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PURPOSE AND SCOPE 

Optimality criteria form the foundations of mathematical programming 
both theoretically and computationally. In general, these criteria can be 
classified as either necessary or sufficient. Of course, one would like to have 
the same criterion be both necessary and sufficient. However, this occurs 
only under somewhat ideal conditions which are rarely satisfied in practice. 
In the absence of convexity, one is never assured, in general, of the 
sufficiency of any such optimality criterion. We are then left with only 
the necessary optimality criterion to face the vast number of mathematical 
programming problems which are not convex. 

The best-known necessary optimality criterion for a mathematical 
programming problem is the Kuhn-Tucker criterion [l]. However, the 
Fritz-John criterion [2], which predates the Kuhn-Tucker criterion by 
about three years, is in a sense more general. In order for the Kuhn-Tucker 
criterion to hold, one must impose a constraint-qualification on the constraints 
of the problem. On the other hand, no such qualification need be imposed 
on the constraints in order that the Fritz John criterion hold. Moreover, 
the Fritz John criterion itself can be used to derive a form of the constraint 
qualification for the Kuhn-Tucker criterion. 

Originally, Fritz John derived his conditions for the case of inequality 
constraints alone. If equality constraints are present and they are merely 
replaced by two inequality constraints, then the Fritz John original conditions 
become useless because every feasible point satisfies them. The new 
generalization of Fritz John’s conditions derived in this work treats equalities 
as equalities and does not convert them to inequalities. This makes it possible 
to handle equalities and inequalities together. 

Another contribution of the present work is a constraint qualification for 
equalities and inequalities together. Previous constraint qualifications 
treated equalities and inequalities separately, but not together. Since many 
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realistic problems contain equalities and inequalities together, it is useful to 
know when the constraint qualification is indeed satisfied. 

1. INTRODUCTION 

Consider the following mathematical programming problem. 

Minimize e(x), subject to (1.1) 

g&4 G 0, ie M = (1, 2,..., WZ} 

h,(x) = 0, j E K = {l, 2 ,..., A}, 

where 0(x), g,(x) and h,(x) are functions defined on the n-dimensional 
Euclidean space En and have continuous first partial derivatives on En. For 
the case when the set K is empty, Fritz John [2] established the following 
result. 

Fritz John’s Necessary Optimality Conditions: (K = @) If R is a solution 
of (1.1) then there exists a vector ti = (zi,, , ii1 ,..., &) E Em+l such that 

220 Ve(%) + 2 ?ii Vgi(Z) = 0 
i=l 

(1.2) 

(1.3) 

c > 0, zz # 0, (1.4) 

where V0($) denotes the n-dimensional vector of partial derivatives evaluated at f, 
and the prime denotes the transpose, 

If the set K is not empty, then the Fritz John conditions above do not 
apply. If one tries to eliminate the set K by replacing each equality by two 
inequalities, then the Fritz John conditions become useless since every 
feasible point can be made to satisfy these conditions. Thus, if we replace 

h,(x) = 0 j E K 

bY 
g3+&> G 0 jgK 

-g3+k+m(4 G 0 jEK, 

then 
co = 0 zii = 0 iEM 

U3+m = ~3+k+n = 1 jeK 

satisfy the Fritz John conditions for any feasible x. 
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One of the aims of this work will be to develop a modified set of necessary 
conditions that will be meaningful when the set K is not empty. These 
conditions will be employed to derive a constraint qualification for equality 
and inequality constraints together. No such constraint qualification has been 
given before. The Kuhn-Tucker constraint qualification [l] and variants 
thereof [3] have been given for inequality constraints alone, while the 
regularity condition [4,5] for the classical Lagrange multiplier condition 
has been given for equality constraints alone. 

Vector notation will generally be used. In general, vectors will be denoted 
by single lower-case Latin letters, and matrices by single upper-case Latin 
letters. Subscripts will be used to denote components or groups of com- 
ponents, superscripts will be used to distinguish vectors or matrices. A vector 
will be a column vector. A prime (‘) will indicate the transpose of a vector 
or matrix. Thus, the inner product of two vectors x and y will be x’y. The 
dimensionality of some vectors and matrices will not be stated explicitly, 
it being clear from the context. 

A crucial role will be played by Motzkin’s transposition theorem [6, 7, 81 
which we reproduce here for convenience. 

MOTZRIN’S TRANSPOSITION THEOREM. Let A, B, and C be real constant 
matrices with A being nonempty. Then either the system 

y’A < 0 y’B < 0 y’C = 0 U-5) 

has a solution 9, or the system 

AZ, + Bz, + Cz, = 0, 21 2 0, z,#O, z2 2 0 (1.6) 

has a solution, f, , 1, , z3 , but never both. 

In Section 2 we shall give the modified Fritz John necessary optimality 
conditions, and in Section 3 we shall derive the constraint qualification from 
these conditions. 

2. THE FRITZ JOHN NECESSARY CONDITIONS IN THE PRESENCE OF 

EQUALITIES AND INEQUALITIRS 

It is convenient to start by establishing the following fundamental 

LEMMA 1. Letfi(x), i EL = {1,2 ,..., Z} # CD, and h,(x), j E K = {I, 2 ,..., h}, 
be functions dejined on an open set D of En and have continuous jirst partial 
derivatives on D. Let the system 

f&4 = 0, iGL 

h(x) = 0, jEK (24 
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hawe a solution f E D, and let the system 

fib9 -=L 0, iEL 

h,(x) = 0, jEK (2.2) 

have no solution in D. Then the system 

Y’vi(4 < 0, iEL (2.3) 

y’Vh,(f) = 0, jeK (2.4) 

has BO solution y in En, provided that 

V&% j E K, are linearly independent. (2.5) 

The proof of the above lemma is somewhat lengthy and is relegated to 
the Appendix. Note that the case of K being empty is not excluded from the 
above lemma. 

By using Mot&in’s transposition theorem now, it is easy to derive a second 
lemma from Lemma 1. This will enable us to establish the Fritz John 
conditions immediately for the case of equality and inequality constraints. 

LEMMA 2. Let the assumptions of Lemma 1 hold. Then there exists vectors 
f E IF, s E Ek, such that 

i F, Vfi(n) + i s, Vh,(f) = 0 
4=1 j=l 

f>O 

(2.6) 

(2.7) 

I 1 5 f0.1 w3) 

PROOF. If Vhi(@, j E K, are linearly dependent, then by setting f = 0, 
conditions (2.6), (2.7), (2.8) follow from the linear dependence of Vhj(*), 
jEK. 

If Vhj(S), j E K, are linearly independent, then we shall use Lemma 1 and 
Mot&n’s transposition theorem. Let 

4 = %(*h iEL 

C, = Vh,(a), jEK 

where A, are the columns of the matrix A and Cj are the columns of the 

1 This notation means that some but not all components of f and S can vanish. 
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matrix C. By Mot&n’s transposition theorem, with B empty, conditions 
(2.6), (2.7), (2.8) f 11 o ow from (1.6) by setting f = 5, and S = I,. Q.E.D. 

Note that the case of K being empty is not excluded from the above lemma. 
We are now ready to establish the main result of this work. 
The generalized Fritz John Necessary Conditions: If ff is a solution of (1.1) 

then there exists vectors zi = (ziO , zil ,..., Q’ E Em+l, 6 = (Gl , Gz ,..., 4)’ E Ek 
such that 

zi,, V%‘(a) + f zii Vg@) + i Gj Vh,(z) = 0 
i=l j=l 

(2.9) 

m 
c &g&) = 0 (2.10) 
i=l 

Ii>,0 (2.11) 

[I ; #O (2.12) 

PROOF. Let 
A7={iliEM,gi(5) =0} (2.13) 

and 
D={xlx~:E~,g~(x)<O,i~M--A?} (2.14) 

Since M - i@ is finite, and gi(x) are continuous, D is an open set in En. Let 

fl(4 = 64 - em (2.15) 

fiCx) = gp,(x>, Pi E fl9 i = 2, 3,. . . , 1. (2.16) 

Note that since fi(x) = e(x) - e(2), the set L = {1,2,..., Z} is not empty. 
Now the system 

fiCx) = O9 ieL 

h,(x) = 0, jeK 
(2.17) 

has a solution R E D, but the system 

fdx) < 0, ieL 

h,(x) = 0, jEK 
(2.18) 

has no solution in D. For if (2.18) did have a solution 4 E D, then we would 
have that 

e(a) - e(n) < 0 

g@) -=c 0, iEM 

h,(i) = 0, jE:K, 
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which contradicts the assumption that 6(f) is the minimum of 6’(x) on the 
feasible set 

s=(~lxEEn,gi(x)~O,iEM,h,(x)=O,jER). 

By Lemma 2 it follows then that there exist vectors 

(2.19) 

and 

such that 

s = (3, , r2 ,..., s,)’ E Ek 

f, w(a) + i T$‘ Vg&) + i s, Vhf(a) = 0, pi E w (2.20) 
i=2 j=l 

F>,O (2.21) 

[ I ; #O 

By defining zi E Em+l and 6 E Ek as follows 240 = Fo 
is, = e iEM-&& 

fi iEi@ 

5 = s, 

we have 

&g*(i) = 0. 

(2.22) 

(2.23) 

Conditions (2.20), (2.21), (2.22) may be rewritten as 

zio W(R) + 2 ii* Vg&z) + i q VIZ,(R) = 0 (2.24) 
i=l j-1 

Zi>O (2.25) 

II ’ # 0. Q.E.D. 
5 (2.26) 

An interesting question may be raised in connection with the previous 
result which is this: What points in the feasible set S (2.19), not necessarily 
the minimum points of 6(x), satisfy the generalized Fritz John conditions 
(2.9) to (2.12)? This question can be partially answered by the following 
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corollary which can be easily deduced from the proof of Lemma 2 and the 
proof of the generalized Fritz John conditions. 

COROLLARY. Let R be any point (not necessarily the minimum point) in the 
feasible set S. Then ;f either 

Vhj(% j E K, are linearly dependent (2.27) 

or if the system 

e(x) - e(s) < 0 
g& -=c 0, i E M 

I 
has no solution x E En, (2.28) 

h,(x) = 0, jeK 

then the generalized Frits John conditions are satisjed at R. 

One may use conditions (2.27) and (2.28) t o impose a regularity condition 
of the following type: All points i in S satisfying (2.27) or (2.28) must be 
minimum points. 

3. CONSTRAINT QUALIFICATIONFOREQUALITYAND INEQUALITY CONSTRAINTS 

It is well known that necessary optimality conditions such as the Kuhn- 
Tucker [l] or the classical Lagrange multiplier conditions [4, 51 require 
some sort of a constraint qualification in order for them to be valid. 
Such constraint qualifications have always been given for inequality con- 
straints alone [I, 31 or for equality constraints alone [4, 51. By using the 
generalized Fritz John conditions derived in the previous section, it is 
possible to derive a constraint qualification for both equality and inequality 
constraints. (Cottle [9] has derived a constraint qualification for inequality 
constraints alone by using Fritz John’s original necessary conditions.) 

THE GENERALIZED CONSTRAINT QUALIFICATICN. Let 3~ be a solution of 
(1.1). A suficient condition for the Kuhn-Tucker necessary optimality 
conditions [I] 

Ve(a) + f zZ~ Vg<(a) + i 6, Vhj(Z) = 0 
i=l i-l 

(3.1) 

(3.2) 

tii > 0, iEM, (3.3) 
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to hold is that there exists a vector 7 E En such that 

$‘Vg@) < 0 iEXf=(iIiEM,g,(*)=O}#@ (3.4) 

y’Vh,(a) = 0, jEK, (3.5) 

and that 

Vhi(4, j E K, are lineary independent. (3.6) 

FOY the case when il? is empty, condition (3.6) alone is a su$kient constraint 
qualz~cation.2 

PROOF. For the case when A? = @, it is obvious that the Fritz John 
conditions (2.9) to (2.12) cannot hold with zZ,, = 0 if (3.6) is valid. Hence, 
z?,, > 0 and the Kuhn-Tucker conditions (3.1) to (3.3) follow from the 
Fritz John conditions (2.9) to (2.12). 

For the case of I@ # @, define matrices A and C whose columns A, and Cj 
are given by 

Ai = Vg,(a), iEM (3.7) 

Cj = Vh@), jEK. (3-g) 

It follows then from (3.4) and (3.5) that (1.5) has a solution, with B empty. 
Hence, by Motzkin’s transposition theorem, the system 

has no solution zi , zs , or 

i&O'.&9 + 5 ~2~W@) = 0 (3.9) 
i=l 

Zl 3 0, z, # 0, (3.10) 

has no solution. Now the Fritz John conditions (2.9) to (2.12) hold. If Es, = 0, 
then (til ,..., 27,) 2 0 and (zir ,..., z~~)fO because of (3.6) and (2.9), hence 

Zli = ui , ie:R 

f, = v 

solves (3.9), (3.10), which is a contradiction. Hence, zis > 0 and the Kuhn- 
Tucker condition (3.1) to (3.3) follow from the Fritz John conditions (2.9) 
to (2.12). Q.E.D. 

*Note that (3.5) and (3.6) are not necessarily contradictory for (3.5) implies the 
linear dependence of the rows of [Vh,(*),..., V&(a)]. 
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It should be remarked that condition (3.6) is equivalent to the regularity 
condition of the Lagrange multiplier method for equality constraints [4, 51. 

A geometric interpretation of conditions (3.4) and (3.5) can be given as 
follows. The gradients of the active (that is g,(a) = 0) inequality constraints 
at 3i: from a pointed3 cone, and there exists a vector in this cone that is tangent 
to the surface formed by the equality constraints. 

APPENDIX 

PROOF OF LEMMA 1. The proof will be by contradiction. We shall 
assume that (2.1) has a solution f E D, so 

fi(*> = 03 t-EL (1) 

h&5) = 0, jkz.ly; (2) 

that (2.3), (2.4) have a solution 7 E En, so 

jj’Vf@) < 0, ifZL (3) 

jvvhj(q = 0, jEK; (4) 

and that (2.5) holds. We shall then produce an f E En such that 

f&q < 0, ieL (5) 

h&q = 0, jGK, (6) 

which contradicts (2.2). (For the case of K = n, the proof of Lemma 1 is 
trivial, because (2.5) and (2.4) imply that y = 0, and hence (2.3) has no 
solution. The case of R > n is excluded by (2.5). So we shall only consider 
the case K < n.) 

Let f(x) denote the l-by-l vector mapping from En into El defined by 
fi(x),..., fi(x), and h(x) the K-by-l vector mapping from En into Ek defined 
by W),..., hk(x). Let Vf(x) be the n-by-l matrix of partial derivatives 
L+fi(x)/t3xj , i EL, j E {I ,..., n}. Similarly define the n-by-K matrix Vh(x), and 
the other matrices of partial derivatives of vector valued functions appearing 
below. 

From implicit function theory [5, IO], (2) and (2.5) it follows that there exist: 

s A cone is pointed [9] if there exists a vector which makes an acute angle (<r/2) 
with all the vectors of the cone. 
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a partition (x1 , xII) of x, such that x1 E Enpk, xII E EL, a neighborhood U of fI 
in En-k, and a differentiable mapping e : U-+ Ek such that 

zZII = e(i$) (7) 

4x,, e(xA> = 0, for all XIE u, (8) 

and 
V,h(R) is nonsingular. (9) 

Let (yl, yrr) be the partition of y corresponding to (x1, Q). By the 
differentiability of h(x) and e(x), (8) and the chain rule [lo] 

V,j@) + V, e(G) V&(f) = 0 (10) 

Premultiplying (10) by jjI’ we get 

91’ V,h(%) + 7-1’ V,, e(iQ> V,,>(3) = 0. 

By (4) we have that 

(11) 

y; v&q + ~;&w = 0. (12) 

Hence by (1 I), (12) and (9) we get 

$I= ?I’ v, e(Q. (13) 

By the differentiability of e(q), there exists a 6, > 0, such that for all 
6 < 6, 

(14) 

where 11 yI 11 denotes the Euclidean norm (jjI’yI)* and c(flr , SyI) is a K-by-l 
vector mapping from Enpk into Ek such that lims,, C(R~ , SyI) = 0. From (13) 
and (14) we get that 

4% + $3) = e(G) + @II + W~I, 51) II 91 II, for all s < 6,. (15) 

Again by the differentiability off(x), (15) and (7) we have for 6 < 6, 

f(% + &?I, e(fr + 871)) =f(& + 891, e(C) + VIZ + sc(fr , sjG)ll ?I II) 

=@I , &I> + q(v&z , %I)>’ y1 

+ (V,,,f(.Q , 211)) (71r + @I, SJ%)ll yz II) 

+ b(fz , 2x1; SjG , SYII + q%, ~jb)ll~-r II) 

II j4 , YII + +I , &)llJ% II II}, (16) 
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where b is an l-by-l vector mapping from En into El such that lim8,, b = 0. 
Since lims,,, c = 0, and 

it follows that there exists a 6, > 0, such that for all 6, 0 < 6 < 6,) the 
expression in the curly brackets in (16) is strictly negative. And since 
f(% , %I) = f(@ = 0, we then have from (16) that 

f(% + %,e(% + %$)) < 0, for all S:O<S<S,, (17) 
and by (8) 

4% + EiG, 4% + &i$)) = 0, for all S:O<S<S,. P-3) 
By setting ZI = fI + 8~~) Z,I = e(q + 87,) for some 8 : 0 < 6 < 6,) 
relations (17) and (18) g ive the desired contradiction. 

The case K # @ goes through in a similar manner as above but without 
using implicit function theory. 
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