
Journal of Machine Learning Research () Submitted –; Published –

SnFFT: A Julia Toolkit for Fourier Analysis of Functions
over Permutations

Gregory Plumb† gplumb@wisc.edu

Deepti Pachauri† pachauri@cs.wisc.edu

Risi Kondor∗∓ risi@cs.uchicago.edu

Vikas Singh‡† vsingh@biostat.wisc.edu

†Department of Computer Sciences ∗Department of Computer Sciences
‡Department of Biostatistics & Med. Info. ∓Department of Statistics

University of Wisconsin-Madison University of Chicago

Madison, WI 53706 USA Chicago, IL 60637 USA

Editor: - - -

Abstract

SnFFT is an easy to use software library written in the Julia language to facilitate Fourier
analysis on the symmetric group (set of permutations) of degree n, denoted Sn and make it
more easily deployable within statistical machine learning algorithms. Our implementation
internally creates the irreducible matrix representations of Sn, and efficiently computes fast
Fourier transforms (FFTs) and inverse fast Fourier transforms (iFFTs). Advanced users can
achieve scalability and promising practical performance by exploiting various other forms
of sparsity. Further, the library also supports the partial inverse Fourier transforms which
utilizes the smoothness properties of functions by maintaining only the first few Fourier
coefficients. Out of the box, SnFFT currently offers two non-trivial operations for functions
defined on Sn, namely convolution and correlation. While the potential applicability of
SnFFT is fairly broad, as an example, we show how it can be used for clustering ranked
data, where each ranking is modeled as a distribution on Sn.

Keywords: Permutations, Fourier analysis, fast Fourier transform, Julia

1. Introduction

Over the last few years, there has been a growing interest in the analysis of data given (or
expressed)as a probability distribution over permutations. The set of all possible permuta-
tions of n elements constitutes a group called the symmetric group, denoted Sn. Several
recent solutions to ranking problems, hard combinatorial problems, multi-target tracking
and feature point matching tasks (in computer vision) have used harmonic analysis on Sn to
derive more efficient algorithms (Huang et al., 2009; Kondor, 2010; Pachauri et al., 2012).
While the idea of generalizing the Fourier transform to non-commutative groups is well es-
tablished in the Mathematics literature, an easy to use and accessible software library will
facilitate the adoption of such concepts within machine learning. In this paper, we describe
a Julia based open source library which implements the Fourier transform (and associated
functionality) for harmonic analysis of functions defined on Sn. The implementation can

c© 2014 Gregory Plumb, Deepti Pachauri, Risi Kondor and Vikas Singh.

SnFFT

use a multi-core cluster (when available) without any need for low-level message passing
interface (MPI) programming.

Harmonic analysis on Sn is defined via the notion of representations. A matrix valued
function ρ : Sn → Cdρ×dρ is said to be a dρ dimensional representation of the symmetric
group if ρ(σ2)ρ(σ1) = ρ(σ2σ1) for any pair of permutations σ1, σ2 ∈ Sn. A representation
ρ is said to be reducible if there exists a unitary basis transformation which simultaneously
block diagonalizes each ρ(σ) matrix into a direct sum of lower dimensional representations.
If ρ is not reducible, then it is said to be irreducible. Irreducible representations or irreps are
the elementary building blocks of all of Sn’s representations. A complete set of inequivalent
irreducible representations are denoted by R. The Fourier transform of a function f : Sn →
C is then defined as the sequence of matrices

f̂(ρ) =
∑
σ∈Sn

f(σ)ρ(σ) ρ ∈ R. (1)

The inverse transform is

f(σ) =
1

n!

∑
ρ∈R

dρ tr
[
f̂(ρ)ρ(σ)−1

]
σ ∈ Sn. (2)

Much of the practical interest in Fourier transform can be attributed to various inter-
esting properties of irreps, such as conjugacy and unitarity.

1.1 The irreducible representation of Sn

There are several ways to construct irreducible representation of Sn (Sagan, 2001). One such
representation is called Young’s orthogonal representation (YOR). The YOR matrices are
real and unitary and therefore orthogonal. To benefit from the computational advantages of
orthogonal matrices, SnFFT uses YOR internally. In the online documentation, we provide
a short review of the background required for constructing YORs.

2. SnFFT Toolkit

SnFFT is implemented in a high-level programming language called Julia (provided un-
der a MIT license). The most important features of the toolkit are accessibility, exten-
sibility, and performance. The toolkit and the required documentation is available at:
https://github.com/GDPlumb/SnFFT.jl/.

Accessibility. We placed a great deal of emphasis on the ease of use of the toolkit. This
will allow a non-specialist (in harmonic analysis) to utilize the functionality of this library
within standard machine learning algorithms, when analyzing data on Sn. In particu-
lar, the fully functionality of SnFFT is available simply by loading the package “SnFFT”
through Julia’s built in package manager. The SnFFT user manual provides many examples
demonstrating the syntax for accessing the various features of SnFFT and gives a high level
overview of the key properties of YOR matrices and the Fourier transform. The minimalist
design and coding consistency makes SnFFT easy to use and modify.

2

Gregory Plumb, Deepti Pachauri, Risi Kondor and Vikas Singh

Extensibility. Interoperability is a key component of Julia — it allows easy access to
various pre-existing high quality and mature libraries written in many other languages with
minimal additional overhead. Therefore, various machine learning libraries can be easily
incorporated into SnFFT projects. For example, C and Fortran functions can be called
directly from SnFFt projects without any “glue” code. SnFFT allows access to external
libraries written in languages such as Python, Java, and R, by easily passing the data to
these libraries. Finally, Julia code can be called directly from C/C++. As a result, SnFFT
can be used seamlessly within existing machine learning tools as needed.

Parallelism. SnFFT inherits the parallelism offered by the Julia platform. It allows
a multi-processing environment to run a code on multiple processes in separate memory
domains concurrently. SnFFT uses empirically derived rules to determine the trade-off
between synchronization overhead for multithread computation and single thread sequential
computation and proceeds with the best option. In our implementation, SnFFT functions
are designed to use all worker processes that a user makes available to Julia. This setup
allows the user to analyze the data on a single process, on multiple processes on a local
machine, or via multiple processes spread across a cluster with essentially no change to the
user code beyond initially making the processes available.

Sparsity. For various practical applications, we encounter problems for n greater than
15. Even storing such data is problematic as n! is ∼ 1 trillion. Unless one exploits the
smoothness/sparsity properties of f , computation will be intractable. But notice that often,
problems exhibit interesting sparsity patterns (Kueh et al., 1999); for example, the Fourier
transform of functions on homogeneous spaces of Sn are usually band-limited in the sense
that their Fourier transform is identically zero except for a small set of Fourier matrices.
SnFFT is designed to utilize such patterns, making it very efficient. Specifically, the function
sn fft bl() is implemented to offer significant efficiency benefits when the user a priori
knows the band-limited form of f . For problems with unknown sparsity pattern, the special
function sn fft sp() first determines the sparsity structure of f and then proceeds to the
actual FFT calculation. Partial inverse Fourier transform is also supported in SnFFT which
is important to induce smoothness in f . In particular, function sn ifft p() can be used
to approximate f using just first few Fourier coefficients of the full Fourier transform.

2.1 Related Libraries

An existing library, Snob described by (Kondor, 2006), motivated the work presented here
and offers some of SnFFT’s functionality but support for the band-limited behavior is miss-
ing. Further, our Julia implementation gives seamless access to both single and multiple
processes and is arguably much easier to modify and extend. We believe that such par-
allelization features will be useful for scalability and integration within machine learning
applications.

3. Example: Fourier Domain Features for Clustering Ranks

Consider a ranking dataset composed of N examples where ith instance (i = 1, · · · , N),
is a permutation σi ∈ Sn of n items, listed in order of preference. Given such data, we
want to identify groups of examples with similar preferences, which may be helpful for

3

SnFFT

a downstream preference behavior study or rank prediction applications, e.g., (Crammer
et al., 2001). Various probabilistic models for ranking are popular in the research community
such as Mallows model (Murphy and Martin, 2003), which nicely capture the variability in
the observations when the observed rankings are noisy or incomplete (Busse et al., 2007).

Typically, the ith instance is represented as a function fi(σ) = e−γd(σi,σ)

Zγ
on Sn. Here,

γ is the spread parameter, d(., .) is a valid distance metric on permutations, and Zγ is
the normalization constant. The clustering problem seeks to partition the dataset into K
clusters to minimize the following objective:

arg min
C1,...,CK

K∑
k=1

∑
1≤i,j≤N :(i,j)∈Ck

‖fi − fj‖2 . (3)

A geometric view of functions defined on Sn as embedded in the space [0, 1]n! quickly
becomes intractable and hard to interpret. On the other hand, the seminal work of (Diaco-
nis, 1988) explains how the Fourier coefficients precisely encode the structural properties of
the distributions on Sn. Following ideas described in (Diaconis, 1988), recently, (Clémençon
et al., 2011) introduced a Fourier space formulation equivalent to (3)

=
1

n!

∑
ρ∈R

dρ

K∑
k=1

∑
1≤i,j≤N :(i,j)∈Ck

‖f̂i(ρ)− f̂j(ρ)‖2HS(dρ) . (4)

Further, they used a specialized feature selection procedure for clustering the induced
spectral features as in (Witten and Tibshirani, 2010) and showed that frequently one only
needs a few spectral features to explain the clustering choices. In SnFFT, only a few lines
of code are needed to compute the Fourier transforms, convert them into a data matrix,
and pass the data matrix to R’s sparcl library to perform this clustering. The details of
the process can be found in the code of example clustering().

The foregoing example shows that SnFFT is fairly flexible and can be used with advanced
machine learning libraries for data analysis on Sn. Some example applications which may
benefit directly in the short term relate to multi-object tracking (identity management
problem) (Kondor et al., 2007), event based modeling for longitudinal measurements (Huang
and Alexander, 2012) and deriving image associations for structure from motion (Pachauri
et al., 2014). Some of these applications are described in more detail in the documentation.

Acknowledgments

This work was supported in part by NSF CCF 1320344, NSF CCF 1320755, a REU sup-
plement to NSF RI 1116584 and the University of Wisconsin Graduate School.

References

L. M. Busse, P. Orbanz, and J. M. Buhmann. Cluster analysis of heterogeneous rank data. In ICML,
2007.

S. Clémençon, R. Gaudel, and J. Jakubowicz. Clustering rankings in the Fourier domain. In ECML,
2011.

4

Gregory Plumb, Deepti Pachauri, Risi Kondor and Vikas Singh

K. Crammer, Y. Singer, et al. Pranking with ranking. In NIPS, volume 14, 2001.

P. Diaconis. Group Representations in Probability and Statistics. Institute of Mathematical Statistics
Monograph Series, 1988.

J. Huang and D. Alexander. Probabilistic Event Cascades for Alzheimer’s Disease. In NIPS, 2012.

J. Huang, C. Guestrin, and L. Guibas. Fourier theoretic probabilistic inference over permutations.
JMLR, 10, 2009.

R. Kondor. Snob: A C++ library for fast Fourier transforms on the symmetric group. Downloadable
from http://people.cs.uchicago.edu/∼risi/SnOB/index.html, 2006.

R. Kondor. A Fourier space algorithm for solving quadratic assignment problems. In SODA, 2010.

R. Kondor, A. Howard, and T. Jebara. Multi-object Tracking with Representations of the Symmetric
Group. In AISTATS, 2007.

K.-L. Kueh, T. Olson, D. Rockmore, and K.-S. Tan. Nonlinear approximation theory on finite
groups. Department of Mathematics, Dartmouth College, Tech. Rep. PMA-TR99-191, 1999.

T. B. Murphy and D. Martin. Mixtures of distance-based models for ranking data. Computational
statistics & data analysis, 41, 2003.

D. Pachauri, M. Collins, V. Singh, and R. Kondor. Incorporating domain knowledge in matching
problems via harmonic analysis. In ICML, 2012.

D. Pachauri, R. Kondor, and V. Singh. Permutation Diffusion Maps (PDM) with Application to
the Image Association Problem in Computer Vision. In NIPS, 2014.

B. E. Sagan. The Symmetric Group. Graduate Texts in Mathematics. Springer, 2001.

D. M. Witten and R. Tibshirani. A framework for feature selection in clustering. Journal of the
American Statistical Association, 105, 2010.

5

	Introduction
	The irreducible representation of Sn

	 Sn FFT Toolkit
	Related Libraries

	Example: Fourier Domain Features for Clustering Ranks

