$$\mathbb{S}_n$$
FFT (supplement)

Gregory Plumb[†], Deepti Pachauri[†], Risi Kondor^{*}, Vikas Singh^{‡†}

1 Introduction

Harmonic analysis on \mathbb{S}_n is defined via the notion of **representations**. A matrix valued function $\rho \colon \mathbb{S}_n \to \mathbb{C}^{d_\rho \times d_\rho}$ is said to be a d_ρ dimensional representation of the symmetric group if $\rho(\sigma_2)\rho(\sigma_1) = \rho(\sigma_2\sigma_1)$ for any pair of permutations $\sigma_1, \sigma_2 \in \mathbb{S}_n$. A representation ρ is said to be reducible if there exists a unitary basis transformation which simultaneously block diagonalizes each $\rho(\sigma)$ matrix into a direct sum of lower dimensional representations. If ρ is not reducible, then it is said to be irreducible. Irreducible representations or irreps are the elementary building blocks of all of \mathbb{S}_n 's representations. A complete set of inequivalent irreducible representations we denote by \mathcal{R} .

The Fourier transform of a function $f: \mathbb{S}_n \to \mathbb{C}$ is then defined as the sequence of matrices

$$\hat{f}(\rho) = \sum_{\sigma \in \mathbb{S}_n} f(\sigma)\rho(\sigma) \qquad \rho \in \mathcal{R}.$$
 (1)

The inverse transform is

$$f(\sigma) = \frac{1}{n!} \sum_{\rho \in \mathcal{R}} d_{\rho} \operatorname{tr} \left[\hat{f}(\rho) \rho(\sigma)^{-1} \right] \qquad \sigma \in \mathbb{S}_{n}.$$
 (2)

Much of the practical interest in Fourier transform can be attributed to various interesting properties of irreps, such as conjugacy and unitarity.

2 The irreducible representation of \mathbb{S}_n

There are several ways to construct irreducible representation of \mathbb{S}_n [1]. One such representation is called Young's orthogonal representation (YOR). The YOR matrices are real and unitary and therefore orthogonal. To benefit from the computational advantages of orthogonal matrices, \mathbb{S}_n FFT uses YOR in its implementation. We provide a short review of the important concepts that are required for the construction of YOR.

Irreducible representation YOR of \mathbb{S}_n is realized over conjugacy classes, namely partitions of n. A partition λ of n (denoted $\lambda \vdash n$) is a k-tuple $\lambda = (\lambda_1, ..., \lambda_k)$ of weakly decreasing positive integers $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_k$ such that $\sum_{i=1}^k \lambda_i = n$. A graphical sketch of a partition λ is a left-justified arrangement of empty boxes with λ_i boxes in i-th row. This is called a Young diagram, denoted F^{λ} . For example, the Young diagram corresponding to $\lambda = (3, 2)$ is

^{*†}Department of Computer Sciences, University of Wisconsin-Madison. †Department of Biostatistics & Med. Info., University of Wisconsin-Madison. *Department of Computer Science, University of Chicago. $^{\mp}$ Department of Statistics, University of Chicago.

A Young diagram bijectively filled with the integers $(1, 2, \dots, n)$ produces a combinatorial object called a *Young tableau*. A tableau t is called *standard* if the assignment of numbers increases from left to right in each row and top to bottom in each column. The following are all the standard Young tableaux of shape $\lambda = (3, 2)$:

Elements of \mathbb{S}_n act on standard tableau in the obvious manner: permuting the numerals. In YOR, the irreducible representation corresponding to shape λ is a matrix of size $d_{\rho_{\lambda}} \times d_{\rho_{\lambda}}$. The columns (and rows) of ρ_{λ} are labeled by the distinct standard Young tableau of shape λ . The actual representation matrix corresponding to a given permutation $\sigma \in \mathbb{S}_n$ is constructed by first writing σ as a product of adjacent transpositions $\tau_1 \tau_2 \cdots \tau_{n-1}$, which are of the form $\tau_i = (i, i+1)$, meaning that they interchange i with i+1 and leave everything else fixed. The matrix entries of Young's orthogonal representation corresponding to τ_i are calculated as follows:

$$\rho_{\lambda}(\tau_{i})_{t,t'} = \begin{cases} (d_{t}(i, i+1))^{-1} & \text{if } t = t' \\ \sqrt{1 - (d_{t}(i, i+1))^{-2}} & \text{if } t' = \tau_{i}(t) \\ 0 & \text{otherwise,} \end{cases}$$

where d_t is the number of steps it takes to move i to $i+1^1$. Thus, $\rho_{\lambda}(\tau_i)$ is very sparse, which is critical for the FFT. Since adjacent transpositions generate the whole \mathbb{S}_n , the set of ρ_{λ} calculated for adjacent transpositions are sufficient to fully define the representation.

3 The Fast Fourier Transform on \mathbb{S}_n

 \mathbb{S}_n FFT uses Clausen's celebrated fast Fourier transform algorithm [2], which systematically factors the elements of \mathbb{S}_n into a product of *contiguous cycles*. A contiguous cycle $[i,j] \in \mathbb{S}_n$ is a permutation of the form

$$[[i,j]](k) = \begin{cases}
k+1 & \text{for } k = i, i+1, ..., j-1, \\
i & \text{for } k = j, \\
k & \text{otherwise}
\end{cases}$$

$$1 \le i \le j \le n.$$
(5)

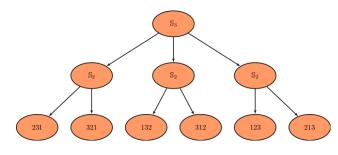


Figure 1: Left coset tree for \mathbb{S}_3 showing all members of \mathbb{S}_3 as leaves.

Two important properties of [i,j] are: 1) each [i,j] factors into j-i-1 adjacent transpositions; 2) there is a unique factorization of any $\sigma \in \mathbb{S}_n$ into a product of contiguous cycles that is adapted to the chain of subgroups $\mathbb{S}_n \supset \mathbb{S}_{n-1} \supset \cdots \supset \mathbb{S}_1 = \text{id}$. Each subgroup creates a coset partition of \mathbb{S}_n , (Fig. 1). Clausen's FFT algorithm uses this nested chain of subgroups and proceeds by recursively breaking down Fourier transformation into smaller independent transforms. In particular, for a func-

tion $f: \mathbb{S}_n \to \mathbb{C}$, we define $f_i(\sigma') = f(\llbracket i, n \rrbracket \sigma')$ for $\sigma' \in \mathbb{S}_{n-1}$ and $i = 1, 2, \dots, n$, and let

$$\hat{f}_i(\rho_\mu) = \sum_{\sigma' \in \mathbb{S}_{n-1}} \rho_\mu(\sigma') f_i(\sigma') \qquad \mu \vdash n - 1, \tag{6}$$

¹North and east movements are taken positive, and south and west movements are taken negative.

then, up to the reordering of rows and columns, the fast Fourier transform computes \hat{f} from $\hat{f}_1, \hat{f}_2, \dots, \hat{f}_n$ in the form

$$\hat{f}(\rho_{\lambda}) = \sum_{i=1}^{n} \rho_{\lambda}(\llbracket i, n \rrbracket) \bigoplus_{\mu \in \lambda \downarrow_{n-1}} \hat{f}_{i}(\rho_{\mu}) \qquad \lambda \vdash n.$$
 (7)

Here $\lambda \downarrow_{n-1}$ denotes the set of irreps of \mathbb{S}_{n-1} featured in the restriction of ρ_{λ} to \mathbb{S}_{n-1} . A more detailed technical description is available in [3].

References

- [1] B. E. Sagan. The Symmetric Group. Graduate Texts in Mathematics. Springer, 2001.
- [2] M. Clausen. Fast generalized Fourier transforms. Theoretical Computer Science, 67, 1989.
- [3] R. Kondor. Group Theoretical methods in Machine Learning. PhD thesis, Columbia University, 2008.