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Abstract

Conventionalinstructionfetch mechanismsfetch contig-
uousblocksof instructionsin each cycle. They aredifficult
to scalesincetaken branchesmake it hard to increasethe
size of these blocks beyond eight instructions. Trace
cacheshavebeenproposedas a solution to this problem,
but they use cache space inefficiently.

We show that fetching large blocks of contiguous
instructions,or widefetch, is inefficient for modernout-of-
orderprocessors. Insteadof theusualapproach of fetching
large blocks of instructionsfroma singlepoint in thepro-
gram,we proposea high-bandwidthfetch mechanismthat
fetchessmallblocksof instructionsfrommultiplepointsin
a program.

In this paper, we demonstrate that it is possible to
achieve high-bandwidthfetch by using multiple narrow
fetch unitsoperating in parallel. Our mechanismperforms
as well as a trace cache, doesnot wastecache space, is
more resilientto instructioncachemisses,andis a natural
fit for techniquesthat require fetchingmultiplethreads,like
multithreading, dual-path execution, and speculative
threads.

1  Introduction

Modern processors need a large instruction window to
ensurethatmany independentinstructionsareavailablefor
executionat any time. As processorswith morefunctional
uni ts are bui l t, i t i s al so necessary to increase the
instruction fetch bandwidth so that the instruction window
size can be correspondingly increased.

Increasingtheinstructionfetchbandwidthbeyondeight
instructions per cycle poses special problems. Typical
programs contain taken branches every eight instructions
on average [6]. At every taken branch in a program, the
fetch unit must be redirected to fetch instructions from a
new address. Since most instruction caches can only
supply data from contiguous memory locations in one
cycle, instructionsfrom thebranchtargetaddresscannotbe
fetched in the same cycle as the instructions up to the
branch. This restricts instruction fetch bandwidth to the

average number of instructions between taken branches.
The wider the fetch unit, the more likely it is that fetch
slots wi l l be wasted because of discontinui ties in the
instruction stream.

Proposed solutions to this problem can be divided into
two categories: (a) augmenting the branch predictor to
predictmultiplebranchespercycle [21] andtheinstruction
cache to supply multiple discontinuous lines per cycle [4],
and (b) storing instructions in dynamic execution order in
the cache (i.e. using a trace cache) [11,12,16]. The first
solution makes the branch predictor and the cache more
complex, potentially increasing the cycle time; the second
solution leads to inefficient use of cache space, potentially
increasing cache miss rates.

Both classes of solutions work by fetching a large
number of contiguous instructions from a single point in
theprogramevery cycle. In this paper, we proposea high-
bandwidthfetchmechanismthatfetchesa smallnumberof
contiguous instructions f rom mul tiple points in the
program, as opposed to fetching a large number of
contiguous instructions from a single point.

Fetching a large block of contiguous instructions, or
wide fetch, is inefficient for out-of-order processors.
Figure1 illustrateshow fetchandexecutionof consecutive
instructions overlaps in time. This data is from a 16-wide
processor augmented with a trace cache. Traces are
variable length, up to a maximum of 16 instructions. The
trace selection algorithm is described in Section 2.4.1, and
the simulated machine configuration is discussed in
Section 3. On average, the processor fetches one trace
every two cycles. The first instruction of a typical trace
starts execution three cycles af ter the trace has been
completely fetched, and it takes about 20 cycles for all
instructions in the trace to begin executing.

As clearly il lustrated by the figure, traces are fetched
consecutively but thei r execution is almost enti rely
concurrent. This is not an entirely unexpected result:
previouswork hasshown thatsignificantparallelismexists
between instructions of different traces [20]. Therefore,
the actual order in which instructions are executed is very
different from their order in the program. First, a small
number of data-independent instructions in both traces get



executed, followed by the rest of the instructions in the
traces in dataflow order.

Even though a trace cache can fetch an entire trace in
onecycle,all instructionsin thetracearenot needed in that
cycle since onl y a smal l f racti on wi l l be executed
immediately. Wide fetch is inefficient for out-of-order
processors since instructions are not needed in sequential
order. A few instructions from each trace that are first in
dataflow order are the ones needed earliest, followed later
by the rest of the instructions in the trace. Wide fetch
mechanisms must fetch not only the critical instructions
that are first in dataflow order, but also all the intervening
instructions.

We propose a fetch mechanism that fetches multiple
traces concurrently using multiple narrow instruction
sequencers instead of one wide sequencer. Since multiple
traces are fetched concurrently, the individual instructions
are fetched out-of-order. Narrow sequencers use the
available bandwidth more effectively since fewer fetch
slotsarewasteddueto branchesandcache-lineboundaries.
Moreover, just l ike out-of -order execution is able to
overl ap l ong latency operati ons wi th other useful
instructions, out-of-order fetch can tolerate instruction
supply delays like I-cache misses by fetching other useful
instructions while the miss is resolved. This mechanism
can be thought of as just-in-time trace constructor [8] that
can build multiple traces concurrently.

We also observed that programs display a remarkably
large amount of trace locality. In some benchmarks as
many as 70% of the dynamic traces repeat within the next
sixteen traces. It may be better to reuse the constructed
traces rather than discarding them immediately after use.
This turns our mechanism into a small trace cache with a
very fast trace construction mechanism. Whereas a trace
cache can exploit almost all the locality that is available, it
is slow atconstructingtraces;thismechanismcanexploit a
smalleramountof locality, but canconstructtracesquickly.
Reusing trace buffers also has the advantage of reducing
accesses to the instruction cache by more than 80% in
some cases and 50% on average.

Multiple sequencers also make it possible to use the
fetchunit in far moreflexible waysthana monolithicfetch
uni t would al l ow. I t i s much easier to implement

techniques like dual-path execution [5,10], speculative
threads[22], etc.,thatrequirefetchingmultiple threads.In
a multithreaded processor, multiple sequencers enable a
much finer grained control over al location of fetch
resources to threads than is possible otherwise.

The next section describes our mechanism in detail .
Secti on 3 contai ns an eval uati on of the proposed
mechanism. We discuss some related work in Section 4.
Section 5 concludes the paper with a summary and some
future research directions.

2  Instruction Fetch with Multiple Sequencers

The conventional approach of fetching instructions
from the location pointed to by the program counter is
insufficient for fetching instructions from multiple points
in the program. To be able to fetch f rom mul ti ple
locations, we must know the addresses of mul tiple
instructions in the near future rather than just a single
current address.

I nstead of keepi ng track of control f l ow at the
granulari ty of individual instructions we divide the
instruction stream into coarser units called traces. A trace
is a dynamic sequence of instructions in program order,
potentiallyspanningcontrol instructions.Controlflow can
be predicted on the granulari ty of traces using a trace
predictor [11,16]. I t has been demonstrated that trace
predictors can achieve equivalent or higher prediction
accuracies than conventional branch predictors [7].

Once future control flow can be predicted at trace
granularity, multiple traces can be fetched concurrently by
using multiple instruction sequencers. This parallelizes
instruction fetch: the latency and the width of a single
i nstruct i on sequencer are no l onger the pr i mary
determi nants of the f etch bandwi dth si nce i t i s
straightforward to add more instruction sequencers to
increase the total raw fetch bandwidth.

2.1  Design Details

The archi tecture we are proposing is i l lustrated in
Figure 2. The instruction fetch queue (IFQ) between the
fetch and decode stages is preceded by a set of trace
buf f ers. The fetch uni t i s repl i cated, and fetched
instructions are placed in trace buffers rather than directly

Figure 1. Temporal relationship between instructions in consecutive traces
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in theIFQ. A tracepredictoris usedfor controlprediction
instead of a branch predictor. The L1 instruction cache is
banked so that multiple sequencers can fetch instructions
concurrently. Bank accesses are control led by a bank
access controller that receives requests for cache accesses,
converts these requests into a sequence of bank accesses,
and schedules the accesses in order to avoid conflicts. All
pipeline stages after the IFQ are unchanged.

Each trace buffer is a small FIFO queue of instructions.
Associatedwith it is a setof registersthatdescribeits fetch
context: a startingaddress,a programcounter(PC),branch
prediction bits, and bits indicating whether the buffer is
valid and active. A buffer is valid when it contains a trace
not completely consumed by the IFQ. A valid buffer is
active if instructions are still being fetched into it, i.e., if
the trace being fetched into it has not been constructed
completely. All valid tracebuffersarelinkedto eachother
by a sequence of next-trace pointers.

Instructionsarefetchedinto active tracebuffersstarting
at the address pointed to by each buffer’s PC. Each trace
buffer’s PC is updated as usual when instructions are
fetchedinto it. TheIFQ readsinstructionsoutof theoldest
trace buffer and fol lows the next trace pointer when it
encounters the end of the current trace. Once al l
instructions in the trace are inserted into the IFQ, the trace
buffer is marked invalid.

2.2  Fetch Unit

When a program starts executing, the fetch unit fetches
instructions sequentially, as usual, and places them in an
availabletracebuffer insteadof theinstructionfetchqueue.
It alsocheckseachinstructionfetchedfor tracetermination
conditions. At the end of the trace, it obtains a new trace
buffer, l inks it to the old one, and marks the old buffer
i nactive. Then, i t conti nues fetching instructi ons
sequentially into the new trace buffer.

On a trace prediction, the fetch unit obtains a new trace
buffer and adds it to the end of the chain of valid buffers.
When multiple trace buffers are active, instructions are
fetched into al l of them simul taneousl y i f enough
sequencers are available.

A new tracebuffer canbecreatedin thefollowing ways:
first, when the trace predictor makes a prediction, and
second, by fal l through from the previous trace i f no
prediction is available. A third way is when the fetch unit
is redirected after a misprediction—this will be discussed
in Section 2.6. Branches are assumed not-taken i f
predictions are not available.

Instruction fetch into different buffers is completely
decoupled. Stal ls in one buffer do not affect the other
activebuffers. Traceendpointsmaybereachedin anorder
completely different from program order. The IFQ still
receives the instructions in program order, so no changes
areneededto themachinebeyondtheIFQ, exceptfor some
mechanisms for recovering f rom mispredictions and
training the trace predictor.

2.3  Banked Instruction Cache

To enable multiple sequencers to fetch instructions
concurrently, the instruction cache must be able to supply
multiple cache lines in the same cycle. Although this can
beachievedby multiportingthecachesothatmultiple lines
can be read out of a single bank in the same cycle, that
would substantially increase the size of the cache, slow it
down, and increase its power consumption. We instead
achieve the same effect by banking the cache and adding a
bank access controller that schedules access to the banks.

Lines are mapped to banks using standard low-order
interleaving. The bank access controller services requests
in oldest-trace-first order, servicing at most one request
from each sequencer in a cycle.

2.4  Trace Selection and Prediction

Good trace selection involves balancing several
contradictory requirements. First, the traces must be
reasonably long. At the same time, traces should be
terminated at the end of control structures like loops and
functions to increase the prediction accuracy and decrease
the number of unique traces. However, we don’ t want to
stop traces at each control instruction since being able to
fetch past control instructions is one of the primary
motivations for building traces.

We use function boundaries as the primary division,
along with some other constraints to ensure reasonable
size, high prediction accuracy, and a small working set.
The reader is referred to other papers [11,17] for a more
detailed exploration of trace selection techniques.

2.4.1  Trace Selection. We limit the size of traces to 16
instructions.Tracesareterminatedif (1) they aretoo long,
(2) a cal l , return, or indirect branch is encountered, or
(3) the trace is longer than eight instructions and an
unconditional branch is encountered.

Trace Buffer

Trace Predictor

Figure 2. Multiple Sequencers

Sequencer IFQ

In
st

ru
ct

io
n 

C
ac

he

Sequencer Trace Buffer

Trace Buffer

Misprediction

Learn



Terminatingtracesat calls/returnsandindirectbranches
enables using a return address stack (RAS) and an indirect
branch predictor to supplement the trace predictor,
si gni f i cantl y i ncreasi ng predi ct i on accuracy (see
Section 2.4.3 for detai ls). Terminating traces at al l
unconditional branches when the trace is longer than eight
instructions reduces the number of unique traces in the
program since traces tend to start at fewer points. This
leadsto higherpredictionaccuracy andsmallertracecache
miss rate.

Table 1 lists the trace characteristics of the SPEC CPU
2000 benchmarks used in this study. Most benchmarks
have a fai rly smal l number of static traces. Integer
benchmarks have more traces, as well as smaller traces,
thanfloatingpointbenchmarks.As thelastcolumnshows,
the number of traces that execute frequently is a small
percentageof thenumberof tracesin all benchmarks,anda
relatively smallabsolutenumberfor all benchmarksexcept
gcc.

2.4.2  Trace Prediction. We use the t race predi ctor
proposed by Jacobson et al. [7]. Each trace is assigned a
trace identi fier obtained by combining bi ts f rom the
starting address of the trace and its branch history. The
predictor consists of a correlated table indexed by trace
identifiers of the previous traces, and a smaller fi l tering
table to el iminate the easy to predict traces from the
primary table. The trace predictor i s based on the
Multiscalar task predictor named “DOLC” [1].

Eachentry in thepredictorcontainsthestartingaddress
of the trace, a bi tmap encodi ng the di rect i ons of
conditional branches, and bits indicating whether the trace
endswith afunctioncall, return,or indirectbranch.In case
of a trace ending wi th a cal l or indi rect branch, the
predictor also contains the address of the last instruction.
The predictor is indexed by a hash function applied to the

tracehistorybuffer. Thepredictoris updatedin thecommit
stage as instructions retire.

The letters D, O, L, and C in the name of the predictor
stand for the four parameters that define the predictor: the
size of the history buffer (or Depth), the number of bits
extracted from the identifier of Current trace, the number
of bits extracted from the identifier of Last trace, and the
number of bi ts extracted from the identi fiers of Older
traces. We use the values D=9, C=9, L=7, and O=4. The
primary table contains 64k lines and the secondary table
16k l ines. Figure 3 shows both the trace prediction
accuracy and the branch prediction accuracy of the
predictor.

2.4.3  Returns and Indirect Branches. Since instructions
are being fetched out of order, i t is possible for a later
return instruction to be fetched before an earl ier return
instruction. However, return instructions must access the
RAS in program order for its predictions to be correct. A
similar argument holds for the indirect branch predictor.

WeaccesstheRASor theindirectpredictorwhentraces
are predicted. Traces can contain at most one call, return,
or indirect branch since these instructions end traces. The
tracepredictorpredictswhethera tracewill endwith these
instructions, and the address of the instruction if required.
Since traces are predicted in program order, the RAS and
theindirectbranchpredictorareaccessedin programorder
as well.

Restoring predictor state on mispredictions is handled
by making a copy of any data that is modified, just like in
conventional out-of -order processor. When the last
instruction of a trace is fetched, the prediction is verified.
On mispredictions, the predictor state is repai red by
restoring it to the backed up value and then redoing the
modifications made by future traces.

Table 1: Trace Characteristics of SPEC 2000 Benchmarks

Benchmark Dynamic
Instructions

Traces AverageTrace
Size

Dynamic
Traces

Traces Contributing
95% instructions

Integer
bzip2 8822 M   1819 12.79 690 M     109 (  6%)
crafty 4265 M   7541 12.02 355 M     909 (12%)
gap 1246 M   9074 10.70 117 M     972 (11%)
gcc 2016 M 38180 11.26 179 M   7165 (19%)
gzip 3367 M   1942 12.06 279 M       58 (  3%)
mcf   260 M   1424   9.84   26 M     132 (  9%)
parser 4203 M   6496 10.35 406 M     692 (11%)
Floating Point
ammp 5491 M   2932 13.11 419 M     332 (11%)
equake 1443 M   2182 11.10 130 M     356 (16%)
lucas 3689 M   1090 15.68 235 M     130 (  7%)
mesa 2845 M   2543 11.30 252 M     110 (  4%)



2.5  Trace Reuse

The technique as described above discards instructions
in trace buffers once they have been decoded. An
alternative is to keepinstructionsin thebuffer andto reuse
buffers if control flow reaches the same trace again. If
there is sufficient locality in the instruction stream, trace
reusecouldleadto animprovementin performanceaswell
as a reduction in cache/memory traffic.

Reduced cache traffic makes the performance much
more robust in the presence of bank confl icts. I t also
reduces the power consumed by the L1 instruction cache.
However, i t may not lead to an net reduction in power
usage as compared to a processor wi thout mul tiple
sequencers, since the reduction is offset by the power
consumed by trace buffers.

2.6  Recovering from Branch Mispredictions

On a branch misprediction, in addi tion to simply
redirectingthefetchunit, thecurrentfetchcontext mustbe
restored so that (1) the trace selection algorithm does not
get misaligned, and (2) the trace identifier history remains
accurate. This can be done with mechanisms that already
exist in al l processors for restoring the global branch
history after mispredictions.

Some mispredictions can be detected in the fetch stage
itself by comparingthePCfollowing thelast instructionin
a trace to the predicted next trace. In case of a mismatch,
all future traces are marked invalid. Early detection of
such mispredictions allows earlier recovery, and reduces
the number of spurious instructions fetched and executed.

2.7  Out-of-Order Renaming

Oncetheinstructionsarebeingfetchedoutof order, it is
desirable to be able to execute independent instructions
from a later trace before previous traces have been fetched
completely. This requires renaming instructions out of

order. We believe thata solutionsimilar to thoseproposed
by Stark et al. [19] and Cher et al. [3] can be used to solve
this problem.

The trace predictor can be augmented to predict a
rename mask that identifiesindependentinstructions. This
mask can be used to selectively execute only these
instructions unti l al l prior traces have been fetched.
Delayedinstructionscanberenamedwhenall theirsources
are avai l able. A l ternativel y, they can be renamed
speculatively, and on a misspeculation the source register
valuescancopiedinto thepredictedphysicalregistersafter
execution of the source instructions.

This paperconcentratesonly on thefetchcomponentof
theinstructionsupplyproblem. Wedonotevaluateout-of-
order renaming in this paper.

3  Experimental Evaluation

We used a simulator based on the SimpleScalar toolset
[2] to model a multiple sequencer based fetch mechanism.
Parameters of the base-case processor are shown in
Table 2. We simulate a 16-wide processor with large
caches to ensure that i t can achieve high IPC, and can
therefore benefit from high bandwidth instruction fetch.
Large caches also ensure that the conventional instruction
fetch mechanism works as well as possible, which shows
that the performance improvement due to mul ti ple
sequencers cannot simply be achieved by enlarging the
instruction cache.

All benchmarks were taken from the SPEC CPU 2000
suite and compiled with optimization using the Compaq/
Alphavendorcompiler(version6.4-214).Testinputswere
used, and the programs were simulated for at most one
billion instructions. Table 1 lists some characteristics of
thebenchmarks.We usedonly a subsetof thebenchmarks
because of limitations in the simulator: (1) many floating
point programs produced output that did not match the

Figure 3.  Trace and Branch Prediction Accuracy
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reference output because of differences in the behavior of
floating point instructions, (2) no support for the exec
system call, and (3) problems related to Fortran runtime
libraries.

We compare three di f f erent i nst ruct i on f etch
mechanisms: conventional 16-wide fetch (W16), trace
cache (TC), and multiple sequencers (MS). W16 fetches
instructions sequentially, stopping at the first taken branch
or cacheline boundary. Thenumberof branchpredictions
per cycle is unlimited. TC models a 2-way set associative
trace cache with 16 instructions per trace. On a cache hit,
the entire trace can be fetched in one cycle if there are
sufficient slots in the instruction fetch queue. On a cache
miss,instructionsarefetchedfrom theL1 instructioncache
using the W16 mechanism. The processor contains an L1
instruction cache of the same size as the trace cache. We
foundthatthisdivisiongavebetterresultsthana largetrace
cache without an L1 instruction cache. In one cycle,
instructions can be fetched from either the trace cache, or
the L1 instruction cache, but not both. The trace predictor
is described in Section 2.4. The total size of the level one
instructionstorageis keptthesamewhenever two schemes
are compared (i.e. when TC is compared to W16, the sum
of the size of the trace cache and L1 instruction cache in
TC is equalto thesizeof theL1 instructioncachein W16).

The various MS configurations are labeled using the
conventi on M S-NxM w where N i s the number of
sequencers and M the width of each sequencer. For
example,MS-2x8wdenotestwo 8-widesequencers.There
are16tracebuffersof 16 instructionseach.Theinstruction
cache i s divi ded i nto ei ght banks as descri bed i n
Section 2.3. The trace predictor and the trace selection
algorithm are identical to those used by TC. The trace
predictor can make one prediction every cycle. New trace
buffers are activated on predictions made by the predictor
regardless of the number of buffers al ready active.

Sequencers are assigned to trace buffers in oldest fi rst
order.  The L1 instruction cache is the same as inW16.

The results section is structured as follows. First, in
Section 3.1, we study the effect of multiple sequencers on
instruction cache traffic. In Section 3.2 we compare the
performance of multiple sequencers with conventional
instruction sequencing and trace caches. Final ly, in
Section 3.3 we study the behavior of these mechanisms
under high cache miss rates.

3.1  Instruction Cache Traffic

When bui lding a high bandwidth fetch uni t, i t i s
inevitable that the number of instructions fetched will be
much greater than the number of committed instructions,
due to fetching down mispredicted paths. An over-eager
fetch mechanism may increase memory traffic and worsen
instruction cache performance, doing more harm than
good.

Figure 4 shows the number of instructions fetched by
W16, TC, and MS without trace reuse, normalized by the
number of commi tted instructions. The number of
instructions fetched is equal to the total number of
instructions read from the L1 cache for W16 and MS, and
the sum of the number of instructions fetched from the L1
cache and the trace cache for TC. Fl oati ng point
benchmarks show only a small increase in the number of
instructionsfetched. Integerbenchmarksshow a relatively
higher increase of 40% on average. This is comparable to
the number of extra instructions fetched  by a trace cache.

Figure5 presents the same data as Figure 4, except that
trace reuse is now enabled. Trace reuse directly translates
i nto reduced cache traf f i c, si nce the i nstruct i ons
corresponding to reused traces do not have to be fetched
from the instruction cache. Cache traffic is reduced
dramatically—by 50% over all benchmarks on average,
and by more than 80% for four benchmarks (bzip2,
gzip, mcf, and ammp). The trace buffers act as a filter
cache [9,15] making the number of instructions fetched
from the cache smaller than the number of instructions
executed in most cases.

Interestingly, two benchmarks that benefi t the most
from tracereuse,gzip andmcf, arealsotheonesthathad
the most wasted instructions without trace reuse. This
suggeststhatmostof themispredictionsin themaredueto
a smallnumberof tracesthatoccurfrequently, but arehard
to predict—forexample,anunpredictableswitchstatement
in a long running loop.

3.2  Performance

As discussed earl ier, one way of thinking about this
technique is that it constructs traces just in time so that by
thetime controlreachesa tracetheentiretracehasalready
been constructed. If this happens often, this scheme will

Table 2: Simulation Parameters

Width Fetch,decodeandcommitatmost16
instructions per cycle

Functional
Units

16 integer ALUs, 4 integer multipli-
ers,4 floatingpointALUs, 1 floating
point multiplier, 4 load/store units

In-flight
Instructions

256 entry instruction window
128 entry load/store queue

L1 Caches
(Insn & Data)

64K, 2-way set-associative,
1 cycle access time, 64b blocks

L2 Cache
(Unified)

256K, 4-way set-associative, 10
cycle access time, 128 byte blocks

Memory 100 cycle access time



provide the illusion of a trace cache, and therefore will
perform as well as a trace cache. In fact, it is likely that in
that case MS will perform better than a trace cache, since a
trace cache requires both predictability as well as locality
in the sequence of traces, whereas MS requires only
predictability since traces are constructed on the fly.

Figure 6 shows the fraction of traces pre-constructed
completely before they are needed. On average, 85% of
the traces are successfully pre-constructed. The graph also
demonstrates the effectiveness of multiple narrow
sequencers: MS-1x16w is able to construct only 60% of
the traces in time, and as the number of sequencers
increases the number of successfully constructed traces
increases.

Figure 7 directly compares the performance of different
fetch mechanisms, normalized by the performance of W16.
MS-2x8w performs better than TC on the average, and
MS-4x4w performs as well as TC. TC performs poorly on
the benchmarks gcc and crafty since both these
benchmarks have a large number of frequently executed

traces, whereas MS, which uses cache space more
efficiently, performs well. TC performs comparably to MS
on both these benchmarks if the trace cache size is
increased.

Performance decreases as the width of the fetch unit
decreases, especially when the fetch unit is narrower than
four. Multiple narrow fetch units rely on being able to
predict future traces ahead of time, and the probability of
misprediction increases as traces are predicted further into
the future. For example, eight two-wide fetch units would
be able to maintain instruction supply only if it were
possible to accurately predict the next eight traces at all
points in the program. If the trace prediction accuracy is
95%, the eighth trace has a one in three (1 - 0.958 = 0.34)
chance of being mispredicted.

The integer benchmarks show more benefit from high
bandwidth fetch than floating point programs. Improving
instruction fetch bandwidth does not help floating point
programs since they are usually limited by large instruction
latencies (cache misses, floating point operations).

Figure 4. Extra Instructions fetched (without Trace Reuse)
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Figure 5. Extra Instructions fetched (with Trace Reuse)
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3.3  Instruction Cache Size

Figure 8 shows the performance of W16, TC and MS
over a range of instruction cache sizes. The figure plots
execution time normalized to W16 with a 64K instruction
cache. TC suffers the most as the cache becomes smaller,
since efficient use of cache space is more critical with
small caches. W16 outperforms TC at cache sizes of less
than 16K.

The four MS schemes provide the most robust
performance, slowing down less than 10% even when the
cache is one-eighth in size. Multiple sequencers are able to
utilize the available cache space more efficiently since they
do not have the storage overheads associated with trace
caches. In case an L1 cache miss does occur, they are better
at tolerating the miss latency since other instructions can be
fetched while the miss is handled, and multiple misses can
be overlapped with each other.

MS-1x16w behaves as robustly as the other MS
schemes, even though it cannot fetch multiple traces in

parallel. This suggests that it is the ability to initiate
multiple cache misses in parallel that is the important
factor in tolerating small cache sizes.

4  Related Work

Stark et al. [19] proposed a limited form of out-of-order
instruction fetch for tolerating instruction cache misses,
and proposed several ways of out-of-order renaming.
Unlike the technique described in this paper, instruction
fetch proceeded normally during most of the execution.
Instructions were fetched out-of-order only on cache
misses.

Trace preconstruction was proposed by Jacobson et al.
[8] to decrease the number of trace cache misses on
programs with large working sets. Their focus was
constructing a set of traces well ahead of the current trace
so that when control reached that point in the future it
would suffer no trace cache misses. Their technique
maintains a stack containing entries corresponding to the

Figure 6. Pre-constructed traces
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Figure 7. Performance
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hierarchical structure of functions and loops in the
program. The stack is used to identify potential
preconstruction points many cycles ahead of when they are
needed. In contrast, our scheme uses a standard trace
predictor to make predictions and tries to stay just a little
ahead of the processor. These two factors are related: the
reason we are able to use a standard trace predictor is that
we only predict control flow in the immediate future.
Unlike the aim of trace preconstruction—prefetching
potential trace cache misses—our scheme takes the idea to
its limit by making the cache very small and constructing
all the traces just before control flow reaches them.

Fetch Target Queue [14] was proposed by Reinman et
al. to decouple instruction fetch from the rest of the
execution pipeline. Their scheme predicts targets of future
branches in advance of when the branches are fetched and
inserts the target addresses in the fetch target queue. This
queue can then be used for prefetching cache blocks that
are not present in the level one instruction cache. However,
the fetch bandwidth of the processor is still limited by the
density of taken branches in the instruction stream.

Speculat ive mult i threading archi tectures l ike
Multiscalar [1,18] come closest to this technique as far as
the nature of instruction fetch is concerned. They typically
consist of multiple execution cores, each of which has a
fetch unit and a trace/task predictor that assigns traces to
cores. Since each execution core fetches instructions it
needs by itself, instructions are fetched as and when they
are needed, in an order different from program order. The
technique proposed in this paper decouples the decision to
build clustered fetch units from the decision to build
clustered execution cores.

Another approach to high bandwidth fetch is changing
the code layout to correspond more closely to the desired
fetch order. Ramirez et al. proposed a profile based
compiler optimization called a Software Trace Cache [13]

that rearranges basic blocks in the program so that the
instruction cache stores continuous traces of instructions,
just like a trace cache. Their results show that the best
performance is achieved by a combination of both the
hardware and software trace cache.

5  Conclusions and Future Directions

High bandwidth instruction fetch is essential for
building high performance processors. Conventional
instruction fetch techniques are difficult to scale up to
provide this extra bandwidth since the fetch unit needs to
be redirected on each taken branch. Trace caches are a
brute force solution to this problem. They are capable of
supplying instructions at a very high rate but are expensive
in terms of their area requirements since they utilize cache
space inefficiently.

Sequencing through the program at the granularity of
traces and fetching multiple traces simultaneously by using
a replicated fetch unit can be used to get the best of both
worlds: fetch bandwidth of a trace cache, and the storage
efficiency of an instruction cache. Trace-granularity
sequencing decouples the fetch of different parts of the
program from each other, and this decoupling enables
parallelizing instruction fetch by using multiple sequential
instruction sequencers. We described the design of such a
fetch unit in detail and demonstrated that it is capable of
achieving similar fetch bandwidth to a trace cache, and, at
the same time, decreasing the number of instructions
fetched from the instruction cache.

Our results also suggest that multiple sequencers are
more resilient to larger I-cache miss rates than a trace
cache. An important area of future work is evaluating this
mechanism in the context of future technology trends like
variable latency caches, longer access times and power
consumption restrictions. We expect that multiple
sequencers wil l turn out to be a good fi t for the
requirements of future processors.

Fetching instructions out of order is only half the battle,
since even when instructions are fetched out of order they
simply wait in a buffer for instructions before them to be
fetched before they can be executed. In the future, we plan
to relax this restriction as well by renaming instructions
out-of-order and issuing them to execution units without
requiring all prior instructions to be fetched.
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