This 
nested dot  notation is also found in 
IRIS [30], O R I O N  [14], 02 [8], and 
EXTRA 113]. 

Composite types can have a value 
that is a function which re turns  the 
correct type for example,  

replace EMP (hobbies = 
compute-hobbiesCJones"))  
where EMP.name = "Jones" 

We now turn  to the POSTGRES 
notion o f  functions. There  are 
three different  kinds of  functions 
known to POSTGRES: C functions; 
operators;  and POSTQUEL func- 
tions. 

A user can def ine an arbi t rary 
number  o f  C funct ions whose ar- 
guments  ;are base types or  compos- 
ite types. For  example,  the user can 

define a function area which maps 
an instance o f  a polygon into an in- 
stance of  a floating-point number .  
Such functions are automatically 
available in the query language as 
il lustrated in the following query 
which finds the names o f  depar t -  
ments for which area re turns  a re- 
sult greater  than 500: 

retrieve (DEPT.dname) where 
area (DEPT.floorspace) > 500 

C functions can be def ined to 
POSTGRES while the system is 
runn ing  and are  dynamically 
loaded when required dur ing  
query execution. 

C functions can also have an ar- 
gument  which is a class name, for 
example,  

retrieve (EMP.name) 
where overpaid  (EMP) 

In  this case overpaid has an oper-  
and of  type EMP and re turns  a 
Boolean, and the query finds the 
names of  all employees for which 
overpaid re turns  true. A function 
whose a rgument  is a class name is 
inheri ted down the class hierarchy 
in the s tandard  way. Hence, over- 
paid is automatically available for 
the SALESMAN class. In  some cir- 
cles such functions are called meth- 
ods. Moreover,  overpaid  can ei ther  
be considered as a function using 
the above syntax or  as a new attri- 
bute for EMP whose type is the re- 
turn  type of  the function. Using the 
latter interpretat ion,  the user can 
restate the above query as: 

retrieve (EMP.name) 
where EMP.overpaid 

Hence, overpaid  is interchangeably 
a function def ined for each in- 
stance o f  EMP or  a new attr ibute 
for EMP. The  same interpreta t ion 
of  such functions appears  in IRIS 
[30]. 

C functions are arbi t rary C pro- 
cedures. Hence,  they have arbi t rary 
semantics and can run  arbi t rary 
POSTQUEL commands  dur ing  

execution. Therefore ,  queries with 
C functions in the qualification can- 
not be opt imized by the 
POSTGRES query optimizer.  For  
example,  the preceding query on 
overpaid employees will result in a 
sequential scan o f  all instances of  
the class. 

To utilize indexes in processing 
queries, POSTGRES supports  a 
second kind o f  function, called op- 
erators. Opera tors  are functions 
with one or  two operands  which use 
the s tandard  opera to r  notat ion in 
the query language. For  example,  
the following query looks for de- 
par tments  whose floor space has a 
greater  area than that of  a specific 
polygon: 

retrieve (DEPT.dname) 
where DEPT.floorspace A G T  
"(0,0), (1,1), (0,2)" 

The  'area greater  than'  opera tor ,  
AGT, is def ined by indicating the 
token to use in the query language 
as well as the function to call to 
evaluate the operator .  Moreover,  
several hints  which assist the query 
optimizer  can also be included in 
the definition. One o f  these hints is 
that ALE is the negator  of  this op- 
erator.  Therefore ,  the query opti- 
mizer can t ransform the query: 

retrieve (DEPT.dname) 
where not DEPT.floorspace 
ALE "(0,0), (1,1), (0,2)" 

which cannot be opt imized into the 
previous one which can be. 

In addit ion,  the design of  the 
POSTGRES access methods allows 
a B+- t ree  index to be constructed 
for the instances of  any base type. 
Consequently,  a B-tree index for 
floorspace in DEPT supports  effi- 
cient access for the col lect ion of  
operators  {ALT, ALE, AE, AGT, 
AGE}. Informat ion  on the access 
paths available for the various op- 
erators is recorded  in the 
POSTGRES system catalogs. 

As pointed out in [24], it is im- 
perative that a user be able to con- 
struct new access methods to pro-  
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vide efficient access to instances o f  
nontradi t ional  base types. For  ex- 
ample,  suppose a user introduces a 
new opera tor  '!!' that re turns  true if  
two polygons overlap. Then,  he 
might  ask a query such as: 

retrieve (DEPT.dname) 
where DEPT.floorspace!! 
"(0,0), (1,1), (0,2)" 

The re  is no B +- t ree  or  hash ac- 
cess method that will allow this 
query to be rapidly executed. 
Rather,  the query must  be sup- 
por ted  by some mult idimensional  
access method such as R-trees, grid 
files, K-D-B trees, etc. Hence, 
POSTGRES was designed to allow 
new access methods to be written by 
POSTGRES users and then dynam- 
ically added  to the system. Basically, 
an access method to POSTGRES is 
a collection of  13 C functions which 
per form record-level operat ions 
such as fetching the next record  in 
a scan, inserting a new record,  de- 
leting a specific record,  etc. All a 
user need do is define implementa-  
tions for each of  these functions 
and make a collection of  entries in 
the system catalogs. 

Opera tors  are only available for 
operands  which are base types be- 
cause access methods tradit ionally 
suppor t  fast access to specific fields 
in records. It is unclear  what an ac- 
cess method for a constructed type 
should do, and therefore  
POSTGRES does not  include this 
capability. 

The  third kind of  function avail- 
able in POSTGRES is POSTQUEL 
funct ions.  Any collection of  com- 
mands in the POSTQUEL query 
language can be packaged together  
and def ined as a function. For  ex- 
ample,  the following function de- 
fines the high-paid employees: 

define function high-pay re turns  
EMP as 
retrieve (EMP.alI) 
where EMP.salary > 50000 

POSTQUEL functions can also 
have parameters ,  for example:  

define function sal-lookup (c12) 
re turns  float as 
retrieve (EMP.salary) 
where EMP.name = $1 

Notice that  sal-lookup has one ar- 
gument  in the body of  the func- 
t i o n - t h e  name of  the person in- 
volved. This a rgument  must be 
provided at the time the function is 
called. 

Such functions may be placed in 
a query, for example,  

retrieve (EMP.name) 
where EMP.salary = 
sal- lookupCJoe ' )  

or  they can be directly executed 
using the fast path facility described 
in the subsection 'Fast Path'. 

sal-lookup("Joe") 

Moreover,  attributes of  a composite 
type automatically have values 
which are functions that  re turn  the 
correct  type. For  example,  consider 
the function: 

define function mgr- lookup (c12) 
re turns  EMP as 
retrieve (EMP.alI) 
where EMP.name = 
DEPT.manager  and 
DEPT.name = $1 

This function can be used to assign 
values to the manager  at tr ibute in 
the EMP class, for example:  

append  to EMP 
(name = "Sam", salary = 1000, 
age = 40, manager  = 
mgr- lookup ("shoe")) 

Like C functions, POSTQUEL 
functions can have a specific class as 
an argument :  

define function neighbors 
(DEPT) re turns  DEPT as 
retrieve (DEPT.aI1) 
where DEPT.floor = $.floor 

This function is def ined for each 
instance of  DEPT and its value is 

the result of  the query with the 
appropr ia te  value substituted for 
$.floor. Like C functions that have a 
class as an argument ,  such 
POSTQUEL functions can ei ther  
be thought  of  as functions and que- 
r ied as follows: 

retrieve (DEPT.name) 
where neighbors(DEPT).name = 
"shoe" 

or  they can be thought  of  as new 
attributes using the following query 
syntax: 

retrieve (DEPT.name) 
where DEPT.neighbors .name = 
"shoe" 

The POSTGRES O u e ~  l anguage  
The  previous section presented 
several examples of  the 
POSTQUEL language. I t  is a set- 
or iented query language that re- 
sembles a superset  of  a relational 
query language. Besides user- 
def ined functions and operators ,  
array support ,  and path expres- 
sions which were illustrated earlier,  
the features which have been added  
to a tradit ional  relational language 
include: suppor t  for nested que- 
ries; transitive closure; suppor t  for 
inheritance; and suppor t  for t ime 
travel. 

POSTQUEL also allows queries 
to be nested and has operators  that 
have sets of  instances as operands.  
For example,  to f ind the depar t -  
ments which occupy an entire floor, 
one would query: 

retrieve (DEPT.dname) 
where DEPT.floor N O T - I N  
{D.floor from D in DEPT 
where D.dname l=DEPT.dname} 

In this case, the expression inside 
the curly braces represents  a set o f  
instances, and  N O T - I N  is an opera-  
tor which takes a set of  instances as 
its r ight operand.  

The  transitive closure operat ion 
allows one to explode a parts or  
ancestor hierarchy. Consider,  for 
example,  the class: 
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C u r r e n t  c o m m e r c i a l  s y s t e m s  
a r e  r e q u i r e d  t o  s u p p o r t  

r e f e r e n t i a l  i n t e g r i t y ,  
w h i c h  i s  m e r e l y  a 

s i m p l e - m i n d e d  c o l l e c t i o n  

parent  (older, younger) 

One can ask for all the ancestors of 
John  as l%llows: 

retrieve* into answer 
(parent.older) from a in answer 
where parent .younger  = "John" 
or parent .younger  = a.older 

In  this case the * after retrieve indi- 
cates that the associated query 
should be run  until  the answer fails 
to grow. As noted in this example, 
the resuh of a POSTQUEL com- 
mand can be added to the database 
as a new class. In  this case, 
POSTQUEL follows the lead of re- 
lational systems by removing dupli- 
cate records from the result. The  
user who is interested in retaining 
duplicate,~ can do so by ensur ing 
that the OID field of some instance 
is included in the target list being 
selected. 

I f  one wishes to find the names 
of all employees over 40, one would 
write: 

retrieve (E.name) from E in 
EMP where E.age > 40 

On the other hand, if one wanted 
the names of all salesmen or em- 
ployees over 40, the notation is: 

retrieve (E.name) from E in 
EMP* where E.age > 40 

Here the * after EMP indicates that 
the query should be run  over EMP 
and all classes unde r  EMP in the 
inheritance hierarchy. This use of * 
allows a user to easily run  queries 
over a class and all its descendents. 

O f  r u l e s .  

Finally, POSTGRES supports the 
notion of t ime travel. This feature 
allows a user to run  historical que- 
ries. For example, to find the salary 
of Sam at time T one would query: 

retrieve (EMP.salary) 
from EMP [T] 
where EMP.name = "Sam" 

POSTGRES will automatically find 
the version of Sam's record valid at 
the correct time and get the appro- 
priate salary. The  "Storage System" 
section discusses support  for this 
feature in more detail. 

FaSt Path 
There  are two reasons why we 
chose to implement  a fast path fea- 
ture. First, there are a variety of 
decision support  applications in 
which the end user is given a spe- 
cialized query language. In  such 
environments,  it is often easier for 
the application developer to con- 
struct a parse tree representation 
for a query rather than an ASCII 
one. Hence, it would be desirable 
for the application designer to be 
able to directly interface to the 
POSTGRES optimizer or executor. 
Most DBMSs do not allow direct 
access to internal system modules. 

The second reason is a bit more 
complex. In  the Berkeley imple- 
mentat ion of persistent CLOS, it is 
necessary for the run-t ime system 
to assign a unique identifier (OID) 
to every persistent object it con- 
structs. It is undesirable for the sys- 
tem to synchronously insert each 
object directly into a POSTGRES 
database and thereby assign a 

POSTGRES identifier to the object. 
This would result in poor perfor- 
mance in executing a persistent 
CLOS program. Rather, persistent 
CLOS maintains a cache of objects 
in the address space of the program 
and only inserts a persistent object 
into this cache synchronously. 
There  are several options that con- 
trol how the cache is written out to 
the database at a later time. Unfor-  
tunately, it is essential that a persis- 
tent object be assigned a unique 
identifier at the time it enters the 
cache, because other objects may 
have to point to the newly created 
object and use its OID to do so. 

If  persistent CLOS assigns 
unique identifiers, then there will 
be a complex mapping that must be 
performed when objects are written 
out to the database and real 
POSTGRES unique identifiers are 
assigned. Alternately, persistent 
CLOS must maintain its own system 
for unique identifiers, independent  
of the POSTGRES one, an obvious 
duplication of effort. The  solution 
chosen was to allow persistent 
CLOS to access the POSTGRES 
routine that assigns unique identifi- 
ers and allow it to preassign N 
POSTGRES object identifiers 
which it can subsequently assign to 
cached objects. At a later time, 
these objects can be written to a 
POSTGRES database using the 
preassigned unique identifiers. 
When the supply of identifiers is 
exhausted, persistent CLOS can 
request another  collection. 

In  these examples, an application 
program requires direct access 
to a user-defined or internal 
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H o w e v e r ,  t h e r e  a r e  
a l a r g e  n u m b e r  o f  m o r e  

g e n e r a l  r u l e s  w h i c h  
a n  a p p l i c a t i o n  d e s i g n e r  

w o u l d  w a n t  t o  

POSTGRES function, and there- 
fore the POSTGRES query lan- 
guage has been extended with: 

function-name (param-list) 

In this case, a user can ask that any 
function known to POSTGRES be 
executed. This function can be one 
that a user has previously defined 
or it can be one that is included in 
the POSTGRES implementation. 
Hence, a user can directly call the 
parser, the optimizer, the executor, 
the access methods, the buffer 
manager or the utility routines. In  
addition, he or she can define func- 
tions which in tu rn  make calls on 
POSTGRES internals. In this way, 
the user can have considerable con- 
trol over the low-level flow of con- 
trol, much as is available through a 
DBMS toolkit such as Exodus [18], 
but without all the effort involved 
in configuring a tailored DBMS 
from the toolkit. 

The  above capability is called fas t  
path because it provides direct ac- 
cess to specific functions without 
checking the validity of parameters. 
As such, it is effectively a remote 
procedure call facility and allows a 
user program to call a function in 
another address space rather than 
in its own address space. 

The Rules System 
It is clear to us that all DBMSs need 
a rules system. Current  commercial 
systems are required to support  
referential integrity [7], which is 
merely a simple-minded collection 
of rules. However, there are a large 
number  of more general rules 

s u p p o r t .  

which an application designer 
would want to support. For exam- 
ple, one might want to insist that a 
specific employee, Joe, has the 
same salary as another employee, 
Fred. This rule is very difficult to 
enforce in application logic because 
it would require the application to 
see all updates to the salary field, in 
order to fire application logic to 
enforce the rule at the correct time. 
A better solution is to enforce the 
rule inside the data manager.  

In  addition, most current  sys- 
tems have special-purpose rules 
systems to support  relational views, 
and protection. In  building the 
POSTGRES rules system we were 
motivated by the desire to construct 
o n e  general-purpose rules system 
that could perform all of the fol- 
lowing functions: view manage- 
ment; triggers; integrity con- 
straints; referential integrity; 
protection; and version control. 
This should be contrasted with 
other approaches (e.g., [9, 15, 29]) 
which have different goals. 

POSTGRES Rules 
The  rules we are using have a fa- 
miliar production rule syntax of the 
form: 

ON event (TO) object WHERE 
POSTQUEL-qualification 
THEN DO [instead] 
POSTQUEL-command(s) 

Here, event is retrieve, replace, de- 
lete, append,  new (i.e., replace or 
append) or old (i.e., delete or re- 
place). Moreover, object is either 
the name of a class or class.column. 

POSTQUEL-qualification is a nor- 
mal qualification, with no additions 
or changes. The optional keyword 
i n s t e a d  indicates that the action 
indicated by POSTQUEL- 
command(s) is to be performed in- 
stead of the action which caused the 
rule to activate. If  instead is miss- 
ing, then the action is done in addi- 
tion to the user event. Finally, 
POSTQUEL-commands is a set of 
POSTQUEL commands with the 
following two changes: 

new or current  can appear instead 
of the name of a class in front of 
any attribute. 

refuse (target-list) is added as a new 
POSTQUEL command 

In this notation we would specify 
that Fred's salary adjustments get 
propagated on to Joe as follows: 

on new EMP.salary where 
EMP.name = "Fred" 
then do replace 
E (salary = new.salary) 
from E in EMP 
where E.name = "Joe" 

In  general, rules specify addi- 
tional actions to be taken as a result 
of user updates. These additional 
actions may activate other rules, 
and a f o r w a r d  c h a i n i n g  control 
flow results, as was popularized in 
OPS5 [10]. 

POSTGRES allows events to be 
retrieves as well as updates. More- 
over, the action can be one or more 
queries. Consequently, the rule that 
Joe must have the same salary as 
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Fred can also be expressed as: 

on retrieve to EMP.salary where 
EMP.name = "Joe" 
then do instead retrieve 
(EMP.salary) 
where EMP.name = "Fred" 

In this case, Joe 's  salary is not  ex- 
plicitly stored, Rather  it is de r ived  
by activating the above rule. In  this 
case the two data  items are kept  in 
synchronization by storing one and 
deriving the other.  Moreover,  if 
Fred 's  sah ry  is not explicitly stored, 
then fur ther  rules would be awak- 
ened to find the ult imate answer, 
and a backward chaining control  
flow results. This control  structure 
was popular ized in Prolog [5]. 

I f  Fred  receives f requent  raises 
and Joe's  salary is rarely queried,  
then the backward chaining repre-  
sentation will be more  efficient. On 
the other  hand,  if many queries are 
di rected to Joe 's  salary and Fred is 
rarely updated ,  then the forward 
chaining alternative is prefer red .  In  
POSTGRES, the application de- 
signer must  decide whether  for- 
ward chaining or  backward chain- 
ing control  flow is desi red and 
specify tile rules accordingly. 

Implementation of Rules 
There  are two implementat ions for 
POSTGRES rules. The  first is 
through record level processing 
deep  in the run- t ime system. This  
rules system is called when individ- 
ual records are  accessed, deleted,  
inserted or  modified.  The  second 
implementat ion is th rough  a query 
rewrite module.  This  code exists 
between the parser  and the query 
optimizer  and converts a user com- 
mand  to an al ternate form pr ior  to 
optimization. In  the remainder  of  
this section we briefly discuss each 
implementat ion by explaining how 
each system processes the rule 
which progagates  Fred 's  salary on 
to Joe, that is: 

on new EMP.salary where 
EMP.name = "Fred" 
then do replace 

E (salary = new.salary) 
from E in EMP 
where E.name = "Joe" 

The  record-level rule system 
causes a marker  to be placed on the 
salary at tr ibute of  Fred's  instance. 
This marker  contains the identif ier  
of  the cor responding  rule and the 
types of  events to which it is sensi- 
tive. I f  the executor  touches a 
marked  attribute,  then it calls the 
rule system before  proceeding.  The  
rule system is passed the current  
instance and the p roposed  new one. 
It discovers that the event of  the 
rule actually applies, substitutes 
new values and current  values in 
the action par t  of  the rule and then 
executes the action. When  the 
action is complete,  it re turns  con- 
trol to the executor  which installs 
the p roposed  upda te  and contin- 
ues. 

I f  Fred 's  name is changed,  then 
the marker  on his salary must be 
d ropped .  In  addit ion,  if Joe  is h i red 
before  Fred,  then the markers  must  
be added  at the time Fred's  record  
is inserted into the DBMS. To per-  
form these tasks, POSTGRES re- 
quires o ther  markers  which are dis- 
cussed in [27]. Also, if  a rule sets a 
sufficient number  of  markers  in a 
class, then POSTGRES can per-  
form marker  escala t ion and place 
an enclosing marker  on the entire 
c lass--detai ls  appea r  in [27]. 

The  record-level rules system is 
especially efficient if there  are a 
large number  of  rules, and each 
covers only a few instances. In  this 
case, no extra  overhead will be re- 
quired unless a marked  instance is 
actually touched. Hence,  the rule 
system requires no 'tax', unless a 
rule actually applies. In  this case, 
the overhead is that required to 
ensure the event is t rue and then to 
execute the action. 

On the other  hand,  consider  the 
following rule: 

on replace to EMP.salary 
then do  
append  to A U D I T  
(name = current .name,  
salary = current.salary,  

new = new.salary, user = user()) 

and  an incoming query: 

replace EMP 
(salary = 1.1 * EMP.salary) 
where EMP.age < 50 

Clearly, utilizing the record-level 
rules system will entail f ir ing this 
rule once per  elderly employee,  a 
large overhead.  I t  is much more  
efficient to rewri te  the user com- 
mand  to: 

append  to A U D I T  
(name = EMP.name, 
salary = EMP.salary, new = 1.1 * 
EMP.salary, user = user()) 
where EMP.age < 50 

replace EMP 
(salary = 1.1 * EMP.salary) 
where EMP.age < 50 

In this case, the audi t ing opera t ion  
is done  in bulk as a single com- 
mand.  In [27] a general  a lgori thm 
is presented  which can rewrite any 
POSTGRES command  to enforce 
any rule. In  general ,  if there  are  N 
rules for  a given class, then each 
user command  will turn  into a total 
of  N + 1 result ing commands.  
Therefore ,  this rules system will 
pe r fo rm poorly if  there  are a large 
number  of  small-scope rules, but  
admirably if  there  are a small num- 
ber  of  large-scope rules. 

As a result, the two implementa-  
tions are  complementary ,  and  we 
are explor ing a ru le  chooser  which 
could suggest the best implementa-  
tion for any given rule. Unfor tu-  
nately, the two implementat ions  
have dif ferent  semantics in certain 
cases, and we now turn  to this topic. 

Semantics of Rules 
Consider  the rule 

on retrieve to EMP.salary 
where EMP.name = "Joe" 
then do  instead retrieve 
(EMP.salary) 
where EMP.name = "Fred" 

and the following user  query: 
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retrieve (EMP.name, EMP.salary) 
where EMP.name = "Joe" 

If  query rewrite is used to support  
the above rule, then the user query 
will be rewritten to: 

retrieve (EMP.name, E.salary) 
from E in EMP where 
EMP.name = "Joe" and 
E.name = "Fred" 

Consider the possible answers to 
the user query for various numbers  
of instances of Fred. If  there is no 
Fred in the database, then the 
query rewritten by the rules system 
will re turn  no instances. If  there is 
one Fred, then one instance will be 
returned,  while N Freds will cause 
N instances to be returned. There-  
fore, query rewrite implements the 
union semantics indicated in col- 
umn  1 of Table 1. On the other 
hand, the record-level implementa- 
tion can re turn Joe with a null sal- 
ary if Fred does not exist. If  there 
are multiple Freds, it can re turn  
any one of them, all of them, or an 
error. Therefore,  it can implement  
union,  random or error semantics. 

Two conclusions are evident 
from this discussion. First, the de- 
sired semantics for this example are 
debatable. Moreover, a case can 
probably be made for each of the 
semantics, depending on the attri- 
bute whose value is provided by the 
rule. Hence, one should probably 
include all three, so that an in- 
formed user can choose which one 
fits his application. Second, it is in- 
feasible for the query rewrite sys- 
tem to produce anything other than 
union semantics. Therefore,  a user 
who desires different semantics 
must choose the record-level sys- 
tem. Consequently, the selection of 
which rule system to use has seman- 
tic as well as performance implica- 
tions. 

A separate semantic matter con- 
cerns the time that rules, are acti- 
vated. There  are certain rules that 
must be activated immediately 
upon occurrence of the event in the 
rule, and others which should be 

deferred to the end of the user's 
transaction. Also, some rules 
should be run  as part  of the user's 
transaction, while others should 
run  in a separate transaction. For 
example, the following rule must 
run  immediately in the same trans- 
action: 

on retrieve to EMP.salary 
where EMP.name = "Joe" 
then do instead retrieve 
(EMP.salary) 
where EMP.name = "Fred" 

while the one below must be acti- 
vated immediately in a different 
transaction, 

on retrieve to EMP.salary 
then do append to A U D I T  
(name = current .name, 
salary = current.salary, 
user = user()) 

In  this last example, the user can 
abort after the salary data of inter- 
est has been retrieved. If  the action 
is run  in the user's transaction, then 
aborting will subvert the desired 
auditing. In  addition, the action 
must be performed immediately 
for the same reason. 

As a result, there are at least four 
reasonable rule activation policies: 

immedia te- -same transaction 
immedia te- -d i f ferent  transaction 
defer red- -same transaction 
defer red- -d i f fe ren t  transaction 

At the moment,  POSTGRES only 
implements t he  first option. In 
time, we may support  all four. 

1 Fred 1 Instance 1 instance 

Rule System Applications 
In  this subsection we discuss the 
implementation of POSTGRES 
views and versions. In  both cases, 
required functionality is supported 
by compil ing user-level syntax into 
one or more rules for subsequent 
activation inside POSTGRES. 

Views (or virtual classes) are an 
important  DBMS concept because 
they allow previously implemented 
classes to be supported even when 
the schema changes. For example, 
the view, TOY-EMP, can be de- 
fined as follows: 

define view TOY-EMP (EMP.aI1) 
where EMP.dept = "toy" 

This view is compiled into the fol- 
lowing POSTGRES rule: 

on retrieve to TOY-EMP 
then do instead retrieve (EMP.all) 
where EMP.dept = "toy" 

Any query ranging over TOY-EMP 
will be processed correctly by either 
implementation of the POSTGRES 
rules system. However, a key prob- 
lem is support ing updates on views. 
Current  commercial relational sys- 
tems support  only a subset of SQL 
update commands, namely those 
which can be unambiguously pro- 
cessed against the underlying base 
tables. POSTGRES takes a much 
more general approach. If  the ap- 
plication designer specifies a de- 
fault view, that is, 

define default view LOW-PAY 
(EMP.OID, EMP.name, EMP.age) 
where EMP.salary < 5000 

1 Instance 
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then, a collection o f  defaul t  update  
rules will be compiled for the view. 
For  example,  the replace rule for 
LOW-PAY is: 

on replace to LOW-PAY.age 
then do instead replace EMP 
(age = new.age) 
where EMP.OID = cur ren t .OID 

These  default  rules will give the 
correct view-updating semantics as 
long as the view has no ambiguous 
updates.  However,  the application 
designer  is free to specify his or  her  
own upda te  semantics by indicating 
other  update  rules. For  example,  
the following replace rule for TOY- 
EMP could be defined:  

on replace to TOY-EMP.dept  
then do instead delete EMP 
where EMP.name = current .name 
and new.dept  !="toy" 

Therefore ,  default  views are 
suppor ted  by compil ing the view 
syntax into a collection of  rules. 
Other  update  semantics can be 
readily specified by user-written 
upda t ing  rules. 

A second area where compilation 
to rules can suppor t  desired func- 
tionality is that of  versions,  The  
goal is to create a hypothe t ica l  ver- 
sion of  a class with the following 
propert ies:  

1) Initially the hypothetical  class 
has all instances of  the base class 

2) The  hypothetical class can then 
be freely upda ted  to diverge 
from the base class 

3) Updates  to the hypothetical class 
do nor cause physical modifica- 
tions to the base class 

4) Updates  to the base class are vis- 
ible in the hypothetical class, 
unless the instance upda ted  has 
been deleted or  modif ied  in the 
hypothetical class. 

Of  course, it is possible to suppor t  
versions by making a complete copy 
of  the class for the version and then 
making subsequent updates  in the 
copy. More efficient algori thms 
which make use of  d i f ferent ia l  files 

are presented  in [11, 31]. 
In  POSTGRES any user can cre- 

ate a version of  a class as follows: 

create version my-EMP from EMP 

This command is suppor ted  by cre- 
ating two d i f ferent ia l  classes for 
EMP: 

EMP-MINUS (deleted-OlD) 
EMP-PLUS 
(all-fields-in EMP, replaced-OID) 

and installing a collection of  rules. 
EMP-MINUS holds the OID for 
any instance in EMP which is to be 
deleted from the version, and is the 
negative differential.  On the other  
hand,  EMP-PLUS holds any new 
instances added  to the version as 
well as the new record for any mod-  
ification to an instance of  EMP. In 
the latter case, the OID of  the rec- 
ord  replaced in EMP is also re- 
corded.  

The  retrieve rule installed at the 
time the version is created is: 

on retrieve to my-EMP 
then do instead 
retrieve (EMP-PLUS.aI1) 

retrieve (EMP.all) where 
EMP.OID N O T - I N  
{EMP-PLUS.replaced-OID} 
and EMP.OID N O T - I N  
{EMP-MINUS.deleted-OID} 

The  delete rule for the version is 
similarly: 

on delete to my-EMP 
then do instead 
append  to EMP-MINUS 
(deleted-OID = cur ren t .OID 
where EMP.OID = cur ren t .OID 
delete EMP-PLUS where 
EMP-PLUS.OID = cur ren t .OID 

The  interested reader  can derive 
the replace and append  rules or  
consult [16] for a complete expla- 
nation. Also, there  is a per formance  
comparison in [16] which shows 
that a rule system implementat ion 
of  versions has comparable  perfor-  

mance to an algorithmic implemen- 
tation with hard-wired code deep  in 
the executor.  

Both of  the examples in this sec- 
tion have shown impor tan t  DBMS 
functions that can be suppor ted  
with very little code by compil ing 
higher-level syntax into a collection 
of  rules. In  addit ion,  both examples 
are only possible with a rule system 
such as POSTGRES that  supports  
both forward and backward chain- 
ing rules. 

Storage System 
When considering the POSTGRES 
storage system, we were guided by a 
missionary zeal to do something 
different.  All cur rent  commercial  
systems use a storage manager  with 
a wri te-ahead log (WAL), and we 
felt that  this technology was well 
unders tood.  Moreover,  the original 
INGRES prototype from the 1970s 
used a similar storage manager ,  
and we had no desire to do another  
implementat ion.  

Hence,  we seized on the idea of  
implement ing  a 'no-overwrite '  stor- 
age manager .  Using this technique, 
the old record remains in the data- 
base whenever  an update  occurs, 
and serves the purpose  normally 
pe r fo rmed  by a write-ahead log. 
Consequently,  POSTGRES has no 
log in the conventional sense o f  the 
term. Instead the POSTGRES log is 
simply two bits per  transaction indi- 
cating whether  each transaction 
committed,  aborted,  or  is in prog-  
ress. 

Two very nice features can be 
exploi ted in a no-overwrite sy s t em- -  
instantaneous crash recovery and 
time travel. First, abor t ing a trans- 
action can be instantaneous because 
one does not need to process the 
log undoing  the effects o f  updates;  
the previous records are readily 
available in the database. More gen- 
erally, to recover from a crash, one 
must abort  all the transactions in 
progress at the time of  the crash. 
This process can be effectively in- 
stantaneous in POSTGRES. Of  
course, the t rade-off  is that  a 
POSTGRES database at any given 
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time will have committed instances 
intermixed with instances that were 
written by aborted transactions. 
The  run-t ime system must distin- 
guish these two kinds of instances 
and ignore the latter ones. The  
techniques used are discussed in 
[21]. 

This storage manager should be 
contrasted with a conventional one 
in which the previous record is 
overwritten with a new one. In this 
case a write-ahead log is required to 
maintain the previous version of 
each record. There  is no possibility 
of time travel because the log can- 
not be queried since it is in a differ- 
ent format. Moreover, the database 
must be restored to a consistent 
state when a crash occurs by pro- 
cessing the log to undo  any partially 
completed transactions. Hence, 
there is no possibility of instantane- 
ous crash recovery. 

Clearly, a no-overwrite storage 
manager is superior to a conven- 
tional one if it can be implemented 
at comparable performance. There  
is a brief hand-wave of an argu- 
ment  in [21] that alleges this might 
be the case. In our opinion, the ar- 
gument  hinges around the exis- 
tence of stable main memory. In 
the absence of stable memory, a no- 
overwrite storage manager must 
force to disk at commit time all 
pages written by a transaction. This 
is required because the effects of a 
committed transaction must be 
durable in case a crash occurs and 
main memory is lost. A conven- 
tional data manager on the other 
hand, need only force to disk at 
commit time the log pages for the 
transaction's updates. Even if there 
are as many log pages as data pages 
(a highly unlikely occurrence), the 
conventional storage manager is 
doing sequential I/O to the log 
while a no-overwrite storage man- 
ager is doing random I/O. Since 
sequential I/O is substantially faster 
than random I/O, the no-overwrite 
solution is guaranteed to offer 
worse performance. 

However, if stable main memory 
is present then neither solution 

must force pages to disk. In  this 
environment,  performance should 
be comparable. Hence, with stable 
main memory it appears that a no- 
overwrite solution is competitive. 
As computer  manufacturers offer 
some form of stable main memory, 
a no-overwrite solution may be- 
come a viable storage option. 

The  second benefit of a no- 
overwrite storage manager is the 
possibility of t ime travel. As noted 
earlier, a user can ask a historical 
query and POSTGRES will auto- 
matically re turn information from 
the record valid at the correct time. 
To support  time travel, 
POSTGRES maintains two differ- 
ent physical collections of records, 
one for the current  data and one 
for historical data, each with its own 
indexes. As noted in [21], there is 
an asynchronous demon, which we 
call the vacuum cleaner, r unn i ng  in 
the background which moves rec- 
ords that are no longer valid from 
the current  database to the histori- 
cal database. The  historical data- 
base is formatted to perform well 
on an archival device such as an 
optical disk jukebox. Further  de- 
tails can be obtained from [21]. 

The POSTGRES Implementation 
POSTGRES contains a fairly con- 
ventional parser, query optimizer 
and execution engine. Four aspects 
of the implementation deserve spe- 
cial mention: the process structure; 
extendability; dynamic loading; 
and rule wake-up, and we discuss 
each in turn. 

The first aspect of our  design 
concerns the operating system pro- 
cess structure. Currently, 
POSTGRES runs as one process for 
each active user. Therefore,  N ac- 
tive users will get N POSTGRES 
processes which share the 
POSTGRES code, buffer pool and 
lock table but have private data seg- 
ments. This was done as an expedi- 
ent to get a system operational as 
quickly as possible. Hence, we de- 
liberately ducked the complexity 
associated with building 
POSTGRES as a single server pro- 

cess to which the N users can con- 
nect or as a collection of J,  J -  N, 
servers to which users connect. Ei- 
ther option would have required 
process management  and schedul- 
ing to be built inside of 
POSTGRES, and we wanted to 
avoid these difficulties. 

Second, POSTGRES ex- 
tendability has been accomplished 
by making the parser, optimizer 
and execution engine entirely 
table-driven. For example, if the 
parser sees a token, il, it checks in 
the operator class in the system cat- 
alogs to see if the operator is de- 
fined. If  not, it generates an error. 
Information for frequently used 
operators is cached in a main mem- 
ory data structure for augmented 
performance. When the optimizer 
evaluates a qualification, such as: 

where EMP.location II '(0,0)' 

it checks to see if there is an index 
on location and if so, whether the 
operator II is supported for the 
index and what the selectivity of the 
clause is. With this information it 
can compute the expected cost of 
an indexed scan and compare it 
with a sequential scan. The general 
algorithm is sketched in [20]. Basi- 
cally, the optimizer is table-driven 
off the system catalogs, which de- 
scribe the present storage configu- 
ration. 

POSTGRES assumes that data 
types, operators and functions can 
be added and subtracted dynami- 
cally, that is, while the system is exe- 
cuting. Moreover, we have de- 
signed the system so that it can 
accommodate a potentially very 
large number  of types and opera- 
tors. Consequently, the user func- 
tions that support  the implementa- 
tion of a type must be dynamically 
loaded and unloaded. Hence, 
POSTGRES maintains a cache of 
currently loaded functions and 
dynamically moves functions into 
the cache and then ages them out of 
the cache. The downside of this 
design decision is that a dynamic 
loader is required for each hard- 
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ware platform on which 
POSTGRES operates.  

Finally, the record-or iented im- 
plementat ion for rules system 
forces significant complexity on our  
design. A user can add a rule such 
a s ;  

on new EMP.salary 

where EMP.name = "Joe" 
then do retrieve (new.salary) 

In this ,case the user's application 
process ,wishes to be notified of  any 
salary adjus tment  for Joe.  Consider  
a second user  who gives Joe a raise. 
The  POSTGRES process that actu- 
ally does the adjus tment  will notice 
that a marker  has been placed on 

the salary field and alerts a special 
process called the POSTMASTER.  
This process in turn alerts the pro- 
cess for the first user where the 
query would be run and the results 
del ivered to the application pro- 
cess. 

POSTGRES Per formance  
At the current  t ime (June 1991) 
POSTGRES Version 2.1 has been 
distr ibuted for nearly three months 
and has been installed by at least 
125 sites. In  this section we indicate 
POSTGRES, Version 2.1 perfor-  
mance on both the Wisconsin 
benchmark  [2] and on an engineer-  
ing benchmark  [4]. For  the Wiscon- 
sin benchmark,  we compare  
POSTGRES with the University of  

2 select 10% into temp~ noindex : 9 i 8  1 0 i 2  
3 select 1% into temp. clust, index . . . .  0.7 5.2 
5 select 1% into tempi non.clust~ index  1~2 5,3 
6 select 10% into temp, non-clust, index 4 . 0  8.9 
7 s e l e c t l t o  screen clust, i n d e x  0,3 0,9 
9 joinAselB, no index 12,6 353 

10 jolnABprlme~ no  index . . . . . .  !7.0 35.3 
11 jolnCselAselB, no index . . . . . .  25~9 53.7 
1 4  jolncselAselB ctust. Index . . . .  2 4 . 1  56,7 

1 7  joinCseiAseiB, non,clust, index . . . . . . . . .  35.2 . . . .  68,7 
. . . .  18 p~Ject1% into temp ....... 18;5 3 6 . 7  

III I I 

California version of  INGRES 
which we worked on from 1974-  
78. Table 2 shows the per formance  
of  the two systems for a subset of  
the Wisconsin benchmark  execut- 
ing on a Sun SPARCstation. As can 
be seen, POSTGRES is approxi-  
mately twice the speed of  UCB- 
INGRES. 

We have also compared  the per-  
formance o f  POSTGRES with that 
of  INGRES, Version 5.0, a com- 
mercial DBMS from the INGRES 
products  division of  ASK Com- 
puter  Systems. On a Sun 3/280 
POSTGRES is about  3/5 o f  the per-  
formance o f  ASK-INGRES for the 
Wisconsin benchmark.  The re  are 
still substantial inefficiencies in 
POSTGRES, especially in the code 
which checks that a retr ieved rec- 
o rd  is valid. We expect  that  subse- 
quent  tuning p lanned  for Version 
3.0 will get us somewhat closer to 
ASK-INGRES. 

As a second benchmark,  we re- 
por t  the per formance  of 
POSTGRES on the benchmark  in 
[4]. In  this benchmark,  we compare  
POSTGRES with the systems re- 
por ted  by Cattell, namely his in- 
house system, an OODB from one 
of  the commercial  vendors  and a 
commercial  RDBMS. In Table 3 we 
repor t  results for three configura-  
tions of  the small database version 
o f  the benchmark,  using 
POSTGRES conf igured with 5.0 
Mbytes of  buffer  space. The  first 

cold-remote-lookup 7.6 20 29 24.2 
cold-remote-traversal 17 17 90 44.1 
cold-remote-insert 8.2 3.6 20 9.5 

17.5 
36.8 

7.3 

warm-remote-lookup 
warm-remote-traversal 
warm-remote-insert 

2.4 1.0 19 8.4 8.4 
8.4 1.2 84 26.8 26.8 
7.5 2.9 20 5.4 4.5 

c o l d - I o c a H o o k u p  5.4 13 27 24.1 17.4 
cold-local-traversal 13 9.8 90 44.0 36.7 
cold-local-insert 7.4 1.5 22 9.5 7.3 
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two describe a remote  database 
configurat ion in which the database 
resides on a Sun 3/280 and the ap- 
plication p rogram executes on a 
separate Sun 3/60, and  we indicate 
respectively 'cold' (first execution of  
the command)  and 'warm' (after 
cache stabilizes) numbers.  The  
third set of  results describes a 'local' 
configurat ion for which both the 
application p rogram and the data- 
base reside on the same Sun 3/280. 
'Warm-local '  numbers  are omit ted 
because they are essentially idential 
to the 'warm-remote '  results. 

The  numbers  for the other  sys- 
tems were repor ted  [4] runn ing  on 
a di f ferent  Sun 3/280. Because the 
disk on the Cattell system is dra- 
matically faster than the disk on the 
POSTGRES system, the compari-  
son is not 'apples to apples' .  As a 
result, we also repor t  'cooked'  
POSTGRES numbers,  obtained by 
multiplying the POSTGRES I/O 
time by the ratio of  the average seek 
times of  the two disks and making 
the appropr ia te  adjustment.  The  
cooked numbers  are our  best guess 
for POSTGRES performance on 
the Cattell hardware.  

To make POSTGRES per fo rm as 
well as possible, we wrote all three 
benchmark  routines as C functions 
which are executed using the Fast 
Path feature of  POSTGRES de- 
scribed in the section "Fast Path." 
These  functions make appropr ia te  
calls directly on the POSTGRES 
access methods to manipulate  the 
database. This is a high perfor-  
mance way of  using POSTGRES, 
but  of  course, provides no data  in- 
dependence  whatsoever. 

As can be seen, POSTGRES 
beats the relational system by a sub- 
stantial factor. Relative to the other  
two systems POSTGRES loses by 
about a factor of  two. Since the 
two systems are executing similar 
algorithms, the difference is ac- 
counted for by generali ty issues and 
tuning considerations. Because 
POSTGRES B-trees suppor t  ab- 
stract data types and user-defined 
operators ,  they will be inherently 
slower than a B-tree package with 

hard-wired types. In  addit ion,  as 
noted previously, POSTGRES is 
not yet highly tuned and would be 
expected to offer  lower perfor-  
mance than a commercial  package. 
Finally, POSTGRES puts a large 
header  on the front  o f  each record 
and incurs a substantial  space pen- 
alty because record size is ra ther  
small on this benchmark.  Obvi- 
ously, we must  optimize the size o f  
the headers  to be competit ive on 
small-record benchmarks.  We ex- 
pect that subsequent tuning of  this 
sort will move POSTGRES perfor-  
mance closer to that of  o ther  sys- 
tems. 

The  OODB system is faster than 
both the in-house system and 
POSTGRES on the insert operat ion 
because it clusters different  record 
types on the same disk page. This 
allows it to do less I/O for the insert 
than the other  two systems. It also 
outper forms  the other  systems on 
'warm'  operat ions because it caches 
records in main memory format  
ra ther  than disk format.  

Two comments  should be made 
at this point. First, POSTGRES al- 
lows an application designer  to 
t rade off  per formance  for data in- 
dependence  and other  DBMS ser- 
vices. The  designer  can code the 
benchmark  for maximum perfor-  
mance and no data independence  
as we did. Alternately,  he can use 
the query language and obtain 
lower per formance  with full DBMS 
services. Hence, POSTGRES allows 
the application designer to choose 
the r ight  mix of  per formance  and 
database services appropr ia te  for 
the application. 

A second comment  is that the in- 
house and OODB systems run  the 
database in the same address  space 
as the user  program.  Consequently, 
a malicious or  careless user can ob- 
literate the database and compro-  
mise DBMS security. On the other  
hand,  POSTGRES imports  only 
specific user functions into its ad- 
dress space. Al though such func- 
tions can be malicious or  careless 
and cause data loss, POSTGRES is 
trust ing only indicated functions 

and not whole user  programs.  
Moreover,  POSTGRES provides a 
registrat ion facility for functions, 
at which point  they can be scruti- 
nized for security. Therefore ,  
POSTGRES provides a higher  de- 
gree o f  data  security than available 
from the o ther  systems. O f  course, 
POSTGRES must  impor t  all rou- 
tines that the indicated collection of  
functions makes calls on, which 
could be the entire application in 
the worst case. Also, the impor ted  
routines do not have access to re- 
sources available to the rest of  the 
applications, such as global vari- 
ables or  the user interface. 

Conclusions 
This article has presented  the de- 
sign, implementat ion and some of  
the phi losophy of  POSTGRES. We 
feel that it meets most of  the 'litmus 
test' presented in [6], hence, 
POSTGRES capabilities may serve 
as a beacon for future  evolution of  
commercial  systems. 

We expect  to produce  Version 
3.0 of  POSTGRES, which should 
be available in the third quar ter  o f  
1991. I t  will be as fast and bug-free 
as possible, and contain the com- 
plete implementat ion o f  aggregates 
and complex objects. At that time, 
we will have implemented  the en- 
tire p roposed  system with the ex- 
ception of: 

• Union,  intersection and other  set 
functions have not been con- 
structed. The  only set functions 
available are IN and NOT-IN.  

• A where clause cannot appear  
inside the { . . . } notation 

We are start ing to design the suc- 
cessor to POSTGRES, temporar i ly  
designated POSTGRES II ,  which 
will a t tempt  to manage main- 
memory  data, disk-based data, and 
archive-based data in an elegant, 
unif ied manner .  A first look at our  
ideas appears  in [22]. !"4 
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