
Effective, Automatic Procedure Extraction

Raghavan Komondoor Susan Horwitz
University of Wisconsin-Madison

1210 W. Dayton St, Madison, WI 53706 USA.
{raghavan,horwitz}@cs.wisc.edu

Abstract

Legacy code can often be made more understandable
and maintainable by extracting out selected sets of state-
ments to form procedures and replacing the extracted code
with procedure calls. Sets of statements that are non-
contiguous and/or include non-local jumps (caused by go-
tos, breaks, continues, etc.) can be difficult to extract, and
usually cause previous automatic-extraction algorithms to
fail or to produce poor results.

The chief contributions of this paper are a semantics-
preserving algorithm for extracting “difficult” sets of state-
ments, and a study that compares the algorithm both to an
ideal extractor (a human) and to previously reported auto-
matic approaches. We found that “difficult” examples do
arise frequently in practice, and that our algorithm is a sig-
nificant improvement over previous work, achieving ideal
results over 70% of the time.

1 Introduction

The understandability and maintainability of legacy code
can often be improved by extracting out selected sets of
statements to form procedures (and replacing the extracted
code with procedure calls). This operation is useful in sev-
eral contexts:

• Duplicated code occurs frequently in real programs, as
indicated by the results of several studies [1, 12, 15].
Replacing each instance of copied code with a proce-
dure call makes the program easier to understand, as
only one copy has to be read and understood. Also,
maintenance becomes easier because updates and bug
fixes need only be applied on one copy.

• Legacy programs often have large procedures that con-
tain multiple strands of distinct computations; such
strands often occur one after the other within the pro-
cedure, but it is not uncommon for them to be inter-
leaved with each other [18, 21]. Extracting the indi-

vidual strands into separate procedures aids program
comprehension as each new procedure performs a sin-
gle cohesive computation [8]. This activity also eases
maintenance by localizing the effects of changes, and
facilitates future code reuse [22, 17].

• Extracting embedded sets of statements that form con-
ceptually independent operations can be an impor-
tant part of the process of converting poorly designed,
“monolithic” code to modular or object-oriented code.

Procedure extraction is a three-step process. First, the
statements to be extracted are identified (we refer to them
as the “marked” statements). Next, semantics-preserving
transformations are applied if necessary to make the marked
statements form a contiguous, well-structured block that is
suitable for extraction. Finally, the marked statements are
extracted into a new procedure, and replaced with a call.

The focus of this paper is the second step of procedure
extraction. The first step is context-dependent; it can be
performed either by the programmer, or by program anal-
ysis tools, such as [17, 4, 11]. The third step is essential,
but the main issue (determining what the parameters to the
new procedure should be and how they should be used), is
straightforward (e.g., discussed in [9, 16]). The chief con-
tributions of this paper are:

1. An algorithm for extracting “difficult” sets of marked
statements: marked statements that are not contiguous
and/or involve exiting jumps (jumps from within the
region that contains the marked statements to outside
that region). These features can increase the likelihood
of errors in manual extraction; therefore, tool support
is particularly important when extracting difficult sets
of statements.

2. A study that compares our algorithm both to an ideal
extractor (a human) and to previously reported auto-
matic approaches. We found that “difficult” exam-
ples do arise frequently in practice, and that our algo-
rithm is a significant improvement over previous work,
achieving ideal results on over 70% of the difficult
cases.

1

1.1 Motivating Example

The upper left column of Figure 1 contains a code frag-
ment that serves as a motivating example. It consists of a
loop that reads a sequence of arrays from a file. If the first
element of the current array is greater than 100, the ele-
ments of the array are all set to their absolute values, the
sum of the elements is computed, and variable numSums
is incremented. The inner loop that computes the sum in-
cludes an overflow check; in that case, an error message is
printed, and the processing is terminated via a return. If
there is no overflow, variable totalSum, the sum of the
values over all arrays, is updated.

The marked statements are indicated by the “++” signs.
These statements, together with “A[k] = abs(A[k])”,
are the ones that compute the sum of the elements in the
current array. Notice that the marked statements are inter-
leaved with other (unmarked) statements that are not part of
the sum computation.

The upper-right column of Figure 1 shows the output
of our algorithm; the region that originally contains the
marked statements (i.e., everything from the first marked
statement to the last) has been transformed to make the
marked code suitable for extraction. The techniques used
in the transformation are:

1. Statement reordering: As many unmarked state-
ments as possible are moved out of the way
to make the marked statements contiguous. In
this example, the two statements “read(fd, A,
sizeof(int)*N)” and “numSums++” are moved.

2. Predicate duplication: Moving the statement
“numSums++” requires creating a copy of the pred-
icate “if (A[0] > 100)”.

3. Promotion: The unmarked statement “A[k] =
abs(A[k])” cannot be moved out of the way with-
out affecting semantics. Therefore it is promoted (i.e.,
marked), so that, as illustrated in the upper-right and
lower-left columns, it will occur in the extracted pro-
cedure.

4. Handling exiting jumps: The marked return state-
ment, which is an exiting jump, cannot simply be in-
cluded in the extracted procedure with no other com-
pensatory changes. Rather, the procedure sets a flag
(the global variable exitKind) to indicate whether
the exiting jump must be executed after the procedure
returns.

In the code produced by the algorithm (shown in the
upper-right column of the figure) the appropriate as-
signments to exitKind are included in the set of
marked statements, the exiting jump is converted to

a goto to the end of the marked statements, and a
copy of the jump (in this case, a return), conditional
on exitKind is added immediately after the marked
statements. At the time of actual extraction the goto
in the extracted procedure is converted into a return,
as illustrated in the lower-left column.

Other exiting jumps (caused by breaks, contin-
ues and gotos) are handled similarly, with ex-
itKind set to a value that encodes the kind of jump.

1.2 Contributions over previous work

Previous work that is related to ours falls into two broad
categories: automatic procedure extraction, and eliminating
gotos in source code [19, 20]. Some of the techniques
in the first category focus on compressing assembly code
by detecting duplicated fragments and extracting them into
procedures [24, 6, 7], while others concern procedure ex-
traction in source code [9, 16, 10]. The problem solved in
the second category (eliminating gotos) is different from
ours; however, our technique of using the variable ex-
itKind to handle exiting jumps bears resemblance to their
techniques. The main contributions of our work over pre-
vious work on automatic procedure extraction are that our
algorithm handles exiting jumps, and uses a combination of
transformation techniques. These two features enable our
algorithm to succeed on many difficult inputs in practice.

The work of [9] is for Scheme programs, and thus does
not address programs that contain jumps, whether they are
exiting jumps or not. Other previous approaches to proce-
dure extraction do not handle exiting jumps. For the exam-
ple in Figure 1, the smallest exiting-jump-free region that
contains the marked code is the entire outer while loop
plus everything that follows this loop until the end of the
procedure. [24, 6, 7, 10] would be able to extract this entire
region, but not just the marked code shown in the figure.
The approach of [16], which is discussed in detail in Sec-
tion 4, would be able to extract the marked code, but would
include duplicate copies of all but one of the marked state-
ments after the call to the new procedure; this outcome is
clearly undesirable, as the purpose of the extraction is de-
feated.

No single transformation technique (moving code, pro-
motion, handling exiting jumps, duplicating predicates)
is sufficient to handle all difficult cases. Previous ap-
proaches to automatic extraction either employ only a nar-
row range of techniques, or employ restrictive versions of
these techniques. [24, 6, 9] do not handle extraction of
non-contiguous code at all (the last of these does provide
semantics-preserving primitives that the user can use to
move individual unmarked statements; however they pro-
vide no automatic assistance in determining which state-
ments need to be promoted, and in which direction the oth-

2

Original Fragment Algorithm Output

j = 0;
while(j < NumArrays) {

++ sum = 0;
read(fd, A, sizeof(int)*N);

++ if (A[0] > 100) {
numSums++;

++ k = 0;
++ while (k < N) {

A[k] = abs(A[k]);
++ if (MAXINT-A[k] < sum) {
++ print("overflow");
++ return;
++ }
++ sum += A[k];
++ k++;
++ }
++ }

totalSum += sum;
j++;

}

read(fd, A, sizeof(int)*N);
if (A[0] > 100)
numSums++;

++ exitKind = FALLTHRU;
++ sum = 0;
++ if (A[0] > 100) {
++ k = 0;
++ while (k < N) {
++ A[k] = abs(A[k]);
++ if (MAXINT-A[k] < sum) {
++ print("overflow");
++ exitKind = RETURN;
++ goto L;
++ }
++ sum += A[k];
++ k++;
++ }
++ }
L: if (exitKind==RETURN) return;

Extracted Procedure Final Fragment

void doSum(int N, int A[],
int *sumPtr) {

exitKind = FALLTHRU;
*sumPtr = 0;
if (A[0] > 100) {
int k = 0;
while (k < N) {

A[k] = abs(A[k]);
if (MAXINT-A[k] < (*sumPtr)){

print("overflow");
exitKind = RETURN;
return;

}
*sumPtr += A[k];
k++;

}
}

}

j = 0;
while(j < NumArrays) {

read(fd, A, sizeof(int)*N);
if (A[0] > 100)
numSums++;

doSum(N, A, &sum);
if (exitKind==RETURN) return;
totalSum += sum;
j++;

}

Figure 1. Example illustrating extraction of a “difficult” set of marked statements

3

ers can be moved – before or after the marked code). [7]
handles extraction of non-contiguous fragments, but simply
promotes all intervening unmarked code. [10] uses code re-
ordering, but no promotion or duplication (and thus fails
on cases where those techniques are required for extrac-
tion). [16] does employ several transformations (promo-
tion, moving code, and duplication); however, our approach
uses these transformations more effectively than theirs in
most cases (see Section 4). Our work is an advance over
all these previous approaches in that we not only employ a
wide range of transformations, but also identify appropriate
conditions under which to apply each transformation so that
results are usually close to ideal.

The rest of this paper is organized as follows. Sec-
tion 2 presents basic assumptions and terminology. Sec-
tion 3 describes our procedure-extraction algorithm. Sec-
tion 4 presents the results of a study that provides some
quantitative data on how well the algorithm works in prac-
tice compared to “ideal” extraction and to previous tech-
niques. Section 5 concludes the paper.

2 Assumptions and Terminology

We assume that the reader is familiar with the standard
definitions of control and data dependence. We assume
that programs are represented using a set of control-flow
graphs (CFGs), one for each procedure. A CFG’s exit node
has no outgoing edge; predicate nodes have two outgo-
ing edges; and all other nodes (assignments and procedure
calls) have a single outgoing edge. Jumps (gotos, re-
turns, continues, and breaks) are considered to be
pseudo-predicates (i.e., predicates that always evaluate to
true) as in [2, 5]. Therefore, each jump is represented by a
node with two outgoing edges: the edge labeled true goes
to the target of the jump, and the (non-executable) edge la-
beled false goes to the node that would follow the jump if
it were replaced by a no-op. Jump statements are treated
as pseudo-predicates so that the statements that are seman-
tically dependent on a jump—as defined in [14]—are also
control dependent on it.

Our algorithm makes use of the following definitions:

Definition 1 A hammock is a subgraph of a CFG that has
a single entry node, and from which control flows to a single
outside-exit node. More formally: A hammock in CFG G is
the subgraph of G induced by a set of nodes H ⊆ N (G)
such that:

1. There is a unique entry node e in H such that:
(m ∈ N (G) − H) ∧ (n ∈ H) ∧ ((m, n) ∈ E(G)) ⇒
(n = e).

2. There is a unique outside-exit node t in N (G) − H

such that:

(m ∈ H) ∧ (n ∈ N (G) − H) ∧ ((m, n) ∈ E(G)) ⇒
(n = t).

Definition 2 An e-hammock (a hammock with exiting
jumps) is a subgraph of a CFG that has a single entry node,
and, if all jumps are replaced by no-ops, a single outside-
exit node; i.e., an e-hammock is a hammock that is allowed
to include one or more exiting jumps (jumps whose tar-
gets are not inside the hammock and are not the hammock’s
outside-exit node).

3 Automatic Procedure-Extraction Algo-
rithm

The inputs to the algorithm are the control-flow graph of
a procedure, and the set of nodes in that CFG that have been
chosen for extraction (the marked nodes). When the algo-
rithm finishes, the marked nodes will form a hammock, and
thus extracting them into a separate procedure and replac-
ing them with a procedure call will be straightforward. The
algorithm runs in polynomial time (in the size of the code
region that contains the marked code), and always succeeds
(which is not the case for some previous approaches). It
performs the following steps:

Step 1: Identify the code region to be transformed. (The
region will be an e-hammock that contains the marked
nodes, as explained below in Section 3.1.)

Step 2: Determine a set of ordering constraints among the
nodes in the region based on flow and control depen-
dences, and loop structure.

Step 3: Promote any unmarked nodes that cannot be
moved out of the way of the marked nodes due to or-
dering constraints. From this point on, the promoted
nodes are regarded as marked.

Step 4: Partition the nodes in the region into three “buck-
ets”: before, marked, and after. The marked bucket
includes all the marked nodes; the before bucket in-
cludes all nodes that are forced by some constraint to
precede some node in the marked bucket, while the
after bucket includes nodes that are forced to follow
some node in the marked bucket. During the partition-
ing process, the algorithm may also create copies of
some if -statement predicates and some jumps if those
copies are needed to preserve control dependences.
(Assignment statements and loop predicates are not
duplicated; the reason for this is discussed later.)

Step 5: Do final processing of gotos, returns and exiting
jumps if necessary (this includes adding code to set and
make use of exitKind, as illustrated in Figure 1).

4

Step 6: Create three sequences of code using the nodes in
the three buckets, and letting the relative ordering of
nodes within each sequence be the same as in the orig-
inal code. The code for the marked bucket will form
a “normal” hammock, while the code for the other
two buckets will form either normal hammocks or e-
hammocks. Create the output by “stringing together”
the three hammocks (i.e., using the entry node of the
marked hammock as the outside-exit node of the be-
fore hammock, and using the entry node of the after
hammock as the outside-exit node of the marked ham-
mock). Finally, replace the original region identified in
Step 1 with the output created here to obtain a resultant
program that is semantically equivalent to the original.

The following sections provide more detail about each
step of the algorithm, using the example in Figure 1 to il-
lustrate each step. The CFG for the example is shown in
Figure 2; the marked nodes are shaded, the non-executable
edge out of the return is shown using a dashed edge, and
the e-hammock H, identified in Step 1 of the algorithm, is
circled.

3.1 Step 1

This step identifies the code region to be transformed:
the smallest e-hammock H that includes all of the marked
nodes, and that includes no backward exiting jumps. (An e-
hammock H includes a backward exiting jump if for some
exiting jump node j in H , H’s entry node postdominates
j’s target.)

Example: In the example of Figure 2, the return is an
exiting jump; if it were replaced by a no-op, the circled por-
tion of the CFG would be a hammock (with “sum=0” as its
entry node, and “totalSum += sum” as its outside-exit
node). The circled portion includes no backward exiting
jumps, and no smaller hammock includes all of the marked
nodes, and therefore it is H. 2

3.2 Step 2

This step is the heart of the extraction algorithm; it de-
termines constraints based on data dependences, control de-
pendences and loop structure among the nodes in H. The
constraints generated are of three forms: “≤” constraints,
“=” constraints, and “⇒” constraints. The constraints are
used in Step 3 to determine which unmarked nodes must be
promoted; they are also used in Step 4 to determine how to
partition the remaining unmarked nodes between the before
and after buckets, while preserving data and control depen-
dences, and therefore the original semantics.
Data-dependence constraints: A data-dependence con-
straint m ≤ n is generated for each pair of nodes m, n such

while (k<N)

return

sum += A[k]

k++

TF

sum = 0

FT

numSums++

k = 0

j = 0

(j < NumArrays)
while

read(fd,A,
sizeof(int)*N)

if(A[0]>100)

A[k] = abs(A[k])

if(MAXINT−A[k]
< sum)

print("overflow")

T

F

FT

F

totalSum += sum

j++

T

H

Figure 2. CFG for original fragment in Fig-
ure 1; H is the circled region.

that there is a flow, def-order [3], anti [13], or output de-
pendence [13] from m to n. Only dependences induced by
paths in H are considered. The constraint m ≤ n means
that node m must either go into a bucket that precedes n’s
bucket, or must go into n’s bucket (where the ordering of
the buckets is before < marked < after).

Example: One of the data-dependence constraints gen-
erated for the running example is: “read(fd, A,
sizeof(int)*N)” ≤ “if (A[0]>100)” (due to a
flow dependence). This constraint forces the read state-
ment to be placed in the before bucket in Step 4, since the
read is an unmarked node and the if is marked. 2

5

Loop-structure constraints: Assignment statements in H
are never duplicated across multiple buckets. This is be-
cause duplicating assignments, in general, requires transfor-
mations such as renaming variables or copying and restor-
ing entire data structures. Such transformations can reduce
code quality and adversely affect the program’s efficiency.
Consequently, loops belonging to H are not split across
multiple buckets (doing so would require duplicating the
assignments in the loop body that update variables used in
the loop predicate). Therefore, for each pair of nodes n, m

such that both are part of a strongly-connected component
(a loop) in H, a constraint m = n is generated, which means
that m and n must be placed in the same bucket.

Example: For the running example, an “=” constraint
is generated between “A[k] = abs(A[k])” and every
other statement in the inner loop. Since these other state-
ments are marked, the only way to satisfy the “=” con-
straints is to promote “A[k] = abs(A[k])” (so that it
will be placed in the marked bucket). The promotion is done
in Step 3. 2

Control-dependence constraints: For each node n in H
and for each control ancestor p of n in H, the constraint
n ⇒ p is generated, meaning: a copy of node p must be
included in the same bucket as node n. This constraint, to-
gether with the actions in Step 5 (Section 3.5), ensure that
control dependences in the original code are preserved. No-
tice that n ⇒ p does not imply n = p, as copies of p can be
present in other buckets besides n’s bucket.

Two additional sets of constraints are generated to ensure
that control dependences due to exiting jumps are preserved
in the code output by the algorithm. We define a predeces-
sor of an exiting jump j to be any node n such that n is not
a “normal” predicate (i.e., n could be a jump), there is a j-
free path in H from H’s entry node to n, and there is a path
in H from n to j (i.e., n could execute before the exiting
jump executes). For each such n and j, we generate two
constraints: (i) if n is placed in the after bucket then a copy
of j must be included in the same bucket, and (ii) if n but
not j is placed in the marked bucket then a copy of j must be
included in the after bucket.

Example: In the running example, the control-
dependence constraint “numSums++” ⇒ “if (A[0] >
100)” is generated, which says that a copy of the if pred-
icate must be placed in the same bucket as the increment of
numSums. Since the if predicate is also a control parent
of several marked nodes, a copy will also be placed in the
marked bucket. This is the reason for the duplication of the
if predicate in the algorithm output shown in Figure 1.

In this example, constraints of the second kind (i.e., in-
volving exiting-jump predecessors) are generated, but they
are never used; no node is placed in the after bucket, and
the only exiting jump (the return) is placed in the marked
bucket. 2

Extended constraints: The data-dependence, loop-
structure, and control-dependence constraints generated in
the previous steps are used to generate extended constraints.
The extended constraints are implied by the base con-
straints, but must be made explicit in order for Step 3 (pro-
motion) and Step 4 (partitioning of unmarked nodes) to
work correctly.

The first rule for generating extended constraints is to
use standard rules of relational operations; e.g., p ≤ q and
q = n produces a new constraint p ≤ n. In a similar vein,
in the presence of a constraint n ⇒ p, the constraints a ≤ p,
b = p, and p ≤ c give rise to new constraints a ≤ n, b = n

and n ≤ c respectively.
The following example illustrates the need for these kind

of constraints.

2: ...

3: x++

1: if (x > 0)
T F

There is an anti dependence from node 1 to node 3 (because
node 1 uses x and node 3 defines it). This induces the data-
dependence constraint 1 ≤ 3. Because node 2 is a control
child of node 1, there is a control-dependence constraint
2 ⇒ 1; therefore the extended constraint 2 ≤ 3 is gener-
ated. To see the need for this extended constraint, assume
it was not generated. Also, assume that node 3 is assigned
to the before bucket. The constraint 1 ≤ 3 then forces a
copy of node 1 into before as well. Without the extended
constraint 2 ≤ 3, node 2 is unconstrained, and can be as-
signed to the after bucket; now, the constraint 2 ⇒ 1 forces
a copy of node 1 into after. However, this copy of node 1
violates the constraint 1 ≤ 3 (note that semantics is not pre-
served – this copy would use the wrong value of x). The
algorithm would then have to backtrack, and reassign node
2 to the before bucket. The extended constraints allow the
algorithm to avoid backtracking by ensuring that unmarked
nodes that are not forced by any constraint can safely be
placed in either the before or the after bucket. Note that in
the example, after node 3 is placed in before, the extended
constraint 2 ≤ 3 forces node 2 into before, which prevents
the problem just discussed.

The second rule for generating extended constraints is:
if j is an exiting jump and n is a predecessor of j, then for
each constraint j ≤ m or j = m generate a new constraint
n ≤ m.

Example: In the running example, extended constraints
are generated using the first rule, but none of them are in-
teresting. However, the second rule does generate some
interesting extended constraints: The return is part of
the inner loop, and so there are “=” constraints between

6

the return and every other node in that loop (e.g.,
“return” = “k++”). Because numSums++ is a prede-
cessor of the return, the second rule for generating ex-
tended constraints causes a “≤” constraint to be generated
between numSums++ and every node in the inner loop
(e.g., “numSums++” ≤ “k++”). Since the nodes in the
inner loop are all marked, these constraints force num-
Sums++ to be placed in the before bucket. 2

3.3 Step 3

This step promotes all unmarked nodes n for which one
of the following holds:

1. There is a constraint n = m for some marked node m,
or

2. There are constraints m1 ≤ n and n ≤ m2 for some
marked nodes m1 and m2.

From this point on, the promoted nodes are regarded as
marked.

Example: In the running example, the node “A[k] =
abs(A[k])” is promoted because of the “=” constraints,
as discussed earlier. However, even if there were no loop,
this node would have been promoted because of two flow
constraints: “k = 0” ≤ “A[k] = abs(A[k])” and
“A[k] = abs(A[k])” ≤ “sum += A[k]”. 2

3.4 Step 4

This step starts by placing all marked nodes, as well as
copies of all of their control ancestors, in the marked bucket.
Next, the unmarked nodes are assigned to the before and af-
ter buckets. Any unmarked node n that is forced into a par-
ticular bucket (before or after) by the constraints is placed in
that bucket along with copies of all its control ancestors (no
node can be forced into both buckets, because such a node
would have been promoted in Step 3). If at any point there
is no forced unmarked node, then an as-yet-unassigned, un-
marked node that is not a “normal” predicate is chosen at
random, and is randomly placed in either the before or the
after bucket, along with copies of all its control ancestors.

Note that, as mentioned earlier, nodes that are not forced
by constraints can be placed in either bucket safely. In other
words, there may be more than one partitioning that satis-
fies all constraints, and the algorithm constructs one such
partitioning (any partitioning that satisfies all constraints is
semantics-preserving).

Example: As discussed above, the two unmarked nodes
in the running example are both forced into the before
bucket. A copy of “if (A[0] > 100)” is also placed
in the before bucket because it is a control parent of
numSums++. 2

3.5 Step 5

This step does some final processing of non-exiting gotos
and returns, as well as exiting jumps.

Non-Exiting Gotos: A non-exiting goto is one whose tar-
get is either inside H or is its outside-exit node. Note that
labels are not included in the CFG; they are implicitly rep-
resented by the (executable) edge from a goto node to its
target. If a goto and its target are present in a bucket, such
a goto requires no special processing in this step.

However, it is also possible to have a goto node n in a
bucket that does not contain its target t. In that case, this
step determines what the target should be, and adds the ap-
propriate edge. There are two cases: The first case applies
when there are executable paths in H from node t to some
set S of nodes that are in the same bucket as node n (the
goto). In this case, it can be shown that there is a unique
node s in S that is reached first from t; that node is the
appropriate target for the goto.

The second case applies whenever the first does not; in
this case (no node in n’s bucket is reachable from t via an
executable path in H), the appropriate target of the goto is
the outside-exit node of the hammock (or e-hammock) that
is generated from the bucket that contains the goto.

Note that it is possible for copies of a goto node to be
placed in multiple buckets (jumps are pseudo predicates and
thus can be duplicated). If that is the case then, during con-
version of the result CFG back to actual source code, unique
labels will need to be supplied for each goto, but that is
straightforward.

Non-Exiting Returns: A return in H is non-exiting
when the outside-exit node of H is also the end of the con-
taining procedure. Any copy of a non-exiting return in
the before or marked bucket needs to be converted into a
gotowhose target is the outside-exit node of the hammock
generated from that bucket.

Exiting Jumps: Copies of an exiting jump can exist in
multiple buckets, just as copies of non-exiting gotos can.
In this case, all but the last copy need to be converted to
jumps to the start of the next bucket (i.e., converted to go-
tos whose targets are the outside-exit nodes of their own
buckets). This is because subsequent buckets may contain
some nodes that, in the original code, executed before the
exiting jump (are predecessors of the jump); thus, seman-
tics would not be preserved if in the transformed code, ex-
ecution of the exiting jump could cause those nodes to be
skipped.

Additionally, if the marked bucket contains the last copy
of an exiting jump, then the following must be done:

1. Add the assignment “exitKind = FALLTHRU” at
the beginning of the marked bucket.

2. Replace the exiting jump with an assignment

7

“exitKind = enc”, where enc is a value (such as
BREAK, RETURN) that encodes the kind of jump,
followed by a goto to the outside-exit node of the
marked hammock (which will be the entry of the af-
ter hammock).

3. Add new compensatory code at the beginning of the
after bucket: an if statement of the form “if (ex-
itKind == enc) jump”, where jump is a copy of the
exiting jump.

Recall that the algorithm makes the marked nodes form
a hammock, but does not perform actual extraction. At the
time of extraction, all gotos introduced in this step whose
targets are the outside-exit node of the marked hammock
are simply converted into returns.

Example: In the running example, there are no non-
exiting gotos or returns, and there is only one copy of the
exiting return. That return is in the marked bucket, so
the three steps listed above are carried out. 2

3.6 Step 6

In this final step, the three buckets are converted to ham-
mocks (a“normal” hammock for the marked bucket, and an
e-hammock for the before and after buckets). A bucket
is converted into the corresponding hammock by making
a copy of H and removing from that copy the nodes that
are not in the bucket. (Those nodes are guaranteed to
form sub-hammocks within H, so removing them simply
involves redirecting all edges that enter a sub-hammock to
its outside-exit node.) This preserves the original node or-
der, and, together with the constraints used to assign nodes
to buckets, guarantees semantics preservation.

Example: The final hammocks for the running example
are shown, in source-code form, in the upper-right column
of Figure 1. The code marked “++” is the marked ham-
mock, the code preceding that is the before hammock while
the code following it is the after e-hammock. Note that
none of the unmarked nodes were placed in the after bucket
during partitioning; therefore only the compensatory code
added in Step 5 to handle the exiting jump is present in the
after e-hammock. 2

It can be shown that the partitioning created by the al-
gorithm satisfies all constraints, and that therefore the final
output is semantically equivalent to the original code.

4 Experimental Results

We performed some studies to evaluate the performance
of our algorithm, both in comparison to an “ideal” extrac-
tor (a human), and to previously reported automatic ap-
proaches. Our dataset consisted of 157 computations to ex-
tract; the maximum size (number of simple statements and

predicates) of a computation was 57, and the median was
7. The dataset was drawn from three programs: the Unix
utilities bison and make, and NARC1 [23], a graph-drawing
engine developed by IBM. These programs range in size
from 11 to 30 thousand lines of code.

To expedite the process of finding computations to ex-
tract, we used the tool reported in [11] that finds duplicated
code (including “near” duplicates that are not trivial to ex-
tract). We call the duplicate copies identified by the tool
clones.

Before adding a clone to the dataset, we manually ex-
amined it and marked (for extraction) all intervening non-
cloned statements that were logically part of the rest of the
computation. For example, given the code in Figure 1, we
would add the statement “A[k] = abs(A[k])” to the
set of marked statements because it is an integral part of the
“sum” computation. We did this because, although our al-
gorithm can handle inputs that are not logically complete
computations (as illustrated in Figure 1), previously defined
approaches are generally meant to handle logically com-
plete computations only. Therefore, using “incomplete”
computations would have given our algorithm an unfair ad-
vantage over previous approaches.

4.1 Comparison to ideal extraction

As the first step in the comparison, we extracted each
clone in an “ideal” manner. Some of the techniques used
during this process (reordering statements, handling exiting
jumps, duplicating predicates) are also used by the algo-
rithm; other techniques not incorporated in the algorithm
were also used as necessary (this is described later). The
second step in the comparison was to (manually) apply the
algorithm to each clone. Figure 3 presents the results of the
comparison.

Figure 3(a) summarizes the performance of the algo-
rithm compared to the ideal extraction. The set of all clones
is divided into three disjoint categories, one per row. The
first row shows that 93 (of the 157) clones are “not diffi-
cult”; i.e., they are contiguous and they do not involve ex-
iting jumps. Such clones are extractable to begin with, and
therefore our algorithm has nothing to do. Going on to the
second row, there are 46 difficult clones on which our al-
gorithm produces exactly the ideal output. Of these 46, 22
are non-contiguous and 27 involve exiting jumps (i.e., 3 of
the 46 clones exhibit both difficult characteristics). On 18
other difficult clones, our algorithm succeeds but produces
non-ideal output (more discussion on this later).

Figure 3(b) enumerates, for each transformation tech-
nique incorporated in the algorithm, the number of difficult
clones on which the technique was used in both the ideal
extraction and the extraction performed by the algorithm.

1NARC is a registered trademark of IBM.

8

Category
total #
clones

non
contig.

exiting
jumps

Not difficult 93 - -
Difficult, ideal
output

46 22 27

Difficult, non
ideal output

18 18 6

157

(a) Characterization of algorithm output.

Technique
Ideal

output
non-ideal

output
human algo.

Moving with
duplication

18 15 5

Moving without
duplication

4 3 -

Exiting jumps 27 6 6
Promotion - - 17

(b) Techniques used on difficult
clones, with number of clones

Figure 3. Comparison of algorithm and ideal
extraction.

Each technique appears in its own row. The second col-
umn (labeled “Ideal output”) pertains only to the difficult
clones on which the algorithm performed ideally; therefore
the numbers in this column pertain both to the ideal extrac-
tion and the extraction performed by the algorithm. The
third and fourth columns pertain to the clones on which the
algorithm performed non-ideally; two separate sets of num-
bers are required here because the algorithm and the ideal
extraction do not involve the exact same techniques on these
clones.

Regarding the techniques, “moving with duplication” is
actually a combination of two techniques, statement re-
ordering and predicate duplication, while “moving without
duplication” is simply statement reordering. Both of these
are used to move intervening unmarked code out of the
way (as illustrated in Figure 1, by the unmarked statements
“numSums++” and “read(fd,A,sizeof(int)*N)”,
respectively). The technique of handling exiting jumps is
applicable on each clone that involves exiting jumps, and
therefore the numbers in that row are the numbers in the
last column of Figure 3(a).

From Figure 3(a) it is clear that many of the clones in
the data set (41% – 64 out of 157) are “difficult” to extract
(i.e., they need to be transformed to be made extractable).
Specifically, 25% of the clones are non-contiguous and 21%

involve exiting jumps (5% involve both difficult aspects).
From Figure 3(a), it is also clear that the algorithm per-
forms ideally on most (46 out of 64) of the difficult clones.
However, the algorithm performs non-ideally on 18 difficult
clones. On 17 of these 18 the algorithm promoted certain in-
tervening unmarked nodes that the ideal extraction managed
to move out of the way. In all but two of these 17 clones,
the ideal extraction used a single technique that is not in-
corporated in the algorithm: saving values of variables or
expressions into temporaries, and using these temporaries
later.

The deviation of the algorithm’s performance from ideal
is noticeable, but perhaps not unacceptable, considering that
no automatic algorithm is likely to be able to employ the
full range of transformation techniques used by a human.
In fact, on 16 of the 18 clones on which our algorithm pro-
duced non-ideal output (but succeeded), the automatic ap-
proach proposed by Lakhotia et al [16], which is the one
that is most closely related to ours, fails completely, as dis-
cussed below.

4.2 Comparison to previous work

The second goal of our study was to compare our al-
gorithm with two previously defined automatic approaches,
those of [16] and [10]. [10] uses a general notion of code
movement (which our approach shares), but does not handle
exiting jumps. More significantly, they do no duplication of
predicates. As a result, their performance on the dataset was
poor: they performed ideally on 4 of the 64 difficult clones
(none of which involved exiting jumps), and failed on all
others. This is evidence that a general notion of code move-
ment alone is not enough, and that a combination of several
other techniques (handling exiting jumps, promotion, pred-
icate duplication) is necessary for successful extraction of a
wide class of difficult clones.

The approach of Lakhotia [16], briefly, is as follows.
They first find the tightest hammock containing the marked
nodes, and promote all unmarked nodes in this hammock
that are in the backward slice from the marked nodes. They
then create an after bucket to hold the remaining unmarked
nodes, and also place in this bucket everything in the ham-
mock that is in the backward slice from the unmarked
nodes. If any variable has a downwards-exposed definition
in both buckets, they declare a “conflict” and fail; otherwise
they generate the result program. The key differences be-
tween our approach and theirs are:

• They promote all code in the backward slice from the
marked nodes. We do not do this, because we can
move such code to the before bucket (which they do
not use).

• We always succeed in transforming the marked code

9

Category
total #
clones

non
contig.

exiting
jumps

Both outputs ideal 3 3 -
Both outputs non-ideal 2 2 2
Their output non-ideal

(ours ideal) 19 6 16
They fail (we succeed) 40 29 15

64

Figure 4. Comparison of our algorithm and
Lakhotia’s algorithm

to make it extractable, while they may fail. This is be-
cause of our better approaches to promotion and code
movement.

• Their step of taking the backward slice from the un-
marked nodes means that parts of the marked code
could be duplicated in the after bucket, which can de-
feat the purpose of extraction. (It is due to this rea-
son that, as described in Section 1.2, their approach
duplicates nearly all the marked nodes in the example
of Figure 1). We minimize this problem by allowing
dataflow from the marked bucket to the after bucket,
and by duplicating only predicates.

• They do not handle exiting jumps, and therefore have
to start from the tightest hammock containing the
marked code. The tightest hammock is usually larger
(and never smaller) than the tightest e-hammock,
which means they have more unmarked nodes to deal
with, which exacerbates all the problems mentioned
earlier.

• They do allow duplication of assignments, and saving
and restoring variable values (although they do not ad-
dress the difficult issues that come up in this context
when arrays and pointers are present). Although this is
potentially beneficial in some cases, their other draw-
backs outweighed this feature, thereby preventing their
approach from performing better than ours on even a
single clone in the dataset.

Figure 4 provides data comparing the performance of our
algorithm and Lakhotia’s on the dataset. In the figure and in
the following discussion we talk about difficult clones only,
because no transformation is required by either algorithm to
make the non-difficult clones extractable. The 64 difficult
clones are divided into four disjoint categories (based on
the performance of the two algorithms on the clones), with
one category per row. The first row is for clones on which
both algorithms succeeded and produced the ideal output;
the second row is for clones on which both produced non-

ideal output; the third row is for clones on which our algo-
rithm produced ideal output whereas theirs produced non-
ideal output, and the fourth row is for clones on which they
failed while we succeeded. Their algorithm did not produce
ideal output on any clone on which ours produced non-ideal
output.

Notice that on all but 5 clones (those in the first two
rows) their algorithm performed worse than ours. An im-
portant reason for this is that they do not handle exiting
jumps: They failed on 15 clones (on which our algorithm
succeeded) and performed non-ideally on 13 clones (on
which our algorithm performed ideally) solely because of
exiting jumps; i.e., if the exiting jumps were removed they
would succeed on the 15 clones, and perform ideally on the
13.

However, handling exiting jumps is not the only advan-
tage of our algorithm over theirs; our notion of when un-
marked nodes can be moved away is less restrictive than
theirs, and our rules for promotion are better. There are
31 clones (in addition to the 28 discussed in the previous
paragraph) on which their algorithm would fail or perform
non-ideally even if all exiting jumps were removed. Our al-
gorithm (in the presence of the exiting jumps) succeeded on
all 31, and produced ideal output in most cases.

5 Conclusions

Extracting selected sets of statements into separate pro-
cedures can often improve the understandability and main-
tainability of legacy programs. We have described an algo-
rithm for extracting “difficult” sets of statements that makes
three key contributions over previous work. The first con-
tribution is that our algorithm handles exiting jumps. The
second contribution is our use of a range of transforma-
tions, and our identification of conditions under which each
transformation can be used to make code extractable in a
manner that is close to ideal. The final contribution is a
study that we performed using three real programs. The
study revealed that “difficult” sets of statements do occur
often – 25% of the sets of statements encountered were
non-contiguous, while 21% involved exiting jumps. Our
algorithm performed well, achieving ideal results on over
70% of the difficult cases, and outperforming previous ap-
proaches in all but a few cases.

Acknowledgements

This work was supported in part by the National Science Foun-
dation under grants CCR-9970707 and CCR-9987435, and by
IBM.

10

References

[1] B. Baker. On finding duplication and near-duplication
in large software systems. In Proc. IEEE Work-
ing Conf. on Reverse Engineering, pages 86–95, July
1995.

[2] T. Ball and S. Horwitz. Slicing programs with ar-
bitrary control flow. In Lecture Notes in Computer
Science, volume 749, New York, NY, Nov. 1993.
Springer-Verlag.

[3] S. Bates and S. Horwitz. Incremental program test-
ing using program dependence graphs. In Proc.
ACM Symp. on Principles of Programming Languages
(POPL), pages 384–396, Jan. 1993.

[4] R. Bowdidge and W. Griswold. Supporting the re-
structuring of data abstractions through manipulation
of a program visualization. ACM Trans. on Software
Engineering and Methodology, 7(2):109–157, Apr.
1998.

[5] J. Choi and J. Ferrante. Static slicing in the presence
of goto statements. ACM Trans. on Programming Lan-
guages and Systems, 16(4):1097–1113, July 1994.

[6] K. Cooper and N. McIntosh. Enhanced code compres-
sion for embedded RISC processors. In Proc. ACM
Conf. on Programming Language Design and Imple-
mentation (PLDI), pages 139–149, May 1999.

[7] S. Debray, W. Evans, R. Muth, and B. D. Sutter. Com-
piler techniques for code compaction. ACM Trans.
on Programming Languages and Systems, 22(2):378–
415, Mar. 2000.

[8] M. Fowler. Refactoring – Improving the design of
existing code. Addison Wesley Longman, Reading,
Mass., 1999.

[9] W. Griswold and D. Notkin. Automated assistance for
program restructuring. ACM Trans. on Software Engi-
neering and Methodology, 2(3):228–269, July 1993.

[10] R. Komondoor and S. Horwitz. Semantics-preserving
procedure extraction. In Proc. ACM Symp. on Princi-
ples of Programming Languages (POPL), pages 155–
169, Jan. 2000.

[11] R. Komondoor and S. Horwitz. Using slicing to iden-
tify duplication in source code. In Proc. Int. Sym-
posium on Static Analysis (SAS), pages 40–56, July
2001.

[12] K. Kontogiannis, R. Demori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and con-
cept detection. Automated Software Engineering, 3(1–
2):77–108, 1996.

[13] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and
M. Wolfe. Dependence graphs and compiler optimiza-
tions. In Proc. ACM Symp. on Principles of Program-
ming Languages (POPL), pages 207–218, Jan. 1981.

[14] S. Kumar and S. Horwitz. Better slicing of programs
with jumps and switches. In Proc. Fundamental Ap-
proaches to Software Engineering (FASE), Apr. 2002.

[15] B. Lague, D. Proulx, J. Mayrand, E. Merlo, and
J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
Int. Conf. on Software Maintenance, pages 314–321,
1997.

[16] A. Lakhotia and J.-C. Deprez. Restructuring programs
by tucking statements into functions. Information and
Software Technology, 40(11–12):677–689, Nov. 1998.

[17] F. Lanubile and G. Visaggio. Extracting reusable func-
tions by flow graph-based program slicing. IEEE
Transactions on Software Engineering, 23(4):246–
258, Apr. 1997.

[18] S. Letovski and E. Soloway. Delocalized plans and
program comprehension. IEEE Software, pages 198–
204, May 1986.

[19] G. Oulsnam. Unravelling unstructured programs. The
Computer Journal, 25(3):379–387, Aug. 1982.

[20] L. Ramshaw. Eliminating go to’s while preserving
program structure. J. ACM, 35(4):893–920, Oct. 1988.

[21] S. Rugaber, K. Stirewalt, and L. M. Wills. Understand-
ing interleaved code. Automated Software Engineer-
ing, 3(1–2):47–76, June 1996.

[22] H. M. Sneed and G. Jandrasics. Software recycling.
In Proc. Conf. Software Maintenance, pages 82–90,
1987.

[23] V. Waddle and A. Malhotra. An e log e line crossing
algorithm for leveled graphs. In Lecture Notes in Com-
puter Science, volume 1731, pages 59–71. Springer-
Verlag, 1999.

[24] M. Zastre. Compacting object code via parameterized
procedural abstraction. Master’s thesis, Department
of Computer Science, University of Victoria, British
Columbia, 1995.

11

