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1 Introduction

Harmonic analysis on Sn is defined via the notion of representations. A matrix valued function
ρ : Sn → Cdρ×dρ is said to be a dρ dimensional representation of the symmetric group if ρ(σ2)ρ(σ1) =
ρ(σ2σ1) for any pair of permutations σ1, σ2 ∈ Sn. A representation ρ is said to be reducible if there
exists a unitary basis transformation which simultaneously block diagonalizes each ρ(σ) matrix
into a direct sum of lower dimensional representations. If ρ is not reducible, then it is said to be
irreducible. Irreducible representations or irreps are the elementary building blocks of all of Sn’s
representations. A complete set of inequivalent irreducible representations we denote by R.

The Fourier transform of a function f : Sn → C is then defined as the sequence of matrices

f̂(ρ) =
∑
σ∈Sn

f(σ)ρ(σ) ρ ∈ R. (1)

The inverse transform is

f(σ) =
1

n!

∑
ρ∈R

dρ tr
[
f̂(ρ)ρ(σ)−1

]
σ ∈ Sn. (2)

Much of the practical interest in Fourier transform can be attributed to various interesting properties
of irreps, such as conjugacy and unitarity.

2 The irreducible representation of Sn
There are several ways to construct irreducible representation of Sn [1]. One such representation
is called Young’s orthogonal representation (YOR). The YOR matrices are real and unitary and
therefore orthogonal. To benefit from the computational advantages of orthogonal matrices, SnFFT
uses YOR in its implementation. We provide a short review of the important concepts that are
required for the construction of YOR.

Irreducible representation YOR of Sn is realized over conjugacy classes, namely partitions of n.
A partition λ of n (denoted λ`n) is a k-tuple λ = (λ1, ..., λk) of weakly decreasing positive integers

λ1 ≥ λ2 ≥ . . . ≥ λk such that
∑k

i=1 λi = n. A graphical sketch of a partition λ is a left-justified
arrangement of empty boxes with λi boxes in i-th row. This is called a Young diagram, denoted
F λ. For example, the Young diagram corresponding to λ = (3, 2) is

. (3)
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A Young diagram bijectively filled with the integers (1, 2, · · · , n) produces a combinatorial object
called a Young tableau. A tableau t is called standard if the assignment of numbers increases from
left to right in each row and top to bottom in each column. The following are all the standard
Young tableaux of shape λ = (3, 2):

1 3 5

2 4

1 2 5

3 4

1 3 4

2 5

1 2 4

3 5

1 2 3

4 5 (4)

Elements of Sn act on standard tableau in the obvious manner: permuting the numerals. In
YOR, the irreducible representation corresponding to shape λ is a matrix of size dρλ × dρλ . The
columns (and rows) of ρλ are labeled by the distinct standard Young tableau of shape λ. The actual
representation matrix corresponding to a given permutation σ ∈ Sn is constructed by first writing
σ as a product of adjacent transpositions τ1τ2 · · · τn−1, which are of the form τi = (i, i+1), meaning
that they interchange i with i+ 1 and leave everything else fixed. The matrix entries of Young’s
orthogonal representation corresponding to τi are calculated as follows:

ρλ(τi)t,t′ =


(dt(i, i+1))−1 if t = t′√

1− (dt(i, i+1))−2 if t′ = τi(t)
0 otherwise,

where dt is the number of steps it takes to move i to i + 11. Thus, ρλ(τi) is very sparse, which is
critical for the FFT. Since adjacent transpositions generate the whole Sn, the set of ρλ calculated
for adjacent transpositions are sufficient to fully define the representation.

3 The Fast Fourier Transform on Sn
SnFFT uses Clausen’s celebrated fast Fourier transform algorithm [2], which systematically factors
the elements of Sn into a product of contiguous cycles. A contiguous cycle Ji, jK ∈ Sn is a permutation
of the form

Ji, jK(k) =


k + 1 for k = i, i+ 1, .., j − 1,

i for k = j, 1 ≤ i ≤ j ≤ n.
k otherwise

(5)

Figure 1: Left coset tree for S3 showing all members of
S3 as leaves.

Two important properties of Ji, jK are: 1) each
Ji, jK factors into j − i − 1 adjacent transpo-
sitions; 2) there is a unique factorization of
any σ ∈ Sn into a product of contiguous cy-
cles that is adapted to the chain of subgroups
Sn ⊃ Sn−1 ⊃ · · · ⊃ S1 = id. Each sub-
group creates a coset partition of Sn, (Fig. 1).
Clausen’s FFT algorithm uses this nested chain
of subgroups and proceeds by recursively break-
ing down Fourier transformation into smaller in-
dependent transforms. In particular, for a func-

tion f : Sn → C, we define fi(σ
′) = f(Ji, nKσ′) for σ′ ∈ Sn−1 and i = 1, 2, · · · , n, and let

f̂i(ρµ) =
∑

σ′∈Sn−1

ρµ(σ′)fi(σ
′) µ ` n− 1, (6)

1North and east movements are taken positive, and south and west movements are taken negative.
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then, up to the reordering of rows and columns, the fast Fourier transform computes f̂ from
f̂1, f̂2, . . . , f̂n in the form

f̂(ρλ) =
n∑
i=1

ρλ(Ji, nK)
⊕

µ∈λ↓n−1

f̂i(ρµ) λ ` n. (7)

Here λ ↓n−1 denotes the set of irreps of Sn−1 featured in the restriction of ρλ to Sn−1. A more
detailed technical description is available in [3].
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