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7.1
Introduction and Overview

The limitations of classical ACID transactions have been discussed ex-
tensively in the literature [Gray81]. Developed in the context of database
systems, they perform well only when the controlled units of work are small,
access only a few data items, and therefore have a short system residence time.
Given this assumption, transactions could be made atomic state transitions.
But atomicity, taken verbally, means that there is no structure whatsoever
that can be perceived and referred to from the outside. Another way of
putting this is the following: If there is a unit of work that has a structure,
say, in terms of control flow, which needs to be maintained by the system, it
cannot be modelled as a transaction — and current database systems, operat-
ing systems, etc. have no other means for dealing with that.

Now in distributed systems and in so-called non-standard applications
like office automation, CAD, manufacturing control, etc. one frequently finds
units of work that are very long compared to classical transactions, touch
many objects and have a complex control flow which may include migrations
of (partial) activities across the nodes of a network [KIRe88]. Because the
lack of appropriate system mechanisms to support this processing character-
istics, controlling such activities requires organizational means or enforces the
application itself to take care of, e.g. recovering the activity from a crash.
But even simple examples like the mini-batch [GrRe91] demonstrate that the
resulting code contains large portions that are not application-specific, but
have to do with flow control.

The ConTract-model, first proposed in [Reut89], tries to provide the
formal basis for defining and controlling long-lived, complex computations,
just like transactions control short computations. It was inspired by the con-
cept of spheres of control [Davi78], and by the mechanisms for managing flow
that are provided by some TP-monitors, like queues, context databases, etc.
[GrRe91].

Since ConTracts introduce a unit of work and control that consists of the
whole application instead of individual database state transitions, they define
a control mechanism above ACID transactions. It is not an extension of the
transaction concept like those suggested in, e.g., [Moss81, Lync83, KLMP84,
Weik86, GaSa87, HsLM88, ELLRI0] in the sense that a more powerful but
still structurally limited framework denotes. It rather is a programming model
that — in contrast to conventional programming languages — includes per-
sistence, consistency, recovery, synchronization and cooperation.



This chapter starts by illustrating the problem domain (section 2) and
then proposes mechanisms to meet the identified requirements of managing
long-lived activities in distributed systems. After the presentation of the Con-
Tract model (section 3), issues concerning the implementation of ConTracts
as a consistent and reliable execution environment are discussed as well as
considerations how to extend existing database and operating systems for
this task (section 4). Then a comparison to other work follows (section 5)
before the paper concludes with a summary of results and a brief sketch of
the current status as well as future work on the ConTract Model (section 6).

7.2
Transaction Support for Large Distributed
Applications

Classical transactions are the first application-independent control mech-
anism that supports the units of work of a database application with the fol-
lowing well known properties: Atomicity, Consistency, Isolation and Durability.
These properties are used widely to the advantage of many applications, espe-
cially for reservation systems, banking or inventory control. In other database
applications, however, several aspects of the transaction concept limit its use.
The main reason for this is that some of its implicit assumptions are no longer
valid in so-called non-standard applications:

Transactions model short and concurrent computation steps which
operate on small amounts of simply structured shared objects ex-
isting solely as data in a computer system.

The most fundamental drawback of traditional transaction systems in
the context of long-lived applications is their notion of transactions being
concurrent and completely unrelated units of work. As a consequence, any
existing interrelations between individual transactions, like control flow de-
pendencies and other semantic connections, cannot be implemented by the
system, but have to be handled by the application (Fig. 7.1).

As an example, it is not possible to run the following sequence of trans-
actions according to the specification given below solely within the control
sphere of a database transaction manager without further application pro-
gramming:
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FIGURE 7.1
Control flow and other inter-transaction dependencies at the application level are
mapped to unrelated and therefore isolated database state transitions.

Specification of a simple transaction sequence:

Run transaction T1. Then execute transactions T2, T3, T4 in
parallel. Immediately after their successful completion start TH.
But if one of (T2, T3, T4) fails, then abort the other two. In this
case the effects of T1 have to be cancelled as well.

In the cooperation of a current DBMS with programming languages and
operating systems there is no system mechanism to achieve a concatenation
of transactions that is robust against system failures. And there is no means
to control global concurrency concerning the synchronization of, e.g., T1 and
T5 against other applications.®

This simple example hints at several major requirements, which need to
be addressed by a mechanism for the reliable and correct execution of large

distributed applications:

1Combining all actions into one long transaction is not a satisfactory solution, neither

conceptually nor under performance considerations.



Programming model:

Large applications are usually defined by combining existent
(trans-) actions. Therefore, an appropriate programming model
has to support code reusability.

Flow control for non-atomic computations:

Most long-lived activities show an internal structure that has to
be maintained by the system. This requires a means to describe
and manage control flow between transactions in both static and
dynamic terms. A typical requirement is the ability to suspend,
migrate and resume an application on another node in the network.
Failure and recovery model:

Because failure handling according to the “all-or-nothing” princi-
ple is unacceptable or sometimes impossible, the language used for
control flow description needs an explicitly and precisely defined
failure model. Three central requirements are the following:

- Building a large activity from several smaller actions needs a
flexible mechanism for defining and managing atomic units of
work.

- A system failure may not destroy or extinguish an entire com-

putation.

- In contrast to short transactions, an application as a whole
has to be forward recoverable, e.g., by re-instantiating and
continuing it according to its control flow specification.

Context management for related actions:

Roll-forward requires the ability not only to reconstruct the database
but also the local state of the application (-program).

Referencing the execution history:

Applications running during a long period of time sometimes need
to remember their history and execution path, for example, when
the decision what to do next depends on previous computation
steps. Though, there must be a way to reference this history as
well as local state produced in the past, even after a system crash.
Externalization of preliminary results:

Long computations will have to externalize results before they are
completely done. This implies that unilateral roll-back is no longer
possible [GaSa87]; one rather needs to specify compensating actions
as part of the control flow description.



7. Concurrency and consistency control:
For the same reason, consistency definitions can no longer be based
on serializability; rather they have to allow for application oriented
policies of synchronizing access to shared objects.

8. Conflict handling:
In general, it is neither feasible to let some activity wait in case of a
resource conflict until a long-duration activity has completed. Nor
is it acceptable to roll it back to its beginning. Therefore, part of
the control flow description has to specify what should be done, if
a resource conflict occurs, how it can be resolved, etc.

Essentially, the key requirement of controlling long-lived activities de-
mands that the computation itself must be a recoverable object, and not just
the state manipulated by it, as is the case with classical transactions. To
realize this feature, the concept of classical transactions has to be generalized
substantially.

The next sections refine this list of control problems and present the
respective ConTract mechanisms to meet the identified requirements. The
term ConTract is used throughout the rest of the article to indicate a unit
of work with the above listed features and qualities. The term ConTract
manager denotes a system service that implements the requirements listed
above for all kinds of applications.



7.3
ConTracts

The basic idea of the ConTract model is to build large applications from
short ACID transactions and to provide an application independent system
service, which exercises control over them. As a main contribution, ConTracts
provide the computation as a whole with reliability and correctness properties:

A ConTract is a consistent and fault tolerant execution of an

arbitrary sequence of predefined actions (called steps) according

to an explicitly specified control flow description (called script).

In other words, a ConTract is a program that has control flow like any
parallel programming environment, that has persistent local variables, ac-
cesses shared objects with application oriented synchronization mechanisms,
and which has a precise error semantics.

The design rationale behind the ConTract model is the objective to cap-
ture system failures by the system and to present the user or application
programmer with an arbitrarily reliable execution platform. By a similar
argument all burdening tasks which result from controlling parallel or con-
current computations, scheduling (distributed) executions etc. should be re-
moved from the application programmer and accomplished by the ConTract
manager.

In the following sections the basic mechanisms of the ConTract model
are explained by (parts of) a travel planning activity. Fig. 7.2 illustrates a
simplified version of this commonly used example [Gray81, KIRe88, ELLR90]:

Making flight, hotel and car reservations for a business trip is a typical
activity that can last a long time and sometimes needs more than one session
to be completed. It is therefore not possible to do the whole reservation
procedure within one transaction.

To keep things simple there are only three airlines to be consulted for a
flight and only two hotel resp. car rental companies. These give an exclusive
discount to each other (in this example) and therefore are only booked in
combinations (Cathedral Hill Hotel, Avis) or (Holiday Inn, Hertz). We assume
this application to be run on a terminal of a travel agency connected to a
worldwide network of heterogeneous computers running the various database
Servers.

Focusing basically on logical aspects of transaction processing we omit
considerations of physical aspects like communication, authentication and
other problems concerning the interrelations of advanced transaction man-
agement with an operating system [Gray78, Spec87, CCF89].
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FIGURE 7.2
A sample script “Business Trip Reservations” — graphical representation

7.3.1 Modelling Control Flow: Scripts and Steps

A script? describes the control flow and other execution strategies of a
long-lived activity (Fig. 7.3).

Control flow between related steps can be modelled by the usual el-
ements: sequence, branch, loop and some parallel constructors. It is also
possible to specify a loop over a tuple set forming, e.g., a query result. In the
travel planning activity the PAR_FOREACH( airline ... ) statement consults
n dynamically computed airline timetables in parallel.

2 A graphical editor would be the optimal choice for a user-friendly script definition. Since
we are not concerned with such aspects in this approach, a Concurrent Pascal like textual
language is used (see Appendix A for a complete version of the sample script). Of course,
there are other syntactic means for specifying control flow, but this is not the point of this

paper.



CONTRACT Business_Trip_Reservations

CONTEXT_DECLARATION

cost_limit, ticket_price: dollar;
from, to: city;
date: date_type;
ok: boolean;

CONTROL_FLOW_SCRIPT
Si1: Travel_Data_Input(in_context:

out_context: date, from, to, seats, cost_limit);

PAR_FOREACH( airline: EXECSQL select airline from ... ENDSQL )

S52: Check_Flight_Schedule(in_context: airline, date, from, to, seats;

out_context: flight_no, ticket_price );

END_PARFOREACH

83: Flight_Reservation(in_context: airline, flight_no, date, seats,..);

S4: Hotel_Reservation( in_context: '"Cathedral Hill Hotel';
out_context: ok, hotel_reservation );

IF ( ok[S4] ) THEN S85: Car_Rental( ... "Avis" ... );
ELSE BEGIN

S6: Hotel_Reservation( ... "Holiday Inn" ... );

IF ( ok[S6] )

THEN 87: Car_Rental( ... "Hertz" ... );
ELSE 88: Cancel_Flight_Reservation_&_Try_Another_One( .
END

S39: Print_Documents( ... );

END_CONTROL_FLOW_SCRIPT
/* further specifications as shown below */

END_CONTRACT Business_Trip_Reservations

)

FIGURE 7.3

Sample script “Business Trip Reservations” — textual representation



Steps are the elementary units of work in the ConTract model. Each
step implements one basic computation of an application, e.g., booking a
flight, cancelling a reservation and so on (Fig. 7.4). There is no internal
parallelism in a step and therefore it can be coded in an arbitrary sequential
programming language. Its size is determined by the amount of work an
application can tolerate to be lost after a system failure.

STEP Flight_Reservation

DESCRIPTION: Reserve n seats of a flight and pay for them ...

IN airline: STRING;
flight_no: STRING;
date: DATE;
seats: INTEGER;
ticket_price: DOLLAR;

ouT status: INTEGER;

flight_reservation()
{ charx flight_no;

long date;
int seats;
EXEC SQL
UPDATE Reservations
SET seats_taken = seats_taken + :seats
WHERE flight = :flight_no AND
date = :date
END SQL
}
FIGURE 7.4

Code fragment of a sample step “Flight Reservation”

This paper does not want to define yet another language for parallel
and distributed computing systems [BaST89], since the focus of the ConTract
model is not on activity specification (like in the script mechanism described
in [BMW&4]), but on activity control. And for the same reason the expressive



power of the script language is not the primary concern here. It could be
extended by adding recursion, nesting, generic steps with late code binding
and other features if this seems useful to model special kinds of applications.
The point here is to have a means for explicitly specifying control flow for
operations on shared persistent objects (i.e. the database). A central issue
in extending control beyond transaction boundaries is to use this activity
specification for reliable flow control.

The basic idea is that scripts describe the structure (the control flow) of
a complex activity, while steps implement its algorithmic parts. All aspects
concerning execution control at run time, however, have to be done by the
ConTract manager.

The ConTract manager internally implements an event oriented flow
management by using some sort of predicate transition net to specify activa-
tion and termination conditions for a step. The execution of a step is started if
the event predicate for its activation becomes true and the required execution
resources are available. For example, step Sz in Fig. 7.2 is triggered when all
three parallel activations of step S are finished. An interactive step (e.g. S1)
additionally needs the responsible user to be ready for input etc.

The triggering of events after step termination can be controlled by a
set of conditions. Each condition which evaluates to be true triggers one or
more events. These in turn trigger the subsequent steps.

The idea behind this simple internal language is to use it as an interme-
diate language onto which higher-level programming languages [BaST89] can
be compiled.

7.3.2 ConTract Programming Model

In the ConTract programming model, the coding of steps is separated
from defining an application’s control flow script. As a consequence, the
programming of a reservation step and the concatenation of steps to form the
business trip script of Fig. 7.3 are two different tasks, which even may be
performed by different people.

The idea behind this separation is to keep the programming environ-
ment for the actual application programmer as simple as possible: Steps are
coded without worrying about things like managing asynchronous or parallel
computations, communication, resource distribution (localization), synchro-
nization and failure recovery. In particular, the programmer of a step does
not have to consider where in the network a step is executed and whether a



step or a set of steps (for instance (S4, Ss) or (Se, S7)) is combined to one
ACID transaction. The latter decision, for example, is made at the script
level in the TRANSACTIONS part of the specification, see below (7.3.3).
The consequence, though, is that there exist at least two “levels” of pro-
gramming. Actually, each dimension of the ConTract model is decoupled from
the remaining control aspects and can be defined separately. The hypothesis
is that a layered programming model will be inevitable when specifying and
implementing long-lived, complex applications, no matter which framework

one uses.

From the programmer’s view, steps will be run on a virtual machine
(resource manager) which is arbitrarily reliable and executes in single user
mode. How to achieve this is discussed in the next sections.

7.3.3 Transaction Model

ConTracts offer a sophisticated set of transaction control mechanisms at
the script level. They are designed to support the following requirements:

a) to provide flexible transaction mechanisms for the structuring of large
distributed applications;

b) to provide the script (transaction) programmer with declarative con-
trol mechanisms which are still easy to understand and manageable.

The approach is to define a small set of basic mechanisms with reasonable
default strategies while providing powerful transaction control parameters as
a feature for the experienced transaction programmer.

Transaction Properties for Scripts and Steps
Each step is implemented by embedding it into a traditional ACID trans-

action, if nothing else is specified in the TRANSACTIONS part of the script

(see below). Steps, thereby, have all of the ACID properties, but they preserve

only local consistency for the manipulated objects.

Since not being a transaction, a whole ConTract is not an ACID unit of
work; here are the differences to the standard definition:

Atomicity: The fundamental deviation from classical transactions is that
ConTracts give up atomicity at the script level because this property is
incompatible with the needs of long duration activities. A ConTract can
be interrupted explicitly and continued by the user after an arbitrary
delay.

And more important, a crash along the way does not initiate rollback.
Rather the system initiates roll forward recovery, maybe along a different
path than the one taken before.



Consistency: ConTracts maintain system integrity, and they do this on a
much larger scale than single transactions. This is possible because the
semantic interrelations between the steps of an activity are explicitly
described in the script and thus can be controlled by the system.

Isolation: A ConTract typically is a long-lived activity, and therefore isolat-
ing the shared data it accesses by standard means of locking would be
detrimental for system performance. ConTracts rather rely on semantic
isolation, which is based on application specific invariants (predicates on
shared state) that have to be maintained by the system for the duration
of a ConTract.

Durability: A ConTract’s global effects installed at the end of its steps are
durable and can be undone only by running another ConTract (step).

Defining Atomic Units of Work

Steps are coded without considering their concatenation and combina-
tion into larger units later on. This is done by the script programmer. He can
define atomic units of work consisting of more than one step by arbitrarily
grouping them into sets. In Fig.7.2 the dotted lines around (S4, Ss) and (Se,
S7), respectively, reflect the decision that these pairs should be executed as
an atomic unit of work to model the application semantics correctly. In the
textual notation this definition looks like that:

TRANSACTIONS

T1 ( S4, S5 )
T2 ( S6, S7 )
END_TRANSACTIONS 3

In addition to this quite simple atomic concatenation the resulting groups
can be nested into a tree like hierarchical structure. In the textual notation
this could be indicated by adding;:

T3 ( T1, T2 )

Furthermore, the transaction programmer may specify events depending
on the outcome (resp. activation) of steps and/or transactions. These events
are controlled by the ConTract run time system.

3 Ty,Ta, ...are logical identifiers to reference the specified atomic units.



A very common usage is to set up the ConTract system to supervise the
outcome of a transaction. In case of its failure the script programmer perhaps
wants it to start another step, which could be a functional alternative to this
step or could try to correct an error in order to enable the continuation of the
executing activity.

Trying another (hotel, car company) pair in the business trip ConTract
is an example of this kind of transaction control. The textual notation for
that is:

DEPENDENCY( T1 abort +— begin T2 )
The semantics of this dependency is defined as:
If Ty aborts, then Ty must be started.*

Note, that there exists some interrelation between the control flow part
of a script and the transaction dependencies. What is written out in full detail
with Sa4, S5, Sg, S7 in Figure 7.2 could just be achieved without S¢, S7 and
T, through the following dependency declarations:

T1 ( S4, S5 )
DEPENDENCY( T1 abort[1] ~ begin T1 ) /* 1st abort of T1 */
DEPENDENCY( T1 abort[2] ~ begin Sg ) /* 2nd abort of T1 */

Comparing this specification with Figure 7.2 shows the latter to be more
adequate for a simple and predefined control flow structure (like a small num-
ber of alternatives) because it lists the possible control flow paths explicitly.
But this detailed and illustrative notation gets lengthy and expensive for more
complex flow structures as can be seen by looking at the following specification
of a “very reliable” transaction T in a shorthand notation:

T b—b T; ...a—~b T, a—a T /* k alternatives for T */
T; c—c T
T al[1l—b T ...T alnl—b Trescue /* retry T n times */

As a negative “side effect”, this compact and flexible notation, however,
leads programmers to lose track of global control flow aspects. Therefore it

4This dependency declaration is similar to the so-called failure (or negative) dependency
defined in [ELLR90]. However, since there is no distinction between transactions and steps,

the dependency declaration mechanism of the ConTract model seems to be more flexible.



is useful to have both possibilities for control flow specification and to choose
the appropriate one in accordance with the given activity.

Shifting the implementation of dependency declarations into the Con-
Tract system allows the script programmer to exercise flow control even in
case of failures or system crashes. Besides that, the declarative style of trans-
action and flow control avoids a complicated and error-prone procedural style
of exception programming. This is difficult enough in today’s systems any-
way, since DBMS do, but most programming languages do not know about
the semantics of aborts.

How to manage transactions with dependencies efficiently and correctly
is beyond the scope of this paper, since this is still an open question of current
research. First steps to the required concepts and techniques can be found in

[Davi78, ChRa91, Klein91, HGK91]

7.3.4 User Interface for Controlling Large
Distributed Applications
Since ConTracts maintain the structure of an activity, they consequently
need a means for administering the flow of control. The following paragraphs
exemplify three important mechanisms for controlling a whole application as
a unit of work.

Controlling Long—Lived Computations

The first mechanism allows to suspend the execution of a ConTract. It
can then be resumed after an arbitrary period. In the meantime the complete
processing context is kept on stable storage and protected in a way to ensure
the suspended ConTract’s continuation.

In the sample ConTract it may happen that a customer makes a flight
reservation, but then interrupts the reservation procedure in order to book
hotel and car just before the trip.

Controlling Distributed Computations

Controlling distributed computations sometimes requires to migrate an
application’s execution from one node to another in the network [KIRe88].
This is necessary, for example, if one node fails forever and the user has to tell
the system from which node he wants to continue the interrupted ConTract.
Or assume a travel agency where one agent does the flight reservation, and a
colleague at another terminal is responsible for car and hotel reservations.
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Referencing the sample ConTract’s execution history.



Just migrating the executing operating system process is not sufficient,
since portions of the context of the database application may be kept in differ-
ent processes. Migrating a ConTract involves at least two ConTract managers
running a reliable protocol to transfer all required state information and to
continue the application properly.

Monitoring Distributed Computations

Other available user commands for managing long-lived ConTracts in dis-
tributed systems include facilities to show the current computation state, to
determine a ConTract’s location and to trace its execution. Figure 7.5 gives
some examples how to access a ConTract’s execution history.

The consistency and reliability qualities coming with the ConTract ex-
ecution model are explained in the next two sections.

7.3.5 Forward Recovery and Context Management

System reconfiguration, communication failures, node crashes and other
failures should not cause an application to turn undefined or, even worse,
vanish without a trace. But that is what normal transactions would do for
you without further application programming:

e An ordinary operating system process running application code is gone
after a crash. The user has to know which application was affected,
what the state of the activity was, and how to recover it manually.

e A transaction system restores only a consistent database by rolling back
all uncommitted operations. This does not matter for short transactions
but is unacceptable for long lived activities.

A reliable system, on the other hand, would resume (automatically after
system restart or on user demand, if a node goes down permanently) all
ongoing computations and try to minimize the loss of work. In case a local
computer fails during the sample ConTract, the agent would like just to turn
to another terminal and to continue the suspended reservation procedure right
from the last valid ConTract state.

The ConTract manager therefore tries to overcome resource failures and
re-instantiates an interrupted ConTract by restoring the recent step consistent
state and then continues its execution according to the specified script. Only
a non-recoverable failure outside the scope of the system causes a ConTract
to be continued along a path that cancels all externalized effects (see 7.3.7).



The realization of this forward oriented recovery scheme implies that all
state information a step’s computation relies upon has to be recoverable. This
set of private data defining an application specific computation state is called
Context. To re-instantiate an interrupted ConTract the following information
is required to be recoverable:

1. the global system state seen by all applications, i.e. the involved
databases;

2. the local state of the ConTract, e.g., the program variables, sessions,
windows, file descriptors, cursors etc. used by more than one step;®

3. the global computation state of the affected application. This means
a stable bookkeeping in the ConTract system of which event has
been triggered, which step has (or has not yet) been executed etc.

This list gives evidence that taking a savepoint or checkpointing the
database part of an application is not sufficient to guarantee continuation of
an interrupted ConTract after a system failure. Beside that, context contains
data that is not captured by any existing data model, like sessions or windows.

Context Management

In principle, there are three different ways to manage context reliably:
(a) keeping it in the global database;

(b) transferring it explicitly from one step to another, e.g., through a reliable
queue mechanism [GaMo91, GGKKS91, BeHM90];

(c) setting up a special context database with a private interface for each
ConTract.

The first possibility would require the step programmer to know about
the public context database, its structure and how to access the needed con-
text elements. Apart from complicating the step code considerably, in this
case the application programmer would have to deal with problems that are
not application specific. This consideration rules out proposal (a), since Con-
Tracts try to resolve exactly this problem.

The second approach (b) turns out to be very inflexible and expensive,
especially for large amounts of context elements. The most significant disad-
vantage, however, is the effect, that steps transferring the whole accumulated
computation context explicitly can no longer be re-used in other scripts with

5These global variables or intermediate results are usually not kept in the database. Nev-

ertheless, this information is absolutely necessary to implement forward recovery.



different context elements. Beside that, mechanism (b) causes quite some
problems with respect to branching, parallel or distributed control flow.

For these reasons, the ConTract model introduces the notion of a private
context database to keep all the relevant local state of a long-lived application
stable. Context management is characterized by a binding mechanism that
keeps the existence and details of parameter assignment from context ele-
ments to step parameters (and vice versa) transparent to the step application
programmer.

Fig. 7.6 shows the principles of context management in a ConTract sys-
tem. Each ConTract has a private context database for the global script
variables its steps create (output parameters) or use (input parameters). The
script programmer declares these variables and their types in the context dec-
laration section at the beginning of a script. Context elements can be accessed
at the script level by their name, just like ordinary program variables. Not
shown are additional mechanisms to reference context by time and date of its
creation. All tasks to keep the specified context stable and to resolve context
references are in the ConTract manager’s responsibility.
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FIGURE 7.6
Robust Context Management for Related Steps

Context Binding
According to the multi-level ConTract programming model, a coherent

context binding concept is defined as follows:



1. Step coding:

The step programmer chooses arbitrary variable names for the input and
output parameters he uses, without any knowledge about the step’s future
execution environment, i.e. whether their values come from an input message,
whether they are passed through usual programming language mechanisms, or
whether they reference context elements of a ConTract using this step code.
Hiding the notion of context from step programming and binding context
transparently on the script level is essential for step code reusability.

2. Script definition:

The script programmer introduces logical names to reference context elements.
For each step he specifies which context elements have to be bound to its
input/output parameters. A parameter could also be bound to a constant
or to a global object by specifying its value or address (i.e. a SQL select
statement referencing a tuple or relation in the database).

Without introducing logical names for context elements, all step pro-
grammers would have to use the same name for the same thing throughout
all ConTracts. Obviously, this is not practicable. As a concrete example
it could be the case in the business trip ConTract, that the programmer of
step S; used a variable named cityl (e.g. in a function input( IN cityi,
city2, ... OUT airlines, ... ); ). In the sample script the variable
cityl takes the value that S3 wants to access as an input parameter, but under
the name departure-airport. This mapping is established by a logical context
identifier “from” which may be indexed by the producing step S; for a unique
reference:

S1( out-context: city — from )

S3( in-context: departure-airport «— from[S;] ).

3. ConTract runtime system:
Because a step can be activated more than once (e.g., in a loop), the unique
identification of context elements at run time requires further (key) attributes
besides its logical name:

- a ConTract identifier

- a step identifier

- time and date of creation

- a version counter to differentiate multiple activations of the same
step



- a counter for parallel activations of a step, e.g., So in the parallel

loop PAR_.FOREACH(airline).

Execution History and Context Management

For two reasons update in place is not applicable for managing context
elements:

1. Managing long-lived applications has to deal with time dependent

queries to the context, e.g.,

- Show all airlines which have already been tried for a flight.

- Compute the average value a frequently modified context element
had yesterday.

2. During compensation (see below) the execution of the respective
counter steps requires the values of the original parameters and
other context elements of a step. Therefore, update in place would
corrupt compensation. 6

Instead of overwriting old values, the ConTract model creates a new
version for each updated (output) context element. This version can be refer-
enced uniquely throughout the lifetime of a ConTract by the above specified
attributes. An addressing scheme using versioning makes any synchronization
of context updates superfluous, since no read/write conflicts occur.

As aresult, the context database contains the complete execution history
of a ConTract. After the termination of a ConTract its context database
is discarded, which means that only steps within the same ConTract can
access it. More precisely, steps can get context values indirectly via their
IN/OUT interface. But they have no direct access to the complete execution
history, since the notion of context is transparent at the step level. The
hypothesis is that the described separation of context naming and binding
makes application programming (steps and scripts) much easier.

The naming scheme proposed for context variables is perfectly suited for
“flat” ConTracts, which refers to those consisting of elementary steps only. If
nesting is allowed, things get more complicated, for instance, if a step can be
another ConTract, or if the ConTract type can be activated recursively. Take
as an example a flight reservation script iteratively calling itself in case there
exists no direct flight connection and a multi-hop flight is tried by recursively

6This problem is not considered in other approaches to compensation, like [GaSa87,
KoSp90].



searching the airline timetables. Passing context elements explicitly to and
from a step containing a whole script can be achieved easily by extending the
IN/OUT parameter list to the script level. But to name and reference nested
context elements and histories needs improved scoping and versioning rules,
which have not yet been developed.

Note that unlike persistent programming languages not each and every
update is made stable, but only the relevant ones, i.e. the output context
elements at the end of a step. Since writing into the context database is
part of the commit of the enclosing step or sphere of control, this allows for
similar optimizations as are applied to the system log. Nevertheless, managing
context reliably causes some costs in terms of performance.

In essence, the need for robust context comes in as soon as one wants
to have guaranteed stability for long-lived activities covering a set of related
(trans)actions and finally ending up with the computation itself becoming a
recoverable object.

7.3.6 Consistency Control and Resource Conflict
Resolution

ACID transactions control concurrency by isolating atomic state transi-
tions against each other in order to create a serializable schedule. To achieve
this, nearly all concurrency control methods [BHG87] delay updates until the
commit of a transaction.

However, this is not feasible for long lived transactions: first of all, it
results in a tremendous performance degradation because holding long locks
could block other activities, which also hold resources blocking others and so
on. Secondly, this leads to a high rate of transaction aborts due to conflict
and deadlock resolution. According to [Gray81b] the probability of deadlock
increases with the fourth power of transaction size. And moreover, serializ-
ability is a sufficient condition, but not a necessary one for isolated execution
[GaMo83, PRS88, KoSp88].

ConTracts are neither atomic nor short. They externalize” some of their
updates as they go, e.g., by releasing locks after step completion. But there
is still a chance that these updates will be rolled back later on. Consequently,
a ConTract might operate using data that have been externalized early by
other ConTracts.

"The term ”commitment” should be avoided, because there are two aspects to it: updates

are externalized and the right to revoke them is waived.



This creates two kinds of consistency problems, which have to be dealt
with correctly:

a) In case a ConTract has to be cancelled, its global effects cannot be un-
done by simply restoring before images [HaRe83]; rather they have to be
compensated for by semantical undo, i.e. compensating actions [Gray81,
GaSa87, KoLS90]. Under certain circumstances other ConTract steps
may be affected by this compensation. This situation must be handled
adequately.

b) Releasing locks early without any further concurrency control mecha-
nism beyond transaction boundaries, like in the Saga model [GaSa87],
could lead to severe inconsistencies. Because of that risk, there must be
a way for a ConTract step to specify and get its isolation requirements.

The techniques used in the ConTract model for dealing with compensa-
tion and semantic synchronization are discussed in the following sections.

7.3.7 Compensation

Since updates can be externalized at the end of each step, unilateral
roll-back of a ConTract is not possible. If, nevertheless, a ConTract has to be
cancelled, it is necessary to undo its global effects explicitly. For this reason a
so-called compensating action [GaSa87] has to be provided for each step in the
script (rectangular boxes in Fig. 7.2), which semantically undoes the updates
of global (database etc.) objects. To compensate, for example, for the flight
reservation (step Ss), it is necessary to perform the reverse operation and to
add the previously booked seats instead of simply restoring the before image
of the reservation database. Compensation steps are specified in a separate
part of the script as shown in Figure 7.7.

It is important to note, that compensation of a ConTract takes place
only on the explicit demand of the user (by issuing cancel_contract(cid) ) and
not as an implicit means of recovery or conflict resolution by the system.

The problems and correctness requirements coming with the concept of
compensation can be illustrated by looking again at the business trip sample
ConTract of Fig. 7.2. The customer at the travel agency can decide for any
reason to cancel the whole activity just until he has got the final acknowl-
edgement of the ConTract’s termination. This implies to compensate for all
global effects by running the counter actions C; to Cg: After the confiscation
and invalidation of all issued travel documents and tickets, the cancellation



CONTRACT Business_Trip_Reservations
END_CONTROL_FLOW_SCRIPT
COMPENSATIONS

Cl: Do_Nothing_Step();
C2: Do_Nothing_Step();

C3: Cancel_Flight_Reservation( ... );
C4: Cancel_Hotel_Reservation( ... );
C5: Cancel_Car_Reservation( ... );
C6: Cancel_Hotel_Reservation( ... );
C7: Cancel_Car_Reservation( ... );
C8: Do_Nothing Step();

C9: Invalidate_Tickets( ... );

END_COMPENSATIONS

END_CONTRACT Business_Trip_Reservations

FIGURE 7.7

Specifying compensation steps in the script.

of the car, hotel and flight reservation can be done in parallel. Sy (checking
flight schedules) and S; (asking for travel data input) need no compensating
action. Therefore, they could have an “empty” compensation step. After Cq
through C; are finished, a termination message tells the user of the compen-
sated ConTract.

This scenario illustrates several aspects of the ConTract compensation
model:

(a) Somewhat surprising is the observation that the degree of parallelism is
much higher than during execution in forward direction. In the example
given it might be even possible to perform all compensations at the same
time. On one hand, this is due to the fact that coincidentally there are
no control flow dependencies between compensating steps resulting from
updates to global objects. On the other hand, dependencies between



normal steps caused by creating and using context elements no longer
exist at the time of compensation, because the context history is fully
available to all C;’s: Although in the sample script S; has to wait for
the completion of Sz to get his input context, Cs depends in no way on
out-context of C4. The context it needs is already available, thus Cy4
and Cg could run in parallel.

(b) The example emphasizes the importance of time for compensation: De-
pending on the dates of the reservation, the cancellation and the planned
flight, different counter actions have to be performed (amount of the re-
fund - if any, etc.). This gives another reason for saving the execution
date of each step (implicitly) as part of the context.

(¢) Another result from this discussion shows that compensating a step
(e.g. a flight reservation) can be a complex task with several branches in
its control flow. This suggests to allow (sub-)scripts as compensations
rather than simple steps only. Just as well there are situations where
the script programmer may not want to use the compensations coded
by the step programmer, but decides to compensate for a sequence of
steps with one single action. This can be achieved by re-defining a step’s
compensation action in the script, e.g., by a compensation on a higher
level of abstraction.

(d) Specifying compensations is not as big a problem as it seems at first
glance. By careful observation one will discover compensations being
part of the applications anyway: For example, a debit corresponds to a
credit operation, a reservation to a cancellation, and so on. This also
shows that the same step code can be used as a normal action, or as a
compensation, depending on the script context it is used in. This is the
case with Cz and Sg in the sample ConTract (Figures 7.2, 7.7).

(e) Compensating for drilled holes, issued tickets and other real world ac-
tions may cause some difficulties, which cannot be discussed in this
paper. See [ReSch91] for an approach to this problem by sophisticated
protocols between the transaction system and the outside world, for
example physical devices in a manufacturing application.

Correctness Criteria For Compensation
For the compensation mechanism to work correctly, the ConTract system
has to satisfy the following consistency criteria:



e For each step in the script, there must exist exactly one valid compen-
sating step.

e After the completion of a step all the input data for the compensating
step must be computed. If the exact current values of some global
objects are required for the compensation, they must be saved in the
context, too.

e All of the global objects a step has used and which are relevant for its
compensation have to exist until the ConTract’s termination without in-
terruption. Accessed database relations (tuples), e.g., must be protected
by “existence locks”, which prevent nothing but deletion. If this is not
guaranteed, it may happen that between completing a step and starting
its compensation an updated relation is dropped and created again with
the same name and structure but with a completely different meaning.
This is a consistency violation and performing the compensating action
makes no sense.

o After the decision to compensate a ConTract, the termination of remote
executing steps may not trigger any further steps; they rather must be
aborted or compensated, in case the remote ConTract system learns
about compensation after some delay. Obviously, a ConTract cannot be
completed without all remote compensations being finished.

e For each previously completed step S; with a “committed” entry in the
log, the corresponding C; has to be executed. All these compensation
steps are required to commit eventually. This means not, that a com-
pensation may not abort. In this case it is correct to retry an aborted
C; k times until it is committed once. By this way a legal history may

look like that:

. committed(S;) ... (compensation request) ... aborted(Cj;) ... aborted(C;)
.. committed(C;) ...

e If nevertheless, the system does not manage to complete a compensat-
ing step successfully (due to a permanent failure of C; or after a limited
number of retries) this has no effect on the ongoing compensation (as
opposed to the normal execution in forward direction). In other words,
there is no compensation of the compensation, because this could pro-
duce infinite loops.



In case of such a failure the ConTract manager’s compensation strategy
is to notify a human system administrator and to provide him with a “snap-
shot” (i.e. the complete state and context) of the compensating ConTract in
trouble. An administrator can be nominated for each ConTract and for each
involved resource class. If neither automatic nor manual correction does help,
compensation continues with an error message, but without any further re-
covery actions by the system. Thereby, a ConTract reaches a syntactically
correct termination within finite time, no matter what.

Though, the guarantee of termination within finite time has to be taken
with a grain of thought: One cannot rule out the case where a ConTract ter-
minates without having established a consistent state, because the underlying
database has changed in a way that the ConTract has not been designed to
cope with. This is somewhat like trying to navigate using an out-dated map
— an effect one has to take into consideration when talking about long-lived
activities. To somebody concerned about semantic correctness this may seem
an unacceptable, at least an unsatisfactory solution. However, it simply re-
flects the fact there might be inconsistencies caused by the application or by
its operational environment.

The ConTract mechanism for compensation provides the necessary infor-
mation and control mechanisms for automatic or manual recovery which helps
to overcome at least a considerable number of failures, including permanent
node crashes.

Conditional Cascading Compensations and Backtracking

After compensating a ConTract CT; the value of some object O could
have changed because it was updated by a compensation step of CTy, say C;.
This compensation could affect another ConTract, say CTs, by invalidating
the work of Sg, one of its steps. Take for example an account, which was
debited some money (by Si) just after a credit operation (S; within CTy)
has put some money onto it. Compensating S; could leave an account with
insufficient money to allow the debit operation of Si. As a result there either
exists an overdrawn account or the system decides to invalidate CT5 from Sg
on by compensating for the respective steps Si, Sgy1, etc., and restarting Sy.

To determine which other steps (ConTracts) are affected by the com-
pensation step C;, the system has to keep track of all steps which have used a
compensated object after the update of the original step S; and before the ter-
mination of the compensating ConTract. A step Sg of ConTract CTs is under
no circumstances affected if its entry invariant still holds after the execution



of C;. If ConTract CT5 is affected in such a way that S; became invalid, the
system has to backtrack its execution history until Sy and all its successors
are aborted or compensated for. Then CT; can be redone starting with Sy.
See [Davi78] for an extensive discussion of that subject.

7.3.8 Synchronization with Invariants

The synchronization problems caused by the interleaving of multiple
ConTract steps can be solved by generalizing an idea that was already pro-
posed for special types of hot spots [PRS88]. Rather than holding locks on
objects, one remembers the predicates that should hold on the database in
order for the activity to work correctly. Put in a more application oriented
style: No program needs serializability or even worries whether or not it is se-
rializable. Its only concern is to keep the database free of unsolicited changes
in the parts it works on. If this is guaranteed, this is isolated execution from
that program’s point of view. Now this observation is more than just another
phrase for the same thing. Keeping the database free of unsolicited changes
generally means much less than preventing all the attributes, tuples etc. that
have been used from being modified at all. In many situations it is sufficient,
e.g. to make sure that a certain tuple is not deleted; that a certain attribute
value stays within a specified range; that there are no more than x of a certain
type of tuples, etc.

To implement synchronization based on the idea of ”environmental in-
variance” , ConTract scripts need two things:

1. It must be able to state the invariance predicates on the database
defining a ConTract’s view of the world after a certain step has been
executed. This postcondition defining an isolation requirement of
the ConTract is called exit invariant. Establishing a postcondition
means binding the current values of shared objects to variables in
a predicate expression.

2. It must be able to specify which of these exit invariants specified
before must be fulfilled for a later step to execute correctly. This
predicate is called a step’s entry invariant.

In the example of Fig. 7.2, step Sy establishes that the travel budget (a
tuple in the database) of the department was higher than the cost limit allowed
for that trip. To state that this fact is relevant for future synchronization, the
script programmer defines an exit invariant containing the following predicate:



“budget > cost_limit”.

Before a flight can be booked (Ss), this must still be true. If Sz revalidates
the above predicate and it holds, then Ss is synchronized correctly, although

other ConTracts could have added or even withdrawn some money from the

department’s budget in the meantime.
At the end of step S3 the ticket price has been debited from the budget,
and so it only needs to be higher than the cost limit minus the ticket price.

This postcondition of Sz is specified in its exit invariant:

“budget > cost_limit — ticket_price”.

The other invariants in the sample script follow the same logic (Fig. 7.8).

CONTRACT Business_Trip_Reservations

CONTROL_FLOW_SCRIPT . END_CONTROL_FLOW_SCRIPT

SYNCHRONIZATION_INVARIANTS_&_CONFLICT_RESOLUTIONS

S1:

S3:

s4,

S5,

EXIT_INVARIANT( budget > cost_limit ),

POLICY: check/revalidate;

ENTRY_INVARIANT( (budget > cost_limit) AND
(cost_limit > ticket_price) );

CONFLICT_RESOLUTION: S8: Cancel_Reservation( .. );

EXIT_INVARIANT( budget > cost_limit - ticket_price );

POLICY: check/revalidate;

S6: ENTRY_INVARIANT( hotel_price < budget ),

CONFLICT_RESOLUTION: S110: Call_Manager_to_Increase_Budget(...

S7: ENTRY_INVARIANT( car_price < budget ),

CONFLICT_RESOLUTION: S110: Call_Manager_to_Increase_Budget(...

END_SYNCHRONIZATION_INVARIANTS_&_CONFLICT_RESOLUTIONS

END_OF_CONTRACT Business_Trip_Reservations

FIGURE 7.8

Invariants in the sample script
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Managing Invariants and Resolving Resource Conflicts

Since there are purely declarative specifications, some hints are needed
to tell the ConTract manager and the database system how to handle the
specified invariants. Fig. 7.9 illustrates three policies, which can be used to
manage an invariant on an attribute a:

One way to keep things ”as they are” is to lock all objects as in today‘s
systems (a). The ConTract manager at the DBMS would then have to manage
long locks, i.e. locks that are held beyond transaction boundaries. Instead of
locks, the DBMS could use semantic synchronization techniques like escrowing
[O’Neil85] if the operations have the necessary properties (b). Or the DBMS
could control all operations accessing the objects mentioned in an invariant.
If operations that would invalidate it are rejected, then the invariant would
never fail. The most liberal approach is to use no locks at all (¢); this requires
the check/revalidate technique [PRS88]: After establishing an exit invariant,
the specified database objects may be updated by other ConTracts without
any restrictions. At the time a step with this entry invariant wants to be
executed, the invariant predicate simply is revalidated. If it evaluates to
true, then the isolation condition for the ConTract in question is fulfilled and
synchronization was correct from its point of view. Note that this consistency
definition allows non-serializable schedules, but achieves application defined
correctness.

Now if one accepts that the world might change while executing a Con-
Tract, one has to cope with the situation of an invariant’s database objects
having changed, such that its revalidation fails and the next step cannot be
executed - like the department budget being overdrawn in the example. In
ACID transactions, such conflicts are not communicated to the application;
rather the system decides whether the transaction is rolled back or just has
to wait. Both approaches do not make much sense for long-lived activities.
Therefore, ConTracts allow to explicitly talk about conflicts, and to spec-
ify actions for conflict resolution. To explain the difference to the standard
model, recall that there is one isolation condition for all transactions which
reads as follows:

During the whole execution the resource state is exactly the same

as a transaction has seen it the first time.

However, the ConTract model allows each application to define less restrictive
isolation conditions, as the above sample invariants have shown. This makes
it feasible to handle a conflict using other than the standard mechanisms:
Rather than manipulating the caller of a conflicting operation, one could try



to change the requested resource state (object value) in such a way that it
satisfies the required isolation condition; or the application could decide to
wait some time doing other work and then to try it again; or the activity
could be performed using another resource, etc.

In the example, somebody could increase the budget in case it does not
hold enough money to pay for a ticket, or the whole business trip must be
cancelled. These conflict resolution actions are specified together with an
entry invariant like normal steps (Figure 7.8). They define a “contingency
plan” for the case that this entry invariant should fail when executing the
according step.

Of course, some ultimate resort must be built into the system to take over
when a conflict resolution repeatedly has failed to re-establish the invariant.
Cancellation could be chosen for this purpose, although real life applications
rely on this decission only in very few situations.

7.4
Implementation Issues

As was mentioned in the introduction, ConTracts are not another trans-
action model. They rather try to integrate database techniques with program-
ming languages and operating systems in order to create a reliable execution
environment for large distributed applications. This execution environment is
characterized by the design objective to push the implementation of control
mechanisms from the application layer down to the system level. Therefore,
a key requirement for implementing ConTracts is to build an activity control
service that is able to capture and to handle all system failures, that controls
parallelism, and manages the resources needed for a ConTract execution. The
direction for that comes from the declarative style of application control mod-
elling in a script.

This section sketches briefly the implications of this design rationale as
well as architectural and functional aspects of a ConTract processing system.

As a main result, implementing ConTracts as an execution environment
for long-lived, consistent distributed applications requires some major exten-
sions of existing system components. The following list covers the most im-
portant issues.



7.4.1 Flow Management

The script language could be realized by a persistent programming lan-
guage in which the non-volatile program variables make up a major part of
the context. However, the ConTract model does not require to save each and
every update within a step, but only at the end of a context writing step.

The run time system for that language has to implement robust flow
management, which imposes three requirements: First of all, neither the event
of a step being finished nor the events triggering successing steps may get lost.
Secondly, the ConTract manager has to take care that executing steps do not
fail without arranging their recovery or migration and restart on a functional
alternative computation instance (i.e. another server or node in the network).
And thirdly, in case a node fails completely, a secondary ConTract manager
on another node has to take over the interrupted ConTract execution.

The first of the above aspects indicates an event based flow management
to be an appropriate runtime mechanism. The necessity of a basic system
service for event trigger management is confirmed by the requirements of other
system components, especially by the interrelations between flow control and
transaction management, see below.

7.4.2 Transaction Management
Traditional transaction management has to be improved to a large extent:

e The ConTract run time system needs an interface to the transaction
manager for defining (ACID) spheres of control and dependencies be-
tween them [Davi78] and additionally for notifications about transaction
events, like commit, abort and so on. An interface is necessary because
of the functional separation of transaction and flow management. This
in turn is motivated by the architectural design goal to have a modu-
lar and extensible system architecture with standardized interfaces and
which is adjustable to the needs of various distributed transaction pro-
cessing applications.

e Another implication of robust flow management is to distinguish be-
tween system-initiated and step-initiated abort. While the first case
requires to abort and restart the affected step, this is not always fea-
sible in the second case. Repeated calls for roll back work indicate a
severe problem which cannot be resolved by retry but may require to
initiate compensation.

e A special kind of global, nested transactions is necessary for structuring
the system’s work during processing ConTracts. The execution of a step



is divided into several subtransactions, for example, to implement the
actual step code and the ConTract managers pre- and postprocessing
(evaluating invariants, binding context elements etc.). Since a DBMS
executing database operations of a step acts as a resource manager, it
can not decide about the step’s completion. In order to transfer this
decision to the ConTract manager, the DBMS has to open its commit
protocol and to have a prepare-to-commit() call at its application inter-
face [X/Open]. Managing transaction events and dependencies correctly
requires this call, too.

e An obvious demand in the context of migrating activities is the necessity
to determine the commit coordinator (node) not prior to the end of the
activity [KIRe88]. And one must be able to select a certain trusted
node with respect to availability and reliability [RoPa90] in order to
avoid blocking or relocating the commit processing after coordinator
failures.

e Beside the states of individual transactions the specified transaction
events and dependencies have to be managed correctly and efficiently.
This particularly requires more flexible and reliable transaction man-
agement protocols, for example a “two phase state transition” instead
of an ordinary two phase commit protocol.

7.4.3 Logging

The realization of robust, distributed applications relies heavily on a
global, distributed log service, which implements very reliable write once stor-
age. This is due to the requirement that the forward recovery of a ConTract
has to be feasible even if one involved node fails forever — and consequently its
local log data, too. Therefore, the loss of log information has to be excluded
with sufficient probability by using techniques, like

- logging on mirrored disks

- redundant arrays of independent disks (RAID)

- replication of log archives

- disaster and archive recovery protocols etc.

Migrating a ConTract to another node requires to move its log records, too,
or at least to transfer a pointer where previous log data could be found.



7.4.4 Synchronization

Synchronizing ConTracts with invariants needs a logical calculus to de-
fine and evaluate the specified pre- and postconditions. In the context of
database applications, using SQL would provide a workable solution.

Besides that, improved synchronization techniques are required to man-
age the accesses to global objects:

e There have to be existence locks which prevent nothing than deletion of
an object mentioned in an invariant.

e All objects must have a global "eternal” identity.

e Additionally, a synchronization component must notify callers about
synchronization conflicts and must support negotiation and other con-
flict resolution protocols, especially enabling the “repair” of a violated
invariant by changing the affected resource values.

Synchronization of ConTracts identifies another disadvantage of classi-
cal transactions which has to be removed to support long-lived activities ad-
equately: Since only an active transaction could held locks, it is not possible
to exercise access control, e.g., during the suspension of a ConTract. Further-
more, it is neither possible to pass locks from one transaction to another (e.g.
the next step), nor to re-acquire locks after a system crash.

In short, long, recoverable locks, which can be hold without an ongoing
transaction are a minimal basis for a concurrency control schema to exercise
access control beyond transaction boundaries.

7.4.5 Transactional Communication Service

Steps and other computation requests in a ConTract system are defined
without considering the actual location of a computation server at program-
ming time or at run time. This requires a generalized remote procedure call
mechanism (RPC) that can be used in the same way to call a service within
the same address space, on the local site, or on remote systems. Each interac-
tion has to be tagged by the transaction identifier of the requestor issuing the
RPC to make the call recoverable. The communication service implementing
RPCs must be able to schedule and migrate tasks and processes for requests.
Therefore, the used naming service must take into account the load situa-
tion and availability of requested resources according to an extended naming
scheme, which considers global and local load balancing as follows:



logical global name — [(node-id, log. local name, up/down), ...]

logical local name —— [ process-idy, pida, ... ]

Note, that on the right hand side of both mappings there are address
lists, because a service could be available on several nodes, and more than
one process could run the same service on one node. Appropriate naming
mechanisms can use this redundancy to improve reliability by an application
transparent failure handling and retry technique. To implement this address-
ing schema, the name service must be able to handle value dependent roles.

7.5
Comparison with Other Work

The literature on transactions abandons. Thus a rough classification
helps to draw a meaningful comparison with a (necessarily) small number of
other approaches.

By and large, the work on transactions can be classified according to
one of the following two categories: structural extensions and the embedding
of transactions in a special execution environment.

7.5.1 Structural Extensions

The first category contains approaches which try to enrich the classical
concept of flat transactions with more internal structure. This is to achieve
more flexibility for the other aspects of a transaction, like synchronization,
consistency, failure isolation. Among many others, the following approaches
belong to this group: [Moss81, Walt84, Weik86, HiRo87, PuKHS88].

Besides that, one finds work with mentionable contributions to special
aspects of transaction management or theory, for example synchronization,

recovery and so on [Bern87, O’Neil85, KoSp88, KLS90].

7.5.2 Embedding Transactions in an Execution
Environment
This category is made up of (at least) two subclasses.

The first adds some application specific mechanisms to the “pure” trans-
action model, like domain specific synchronization, object versions, mecha-
nisms for checkin/checkout or cooperative object manipulations. Some well
known representatives are [KLMP84, BKK85, KKB88, HHMM88, MRKNO1,
NRZ91]



The second group is aimed at developing more general control mecha-
nisms around and above transactions. The approaches concerned in particular
with long-running activities show an important distinguishing feature in the
way they model control flow. This can be done either event oriented [HLM88,
DHL90, HGK91, BOHGMO91] or script based, as is the case with ConTracts
[GaSa87, KIRe88, GaMo090, Reut89, ELLR90, VEHI1].

When comparing ConTracts with other approaches to execution control
for long-lived transaction applications two main characteristics of the Con-
Tract model stand out:

1. Semantic synchronization is achieved by application defined isolation
requirements. Concurrency is controlled beyond transaction boundaries
with invariants depending on the situative needs of the activity, rather
than by a fixed consistency definition built into the system. And conflict
resolution is no longer restricted to system enforced blocking or abortion
of the transaction issuing a conflicting operation, but is generalized to
the possibility to “repair” the actual conflict causing resource state. This
results in much more flexibility for constructive conflict resolution and
therefore seems to be more appropriate for long-lived activities.

2. Robust context management, which is mostly transparent to the appli-
cation, helps to fulfill a fundamental requirement of long-running ap-
plications: guaranteed continuation despite of system failures like node
crashes and so on. This aspect is combined with a last original contri-
bution of the ConTract model concerning the reliability of an execution:
Not only the former computation history, but the executing application
itself is made a recoverable object.

The other described ConTract mechanisms can be found (with minor
variations) in many other approaches, too. Compensation, for example, is also
discussed in [Gray81, GaSa87, KLS90, ELLR90]. Nevertheless, the analysis of
these control aspects and their interrelations brought some additional insight
in details not investigated so far by other research, like the observation that
the ability to compensate depends heavily on the execution history and the
context database.



7.6
Conclusions

The main contribution of the ConTract model can be seen in extending
traditional transaction concepts to a generalized control mechanism for long-
lived activities. Con'Tracts are designed to meet the requirements which result
from dividing large distributed applications into a set of related processing
steps and defining appropriate consistency and reliability qualities for the
execution of the whole activity.

Analyzing the requirements of large distributed applications has proved
transactions to be promising building blocks, but not a complete and sufficient
mechanism for reliable and consistent distributed computing. The ConTract
model presents some necessary extensions to generalize classical transactions
to a control mechanism for large distributed applications. Beside mechanisms
concerning inter-transaction synchronization and recovery, the key issue is a
reliable flow control layer tying together individual transactions and imple-
menting the required control mechanisms exceeding transaction boundaries.

The ConTract model is characterized by the separation of control aspects
into several orthogonal dimensions, which can be exercised independently by
an application using declarative techniques. This feature is a key difference
to classical transactions, where the bot ...eot bracket is the one and only
syntactical construct with the limited ACID semantics. As shown in the
above sections,

e control flow description

e defining spheres of control (transactions)

e dependency declaration

e context management

e step and transaction recovery

e recovering whole applications

e synchronizing basic operations of concurrent steps

e synchronization beyond individual steps at the script level —and

e conflict resolution



are (at least partly) independent control aspects, which can and must be
treated separately using more flexible mechanisms when managing long-lived
and distributed applications.

A PRototype Implementation of a COnTract System (APRICOTS) cur-
rently under development shows the feasibility of the proposed mechanisms.
The separation of control aspects is reflected by a modular and extensible sys-
tem architecture. Future experiments with real life office automation and CIM
applications [ReSch91] will help to elaborate the requirements of long—lived
distributed applications and the described control mechanisms.

Although there can be seen first hints about the overall shape of future
systems for transaction oriented distributed application processing [Reut90],
there remains a lot of work concerning the presented dimensions of application
control as well as an advanced system architecture for a reliable execution
platform. Future research is aimed at working out the design of such a system.

This work was supported in part by the Deutsche Forschungsgemeinschaft
under contract Re 660-2/2.



7.7
Sample Script “Business Trip Reservations”

CONTRACT Business_Trip_Reservations

CONTEXT_DECLARATION

cost_limit, ticket_price: dollar;
from, to: city;
date: date_type;
ok: boolean;

CONTROL_FLOW_SCRIPT
Si: Travel_Data_Input( in_context: ;
out_context: date, from, to, cost_limit );

PAR_FOREACH( airline: EXECSQL select airline from ... ENDSQL )

S2: Check_Flight_Schedule( in_context: airline, date, from, to;

out_context: flight-no, ticket_price );

END_PARFOREACH
83: Flight_Reservation( in_context: flight, ticket_price; . )
S4: Hotel_Reservation( in_context: '"Cathedral Hill Hotel';

out_context: ok, hotel_reservation );

IF ( ok ) THEN 8S5: Car_Rental( ... "Avis" ... );
ELSE BEGIN

S56: Hotel_Reservation( ... "Holiday Inn" ... );

IF ( ok ) THEN

87: Car_Rental( ... "Hertz" ... );
ELSE 88: Cancel_Flight_Reservation_&_Try_Another_One( .. );
END

S9: Print_Documents( ... );

END_CONTROL_FLOW_SCRIPT

COMPENSATIONS
C1: Do_Nothing_Step();
C2: Do_Nothing_Step();

C3: Cancel_Flight_Reservation( ... );
C4: Cancel_Hotel_Reservation( ... );
C5: Cancel_Car_Reservation( ... );
C6: Cancel_Hotel_Reservation( ... );
C7: Cancel_Car_Reservation( ... );

C8: Do_Nothing_Step();
C9: Invalidate_Tickets( ... );



END_COMPENSATIONS

TRANSACTIONS
T1 ( S4, S5 ), DEPENDENCY( Ti:abort |---> begin:T2 );
T2 ( S6, S7 ), DEPENDENCY( T2:abort |---> begin:S8 );

END_TRANSACTIONS

SYNCHRONIZATION_INVARIANTS_&_CONFLICT_RESOLUTIONS

Si:

S3:

sS4,

S5,

EXIT_INVARIANT( budget > cost_limit ),
POLICY: check/revalidate;

ENTRY_INVARIANT( (budget > cost_limit) AND

(cost_limit > ticket_price) );
CONFLICT_RESOLUTION: S8: Cancel_Reservation( .. );
EXIT_INVARIANT( budget > cost_limit - ticket_price );
POLICY: check/revalidate;

S6: ENTRY_INVARIANT( hotel_price < budget ),

CONFLICT_RESOLUTION: S110: Call_Manager_to_Increase_Budget(..

S7: ENTRY_INVARIANT( car_price < budget ),

CONFLICT_RESOLUTION: S110: Call_Manager_to_Increase_Budget(..

END_SYNCHRONIZATION_INVARIANTS_&_CONFLICT_RESOLUTIONS

END_CONTRACT Business_Trip_Reservation
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