
/

E
E

M i ~ : ~ u : ! ~ ~ n e b r a k e r
G r e g K e m n i t z

Tm

7 8 October 1991/Vol.34, No,10/COMMUNIOATION8 OF THI[ACM

ommercial relational Database Management Systems (DBMSs)
are oriented toward efficient support for business data processing
applications where large numbers of instances of fixed format

records must be stored and accessed. The traditional transaction manage-
ment and query facilities for this application area will be termed data
management, and are addressed by relational systems. ~

To satisfy the needs of users out-
side of business applications,
DBMSs must be expanded to offer
services in two other dimensions,
namely object management and
knowledge management. Object
management entails efficiently
storing and manipulat ing nontradi-
tional data types such as bitmaps,
icons, text, and polygons. Object
management problems abound in
CAD and many other engineer ing
applications.

Knowledge management entails
the ability to store and enforce a
collection of rules that are part of
the semantics of an application.
Such rules describe integrity con-
straints about the application, as
well as allowing the derivation of
data that is not directly stored in the
database.

We now indicate a simple exam-
ple which requires services in all
three dimensions. Consider an ap-
plication that stores and manipu-
lates text and graphics to facilitate
the layout of newspaper copy. Such
a system will be naturally integrated
with subscription and classified
advert isement data. Billing custom-
ers for these services will require
tradit ional data management ser-
vices. In addit ion, this application
must store nontradi t ional objects
including text, bitmaps (pictures),
and icons (the banner across the top
of the paper). Hence, object man-
agement services are required. Fi-
nally, there are many rules that
control newspaper layout. For ex-
ample, the ad copy for two major
depa r tmen t stores can never be on
facing pages. Suppor t for such
rules is desirable in this application.

A second example requir ing all

three services is indicated in [6].
Hence, we believe that most real-
world data management problems
that will arise in the 1990s are in-
herently three dimensional, and
require data, object, and knowl-
edge management services. The
fundamenta l goal of POSTGRES
[12, 23, 26] is to provide suppor t
for such applications.

To accomplish this objective, ob-
ject and rule management capabili-
ties were added to the services
found in a tradit ional data man-
ager. In the next two sections we
describe the capabilities provided in
these two areas. Then, we turn to
the novel no-overwri te storage
manager that we implemented in
POSTGRES, and the notion of t ime
travel that it supports. The section
on the POSTGRES implementat ion
continues with some of the philoso-
phy that guided the construction of
POSTGRES. Next, we discuss the
current status of the system and
indicate its cur rent per formance on
a subset of the Wisconsin bench-
mark [2] and on an engineer ing
benchmark [4]. The final section of
this article provides a collection of
conclusions.

The POSTGRES DBMS has
been under construction since
1986. The initial concepts for the
system were presented in [23] and
the initial data model appea red in
[19]. Our storage manager concepts
are detailed in [21], and the first
rule system that we implemented is
discussed in [25]. Our first "demo-
ware" was operat ional in 1987, and
we released Version 1 of
POSTGRES to a few external users
in June 1989. A critique of Version
1 of POSTGRES appears in [26].

Version 2 followed in June 1990,
and it included a new rules system
documented in [27]. We are now
delivering Version 2.1, which is the
subject of this article. Fur ther in-
formation on this system can be
obtained f rom the reference man-
ual, the POSTGRES tutorial [12]
and the release notes.

POSTGRES is now about
180,000 lines o f code in C and has
been written by a team consisting of
a full-time chief p rog rammer and
3 - 4 part- t ime students. I t runs on
Sun 3, Sun 4, DECstation, and Se-
quent Symmetry machines and can
be obtained free of charge over the
internet or on tape for a modest
reproduct ion fee. 1

The POSTGRES Data Model And
0uery Language
Tradi t ional relational DBMSs sup-
por t a data model consisting of a
collection of named relations, each
attr ibute o f which has a specific
type. In current commercial sys-
tems possible types are floating-
point numbers , integers, character
strings, money, and dates. It is com-
monly recognized that this data
model is insufficient for future data
processing applications. In design-
ing a new data model and query
language, we were guided by the
following three design criteria.

• orientation toward database ac-
cess from a query language.

We expect POSTGRES users to in-
teract with databases primari ly by
using the set-oriented query lan-

IFor details on obtaining POSTGRES, please
call or write: Claire Mosher, 521 Evans Hall,
University of California, Berkeley, CA 94720;
(415) 642-4662.

• OMMUNI•ATIONS OF T H E A•M/October 1991/Vol.34, No.10 7

guage, POSTQUEL. Hence, inclu-
sion of a query language, an opti-
mizer and the corresponding
run-t ime ..system was a pr imary de-
sign goal.

It is also possible to interact with
a POSTGRES database by utilizing
a navigational interface. Such inter-
faces were popular ized by the
CODASYL proposals of the 1970s
and are used in some o f the recent
object-oriented systems. Because
POSTGRES gives each record a
unique identif ier (OID), it is possi-
ble to use the identif ier for one rec-
ord as a data item in a second rec-
ord. Using optionally definable
indexes on OIDs, it is then possible
to navigate from one record to the
next by runn ing one query per nav-
igation step.

In addit ion, POSTGRES allows a
user to def ine functions (methods)
to the DRMS. Such functions can
intersperse statements in a pro-
g ramming language, query lan-
guage commands, and direct calls
to internal POSTGRES interfaces,
such as the get_record rout ine in
the access methods. Such functions
are available to users in the query
language or they can be directly
executed. The latter capability is
t e rmed fast path, because it allows a
p rog rammer to package a collec-
tion of direct calls to POSTGRES
internals into a user-executable
function. 'This will suppor t highest
possible per formance by bypassing
any unneeded port ion of
POSTGRES functionality.

As a result, a POSTGRES appli-
cation p rog rammer is provided
great flexibility in style of interac-
tion, since he or she can intersperse
queries, navigation, and direct
function execution. This will allow
the p rog rammer to use the query
language and obtain data indepen-
dence and automatic optimization
or to selectively give up these bene-
fits to obtain h igher performance.

• Or ienta t ion toward mul t i l ingua l
access .

We could have picked our favorite
p rogramming language and then

tightly coupled POSTGRES to the
compiler and run-t ime environ-
ment of that language. Such an
approach would offer pers i s t ence
for variables in this p rogramming
language, as well as a query lan-
guage integrated with the control
statements of the language. This
approach has been followed in
ODE [1] and many of the recent
object-oriented DBMSs.

Our point of view is that most
databases are accessed by programs
written in several different lan-
guages, and we do not see any pro-
g ramming language Esperanto on
the horizon. Therefore , most pro-
g ramming shops are mul t i l ingua l
and require access to a database
from different languages. In addi-
tion, database application packages
that a user might acquire, for ex-
ample to pe r fo rm statistical or
spreadsheet services, are often not
coded in the language being used
for developing in-house applica-
tions. Again, this results in a multi-
lingual environment .

Hence, POSTGRES is p rogram-
ming language neutral , that is, it
can be called from many dif ferent
languages. Tight integration o f
POSTGRES to any part icular lan-
guage requires compiler extensions
and a run-t ime system specific to
that p rog ramming language. An-
o ther research group has built an
implementat ion of persistent CLOS
(Common LISP Object System) on
top of POSTGRES [28] and we are
planning a version of persistent
C + + in the future. Persistent
CLOS (or persistent X for any pro-
g ramming language, X) is inevita-
bly language specific. The run-t ime
system must map the disk represen-
tation for language objects, includ-
ing pointers, into the main memory
representat ion expected by the lan-
guage. Moreover, an object cache
must be mainta ined in the p rogram
address space, or per formance will
suffer badly. Both tasks are inher-
ently language specific.

We expect many language-
specific interfaces to be built for
POSTGRES and believe that the

query language plus the fast path
interface available in POSTGRES
offers a powerful, convenient ab-
straction against which to build
these p rogramming language inter-
faces. The reader is directed to
[22], which discusses our approach
to embedding POSTGRES capabili-
ties in C + + .

• s m a l l n u m b e r o f c o n c e p t s
We tried to build a data model with
as few concepts as possible. The re-
lational model succeeded in replac-
ing previous data models in part
because of its simplicity. We wanted
to have as few concepts as possible
so that users would have min imum
complexity to contend with. Hence,
POSTGRES leverages the following
four constructs: classes; inheri-
tance; types; and functions. In the
next subsection we briefly review
the POSTGRES data model. Then,
we turn to a short descript ion of
POSTQUEL and fast path.

The POSTGRES Data Model
T h e fundamenta l notion in
POSTGRES is that o f class 2, which
is a named collection of ins tances
of objects. Each instance has the
same collection of named attributes
and each at tr ibute is of a specific
type. Moreover, each instance has a
unique (never-changing) ident if ier
(OID).

A user can create a new class by
specifying the class name, along
with all at tr ibute names and their
types, for example:

create EMP (name = c12,
salary = float, age = int)

A class can optionally inher i t
data elements from other classes.
For example, a SALESMAN class
can be created as follows:

create SALESMAN
(quota = float) inherits EMP

21n this section the reader can use the words
class, constructed type, and relation inter-
changeably. Moreover, the words record, in-
stance, and tuple are similarly interchangea-
ble. In fact, previous descriptions of the
POSTGRES data model (i.e., [19], [25]) used
other terminology than this article.

8 0 October 1991/Vol.34, No.10/COMMUNICATIONS OF THE A C M

In this case, an instance of SALES-
MAN has a quota and inherits all
data elements from EMP, namely
name, salary and age. We had the
standard discussion about whether
to include single or multiple inheri-
tance and concluded that a single
inheritance scheme would be too
restrictive. As a result, POSTGRES
allows a class to inherit from an ar-
bitrary collection of other parent
classes. When ambiguities arise be-
cause a class inherits the same attri-
bute name from multiple parents,
we elected to refuse to create the
new class. However, we isolated the
resolution semantics in a single rou-
tine, which can be easily changed to
track multiple inheritance seman-
tics as they unfold over time in pro-
gramming languages.

There are three kinds of classes.
First a class can be a real (or base)
class whose instances are stored in
the database. Alternately, a class
can be a derived class (or view or
virtual class) whose instances are
not physically stored but are mate-
rialized only when necessary. Defi-
nition and maintenance of views is
discussed in the subsection "Rule
System Applications." Finally, a
class can be a version of another
class, in which case it is stored as a
differential relative to its parent
class. Again, the subsection "Rule
System Applications" discusses in
more detail how this mechanism
works.

POSTGRES contains an exten-
sive type system and a powerful
notion of functions. There are
three kinds of types in POSTGRES:
base types; arrays of base types; and
composite types, which we discuss
in turn.

Some researchers, e.g., [17, 20],
have argued that one should be
able to construct new base types
such as bits, bitstrings, encoded
character strings, bitmaps, com-
pressed integers, packed decimal
numbers, radix 50 decimal num-
bers, money, etc. Unlike many
next-generation DBMSs which
have a hard-wired collection of base
types (typically integers, floats and

character strings), POSTGRES con-
tains an abstract data type (ADT)
facility whereby any user can con-
struct arbitrary new base types.
Such types can be added to the sys-
tem while it is executing and re-
quire the defining user to specify
functions to convert instances of
the type to and from the character
string data type. Details of the syn-
tax appear in [12]. Consequently, it
is possible to construct a class,
DEPT, as follows:

Create DEPT (dname = c10,
manager = c12,
floorspace = polygon
mailstop = point)

Here, a DEPT instance contains
four attributes. The first two have
familiar types while the third is a
polygon indicating the space allo-
cated to the department, and the
fourth is the geographic location of
the mailstop.

A user can assign values to attri-
butes of base types in POSTQUEL
by either specifying a constant or a
function which returns the correct
type, for example:

replace DEPT
(mailstop = "(10,10)"
where DEPT.dname = "shoe"

replace DEPT (mailstop =
center (DEPT.polygon))
where DEPT.dname = "toy"

Arrays of base types are also sup-
ported as POSTGRES types.
Therefore, if employees receive a
different salary each month, we
could redefine the EMP class as:

create EMP (name = c12,
salary = float[12], age = int)

Arrays are supported in the
POSTQUEL query language using
the standard bracket notation, for
example,

retrieve (EMP.name)
where EMP.salary[4] = 1000.

replace EMP

(salary[6] = salary[5])
where EMP.name = "Jones"

replace EMP
(salary = "12, 14, 16, 18, 20, 19,
17, 15, 13, 11, 9, 10")
where EMP.name = "Fred"

Composite types allow an appli-
cation designer to construct com-
plex objects, that is, attributes
which contain other instances as
part or all of their value. Hence,
complex objects have a hierarchical
internal structure, and POSTGRES
supports two kinds of composite
types. First, zero or more instances
of any class is automatically a com-
posite type. For example, the EMP
class can be redefined to have attri-
butes, manager and coworkers,
each of which holds a collection of
zero or more instances of the EMP
class:

create EMP (name = c12,
salary = float[12],
age = int, manager = EMP,
coworkers = EMP)

Consequently, each time a class is
constructed, a type is automatically
available to hold a collection of in-
stances of the class.

In the above example, manager
and coworkers have the same struc-
ture for each instance of EMP.
However, there are situations in
which the application designer re-
quires a complex object that does
not have this rigid structure. For
example, consider extending the
EMP class to keep track of the hob-
bies that each employee engages in.
For example, Joe might engage in
windsurfing and softball while Bill
participates in bicycling, skiing, and
skating. For each hobby, we must
record hobby-specific information.
For example, softball data includes
the team the employee plays on, his
or her position and batting average
while windsurfing data includes the
type of board owned and mean
time to getting wet. It is clear that
hobbies information for each em-
ployee is best modeled as a collec-

COMMUNICATIONS OF THE ACM/October 1991/Vol.34, No.10 8 1

tion of zero or more instances of
var ious classes. Moreover, each
employee can have differently
s t ructured instances. To accommo-
date this diversity, POSTGRES
supports a final constructed type,
set, whose value is a collection of
instances from all classes. Using this
construct, hobbies information can
be added to the EMP class as fol-
lows:

add to EMP (hobbies = set)

In summary, complex objects are
suppor ted in POSTGRES by two
composite types. The first, indi-
cated by a class name, contains zero
or more instances of that class while
the second, indicated by set, holds
zero or more instances of any
classes.

Composite types are suppor ted
in POSTQUEL by the concept of
pa th express ions . Since manager in
the EMP class is a composite type,
its elements can be hierarchically
addressed by a nested dot notation.
For example, to find the age of the
manager of Joe, one would write:

retrieve (EMP.manager.age)
where EMP.narne = "Joe"

ra ther than being forced to per-
form some sort of a join. This
nested dot notation is also found in
IRIS [30], O R I O N [14], 02 [8], and
EXTRA 113].

Composite types can have a value
that is a function which re turns the
correct type for example,

replace EMP (hobbies =
compute-hobbiesCJones"))
where EMP.name = "Jones"

We now turn to the POSTGRES
notion o f functions. There are
three different kinds of functions
known to POSTGRES: C functions;
operators; and POSTQUEL func-
tions.

A user can def ine an arbi t rary
number o f C funct ions whose ar-
guments ;are base types or compos-
ite types. For example, the user can

define a function area which maps
an instance o f a polygon into an in-
stance of a floating-point number .
Such functions are automatically
available in the query language as
il lustrated in the following query
which finds the names o f depar t -
ments for which area re turns a re-
sult greater than 500:

retrieve (DEPT.dname) where
area (DEPT.floorspace) > 500

C functions can be def ined to
POSTGRES while the system is
runn ing and are dynamically
loaded when required dur ing
query execution.

C functions can also have an ar-
gument which is a class name, for
example,

retrieve (EMP.name)
where overpaid (EMP)

In this case overpaid has an oper-
and of type EMP and re turns a
Boolean, and the query finds the
names of all employees for which
overpaid re turns true. A function
whose a rgument is a class name is
inheri ted down the class hierarchy
in the s tandard way. Hence, over-
paid is automatically available for
the SALESMAN class. In some cir-
cles such functions are called meth-
ods. Moreover, overpaid can ei ther
be considered as a function using
the above syntax or as a new attri-
bute for EMP whose type is the re-
turn type of the function. Using the
latter interpretat ion, the user can
restate the above query as:

retrieve (EMP.name)
where EMP.overpaid

Hence, overpaid is interchangeably
a function def ined for each in-
stance o f EMP or a new attr ibute
for EMP. The same interpreta t ion
of such functions appears in IRIS
[30].

C functions are arbi t rary C pro-
cedures. Hence, they have arbi t rary
semantics and can run arbi t rary
POSTQUEL commands dur ing

execution. Therefore , queries with
C functions in the qualification can-
not be opt imized by the
POSTGRES query optimizer. For
example, the preceding query on
overpaid employees will result in a
sequential scan o f all instances of
the class.

To utilize indexes in processing
queries, POSTGRES supports a
second kind o f function, called op-
erators. Opera tors are functions
with one or two operands which use
the s tandard opera to r notat ion in
the query language. For example,
the following query looks for de-
par tments whose floor space has a
greater area than that of a specific
polygon:

retrieve (DEPT.dname)
where DEPT.floorspace A G T
"(0,0), (1,1), (0,2)"

The 'area greater than' opera tor ,
AGT, is def ined by indicating the
token to use in the query language
as well as the function to call to
evaluate the operator . Moreover,
several hints which assist the query
optimizer can also be included in
the definition. One o f these hints is
that ALE is the negator of this op-
erator. Therefore , the query opti-
mizer can t ransform the query:

retrieve (DEPT.dname)
where not DEPT.floorspace
ALE "(0,0), (1,1), (0,2)"

which cannot be opt imized into the
previous one which can be.

In addit ion, the design of the
POSTGRES access methods allows
a B+- t ree index to be constructed
for the instances of any base type.
Consequently, a B-tree index for
floorspace in DEPT supports effi-
cient access for the col lect ion of
operators {ALT, ALE, AE, AGT,
AGE}. Informat ion on the access
paths available for the various op-
erators is recorded in the
POSTGRES system catalogs.

As pointed out in [24], it is im-
perative that a user be able to con-
struct new access methods to pro-

2 October 1991/Vo1.34, No.10/COMMUNICATION$ O F T H E A C M

vide efficient access to instances o f
nontradi t ional base types. For ex-
ample, suppose a user introduces a
new opera tor '!!' that re turns true if
two polygons overlap. Then, he
might ask a query such as:

retrieve (DEPT.dname)
where DEPT.floorspace!!
"(0,0), (1,1), (0,2)"

The re is no B +- t ree or hash ac-
cess method that will allow this
query to be rapidly executed.
Rather, the query must be sup-
por ted by some mult idimensional
access method such as R-trees, grid
files, K-D-B trees, etc. Hence,
POSTGRES was designed to allow
new access methods to be written by
POSTGRES users and then dynam-
ically added to the system. Basically,
an access method to POSTGRES is
a collection of 13 C functions which
per form record-level operat ions
such as fetching the next record in
a scan, inserting a new record, de-
leting a specific record, etc. All a
user need do is define implementa-
tions for each of these functions
and make a collection of entries in
the system catalogs.

Opera tors are only available for
operands which are base types be-
cause access methods tradit ionally
suppor t fast access to specific fields
in records. It is unclear what an ac-
cess method for a constructed type
should do, and therefore
POSTGRES does not include this
capability.

The third kind of function avail-
able in POSTGRES is POSTQUEL
funct ions. Any collection of com-
mands in the POSTQUEL query
language can be packaged together
and def ined as a function. For ex-
ample, the following function de-
fines the high-paid employees:

define function high-pay re turns
EMP as
retrieve (EMP.alI)
where EMP.salary > 50000

POSTQUEL functions can also
have parameters , for example:

define function sal-lookup (c12)
re turns float as
retrieve (EMP.salary)
where EMP.name = $1

Notice that sal-lookup has one ar-
gument in the body of the func-
t i o n - t h e name of the person in-
volved. This a rgument must be
provided at the time the function is
called.

Such functions may be placed in
a query, for example,

retrieve (EMP.name)
where EMP.salary =
sal- lookupCJoe ')

or they can be directly executed
using the fast path facility described
in the subsection 'Fast Path'.

sal-lookup("Joe")

Moreover, attributes of a composite
type automatically have values
which are functions that re turn the
correct type. For example, consider
the function:

define function mgr- lookup (c12)
re turns EMP as
retrieve (EMP.alI)
where EMP.name =
DEPT.manager and
DEPT.name = $1

This function can be used to assign
values to the manager at tr ibute in
the EMP class, for example:

append to EMP
(name = "Sam", salary = 1000,
age = 40, manager =
mgr- lookup ("shoe"))

Like C functions, POSTQUEL
functions can have a specific class as
an argument :

define function neighbors
(DEPT) re turns DEPT as
retrieve (DEPT.aI1)
where DEPT.floor = $.floor

This function is def ined for each
instance of DEPT and its value is

the result of the query with the
appropr ia te value substituted for
$.floor. Like C functions that have a
class as an argument , such
POSTQUEL functions can ei ther
be thought of as functions and que-
r ied as follows:

retrieve (DEPT.name)
where neighbors(DEPT).name =
"shoe"

or they can be thought of as new
attributes using the following query
syntax:

retrieve (DEPT.name)
where DEPT.neighbors .name =
"shoe"

The POSTGRES O u e ~ l anguage
The previous section presented
several examples of the
POSTQUEL language. I t is a set-
or iented query language that re-
sembles a superset of a relational
query language. Besides user-
def ined functions and operators ,
array support , and path expres-
sions which were illustrated earlier,
the features which have been added
to a tradit ional relational language
include: suppor t for nested que-
ries; transitive closure; suppor t for
inheritance; and suppor t for t ime
travel.

POSTQUEL also allows queries
to be nested and has operators that
have sets of instances as operands.
For example, to f ind the depar t -
ments which occupy an entire floor,
one would query:

retrieve (DEPT.dname)
where DEPT.floor N O T - I N
{D.floor from D in DEPT
where D.dname l=DEPT.dname}

In this case, the expression inside
the curly braces represents a set o f
instances, and N O T - I N is an opera-
tor which takes a set of instances as
its r ight operand.

The transitive closure operat ion
allows one to explode a parts or
ancestor hierarchy. Consider, for
example, the class:

C O M M U N I C A T I O N 8 OF THE J ~ M / O c t o b e r 1991/Vol.34, No.10 8~

C u r r e n t c o m m e r c i a l s y s t e m s
a r e r e q u i r e d t o s u p p o r t

r e f e r e n t i a l i n t e g r i t y ,
w h i c h i s m e r e l y a

s i m p l e - m i n d e d c o l l e c t i o n

parent (older, younger)

One can ask for all the ancestors of
John as l%llows:

retrieve* into answer
(parent.older) from a in answer
where parent .younger = "John"
or parent .younger = a.older

In this case the * after retrieve indi-
cates that the associated query
should be run until the answer fails
to grow. As noted in this example,
the resuh of a POSTQUEL com-
mand can be added to the database
as a new class. In this case,
POSTQUEL follows the lead of re-
lational systems by removing dupli-
cate records from the result. The
user who is interested in retaining
duplicate,~ can do so by ensur ing
that the OID field of some instance
is included in the target list being
selected.

I f one wishes to find the names
of all employees over 40, one would
write:

retrieve (E.name) from E in
EMP where E.age > 40

On the other hand, if one wanted
the names of all salesmen or em-
ployees over 40, the notation is:

retrieve (E.name) from E in
EMP* where E.age > 40

Here the * after EMP indicates that
the query should be run over EMP
and all classes unde r EMP in the
inheritance hierarchy. This use of *
allows a user to easily run queries
over a class and all its descendents.

O f r u l e s .

Finally, POSTGRES supports the
notion of t ime travel. This feature
allows a user to run historical que-
ries. For example, to find the salary
of Sam at time T one would query:

retrieve (EMP.salary)
from EMP [T]
where EMP.name = "Sam"

POSTGRES will automatically find
the version of Sam's record valid at
the correct time and get the appro-
priate salary. The "Storage System"
section discusses support for this
feature in more detail.

FaSt Path
There are two reasons why we
chose to implement a fast path fea-
ture. First, there are a variety of
decision support applications in
which the end user is given a spe-
cialized query language. In such
environments, it is often easier for
the application developer to con-
struct a parse tree representation
for a query rather than an ASCII
one. Hence, it would be desirable
for the application designer to be
able to directly interface to the
POSTGRES optimizer or executor.
Most DBMSs do not allow direct
access to internal system modules.

The second reason is a bit more
complex. In the Berkeley imple-
mentat ion of persistent CLOS, it is
necessary for the run-t ime system
to assign a unique identifier (OID)
to every persistent object it con-
structs. It is undesirable for the sys-
tem to synchronously insert each
object directly into a POSTGRES
database and thereby assign a

POSTGRES identifier to the object.
This would result in poor perfor-
mance in executing a persistent
CLOS program. Rather, persistent
CLOS maintains a cache of objects
in the address space of the program
and only inserts a persistent object
into this cache synchronously.
There are several options that con-
trol how the cache is written out to
the database at a later time. Unfor-
tunately, it is essential that a persis-
tent object be assigned a unique
identifier at the time it enters the
cache, because other objects may
have to point to the newly created
object and use its OID to do so.

If persistent CLOS assigns
unique identifiers, then there will
be a complex mapping that must be
performed when objects are written
out to the database and real
POSTGRES unique identifiers are
assigned. Alternately, persistent
CLOS must maintain its own system
for unique identifiers, independent
of the POSTGRES one, an obvious
duplication of effort. The solution
chosen was to allow persistent
CLOS to access the POSTGRES
routine that assigns unique identifi-
ers and allow it to preassign N
POSTGRES object identifiers
which it can subsequently assign to
cached objects. At a later time,
these objects can be written to a
POSTGRES database using the
preassigned unique identifiers.
When the supply of identifiers is
exhausted, persistent CLOS can
request another collection.

In these examples, an application
program requires direct access
to a user-defined or internal

84 October 1991/Vol.34, NoAO/COMMUNICATIONS OF THE A C M

H o w e v e r , t h e r e a r e
a l a r g e n u m b e r o f m o r e

g e n e r a l r u l e s w h i c h
a n a p p l i c a t i o n d e s i g n e r

w o u l d w a n t t o

POSTGRES function, and there-
fore the POSTGRES query lan-
guage has been extended with:

function-name (param-list)

In this case, a user can ask that any
function known to POSTGRES be
executed. This function can be one
that a user has previously defined
or it can be one that is included in
the POSTGRES implementation.
Hence, a user can directly call the
parser, the optimizer, the executor,
the access methods, the buffer
manager or the utility routines. In
addition, he or she can define func-
tions which in tu rn make calls on
POSTGRES internals. In this way,
the user can have considerable con-
trol over the low-level flow of con-
trol, much as is available through a
DBMS toolkit such as Exodus [18],
but without all the effort involved
in configuring a tailored DBMS
from the toolkit.

The above capability is called fas t
path because it provides direct ac-
cess to specific functions without
checking the validity of parameters.
As such, it is effectively a remote
procedure call facility and allows a
user program to call a function in
another address space rather than
in its own address space.

The Rules System
It is clear to us that all DBMSs need
a rules system. Current commercial
systems are required to support
referential integrity [7], which is
merely a simple-minded collection
of rules. However, there are a large
number of more general rules

s u p p o r t .

which an application designer
would want to support. For exam-
ple, one might want to insist that a
specific employee, Joe, has the
same salary as another employee,
Fred. This rule is very difficult to
enforce in application logic because
it would require the application to
see all updates to the salary field, in
order to fire application logic to
enforce the rule at the correct time.
A better solution is to enforce the
rule inside the data manager.

In addition, most current sys-
tems have special-purpose rules
systems to support relational views,
and protection. In building the
POSTGRES rules system we were
motivated by the desire to construct
o n e general-purpose rules system
that could perform all of the fol-
lowing functions: view manage-
ment; triggers; integrity con-
straints; referential integrity;
protection; and version control.
This should be contrasted with
other approaches (e.g., [9, 15, 29])
which have different goals.

POSTGRES Rules
The rules we are using have a fa-
miliar production rule syntax of the
form:

ON event (TO) object WHERE
POSTQUEL-qualification
THEN DO [instead]
POSTQUEL-command(s)

Here, event is retrieve, replace, de-
lete, append, new (i.e., replace or
append) or old (i.e., delete or re-
place). Moreover, object is either
the name of a class or class.column.

POSTQUEL-qualification is a nor-
mal qualification, with no additions
or changes. The optional keyword
i n s t e a d indicates that the action
indicated by POSTQUEL-
command(s) is to be performed in-
stead of the action which caused the
rule to activate. If instead is miss-
ing, then the action is done in addi-
tion to the user event. Finally,
POSTQUEL-commands is a set of
POSTQUEL commands with the
following two changes:

new or current can appear instead
of the name of a class in front of
any attribute.

refuse (target-list) is added as a new
POSTQUEL command

In this notation we would specify
that Fred's salary adjustments get
propagated on to Joe as follows:

on new EMP.salary where
EMP.name = "Fred"
then do replace
E (salary = new.salary)
from E in EMP
where E.name = "Joe"

In general, rules specify addi-
tional actions to be taken as a result
of user updates. These additional
actions may activate other rules,
and a f o r w a r d c h a i n i n g control
flow results, as was popularized in
OPS5 [10].

POSTGRES allows events to be
retrieves as well as updates. More-
over, the action can be one or more
queries. Consequently, the rule that
Joe must have the same salary as

C O M M U N I C A T I O N S OF THE ACM/October 1991/Vol.34, No.10 8 S

Fred can also be expressed as:

on retrieve to EMP.salary where
EMP.name = "Joe"
then do instead retrieve
(EMP.salary)
where EMP.name = "Fred"

In this case, Joe 's salary is not ex-
plicitly stored, Rather it is de r ived
by activating the above rule. In this
case the two data items are kept in
synchronization by storing one and
deriving the other. Moreover, if
Fred 's sah ry is not explicitly stored,
then fur ther rules would be awak-
ened to find the ult imate answer,
and a backward chaining control
flow results. This control structure
was popular ized in Prolog [5].

I f Fred receives f requent raises
and Joe's salary is rarely queried,
then the backward chaining repre-
sentation will be more efficient. On
the other hand, if many queries are
di rected to Joe 's salary and Fred is
rarely updated , then the forward
chaining alternative is prefer red . In
POSTGRES, the application de-
signer must decide whether for-
ward chaining or backward chain-
ing control flow is desi red and
specify tile rules accordingly.

Implementation of Rules
There are two implementat ions for
POSTGRES rules. The first is
through record level processing
deep in the run- t ime system. This
rules system is called when individ-
ual records are accessed, deleted,
inserted or modified. The second
implementat ion is th rough a query
rewrite module. This code exists
between the parser and the query
optimizer and converts a user com-
mand to an al ternate form pr ior to
optimization. In the remainder of
this section we briefly discuss each
implementat ion by explaining how
each system processes the rule
which progagates Fred 's salary on
to Joe, that is:

on new EMP.salary where
EMP.name = "Fred"
then do replace

E (salary = new.salary)
from E in EMP
where E.name = "Joe"

The record-level rule system
causes a marker to be placed on the
salary at tr ibute of Fred's instance.
This marker contains the identif ier
of the cor responding rule and the
types of events to which it is sensi-
tive. I f the executor touches a
marked attribute, then it calls the
rule system before proceeding. The
rule system is passed the current
instance and the p roposed new one.
It discovers that the event of the
rule actually applies, substitutes
new values and current values in
the action par t of the rule and then
executes the action. When the
action is complete, it re turns con-
trol to the executor which installs
the p roposed upda te and contin-
ues.

I f Fred 's name is changed, then
the marker on his salary must be
d ropped . In addit ion, if Joe is h i red
before Fred, then the markers must
be added at the time Fred's record
is inserted into the DBMS. To per-
form these tasks, POSTGRES re-
quires o ther markers which are dis-
cussed in [27]. Also, if a rule sets a
sufficient number of markers in a
class, then POSTGRES can per-
form marker escala t ion and place
an enclosing marker on the entire
c lass--detai ls appea r in [27].

The record-level rules system is
especially efficient if there are a
large number of rules, and each
covers only a few instances. In this
case, no extra overhead will be re-
quired unless a marked instance is
actually touched. Hence, the rule
system requires no 'tax', unless a
rule actually applies. In this case,
the overhead is that required to
ensure the event is t rue and then to
execute the action.

On the other hand, consider the
following rule:

on replace to EMP.salary
then do
append to A U D I T
(name = current .name,
salary = current.salary,

new = new.salary, user = user())

and an incoming query:

replace EMP
(salary = 1.1 * EMP.salary)
where EMP.age < 50

Clearly, utilizing the record-level
rules system will entail f ir ing this
rule once per elderly employee, a
large overhead. I t is much more
efficient to rewri te the user com-
mand to:

append to A U D I T
(name = EMP.name,
salary = EMP.salary, new = 1.1 *
EMP.salary, user = user())
where EMP.age < 50

replace EMP
(salary = 1.1 * EMP.salary)
where EMP.age < 50

In this case, the audi t ing opera t ion
is done in bulk as a single com-
mand. In [27] a general a lgori thm
is presented which can rewrite any
POSTGRES command to enforce
any rule. In general , if there are N
rules for a given class, then each
user command will turn into a total
of N + 1 result ing commands.
Therefore , this rules system will
pe r fo rm poorly if there are a large
number of small-scope rules, but
admirably if there are a small num-
ber of large-scope rules.

As a result, the two implementa-
tions are complementary , and we
are explor ing a ru le chooser which
could suggest the best implementa-
tion for any given rule. Unfor tu-
nately, the two implementat ions
have dif ferent semantics in certain
cases, and we now turn to this topic.

Semantics of Rules
Consider the rule

on retrieve to EMP.salary
where EMP.name = "Joe"
then do instead retrieve
(EMP.salary)
where EMP.name = "Fred"

and the following user query:

8 ~ October 1991/Vol.34, No.10/0OMMUNIGATIONSOFTHEA(~M

retrieve (EMP.name, EMP.salary)
where EMP.name = "Joe"

If query rewrite is used to support
the above rule, then the user query
will be rewritten to:

retrieve (EMP.name, E.salary)
from E in EMP where
EMP.name = "Joe" and
E.name = "Fred"

Consider the possible answers to
the user query for various numbers
of instances of Fred. If there is no
Fred in the database, then the
query rewritten by the rules system
will re turn no instances. If there is
one Fred, then one instance will be
returned, while N Freds will cause
N instances to be returned. There-
fore, query rewrite implements the
union semantics indicated in col-
umn 1 of Table 1. On the other
hand, the record-level implementa-
tion can re turn Joe with a null sal-
ary if Fred does not exist. If there
are multiple Freds, it can re turn
any one of them, all of them, or an
error. Therefore, it can implement
union, random or error semantics.

Two conclusions are evident
from this discussion. First, the de-
sired semantics for this example are
debatable. Moreover, a case can
probably be made for each of the
semantics, depending on the attri-
bute whose value is provided by the
rule. Hence, one should probably
include all three, so that an in-
formed user can choose which one
fits his application. Second, it is in-
feasible for the query rewrite sys-
tem to produce anything other than
union semantics. Therefore, a user
who desires different semantics
must choose the record-level sys-
tem. Consequently, the selection of
which rule system to use has seman-
tic as well as performance implica-
tions.

A separate semantic matter con-
cerns the time that rules, are acti-
vated. There are certain rules that
must be activated immediately
upon occurrence of the event in the
rule, and others which should be

deferred to the end of the user's
transaction. Also, some rules
should be run as part of the user's
transaction, while others should
run in a separate transaction. For
example, the following rule must
run immediately in the same trans-
action:

on retrieve to EMP.salary
where EMP.name = "Joe"
then do instead retrieve
(EMP.salary)
where EMP.name = "Fred"

while the one below must be acti-
vated immediately in a different
transaction,

on retrieve to EMP.salary
then do append to A U D I T
(name = current .name,
salary = current.salary,
user = user())

In this last example, the user can
abort after the salary data of inter-
est has been retrieved. If the action
is run in the user's transaction, then
aborting will subvert the desired
auditing. In addition, the action
must be performed immediately
for the same reason.

As a result, there are at least four
reasonable rule activation policies:

immedia te- -same transaction
immedia te- -d i f ferent transaction
defer red- -same transaction
defer red- -d i f fe ren t transaction

At the moment, POSTGRES only
implements t he first option. In
time, we may support all four.

1 Fred 1 Instance 1 instance

Rule System Applications
In this subsection we discuss the
implementation of POSTGRES
views and versions. In both cases,
required functionality is supported
by compil ing user-level syntax into
one or more rules for subsequent
activation inside POSTGRES.

Views (or virtual classes) are an
important DBMS concept because
they allow previously implemented
classes to be supported even when
the schema changes. For example,
the view, TOY-EMP, can be de-
fined as follows:

define view TOY-EMP (EMP.aI1)
where EMP.dept = "toy"

This view is compiled into the fol-
lowing POSTGRES rule:

on retrieve to TOY-EMP
then do instead retrieve (EMP.all)
where EMP.dept = "toy"

Any query ranging over TOY-EMP
will be processed correctly by either
implementation of the POSTGRES
rules system. However, a key prob-
lem is support ing updates on views.
Current commercial relational sys-
tems support only a subset of SQL
update commands, namely those
which can be unambiguously pro-
cessed against the underlying base
tables. POSTGRES takes a much
more general approach. If the ap-
plication designer specifies a de-
fault view, that is,

define default view LOW-PAY
(EMP.OID, EMP.name, EMP.age)
where EMP.salary < 5000

1 Instance

COMMUNICATIONS OF T H E ACM/October 1991/Vol.34, No.10 87

then, a collection o f defaul t update
rules will be compiled for the view.
For example, the replace rule for
LOW-PAY is:

on replace to LOW-PAY.age
then do instead replace EMP
(age = new.age)
where EMP.OID = cur ren t .OID

These default rules will give the
correct view-updating semantics as
long as the view has no ambiguous
updates. However, the application
designer is free to specify his or her
own upda te semantics by indicating
other update rules. For example,
the following replace rule for TOY-
EMP could be defined:

on replace to TOY-EMP.dept
then do instead delete EMP
where EMP.name = current .name
and new.dept !="toy"

Therefore , default views are
suppor ted by compil ing the view
syntax into a collection of rules.
Other update semantics can be
readily specified by user-written
upda t ing rules.

A second area where compilation
to rules can suppor t desired func-
tionality is that of versions, The
goal is to create a hypothe t ica l ver-
sion of a class with the following
propert ies:

1) Initially the hypothetical class
has all instances of the base class

2) The hypothetical class can then
be freely upda ted to diverge
from the base class

3) Updates to the hypothetical class
do nor cause physical modifica-
tions to the base class

4) Updates to the base class are vis-
ible in the hypothetical class,
unless the instance upda ted has
been deleted or modif ied in the
hypothetical class.

Of course, it is possible to suppor t
versions by making a complete copy
of the class for the version and then
making subsequent updates in the
copy. More efficient algori thms
which make use of d i f ferent ia l files

are presented in [11, 31].
In POSTGRES any user can cre-

ate a version of a class as follows:

create version my-EMP from EMP

This command is suppor ted by cre-
ating two d i f ferent ia l classes for
EMP:

EMP-MINUS (deleted-OlD)
EMP-PLUS
(all-fields-in EMP, replaced-OID)

and installing a collection of rules.
EMP-MINUS holds the OID for
any instance in EMP which is to be
deleted from the version, and is the
negative differential. On the other
hand, EMP-PLUS holds any new
instances added to the version as
well as the new record for any mod-
ification to an instance of EMP. In
the latter case, the OID of the rec-
ord replaced in EMP is also re-
corded.

The retrieve rule installed at the
time the version is created is:

on retrieve to my-EMP
then do instead
retrieve (EMP-PLUS.aI1)

retrieve (EMP.all) where
EMP.OID N O T - I N
{EMP-PLUS.replaced-OID}
and EMP.OID N O T - I N
{EMP-MINUS.deleted-OID}

The delete rule for the version is
similarly:

on delete to my-EMP
then do instead
append to EMP-MINUS
(deleted-OID = cur ren t .OID
where EMP.OID = cur ren t .OID
delete EMP-PLUS where
EMP-PLUS.OID = cur ren t .OID

The interested reader can derive
the replace and append rules or
consult [16] for a complete expla-
nation. Also, there is a per formance
comparison in [16] which shows
that a rule system implementat ion
of versions has comparable perfor-

mance to an algorithmic implemen-
tation with hard-wired code deep in
the executor.

Both of the examples in this sec-
tion have shown impor tan t DBMS
functions that can be suppor ted
with very little code by compil ing
higher-level syntax into a collection
of rules. In addit ion, both examples
are only possible with a rule system
such as POSTGRES that supports
both forward and backward chain-
ing rules.

Storage System
When considering the POSTGRES
storage system, we were guided by a
missionary zeal to do something
different. All cur rent commercial
systems use a storage manager with
a wri te-ahead log (WAL), and we
felt that this technology was well
unders tood. Moreover, the original
INGRES prototype from the 1970s
used a similar storage manager ,
and we had no desire to do another
implementat ion.

Hence, we seized on the idea of
implement ing a 'no-overwrite ' stor-
age manager . Using this technique,
the old record remains in the data-
base whenever an update occurs,
and serves the purpose normally
pe r fo rmed by a write-ahead log.
Consequently, POSTGRES has no
log in the conventional sense o f the
term. Instead the POSTGRES log is
simply two bits per transaction indi-
cating whether each transaction
committed, aborted, or is in prog-
ress.

Two very nice features can be
exploi ted in a no-overwrite sy s t em- -
instantaneous crash recovery and
time travel. First, abor t ing a trans-
action can be instantaneous because
one does not need to process the
log undoing the effects o f updates;
the previous records are readily
available in the database. More gen-
erally, to recover from a crash, one
must abort all the transactions in
progress at the time of the crash.
This process can be effectively in-
stantaneous in POSTGRES. Of
course, the t rade-off is that a
POSTGRES database at any given

8 8 October 1991/Vol.34, No.10/COMMUNICATIONS OF T H E ACM

time will have committed instances
intermixed with instances that were
written by aborted transactions.
The run-t ime system must distin-
guish these two kinds of instances
and ignore the latter ones. The
techniques used are discussed in
[21].

This storage manager should be
contrasted with a conventional one
in which the previous record is
overwritten with a new one. In this
case a write-ahead log is required to
maintain the previous version of
each record. There is no possibility
of time travel because the log can-
not be queried since it is in a differ-
ent format. Moreover, the database
must be restored to a consistent
state when a crash occurs by pro-
cessing the log to undo any partially
completed transactions. Hence,
there is no possibility of instantane-
ous crash recovery.

Clearly, a no-overwrite storage
manager is superior to a conven-
tional one if it can be implemented
at comparable performance. There
is a brief hand-wave of an argu-
ment in [21] that alleges this might
be the case. In our opinion, the ar-
gument hinges around the exis-
tence of stable main memory. In
the absence of stable memory, a no-
overwrite storage manager must
force to disk at commit time all
pages written by a transaction. This
is required because the effects of a
committed transaction must be
durable in case a crash occurs and
main memory is lost. A conven-
tional data manager on the other
hand, need only force to disk at
commit time the log pages for the
transaction's updates. Even if there
are as many log pages as data pages
(a highly unlikely occurrence), the
conventional storage manager is
doing sequential I/O to the log
while a no-overwrite storage man-
ager is doing random I/O. Since
sequential I/O is substantially faster
than random I/O, the no-overwrite
solution is guaranteed to offer
worse performance.

However, if stable main memory
is present then neither solution

must force pages to disk. In this
environment, performance should
be comparable. Hence, with stable
main memory it appears that a no-
overwrite solution is competitive.
As computer manufacturers offer
some form of stable main memory,
a no-overwrite solution may be-
come a viable storage option.

The second benefit of a no-
overwrite storage manager is the
possibility of t ime travel. As noted
earlier, a user can ask a historical
query and POSTGRES will auto-
matically re turn information from
the record valid at the correct time.
To support time travel,
POSTGRES maintains two differ-
ent physical collections of records,
one for the current data and one
for historical data, each with its own
indexes. As noted in [21], there is
an asynchronous demon, which we
call the vacuum cleaner, r unn i ng in
the background which moves rec-
ords that are no longer valid from
the current database to the histori-
cal database. The historical data-
base is formatted to perform well
on an archival device such as an
optical disk jukebox. Further de-
tails can be obtained from [21].

The POSTGRES Implementation
POSTGRES contains a fairly con-
ventional parser, query optimizer
and execution engine. Four aspects
of the implementation deserve spe-
cial mention: the process structure;
extendability; dynamic loading;
and rule wake-up, and we discuss
each in turn.

The first aspect of our design
concerns the operating system pro-
cess structure. Currently,
POSTGRES runs as one process for
each active user. Therefore, N ac-
tive users will get N POSTGRES
processes which share the
POSTGRES code, buffer pool and
lock table but have private data seg-
ments. This was done as an expedi-
ent to get a system operational as
quickly as possible. Hence, we de-
liberately ducked the complexity
associated with building
POSTGRES as a single server pro-

cess to which the N users can con-
nect or as a collection of J, J - N,
servers to which users connect. Ei-
ther option would have required
process management and schedul-
ing to be built inside of
POSTGRES, and we wanted to
avoid these difficulties.

Second, POSTGRES ex-
tendability has been accomplished
by making the parser, optimizer
and execution engine entirely
table-driven. For example, if the
parser sees a token, il, it checks in
the operator class in the system cat-
alogs to see if the operator is de-
fined. If not, it generates an error.
Information for frequently used
operators is cached in a main mem-
ory data structure for augmented
performance. When the optimizer
evaluates a qualification, such as:

where EMP.location II '(0,0)'

it checks to see if there is an index
on location and if so, whether the
operator II is supported for the
index and what the selectivity of the
clause is. With this information it
can compute the expected cost of
an indexed scan and compare it
with a sequential scan. The general
algorithm is sketched in [20]. Basi-
cally, the optimizer is table-driven
off the system catalogs, which de-
scribe the present storage configu-
ration.

POSTGRES assumes that data
types, operators and functions can
be added and subtracted dynami-
cally, that is, while the system is exe-
cuting. Moreover, we have de-
signed the system so that it can
accommodate a potentially very
large number of types and opera-
tors. Consequently, the user func-
tions that support the implementa-
tion of a type must be dynamically
loaded and unloaded. Hence,
POSTGRES maintains a cache of
currently loaded functions and
dynamically moves functions into
the cache and then ages them out of
the cache. The downside of this
design decision is that a dynamic
loader is required for each hard-

COMMUNICATIONS OF THE ACM/October 1991/Vo1.34, No.10 8 9

ware platform on which
POSTGRES operates.

Finally, the record-or iented im-
plementat ion for rules system
forces significant complexity on our
design. A user can add a rule such
a s ;

on new EMP.salary

where EMP.name = "Joe"
then do retrieve (new.salary)

In this ,case the user's application
process ,wishes to be notified of any
salary adjus tment for Joe. Consider
a second user who gives Joe a raise.
The POSTGRES process that actu-
ally does the adjus tment will notice
that a marker has been placed on

the salary field and alerts a special
process called the POSTMASTER.
This process in turn alerts the pro-
cess for the first user where the
query would be run and the results
del ivered to the application pro-
cess.

POSTGRES Per formance
At the current t ime (June 1991)
POSTGRES Version 2.1 has been
distr ibuted for nearly three months
and has been installed by at least
125 sites. In this section we indicate
POSTGRES, Version 2.1 perfor-
mance on both the Wisconsin
benchmark [2] and on an engineer-
ing benchmark [4]. For the Wiscon-
sin benchmark, we compare
POSTGRES with the University of

2 select 10% into temp~ noindex : 9 i 8 1 0 i 2
3 select 1% into temp. clust, index 0.7 5.2
5 select 1% into tempi non.clust~ index 1~2 5,3
6 select 10% into temp, non-clust, index 4 . 0 8.9
7 s e l e c t l t o screen clust, i n d e x 0,3 0,9
9 joinAselB, no index 12,6 353

10 jolnABprlme~ no index !7.0 35.3
11 jolnCselAselB, no index 25~9 53.7
1 4 jolncselAselB ctust. Index 2 4 . 1 56,7

1 7 joinCseiAseiB, non,clust, index 35.2 68,7
. . . . 18 p~Ject1% into temp 18;5 3 6 . 7

III I I

California version of INGRES
which we worked on from 1974-
78. Table 2 shows the per formance
of the two systems for a subset of
the Wisconsin benchmark execut-
ing on a Sun SPARCstation. As can
be seen, POSTGRES is approxi-
mately twice the speed of UCB-
INGRES.

We have also compared the per-
formance o f POSTGRES with that
of INGRES, Version 5.0, a com-
mercial DBMS from the INGRES
products division of ASK Com-
puter Systems. On a Sun 3/280
POSTGRES is about 3/5 o f the per-
formance o f ASK-INGRES for the
Wisconsin benchmark. The re are
still substantial inefficiencies in
POSTGRES, especially in the code
which checks that a retr ieved rec-
o rd is valid. We expect that subse-
quent tuning p lanned for Version
3.0 will get us somewhat closer to
ASK-INGRES.

As a second benchmark, we re-
por t the per formance of
POSTGRES on the benchmark in
[4]. In this benchmark, we compare
POSTGRES with the systems re-
por ted by Cattell, namely his in-
house system, an OODB from one
of the commercial vendors and a
commercial RDBMS. In Table 3 we
repor t results for three configura-
tions of the small database version
o f the benchmark, using
POSTGRES conf igured with 5.0
Mbytes of buffer space. The first

cold-remote-lookup 7.6 20 29 24.2
cold-remote-traversal 17 17 90 44.1
cold-remote-insert 8.2 3.6 20 9.5

17.5
36.8

7.3

warm-remote-lookup
warm-remote-traversal
warm-remote-insert

2.4 1.0 19 8.4 8.4
8.4 1.2 84 26.8 26.8
7.5 2.9 20 5.4 4.5

c o l d - I o c a H o o k u p 5.4 13 27 24.1 17.4
cold-local-traversal 13 9.8 90 44.0 36.7
cold-local-insert 7.4 1.5 22 9.5 7.3

9 0 October 1991/Vol.34, No.10/COMMUNICATIONS O F T H E A C M

two describe a remote database
configurat ion in which the database
resides on a Sun 3/280 and the ap-
plication p rogram executes on a
separate Sun 3/60, and we indicate
respectively 'cold' (first execution of
the command) and 'warm' (after
cache stabilizes) numbers. The
third set of results describes a 'local'
configurat ion for which both the
application p rogram and the data-
base reside on the same Sun 3/280.
'Warm-local ' numbers are omit ted
because they are essentially idential
to the 'warm-remote ' results.

The numbers for the other sys-
tems were repor ted [4] runn ing on
a di f ferent Sun 3/280. Because the
disk on the Cattell system is dra-
matically faster than the disk on the
POSTGRES system, the compari-
son is not 'apples to apples' . As a
result, we also repor t 'cooked'
POSTGRES numbers, obtained by
multiplying the POSTGRES I/O
time by the ratio of the average seek
times of the two disks and making
the appropr ia te adjustment. The
cooked numbers are our best guess
for POSTGRES performance on
the Cattell hardware.

To make POSTGRES per fo rm as
well as possible, we wrote all three
benchmark routines as C functions
which are executed using the Fast
Path feature of POSTGRES de-
scribed in the section "Fast Path."
These functions make appropr ia te
calls directly on the POSTGRES
access methods to manipulate the
database. This is a high perfor-
mance way of using POSTGRES,
but of course, provides no data in-
dependence whatsoever.

As can be seen, POSTGRES
beats the relational system by a sub-
stantial factor. Relative to the other
two systems POSTGRES loses by
about a factor of two. Since the
two systems are executing similar
algorithms, the difference is ac-
counted for by generali ty issues and
tuning considerations. Because
POSTGRES B-trees suppor t ab-
stract data types and user-defined
operators , they will be inherently
slower than a B-tree package with

hard-wired types. In addit ion, as
noted previously, POSTGRES is
not yet highly tuned and would be
expected to offer lower perfor-
mance than a commercial package.
Finally, POSTGRES puts a large
header on the front o f each record
and incurs a substantial space pen-
alty because record size is ra ther
small on this benchmark. Obvi-
ously, we must optimize the size o f
the headers to be competit ive on
small-record benchmarks. We ex-
pect that subsequent tuning of this
sort will move POSTGRES perfor-
mance closer to that of o ther sys-
tems.

The OODB system is faster than
both the in-house system and
POSTGRES on the insert operat ion
because it clusters different record
types on the same disk page. This
allows it to do less I/O for the insert
than the other two systems. It also
outper forms the other systems on
'warm' operat ions because it caches
records in main memory format
ra ther than disk format.

Two comments should be made
at this point. First, POSTGRES al-
lows an application designer to
t rade off per formance for data in-
dependence and other DBMS ser-
vices. The designer can code the
benchmark for maximum perfor-
mance and no data independence
as we did. Alternately, he can use
the query language and obtain
lower per formance with full DBMS
services. Hence, POSTGRES allows
the application designer to choose
the r ight mix of per formance and
database services appropr ia te for
the application.

A second comment is that the in-
house and OODB systems run the
database in the same address space
as the user program. Consequently,
a malicious or careless user can ob-
literate the database and compro-
mise DBMS security. On the other
hand, POSTGRES imports only
specific user functions into its ad-
dress space. Al though such func-
tions can be malicious or careless
and cause data loss, POSTGRES is
trust ing only indicated functions

and not whole user programs.
Moreover, POSTGRES provides a
registrat ion facility for functions,
at which point they can be scruti-
nized for security. Therefore ,
POSTGRES provides a higher de-
gree o f data security than available
from the o ther systems. O f course,
POSTGRES must impor t all rou-
tines that the indicated collection of
functions makes calls on, which
could be the entire application in
the worst case. Also, the impor ted
routines do not have access to re-
sources available to the rest of the
applications, such as global vari-
ables or the user interface.

Conclusions
This article has presented the de-
sign, implementat ion and some of
the phi losophy of POSTGRES. We
feel that it meets most of the 'litmus
test' presented in [6], hence,
POSTGRES capabilities may serve
as a beacon for future evolution of
commercial systems.

We expect to produce Version
3.0 of POSTGRES, which should
be available in the third quar ter o f
1991. I t will be as fast and bug-free
as possible, and contain the com-
plete implementat ion o f aggregates
and complex objects. At that time,
we will have implemented the en-
tire p roposed system with the ex-
ception of:

• Union, intersection and other set
functions have not been con-
structed. The only set functions
available are IN and NOT-IN.

• A where clause cannot appear
inside the { . . . } notation

We are start ing to design the suc-
cessor to POSTGRES, temporar i ly
designated POSTGRES II , which
will a t tempt to manage main-
memory data, disk-based data, and
archive-based data in an elegant,
unif ied manner . A first look at our
ideas appears in [22]. !"4

R e f e r e n c e s

1. Agrawai, R. and Gehani, N. ODE:
The language and the data model.
In Proceedings of the 1989 ACM-

COMMUNICATIONS OF T H E AOM/October 1991/Vol.34, No.10 91

S1GMOD Conference on Management
of Data (Portland, Ore., May 1989).

2. Bitton, D. et al. Benchmarking
datatlase systems: A systematic ap-
proach. In Proceedings of the 1983
VLDB Conference (Cannes, France,
Sept. 1983).

3. Carey, M. et al. A data model and
query language for EXODUS. In
Proceedings of the 1989 ACM-
SIGMOD Conference on Management
of Data (Chicago, Ill., June 1988).

4. Cattell, R.G.G., and Skeen,J. Object
operations benchmark. ACM Trans.
Database Syst. To be published.

5. Clocksin, W. and Mellish, C. Pro-
gramming in Prolog. Springer-
Verlag, Berlin, Germany, 1981.

6. Committee for Advanced DBMS
Function. Third generation data-
base system manifesto. SIGMOD
Record (Sept. 1990).

7. Date, C. Referential integrity. In
Proceedings of the Seventh Interna-
tional VLDB Conference (Cannes,
France, Sept. 1981).

8. Deux, O. et al. The story of 02.
IEEE Trans. Knowl. Data Eng. (Mar.
1990).

9. Eswaren, K. Specification, imple-
mentation and interactions of a rule
subsystem in an integrated database
system. IBM Research, San Jose,
Calif. Res. Rep. RJ1820, Aug. 1976.

10. Forg% C. The OPS5 user's manual.
Carnegie Mellon Univ., Tech. Rep.
1981.

11. Katz, R. and Lehman, T. Storage
structures for versions and alterna-
tives. Computer Science Dept., Uni-
versity of Wisconsin, Madison,
Wise., Rep. 479, July 1982.

12. Kemnitz, G., Ed. The POSTGRES
Reference Manual, Version 2.1.
Electronics Research Laboratory,
University of California, Berkeley,
Calif. Rep. M91/10, Feb. 1991.

13. Kemnitz, G. and Stonebraker, M.
The POSTGRES tutorial. Electron-
ics]Research Laboratory, Mem.
M91/82, Feb. 1991.

14. Kim, W. et al. Architecture of the
ORION next-generation database
system. 1EEE Trans. Knowl. Data
Eng. (Mar. 1990).

15. McCarthy, D. and Dayal, U. Archi-
tecture of an active database system.
In Proceedings of the 1989 ACM-
SIGMOD Conference on Management
of Data (Portland, Ore., June 1989).

16. Ong, L. and Goh, J. A unified
framework for version modeling
using production rules in a database

system. University of California,
Electronics Research Laboratory,
Mem. UCB/ERL M90/33, Apr.
1990.

17. Osborne, S. and Heaven, T. The
design of a relational system with
abstract data types as domains.
ACM Trans. Database Syst. (Sept.
1986).

18. Richardson, J. and Carey, M. Pro-
gramming constructs for database
system implementation in EXO-
DUS. In Proceedings of the 1987
ACM-SIGMOD Conference on Man-
agement of Data (San Francisco,
Calif., (May 1987).

19. Rowe, L. and Stonebraker, M. The
POSTGRES data model. In Proceed-
ings of the 1987 VLDB Conference
(Brighton, England, Sept. 1987).

20. Stonebraker, M. Inclusion of new
types in relational data base sys-
tems. In Proceedings of Second Inter-
national Conference on Data Engineer-
ing (Los Angeles, Calif., Feb. 1986).

21. Stonebraker, M. The POSTGRES
storage systems. In Proceedings of the
1987 VLDB Conference (Brighton,
England, Sept. 1987).

22. Stonebraker, M. Managing persis-
tent objects in a multi-level store. In
Proceedings of the 1991 ACM-
SIGMOD Conference on Management
of Data (Denver, Colo., May 1991).

23. Stonebraker, M. and Rowe, L. The
design of POSTGRES. In Proceed-
ings of the 1986 ACM-SIGMOD Con-
ference (Washington, D.C., June
1986).

24. Stonebraker, M. et al. Extensibility
in POSTGRES. 1EEE Database Eng.
(Sept. 1987).

25. Stonebraker, M. et al. The
POSTGRES rules system. IEEE
Trans. Softw. Eng. (July 1988).

26. Stonebraker, M. et al. The imple-
mentation of POSTGRES. IEEE
Trans. Knowl. Data Eng. (Mar. 1990).

27. Stonebraker, M. et al. On rules,
procedures caching and views. In
Proceedings of the 1990 A CM-
SIGMOD Conference on Management
of Data (Atlantic City, N.J., June
1990).

28. Wang, Y. The PICASSO shared
object hierarchy. MS Rep., Univer-
sity of California, Berkeley, June
1988.

29. Widom, J. and Finkelstein, S. Set-
oriented production rules in rela-
tional database systems. In Proceed-
ings of 1990 ACM-SIGMOD Confer-
ence on Management of Data (Atlantic

City, N.J., June 1990).
30. Wilkinson, K., et al. The IRIS archi-

tecture and implementation. IEEE
Trans. Knowl. Data Eng. (Mar. 1990).

31. Woodfill, J. and Stonebraker, M.
An implementation of hypothetical
relations. In Proceedings of 9th VLDB
Conference (Florence, Italy, Sept.
1983).

CR Categories and Subject Descrip-
tors: H.2.1 [Information Systems]:
Database Management--Logical Design;
H.2.3 [Information Systems]: Database
Management--Languages; H.2.4 [Infor-
marion Systems]: Database Manage-
ment--Systems; H.2.8 [Information Sys-
tems]: Database Management--
Database Applications

General Terms: Design
Additional Key Words and Phrases:

Extended relational database manage-
ment systems, POSTGRES

About the Authors:
MICHAEL STONEBRAKER is a pro-
fessor in the EECS department at UC
Berkeley. His research interests include
next-generation database systems, file
systems, and I/O architectures.

GREG KEMNITZ is a senior program-
mer in the EECS department at UC
Berkeley. His research interests include
innovative data managers, user inter-
face protocols, and software engineer-
ing management.

Authors' Present Address: Computer
Science Department at UC Berkeley,
573 Evans Hall, Berkeley, CA 94720;
email: postgres.berkeley {mike, kemnitz}
@ edu

This research was sponsored by the Defense
Advanced Research Projects Agency through
NASA Grant NAG 2-530 and by the Army
Research Office through Grant DAALO3-87-
K-0083.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

Q ACM 0002-0782/91/I000-078 $1.50

92 October 1991/Vol.34, No.10/COMMUNICATIONS OF THE A C M

