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Abstract: 
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1. INTRODUCTION 

We assume %he data base consists of a collection of records and 
constraints defined on these records. There are physical 
constraints (ex: in a list of records, if 
record B then record B must 

a record A points to 
exist) as well as logical constraints 

(ex: conservation of money in a bank checking account 
application). When all such constraints are satisfied the data 
base is said to be consistent. 

A transaction is a series of accesses (fcr read or write 
operations) to the data base which, applied to a consistent data 
base, will produce a consistent data base. During the execution 
of a transaction, the data base may be temporarily inconsistent. 
The programs used to Ferform the transacticns assume that they 
trsee'q a consistent data base. So if several transactions are run 
concurrently, a locking mechanism must be used to insure that one 
transaction does not see temporarily inconsistent data caused by 
another transaction. Also, even if there are no consistency 
constraints, locks must be used so that the updates of one 
transaction are not made available to others before the 
transaction completes. Otherwise, transaction backup might 
cascade to other transactions which read or updated the "backed 
upI1 updates. 

Section 2 of the paper gives a brief description of a possible 
locking mechanism. It introduces the notion of granularity of 
lockable objects. Very informally, granularity refers to the size 
of a lockable object. The following and main Section 3 outlines a 
mechanism which simultaneously supports fine and gross lockable 
objects organized into a hierarchy. The generalization of these 
notions to directed acyclic graphs is then presented. Section 4 
discusses the problems of scheduling lock requests. Section 5 
relates these ideas to existing data base systems and briefly 
describes our use of this protocol in an experimental data base 
system. Note that the terms hierarchy and graph refer to the lock 
protocol and have nothing to do with the data model of the system. 
In fact the last section shows applications of the protocol to 
hierarchical, network and relational systems. 
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2. GRAP'ULARITY OF LOCKS 

The description of a lock mechanism must cover the definition of 
the lockable objects, the operations which can be performed on the 
objects, how and when objects are allocated to particular 
transactions, and the duration of an allocation. A previous paper 
[1] discussed in some detail a lock protocol which would insure 
that the data base state obtained after running the same 
transactions concurrently is equivalent to.the state obtained by 
running the same transactions sequentially in some arbitrary order 
determined by the system. This defines the consistency provided 
by +he system. 

Suppose the lockable object is a single record in a file. The 
proposed protocol can be stated as: 

(a) Recognize the classical notion of shared locks for read oper- 
ations and exclusive locks for write operations on objects. 

(b) Any record must be appropriately locked before being 
accessed. 

(c) Any lock is kept to the end of transaction. 

Note that in order to work correctly the notion of locking a 
record must be extended to include the ability to lock the 
non-existence of a record (i.e. to prevent the insertion of 
"phantom" records by other transactions). This notion has been 
extensively discussed in Cl]. A forthcomming paper generalizes 
this notion of consistency to include protocols which release 
locks before the end of the transaction. The present paper also 
applies those more general protocols. 

It is a general problem in large integrated data bases that a 
transaction does not know which records it will access. so to 
avoid locking entire files or areas in advance, locks are 
requested dynamically. This creates a scheduling problem and the 
chosen scheduler must be prepared to handle deadlock situations. 
We return to this problem in section 4. 

The choice of lock granularity presents a tradeoff between 
concurrency and overhead. On the one hand, concurrency is 
increased if a fine unit of locking (for example a record or 
field) is chosen. Such a choice is appropriate to "simplet' 
transactions which access a few records. If a transaction 
accesses many records %here are many locks. Each such access 
incurs the computational overhead of setting and perhaps waiting 
for a lock and the storage overhead of representing the lock until 
the end of transaction. Using a coarse unit of locking (for 
example a file) is probably convenient for a transaction which 
accesses many records. However, such a coarse unit discriminates 
against transactions which only want to lock one record of the 
file. From this discussion it follows that one needs a 
multiplicity of granularities of lockable objects. 
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3. HIERARCHICAL LOCKS 

In [l] it was proposed that one locks sets of records chosen from 
a file by specifying a predicate expression which "selects" the 
set of records to be locked. For example, using the obvious 
syntax, we could lock all employees in the EMPLOYEE file who work 
in the accounting department by: 

LOCK EMPLOYEE WHERE (DEPARTMENT = 'ACCOUNTING'). 

(DEPARTMENT = fACCOUNTING W is the predicate.) Similarly, 

LOCK EMPLOYEE WHERE (TRUE) 

would lock the entire employee file. 

TWO locks conflict if their predicates are mutually satisfiable 
and one of them is exclusive. If two lock requests conflict, one 
must wait. Predicate locks have the virtue of generality but have 
the flaw that to grant a new lock it must be compared against the 
predicate of every outstanding lock. Predicate comparison is a 
computationally difficult problem. So we have come to feel that 
predicate locking is an excellent paradigm for the more efficient 
scheme described below tihich partitions the data base into a 
hierarchy; each subtree of the hierarchy corresponds to a very 
simple predicate and a protocol is adopted which makes conflict 
testing very easy. 

In order to achieve efficient locking at several granularities, 
the set of resources and their corresponding locks are organized 
into a hierarchy. The hierarchy of Figure 1 may be suggestive. 
We adopt the notation that each level of the hierarchy is given a 
node type which is a generic name for all the node instances of 
that type. For example, the data base has nodes of type area as 
its immediate descendants, each area in turn has nodes of type 
file as its immediate descendants and each file has nodes of type 
record as its immediate descendants in the hierarchy. Since it is 
a hierarchy each node has a unique parent. 

DATA BASE 

AREAS 

FILES 

RECOFDS 

Figure 1. A sample lock hierarchy. 
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Each node of the hierarchy can be locked. If one requests 
exclusive access (X) to a particular node, then when the request 
is granted, the requestor has exclusive access to that node and 
implicitly to each of its descendants. If one 
access (S) to aparticulgrnode, 

requests shaa 
then when the request is granted, 

the requestor has shared access to that node and implicitly to 
each descendant of that node. These two accer modes lock G -- 
entire subtree rooted at acequested node. 

Our goal is to find s01~e technique for implicitly locking an 
entire subtree. The way to explicitly lock an entire subtree is 
to lock each node of the subtree in leaf-to-root order. This 
approach has the problem that setting a file lock requires locking 
each record in the file. The scheme has the virtue that it is 
cheap to lock individual leaves of the tree (i.e. sets only one 
1,ock per leaf); whereas locking the root of the tree is expensive 
if the tree is large (i.e. requires locking all nodes of the 
tree). It does no implicit locking, all locks are explicit. The 
following approach makes locking the root cheap but makes it 
somewhat more expensive to lock individual leaves of the tree. 

In order to lock a subtree rooted at node R in share or exclusive 
mode it is important to Frevent share or exclusive locks on the 
ancestors of R which would implicitly lock R and its descendants. 
Hence a new access mode, intention mode (I), is introduced. 
Intention mode is used to Vag"f (lock) ailancestors of a node to 
be locked in share or exclusive mode. These tags signal the fact 
that locking is being done at a ~QfineP level and prevent implicit 
or explicit exclusive or share locks on the ancestors. 

The protocol to lock a subtree rooted at node I! in exclusive or 
share mode is to lock all ancestors of R in intention mode and to 
lock node R in exclusive or share mode. So for example using 
Figure 1, to lock a particular file obtain intention access to the 
data base, to the area containing the file and then request 
exclusive (or share) access to the file itself. This implicitly 
locks all records of the file in exclusive (or shared) mode. 
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3.1 Access modes and compatibility 

We say two lock requests for the same node are compatible if they 
can be granted concurrently without sacrificing consistency. The 
mode of the request determines its compatibility with requests 
made by other transactions. The three modes: X, S, and I are 
incompatible with one another but distinct S requests may be 
granted together and distinct I requests may be granted together. 

The compatibilities among modes derive from their semantics. 
Share mode allows reading but not modification of the 
corresponding resource by the requestor and by other 
transactions. The semantics of exclusive mode is that the grantee 
may read and modify the resource and no other transaction may read 
or modify the resource while the exclusive lock is set. The 
reason for dichotomizing share and exclusive access is that 
several share requests can be granted concurrently (are 
compatible) whereas an exclusive request is not compatible with 
any other request. Intention mode was introduced to be 
incompatible with share and exclusive mode (to prevent share and 
exclusive locks). However, intention mode is compatible with 
itself since two transactions having intention access to a node 
will explicitly lock descendants of the node in X, S, or .I mode 
and thereby will either be compatible with one another or will be 
scheduled on the basis of their requests at the finer level. For 
example, two transactions can be concurrently granted the data 
base and some area and some file in intention mode. In this case 
their explicit locks on records in the file will resolve any 
conflicts among them. 

The notion of intention mode is refined to intention share mode 
(IS) and intention exclusive mode (IX) for two reasons: Fix 
intention access is cmpatible with share (S) access if the 
intention only requests -intention or share locks at the lower 
nodes of the tree (i.e. never requests an exclusive lock below the 
intention share node). Since read-only is a coxmnon form of access 
it will be profitable to distinguish this for greater 
concurrency. Secondly, if a transaction has an intention share 
lock on a node it can convert this to a share lock at a later 
time, but one cannot convert an intention exclusive lock to a 
share lock on a node (see below). 

We recogniee one further refinement of modes, namely share and 
intention exclusive mode (SIX). Suppose one transaction wantsto 
read an entire subtree and to update particular nodes of that 
subtree. Using the modes Frovided so- far it would have the 
options of: (a) requesting exclusive access to the root of the 
subtree and doing no further locking or (b) requesting intention 
exclusive access to the root of the subtree and explicitly locking 
the lower nodes in intention, share or exclusive mode. 
Alternative (a) has lcw concurrency. If only a small fraction of 
the read nodes are updated then alternative (b) has high locking 
overhead. The correct access mode would be share access to the 
subtree thereby allowing the transaction to read all nodes of the 
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subtree without further locking and intention exclusive access to 
the subtree thereby allowing t&-transaction to set exclusive 
locks on those nodes in the subtree which are to be updated and IX 
or SIX locks on the intervening nodes. Since this is such a 
common case, SIX mode is introduced for this purpose. It is 
compatible with IS mode since other transactions requesting IS 
mode will explicitly lock lower nodes in IS or S mode thereby 
avoiding any updates (IX or x mode) produced by the SIX mode 
transaction. However SIX mode is not compatible with IX, s, SIX 
or x mode requests. Table 1 gives the compatibility of the 
request modes. (Note that compatibility is not transitive.) 

Table 1. Compatibilities among access modes. 

COMFATIBILITY 
-1s IX s SIX x 

IS YES YES YES YES NO 
IX YES YES NO NO NO 
S YES NO YES NO NO 
SIX YES NO NO NO NO 
X NO NC NO NO NO 

A 1 
To summarize, we recognize five modes of access to a resource: 

x: Gives exclusive access to the requested node and to all 
descendants zthe requested node without setting further 
locks. (It implicitly sets X locks on all descendants.) 

S: Gives share access to the requested node and to all descendants 
of the requested node without setting further locks. (It 
implicitly sets S locks on all descendants of the requested 
node.) 

IX: 

IS: 

Gives intention exclusive access to the requested node and 
allows the requestor to explicitly lock descendants in X, S, 
SIX, IX or IS mode. (It does no implicit locking.) - 

Gives intention share access to 
the requestorto 

the requested node and allows 
lock descendant nodes in S or IS mode. IIt 

does no implicit locking.) - 

SIX: Gives share and intention exclusive access to the requested 
node. In particular it implicitly locks all descendants of 
the node in-share mode and -allows-the requestor to explicitly 
lock descendant nodes in X, SIX, or IX mode. {Locking lower 
nodes in S or IS mode would give no increased access.) 
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IS mode is the weakest form of access to a resource. It carries 
fewer privileges than IX or S modes. IX mode allows IS, IX, s, 
SIX, and X mode locks to be set on descendant nodes while S mode 
allows read only access to all descendants of the node without 
further locking. SIX mode carries the privileges of S and of IX 
mode (hence the name SIX). X mode is the most privileged form of 
access and allows reading and writing of all descendants of a node 
without further locking. Hence the modes can be ranked in the 
partial order (1 attice) of privileges shown in Figure 2. Note 
that it is not a total order since IX and S are incomparable. 
Given two modes, the least node greater than or equal to them in 
Figure 2 is called their supremum (see Table 3). 

Figure 2. The partial ordering of modes by their privileges. 

3.2 Rules for requesting nodes 

The implicit locking of nodes will not work if transactions are 
allowed to leap into the middle of the tree and begin locking 
nodes at random. The implicit locking implied by the S and X 
modes depends on all transactions obeying the following protocol: 

(a) Before requesting an S or IS lock on a node, all ancestor 
nodes of the requested node must be held in IX or IS mode by 
the requestor. 

(W Sefore requesting an X, SIX, or IX lock on a node, all 
ancestor nodes of the requested node must be held by this 
requestor in SIX or IX mode. 

(c) Locks should be released either at the end of the transaction 
(in any order) or in leaf to root order. In particular, if 
locks are not held tc the end of transaction, one should not 
hold a lower lock after releasing its ancestor. 

To paraphrase this, locks are requested root to leaf, and released --- 
leaf to root. Notice thx leaf nodes are never r=ested in 
intent& mode since they have no descendants. 
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3.3 Several examples 

It may be instructive to give a few examples of hierarchical 
request sequences: 

To lock record R for read: 
lock data base with mode = IS 
lock area containing R with mode = IS 
lock file containing R with mode = IS 
lock record R with mode = S 

Don't panic, the transaction probably already has the data base, 
area and file lock. 

To lock record R for write-exclusive access: 
lock data base with mode = IX 
lock area containing R with mode = IX 
lock file containing R with mode = IX 
lock record R with mode = X 

Note that if the records of this and the previous example are 
distinct, each request can be granted simultaneously to different 
transactions even though both refer to the same file. 

To lock a file F for read and write access: 
lock data base with mode = IX 
lock area containing F with mode = IX 
lock file F with mode = X 

Since this reserves exclusive access to the file, if this request 
uses the same file as the previous two examples it or the other 
transactions will have to wait. 

To lock a file F for complete scan and occasicnal update: 
lock data base with mode = IX 
lock area containing F with mode = IX 
lock file F with mode = SIX 

Thereafter, particular records in F can be locked for update by 
locking records in X mode. Notice that (unlike the previous 
example) this transaction is compatible with the first example. 
This is the reason for introducing SIX mode. 

To quiesce the data base: 
lock data base with mode = X 

Note that this locks everyone else out. 
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3.4 Directed acyclic graphs of locks 

The notions so far introduced can be generalized to work for 
directed acyclic graphs (DA9 of resources rather than simply 
hierarchies of resources. A tree is a simple DAG. The key 
observation is that: to implicitly or explicitly lock a node, lock 
all the parents of the node in the DAG and so by induction lock 
n ancestors of the node. In particular, to lock a subgraph one 
must implicitly or explicitly lock all ancestors of the subgraph 
in the appropriate mode (for a tree there is only one parent). To 
give an example of a non-hierarchical structure, imagine the locks 
are organized as in Figure 3. 

DATA BASE 

I 
AREAS 

I 
I 1 

FILES INDICES 

RECORDS 

Figure 3. A non-hierarchical lock graph. 

WP postulate that areas are I*physical" notions and that files, 
indices, and records are logical notions. The data base is a 
collection of areas. Each area is a collection of files and 
indices. Each file has a corresponding index in the same area. 
Each record belongs to some file and to its corresponding index. 
A record is composed of field values and some field is indexed by 
the index associated with the file containing the record. The 
file gives a sequential access path to the records and the index 
gives an associative access path to the records based on field 
values. Since individua 1 fields are never locked, they do not 
appear in the lock graph. 

To write a record R in file F with index I: 
lock data base with mode = IX 
lock area containing F with mode = IX 
lock file F with mode = IX 
lock index I with mode = IX 
lock record R with mode = X 

Note that all paths to record R are locked. Alternaltively, one 
could 1ockFand I in exclusive mode thereby implicitly locking R 
in exclusive mode. 
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To give a more complete explanation we observe that a node can be 
locked explicitly (by requesting it) or implicitly (by appropriate 
explicit locks on the ancestors of the node) in one of five modes: 
IS, IX, s, SIX, x. However, the definition of implicit locks and 
the protocols for setting explicit locks have to be extended as 
follows: 

A node is implicitly qranted in S mode to a transaction if at 
least one of its parents is -- (impl?citly or explicitly) granted G 
the transaction in S, SIX, or X mode. By induction that means 
that at least one of the node's ancestors must be explicitly 
granted in S, SIX, or X mode to the transaction. 

A node is implicitly granted in X mode if all P-w of its parents are 
(implicitly or explicitly) granted to the transaction in X mode. 
By induction, this is equivalent to the condition that all nodes 
in some cut set of the collection of all paths leading from the 
node to the roots of the graph are explicitly granted to the 
transaction in X mode and all ancestors of nodes in the cut set 
are explicitly granted in IX or SIX mode. 

From Figure 2, a node is implicitly granted in IS mode if it is 
implicitly granted in S mode, and a node is implicitly granted in 
IS, IX, S, and SIX mode if it is implicitly granted in X mode. 

3.5 The protocol for explicitly requesting locks on a LAG 

(a) Before requesting an S or IS lock on a node, request at least 
one parent (and by induction a path to a root) in IS (or 
greater) mode. As a consequence none of the ancestors along 
this path can be granted to another transaction in a mode 
incompatible with IS. 

(b) Before requesting IX, SIX, or X mode access to a node, request 
all parents of the node in IX (or greater) mode. As a 
consequenc'e all ancestors will be held in IX (or greater 
mode) and cannot be held by other transactions in a mode 
incompatible with IX (i.e. S, SIX, X). 

(c) Locks should be released either at the end of the transaction 
(in any order) or in leaf to root order. In particular, if 
locks are not held to the end of transaction, one should not 
hold a lower lock after releasing its ancestors. 

Given this protocol, one can Frove the invariant condition: 

If a node is granted implicitly or explicitly to a transaction 
then it is not granted to another transaction (implicitly or 
explicitly) in an incompatible mode. 
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Clearly if all ancestors were locked by both the share mode lock 
protocol andy the exclusive mode lock protocol then the protocol 
would work. However, in the above protocol, only exclusive locks 
need lock all ancestors. The share lock protocol need lock only a 
single path to a single root. This is because the exclusive 
access protocol will get a cut set of all paths to all roots 
explicitly granted in x mode and all ancestors of the cut set are 
explicitly granted to the transaction in IX mode. Such a cut set 
will prevent any paths from the node to the root from containing a 
node implicitly or explicitly granted to any ether transaction in 
x or s mode. 

To give an example using Figure 3, a sequential scan of all 
records in file F need not use an index so one can get an implicit 
share lock on each record in the file by: 

lock data base withmode = IS 
lock area containing F with mode = IS 
lock file F with mode = S 

This gives implicit S mode access to all records in F. 
Conversely, to read a reccrd in a file via the index I for file F, 
one need not ge t an implicit or explicit lock on file F: 

lock data base with mode = IS 
lock area containing R with mode = IS 
lock index I with mode = S 

This again gives implicit S mode access to all records in index I 
(in file F) . In both these cases, locked for only one path was 
reading. 

But to insert, delete, cr update a record R in file F with index I 
one must get an implicit or explicit lock on all ancestors of R. 

The first example of this section showed how an explicit X lock on 
a record is obtained. To get an implicit X lock on all records in 
a file simply lock the index and file in x mode, or lock the area 
in X mode. The latter examples allow bulk load or update of a 
file without further locking since all records in the file are 
implicitly granted in X mode. 
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3.6 Dynamic lock graphs 

Thus far we have pretended that the lock graph is static. 
However, examination of Figure 3 suggests otherwise. Areas, 
files, and indices are dynamically created and destroyed, and of 
course records are continually inserted, updated, and deleted. 
(If the data base is only read, then there is no need for locking 
at all.) 

The lock protocol for such operations is nicely demonstrated by 
the inplementation of index interval locks. Rather than being 
forced to lock entire indices or indmal records, we would 
like to be able to lock all records with a certain index value; 
for example, lock all records in the bank account file with the 
location field equal to Napa. Therefore, the index is partitioned 
into lockable key value intervals. Each indexed record "belongs" 
to a particular index interval and all records in a file with the 
same field value on an indexed field will belong to the same key 
value interval (i.e. all Napa accounts will belong to the same 
interval). This new structure is depicted in figure 4. 

DATA EASE 

I 
AREAS 

FILE 
I 

t INDICES 

INDEX VALUE 
INTERVALS 

---I RECORDS 

r-d 
UN-INDEXED INDEXED 

FIELDS FIELDS 

Figure 4. The lock graph with key interval locks. 

The only subtle aspect of Figure 4 is the dichotomy between 
indexed and un-indexed fields and the fact that a key value 
interval is the parent of both the record and its indexed fields. 
Since the field value and record identifier (data base key) appear 
in the index, one can read the field directly (i.e. without 
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touching the record.) 
the 

Hence a key value interval is 
corresponding field values. 

a parent of 
On the other hand, the index 

"points*' via record identifiers to all records with that value and 
so is a parent of all reccrds with that field value. 

Since Figure 4 defines a DAG, the protocol of the previous section 
can be used to lock the nodes cf the graph. it should be 
extended as follows. 

However, 
When an indexed field is updated, it and its 

parent record move from one index interval tc another. so for 
example when a Napa account is moved to the St. Helena branch, the 
account record and its location field 
the location index and '*join" the St. 

V1leavett the Napa interval of 
Helena index interval. When 

a new record is inserted it "joining the interval 
new field 

containing the 
value and also it *'joins*' the file. Deletion removes 

the record frcm the index interval and from the file. 

The lock protocol for changing the parents of a node is: 

(d) Eefore moving a node in the lock graph, the node must be 
implicitly or explicitly granted in X mode in both its old and 
its new Fosition in the graph. Further, the node must not be 
moved in such a way as to create a cycle in the graph. 

So to carry out the examF1e of this section, to move a Napa bank 
account to the St. Helena branch one would: 

lock data base in mode = IX 
lock area containg accounts in mode = IX 
lock accounts file in mode = IX 
lock location index in mode = IX 
lock Napa interval in mode = IX 
lock St. Helena interval in mode = IX 
lock record in mode = IX 
lock field in mode = X. 

Alternatively, one could get an implicit leek on the field by 
requesting explicit X mode locks on the record and index 
intervals. 
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4. SCHEDULING AND GRANTING REQUESTS 

Thus far we have described the semantics of the various request 
modes and have described the protocol that the requestors must 
follow. To complete the discussion we must explain how requests 
are scheduled and granted. 

The set of all requests for a particular resource are kept in a 
queue sorted by some fair scheduler. By "fair" we mean that no 
particular transaction will be delayed indefinitely. First-in 
first-out is the simplest fair scheduler and we adopt such a 
scheduler for this discussion modulo deadlock preemption 
decisions. 

The group of mutually compatible requests for a resource appearing 
at the head of the queue is called the granted group. All these 
requests can be granted concurrently. Assuming that each 
transaction has at most one request in the queue then the 
compatibility of two requests by different transactions depends 
only on the modes of the requests and may be computed using Table 
1. Associated with the granted group is a qroup mode which is the 
supremum mode of the members of the group which iscomputed using 
Figure 2 or Table 3. Table 2 gives a list of the possible types 
of requests that can coexist in a group and the corresponding mode 
of the group. 

Table 2. Possible request groups and their group mode. Set 
brackets indicate that several such requests may be 
present. 

r 1 
MCDES OF MODE OF 

REQUESTS GROUP 
X X 

SIX, (IS) SIX 
S# fS3 # us3 S 

IX I fW r us3 IX 
IS, EW IS \ 

Figure 5 depicts the queue for a particular resource, showing the 
requests and their modes. The granted group consists of five 
requests and has group mode IX. The next request in the queue is 
for S mode which is incompatible with the group mode IX and hence 
must wait. 

GRANTED GROUP: GROUFMODE = IX 
IS - IX - IS- IS -1s S -IS-X-IS-IX 

4 

Figure 5. The queue of requests for a resource. 

When a new request for a rescurce arrives, the scheduler appends 
it to the end of the queue. There are two cases to consider, 
either someone is already waiting or all outstanding requests for 
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this resource are granted (i.e. no one is waiting). If no one is 
waiting and the new request is compatible with the granted group 
mode then the new request can be granted immediately. Otherwise 
the new request must wait its turn in the queue and in the case of 
deadlock it may preempt some incompatible requests in the queue. 
(In Figure 5 all the requests decided to wait.) When a particular 
request leaves the granted group the group mode of the group may 
change. If the mode of the next request in the queue is 
compatible with the new mode of the granted group, then the 
waiting request is granted. In Figure 5, if the IX request leaves 
the group, then the group mode becomes IS which is compatible with 
S and so the S may be granted. The new group mode will be S and 
since this is compatible with IS mode the IS request following the 
S request may also join the granted group. This produces the 
situation depicted in Figure 6: 

, 

GRANTED GROUP GROUPMODE = S 
IS - IS- IS -IS-S-IS ' x- IS-IX 

* 

Figure 6. The queue after the IX request is released. 

The X request of Figure 6 will not be granted until all the 
requests leave the granted group since it is not COmFatible with 
any mcde. 
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4.1 Conversion 

A transaction might re-request the same object for several 
reasons: Perhaps it has forgotten that it already has access to 
the record; after all, if it is setting many locks it may be 
simpler to just always request access to the record rather than 
first asking itself "have I seen this record before". The lock 
subsystem has all the information to answer this question and it 
seems wasteful to duplicate. Alternatively, the transaction may 
know it has access to the record, but want to increase its access 
mode (for example from S to X mode if i% is in a read, test, and 
sometimes update scan of a file). So the lock subsystem must be 
prepared for re-requests by a transaction for a lock. we call 
such re-requests conversions. 

When a request is found to be a conversion, the old (granted) mode 
of the requestor to the resource and the newly requested mode are 
compared using Table 3 to compute the new mode which is the 
supremum of the old and the requested modeTef. Figure 2). 

Table 3. The new mode given the requested and old mode. 

NEW MODE 

So for example, if one has IX mode and requests S mode then the 
new mode is SIX. 

If the new mode is equal to the old mode (note it is never l'lessl@ 
than the old mode) then the request can be granted immediately and 
the granted mode is unchanged. If the new mode is compatible with 
the group mode of the other members of the granted group (a 
requestor is always compatible with himself) then again the 
request can be granted immediately. The granted mode is the new 
mode and the group mode is recomputed Using Table 2. In all 
other cases, the requested conversion must wait until the group 
mode of the other granted requests is compatible with the new 
mode. Note that this immediate granting of conversions over 
waiting requests is a minor violation of fair scheduling. 

If two conversions are waiting, each of which is incompatible with 
already granted request of the other transaction, 

dagadlock exists 
then a 

and the already granted access of one must be 
preempted. Otherwise there is a consistent way of scheduling the 
waiting conversions: namely, grant a conversion when it is 
compatible with all other granted modes in the granted group. 
(Since there is no deadlock cycle this is always possible.) 
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The following example may help to clarify 
the queue is: 

these points. Suppose 

h l 

GROUPMODE = IS 
I IS -1s 

Figure 7. A simple queue. 

Now suppose the first transaction wants to convert to X mode. It 
must wait for the second (already granted) 'request to leave the 
queue. If it decides to wait then the situation becomes: 

T 

GROUPMODE = IS 
[IS-+X+--IS 

, 
Figure 8. A conversion to X mode waits. 

No new request may enter the granted group since there is now a 
conversion request waiting. In general, conversions are scheduled 
before new requests. If the second transaction now converts to 
IX, SIX, or S mode it may be granted immediately since this does 
not conflict with the granted (IS) mode of the first transaction. 
When the second transaction eventually leaves the queue, the first 
conversion can be made: 

GROUPMODE = X 
X . 

Figure 9. The second transaction leaves and the conversion is 
granted. 

FIowever, if the second transaction tries to convert to exclusive 
mode one obtains the queue: 

GROUPMODE = IS 
[IS3X1- [IS 3x] 

Figure 10. Two conflicting conversions are waiting. 

Since X is incompatible with IS (see Table l), this situation 
implies that each transaction is waiting for the other to leave 
the queue (i.e. deadlock) and so one transaction must be 
oreempted. 
is a 

In all other cases (i.e. when no cycle existmere 
way to schedule the conversions so that no already granted 

access is violated. 
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3.2 Deadlock and lock thrashing 

Whenever a transaction waits for a request to be granted, it runs 
the risk of waiting forever in a deadlock cycle. For the purposes 
of deadlock detection it is important to know who is waiting for 
whom. The request queues give this information: Consider any 
waiting request R. there are two cases: If R is a waiting 
conversion then it is WAITING-FOR all other requests in the 
granted group which are granted a mode incompatible with the mode 
of R. If R is not a conversion it is WAITING-FOR all incompatible 
requests ahead of it in the queue. Given this WAITING FOR 
relation'computed for all waiting requests, there is no deadlock 
if and only if WAITING-FOE is acyclic. 

The WAITING-FOR relation may change whenever a request or release 
occurs and when a conversion is granted. If a transaction may 
wait for at most one request at a time, then the deadlock state 
can only change when some process decides to wait. In this 
special case, only waits require recomputation of the WAITING-FOR 
relation. If deadlock is improbable, deadlock testing can be done 
periodically rather than on each wait, thereby further reducing 
computational overhead. 

One new request may form many cycles and each such cycle must be 
broken. When a cycle is detected, to break the cycle some granted 
or waiting request must be preempted. The lock scheduler should 
choose a minimal cost set of victims to preempt, so that all 
cycles are broken, undo all the changes to the data base made by 
the victims since the preempted resources were granted, and then 
preempt the resource and signal the victims that they have been 
backed up. 

The issues discussed so far--lock scheduling, detecting and 
breaking deadlocks-- are very low level scheduling decisions. They 
must be connected with a high level transaction scheduler which 
regulates the load on the sy stem and regulates the entry and 
progress of transactions to prevent long waits, high probability 
of waiting (lock thrashing), and deadlock. Ey analogy, a page 
management system with cnly a low level page frame scheduler, 
which allocates and preemns Fage frames in a fairly naive way, is 
likely to produce page thrashing unless it is coupled with a 
working set scheduler which regulates the nuxrber and character of 
processes competing for page frames. 
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5. LOCK HIERARCHIES IN EXISTING SYSTEMS 

IMS/VS with the program isolation feature [2] has a two level lock 
hierarchy: segment types (sets of records), and segment instances 
(records) within a segment type. Segment types may be locked in 
EXCLUSIVE (E) mode (which corresponds to our exclusive (X) mode) 
or in EXPRESS READ (R), RETRIEVE (G), or UPDATE (U) (each of 
which correspond to our notion of intention (I) mode) [ 2 page 
3.18-3.27-J. Segment instances can be locked in share or exclusive 
mode. Segment type locks are requested at transaction initiation, 
usually in intention mode. Segment instance locks are dynamically 
set as the transaction proceeds. In addition IMS/VS has user 
con%rolled share locks on segment instances (the *Q option) which 
allow other read requests but not other *Q or exclusive requests. 
IMS/VS has no notion of S or SIX locks on segment types (which 
would allow a scan of all members of a segment type concurrent 
with other readers but without the overhead of locking each 
segment instance). Since IMSA?S does not support S mode on 
segment types one need not distinguish the two intention modes IS 
and IX (see the section introducing IS and IX modes). In general, 
IMS/VS has a notion of intention mode and does implicit locking 
but does not recognize all the modes described here. It uses a 
static two level lock tree. 

DMS 1100 has a two level lock hierarchy [ 33: areas and pages 
within areas. Areas may be locked in one of seven modes when they 
are OPENed: EXCLUSIVE RETRIEVAL (which corresponds to our notion 
of exclusive mode), PROTECTED UPDATE (which corresponds to our 
notion of share and intention exclusive mode), PROTECTED RETRIEVAL 
(which we call share mode), UPDATE (which corresponds to our 
intention exclusive mode), and RETRIEVAL (which is our intention 
share mode). Given this transliteration, the compatibility matrix 
displayed in Table 1 is identical to the compatibility matrix of 
DMS 1100 [3, page 3.591. However, DMS 1100 sets only exclusive 
locks on pages within areas (short term share locks are invisibly 
set during internal pointer following). Further, even if a 
transaction locks an area in exclusive mode, DMS 1100 continues t0 
set exclusive locks (and internal share locks) on the pages in the 
area, despite the fact that an exclusive lock on an area precludes 
reads or updates of the area by other transactions. Similar 
observations apply to the DMS 1100 implementation of s and SIX 
mode?. In general, DMS 1100 recognizes all the modes described 
here and uses intention modes to detect conflicts but does not 
utilize implicit locking. It uses a sta.tic two level lock tree. 

The ideas presented here were developed in the process of 
designing and implementing an experimental data base system at the 
IBM San Jose Research Labcratory. (We wish to emphasize that this 
system is a vehicle for research in data base architecture, and 
does not indicate plans for future 1134 products.) A subsystem 
which provides the modes of locks herein described, plus the 
necessary logic to schedule requests and conversions, and to 
detect and resolve deadlocks has been implemented as one component 
of the data manager. The lock subsystem is in turn used by the 
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data manager to automatically lock the nodes of its lock graph 
(see Figure 11). Users can be unaware of these lock protocols 
beyond the verbs "begin transaction 19 and "end transaction". 

The data base is broken into several storage areas. Each area 
contains a set of relations (files), their indices, and their 
tuples(records) along with a catalog of the area. Each tuple has 
a unique tuple identifier (data base key) which can be used to 
quickly (directly) address the tuple. Each.tuple identifier maps 
to a set of field values. All tuples are stored together in an 
area-wide heap to allow physical clustering of tuples from 
different relations. The unused slots in this heap are 
represented by an area-wide pool of free tuple identifiers (i.e. 
identifiers not allocated to any relation). Each tuple "belongs" 
to a unique relation, and all tuples in a relation have the same 
number and type of fields. One may construct an index on any 
subset of the fields of a relation. Tuple identifiers give fast 
direct access to tuples, while indices give fast associative 
access to field values and to their corresponding tuples. Each 
key value in an index is made a lockable object in order to solve 
the problem of lgphantomsf' fl] without locking the entire index. 
We do not explicitly lock individual fields or whole indices so 
those nodes appear in Figure 11 only for pedagogical reasons. 
Figure 11 gives only the '*logically lock graph, there is also a 
graph for physical page locks and for other low level resources. 

As can be seen, Figure 11 is not a tree. Heavy use is made of the 
techniques mentioned in the section on locking DAG's. For 
example, one can read via tuple identifier without setting any 
index locks but to lock a field for update its tuple identifier 
and the old and new index key values covering the updated field 
must be locked in X mode. Further, the tree is not static, since 
data base keys are dynamically allocated to relations; field 
values dynamically enter, move around in, and leave index value 
intervals when records are inserted, updated, and deleted; 
relations and indices are dynamically created and destroyed within 
areas; and areas are dynamically allocated. The implementation of 
such operations observes the lock protocol presented in the 
section on dynamic graphs: When a node changes parents, all old 
and new parents must be held (explicitly or implicitly) in 
intention exclusive mode and the node to be moved must be held in 
exclusive mode. 
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AREAS 
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INDICES 

INDEX KEY 
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IDENTIFIERS IDENTIFIERS 
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UN-INDEXED INDEXED 

FIELDS FIELDS 

Figure 11. A lock graph. 
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