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ABSTRACT 
Increased integration in the form of multiple processor cores on a 
single die, relatively constant die sizes, shrinking power 
envelopes, and emerging applications create a new challenge for 
processor architects. How to build a processor that provides high 
single-thread performance and enables multiple of these to be 
placed on the same die for high throughput while dynamically 
adapting for future applications? Conventional approaches for 
high single-thread performance rely on large and complex cores to 
sustain a large instruction window for memory tolerance, making 
them unsuitable for multi-core chips.  

We present Continual Flow Pipelines (CFP) as a new non-
blocking processor pipeline architecture that achieves the 
performance of a large instruction window without requiring 
cycle-critical structures such as the scheduler and register file to 
be large. We show that to achieve benefits of a large instruction 
window, inefficiencies in management of both the scheduler and 
register file must be addressed, and we propose a unified solution.  

The non-blocking property of CFP keeps key processor structures 
affecting cycle time and power (scheduler, register file), and die 
size (second level cache) small. The memory latency-tolerant CFP 
core allows multiple cores on a single die while outperforming 
current processor cores for single-thread applications.   

Categories and Subject Descriptors 
C.1 [Processor Architectures]  

General Terms 
Algorithms, Performance, Design. 

Keywords 
Non-blocking, Instruction Window, Latency Tolerance, CFP. 

1. INTRODUCTION 
In keeping with the natural trend towards integration, 
microprocessors are increasingly supporting multiple cores on a 
single chip. To keep design effort and costs down and to adapt to 
future applications, these multiple core microprocessors 
frequently target an entire product range, from mobile laptops to 
high-end servers. This presents a difficult trade-off to processor 
designers: balancing single-thread performance critical for laptop 
and desktop users, with system throughput critical for server 

applications. Further, due to the growing gap between processor 
cycle time and memory access latencies, the processor pipeline 
increasingly stalls waiting for data in the event of a miss to 
memory. Achieving high single-thread performance in the 
presence of such relatively increasing memory latencies has 
traditionally required large and complex cores to sustain a large 
number of instructions in flight while waiting for memory. 
However, achieving high system throughput requires many such 
cores on the same chip. Unfortunately, the mostly constant chip 
size and power envelopes result in two contradictory goals: many 
large cores cannot be placed on a single chip and small cores 
traditionally do not provide high single-thread performance. 

This paper bridges the above dichotomy by presenting Continual 
Flow Pipelines: a processor core architecture that can sustain a 
very large number of in-flight instructions without requiring the 
cycle-critical structures to scale up. By keeping these structures 
small while being able to tolerate memory latencies, the new core 
can achieve high single-thread performance while allowing 
multiple such cores on a chip for high throughput. The resulting 
large instruction window1 exposes large amounts of instruction 
level parallelism (ILP) and achieves memory latency tolerance, 
while the small size of cycle-critical resources allows for a high 
clock frequency. 

Continual Flow Pipelines (CFP) allow the processor to continue 
processing instructions even in the presence of a long latency 
cache miss to memory by being efficient in managing cycle-
critical resources. In conventional processor designs, a load 
operation that misses the cache, and any later instructions that 
depend on this load for data continue to occupy cycle-critical 
structures such as the register file and scheduler. These blocked 
and miss-dependent instructions stall the processor since later 
instructions that are not dependent upon the miss (miss-
independent) and can execute are unable to proceed due to a lack 
of sufficient register file and scheduler resources. 

CFP on the other hand ensures that miss-independent instructions 
will successfully acquire register file and scheduler resources by 
making these resources non-blocking: the long-latency load 
operation and its dependent instructions release these resources 
early once they are known to be miss-dependent. This allows later 
miss-independent instructions to execute and complete in parallel 
with the outstanding memory miss. Prior research has shown a 
significant amount of useful work can be done in the shadow of a 
memory miss [13]. CFP uses that observation to achieve memory 
latency tolerance. By providing mechanisms to obtain non-
blocking structures, the register file and scheduler sizes are now 

                                                                 
1 All instructions renamed but not yet retired constitute the instruction 

window. In reorder buffer based (ROB) processors, every instruction 
that has a reorder buffer entry allocated is considered part of the 
instruction window. 
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functions of the number of instructions actively executing in the 
processor pipeline and not the total number of in-flight 
instructions in the processor. Eliminating structural stalls in the 
pipeline implies performance is now limited only by the rate at 
which the front-end feeds useful instructions into the pipeline. 

With CFP, a load that has missed in the cache and its dependent 
instructions (the forward slice of the load) drain out of the 
pipeline freeing any scheduler and register file entries they may 
have occupied. We call this load and its dependents the slice 
instructions. The Slice Processing Unit (SPU) is responsible for 
managing these slice instructions while the miss is pending. The 
SPU holds the slice instructions and has all information necessary 
to execute the slice instructions, including their completed source 
register values, and data dependence information. Storing values 
corresponding to source registers written by completed 
instructions, allows the release of such registers even before a 
consuming slice instruction completes. The SPU also ensures 
correct execution when slice instructions are re-mapped and re-
introduced into the pipeline. By ensuring schedulers and physical 
registers are not tied down by slice instructions, the pipeline 
achieves a continual flow property where the processor can look 
far ahead for miss-independent instructions to execute. Further, 
efficient integration of results from executing miss-independent 
instructions in the instruction window is possible by means of a 
checkpoint mechanism and without requiring their reexamination. 

CFP involves two key actions: draining out the long-latency-
dependent slice (along with ready source values) while releasing 
scheduler entries and registers, and re-acquiring these resources 
on re-insertion into the pipeline. The CFP concept is applicable to 
a broad range of processor architectures (see Section 4.3). In this 
paper we use Checkpoint Processing and Recovery (CPR) as the 
baseline architecture [2] since it has been shown to outperform 
conventional ROB-based architectures. CPR is a reorder-buffer-
free architecture requiring a small number of rename-map table 
checkpoints selectively created at low-confidence branches, and 
capable of supporting an instruction window of the order of 
thousands of instructions. In addition to decoupling the 
instruction window from the ROB, CPR provides a scalable 
hierarchical solution for store queues. However, long latency 
operations expose CPR resource limitations. CFP addresses CPR 
limitations in the presence of long latency operations. The 
synergistic interplay between CPR and CFP allows for the design 
of truly scalable large instruction window memory latency-
tolerant processors. 

Paper contributions: CFP is a unified proposal for decoupling 
the demands of sustaining a large instruction window from both 
the scheduler and register file. The key contributions are: 

• Non-blocking register file. CFP presents the first proposal 
where instructions waiting for long latency operations do not 
block registers. Doing so avoids using large and complex 
register files. CFP introduces the notion of a back-end 
renamer that assigns new physical registers to previously 
renamed slice instructions using physical-to-physical 
remapping as opposed to the front-end renamer that performs 
logical-to-physical remapping. This allows CFP to store only 
slice instructions in data dependence order without requiring 
slice storage to scale with instruction window size. 

• Unified mechanism for non-blocking register file and 
scheduler. By decoupling instruction window demands from 
cycle-critical structures (register file, scheduler) in a unified 
manner, CFP allows for a high-performance and scalable 
processor core that can support a dynamic and adaptive 
instruction window (100s to 1000s of instructions). 

• CFP outperforms larger ROB and CPR cores. For 
example, a CFP core with 8 map table checkpoints and a 96-
entry register file outperforms a 256-entry ROB machine 
with a 192-entry register file and a much larger scheduler by 
more than 20% for server suites, 33% for workstation suites, 
28% for SPECFP2K, and 5% for SPECINT2K. 

• CFP effectively tolerates long memory latencies. A CFP 
core tolerates long memory latencies and isolates branch 
prediction accuracy as the primary performance limiter for 
future processors. 

• CFP lends to highly efficient cache hierarchies. A CFP 
core with a 512 KB L2 cache outperforms ROB-based cores 
with 8 MB L2 caches for most benchmarks. For constant die 
size, such efficient cache hierarchy allows more cores to be 
placed (instead of cache) to achieve high throughput while 
still achieving high single thread performance compared to 
conventional large cache designs. 

Section 2 outlines our simulation methodology and benchmark 
suites. Section 3 provides an overview of our baseline CPR core 
and quantifies its limitations. Section 4 describes Continual Flow 
Pipelines and Section 5 presents a performance analysis of CFP. 
Section 6 discusses CFP comparatively with two other techniques 
for building latency tolerant processors and Section 7 discusses 
implications of CFP on future research. Section 8 presents related 
work and we conclude in Section 9. 

2. SIMULATION METHODOLOGY 
We use a detailed execution-driven timing simulator for 
simulating the IA32 instruction set and micro-ops (uops). The 
simulator executes user and kernel instructions, models all system 
activity such as DMA traffic and system interrupts, and models a 
detailed memory system. Table 1 shows parameters of our 
baseline ROB-based processor based on the Pentium® 4 [12]. 

All experiments in the paper use an aggressive hardware data 
prefetcher and a perfect trace cache (i.e., no trace cache misses). 
Table 2 lists the benchmark suites, the number of unique 
benchmarks within each suite, and the L2 cache load miss rates. 
Unless specified, all performance numbers in graphs shown are 
percent speedups calculated over the ROB-based baseline 
processor. The baseline CPR processor replaces the reorder buffer 
with 8 checkpoints created at low confidence branches. In 
addition, CPR employs larger load and store buffers. The baseline 
CPR employs a hierarchical store queue with a 48-entry 
conventional L1 store queue (on the critical path) and a large and 
slow (L2 cache access latency) 1024-entry L2 store queue (off the 
critical path). The large L2 store queue is necessary for some 
benchmark suites to achieve high performance. The baseline CPR 
uses a store sets predictor [7] to predict load-store memory 
dependences and to issue loads ahead of unknown stores. 
Completed stores look up a load buffer to roll back execution to 
an earlier checkpoint in case of memory dependence 
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Table 1 ROB processor model 
Processor frequency 8 GHz 
Rename/issue/retire width 4/6/4 
Branch mispred. penalty Minimum 20 cycles 
Instruction window size 256 
Scheduler 64 int., 64 fp., 32 mem. 
Register file 192 int., 192 fp. 
Load/store buffer size 64/48 
Memory dependence pred. Store sets  
Functional units Pentium® 4 equivalent 
Branch predictor Gshare (64K)-perceptron (256) hybrid 
Hardware data prefetcher Stream-based (16 streams) 
Trace cache 4-wide, perfect 
Level 1 (L1) Data cache 32 KB, 3 cycles (line 64 bytes) 
Level 2 (L2) cache 2MB, 8 cycles (line 64 bytes) 
Load-to-use latency to 
memory  

100 ns (includes DRAM latency and 
transfer time) 

Max. outstanding misses 128 
 

 

Table 2 Benchmark suite 

Suite Num. 
Bench Examples 

L2$ load 
misses  

/1000 uops 
SPECFP2K (SFP2K) 13 www.spec.org 7 
SPECINT2K(SINT2K) 8 www.spec.org < 1 
Internet (WEB) 15 SPECJbb, WebMark 1 
Multimedia (MM) 18 MPEG, photoshop, speech 2 
Productivity (PROD) 8 SYSMark2k, Winstone < 1 
Server (SERVER) 7 TPC-C 1 
Workstation (WS) 18 CAD, rendering 11 
 

mispredictions. The load buffer has 2048 entries, is set-
associative, and is not in the critical path as it does not store or 
forward any data. 

3. QUANTIFYING CPR PERFORMANCE 
In this section, we analyze the performance of our baseline CPR 
processor. We provide an overview of CPR in Section 3.1 and 
highlight key differences over ROB-based processors. Section 3.2 
presents performance limitations of CPR and Section 3.3 
quantitatively analyzes these limitations. 

3.1 CPR overview 
CPR is a ROB-free proposal for building scalable large 
instruction window processors [2]. CPR addresses the scalability 
and performance limitations of conventional branch misprediction 
recovery mechanisms by using a small number of register rename 
map table checkpoints selectively created at low-confidence 
branches. CPR employs this checkpoint mechanism to implement 
a register reclamation scheme decoupled from the reorder buffer, 
and for providing precise interrupts. With CPR, instruction 
completion is tracked using checkpoint counters and entire 
checkpoints are committed instantaneously thus providing the 
appearance of a bulk commit and breaking the serial commit 
semantics imposed by a ROB. CPR aims to decouple key 
processor mechanisms of misprediction recovery, register 
reclamation, and commit operations from the reorder buffer. 

To allow for fast and efficient forwarding of data from stores to 
subsequent loads while supporting a large number of stores at any 
time, CPR uses a hierarchical store queue implementation (see 
Section 2). The level one queue holds most recent stores while the 
level two holds older stores displaced from the level one.  

3.2 Quantifying CPR performance potential 
Figure 1 presents the performance gap between a base and an 
ideal CPR implementation. We vary scheduler and register file 
parameters alone because limiting these structures account for 
most pipeline stalls in the baseline processor. The y-axis shows 

percent speedup over the baseline ROB processor of Table 1 (for 
corresponding baseline frequencies of 3 GHz and 8 GHz). The 
figure shows two different frequencies corresponding to current 
and future processor frequencies to understand effects of 
increasing relative memory latencies. Base CPR uses the register 
file and scheduler of Table 1. The scheduler is blocking—a long 
latency operation and its dependents stay in the scheduler 
occupying entries. The ideal CPR relaxes the register file and 
scheduler constraints by assuming infinite entries for each. The 
remaining machine parameters for the base CPR and ideal CPR 
are the same as Table 1. For a 4-wide 8-GHz processor and a 100 
ns load-to-use latency for a miss to memory, a single load miss 
requires a peak target window of 3200 (=4X8X100) instructions. 
The presence of a second load miss that depends on the first load 
miss in the window results in another 100 ns stall right after the 
first 100 ns stall completes, thus suggesting up to a 6400-entry 
instruction window to tolerate such a miss. Thus, miss-dependent 
misses result in greater pressure on the instruction window. We 
experimentally observed performance gains for some benchmarks 
as we scaled the target window up to 8192 instructions and this 
data is presented later. We therefore assume an 8192-entry target 
instruction window to tolerate latencies across the large set of 
benchmarks. We emphasize this is a conceptual target since CPR 
and CFP do not require any hardware structure to scale up to the 
total number of in-flight instructions, as we will discuss later. 

As can be seen, while base CPR provides high performance over a 
ROB-baseline, the performance gap between base CPR and ideal 
CPR is substantial for the given register file and scheduler size, 
and becomes even larger as relative memory latencies increase.  

This performance gap between base and ideal, and the negative 
impact of increasing memory latencies serve as quantitative 
motivation to investigate new solutions. The next section presents 
a quantitative analysis to identify the sources of this gap. 

3.3 Understanding CPR limitations 
This section analyzes the interaction of the scheduler and register 
file. Figure 2 shows percent speedup over the baseline ROB for 
five CPR configurations. In the figure, the “perf” prefix indicates 
a sufficient size of the corresponding resource for an 8192-entry 
instruction window, and the “real” prefix indicates the 
corresponding resource size listed in Table 1. The left most bar 
(first bar) for each benchmark suite corresponds to a baseline CPR 
model discussed in Section 2 and with the register file and 
scheduler configuration listed in Table 1. The second bar 
corresponds to the baseline CPR combined with a perfect store 
queue (unlimited entries, single-cycle access) and perfect memory 
dependence predictor (perfSTQ/MD). Since the performance gap 
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between these first two bars is small, we do not study the memory 
dependence predictor and store queue any further in this paper.  

The third bar from the left corresponds to a configuration with a 
perfect register file (unlimited entries, single-cycle access) and the 
baseline scheduler; the fourth bar corresponds to a configuration 
with a baseline register file and a perfect scheduler (unlimited 
entries, single-cycle scheduling); and the fifth bar (right most) 
corresponds to both the register file and scheduler being perfect. 

Increasing the register file without increasing the scheduler does 
not provide performance benefits. Idealizing the scheduler while 
keeping the register file finite does help performance but a 
substantial performance gap remains between this configuration 
and one where both, register file and scheduler, are ideally sized. 
The results indicate the importance of increasing the size of both 
resources to achieve substantial performance gains. We now 
qualitatively analyze this result. 

3.3.1 Schedulers 
Our baseline CPR model uses a decentralized blocking scheduler. 
In blocking schedulers, entries may fill up in the presence of long 
latency operations. The Pentium 4 [12] uses a decentralized and 
non-blocking scheduler—a long latency operation (an L1 miss for 
the Pentium 4) and its dependent instructions do not occupy  
scheduler entries while waiting for the miss to return. The 
distributed non-blocking design allows for an effectively large 
scheduler. The Waiting Instruction Buffer (WIB) [14] employs a 
small and fast scheduler backed by a larger buffer for storing 
instructions dependent upon long latency operations.  

While non-blocking scheduler designs such as the Pentium 4 style 
replay mechanism and the WIB allow the release of scheduler 
entries occupied by instructions dependent on a long latency 
operation, they assume sufficiently large register files. The fourth 
bar in Figure 2 corresponds to a CPR processor with a non-
blocking scheduler but with limited register file size—an ideal 
scheduler configuration makes a blocking scheduler behave the 
same as a non-blocking scheduler because instructions never wait 
for a scheduler entry. From Figure 2, we see that while a non-
blocking scheduler can solve scheduler limitations, a substantial 
performance gap remains. 

3.3.2 Register files 
Conventional physical register reclamation algorithms free a 
register conservatively by reclaiming a physical register only 
when it is no longer part of architectural state. This happens when 

the instruction that overwrites the logical register, which maps to 
the physical register, commits. While this allows architectural 
state restoration on branch mispredictions, interrupts, and 
exceptions, physical register lifetime artificially increases because 
reclamation is limited by the serial retirement semantics of the 
reorder buffer. This limits the supply of free registers and 
necessitates larger register files. 

Our baseline CPR model uses an aggressive counter-based 
register reclamation scheme [17] instead of relying on a ROB-
based  reclamation scheme. CPR thus breaks the limitation of 
serial register reclamation by guaranteeing architectural state is 
never lost, while aggressively reclaiming all physical registers 
except those corresponding to a checkpoint (physical registers 
mapped to logical registers at the time of checkpoint creation). 

While the CPR scheme works well for short latency operations, 
long latency operations result in increased register file pressure. 
Consider a blocked instruction dependent upon a long latency 
operation. In a typical implementation, the physical register 
corresponding to its destination operand cannot be freed at least 
until the blocked instruction completes. Further, if a source 
operand depends on a short latency operation independent of the 
long latency operation, the physical register corresponding to that 
source operand cannot be freed even if the short latency producer 
has completed, until the current blocked instruction executes. 
These factors restrict availability of free physical registers, and 
thus stall execution and subsequently limit performance. Even 
with the aggressive register reclamation techniques of CPR, a 
significant performance gap remains (Figure 2). 

To bridge this performance gap using conventional schemes, 
sufficient physical registers must be made available for the target 
window. For example, an instruction window of the order of 
thousands of entries needed to tolerate future memory latencies 
would typically require thousands of physical registers in 
conventional processors. Simply increasing register file size 
significantly degrades cycle time. Hierarchical solutions have 
been proposed to reduce this cycle time degradation by adding a 
small fast level backed by a slower and larger second level. In 
both cases, the register file size is still tightly coupled to the 
instruction window size and the designs are not resource-efficient 
since all physical registers need to be pre-allocated and sufficient 
buffering must be available a priori. Further, such multilevel 
designs introduce complexity in the pipeline because the core has 
to deal with variable access latencies, and these hierarchies need 
to be managed carefully to prevent performance degradation. 
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Figure 2 Understanding sources of performance gap. 
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Figure 1 Limit study of CPR processors. 
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4. CONTINUAL FLOW PIPELINES 
Continual Flow Pipeline (CFP) comprises a microarchitecture 
where cycle-critical structures of a processor, namely the 
scheduler and register file, are sized independent of the target 
instruction window required for tolerating increasing memory 
latencies. Section 4.1 discusses key concepts of CFP for providing 
a unified mechanism for a non-blocking scheduler (continual flow 
scheduler) and non-blocking register file (continual flow register 
file), and Section 4.2 discusses CFP implementation. Because of 
the inherent scalability characteristics of CPR, CFP uses CPR as 
the base processor. Section 4.3 discusses CFP in the context of 
different baseline processors. 

4.1 De-linking instruction window from cycle-
critical structures 
Inefficiencies in management of the cycle-critical register file and 
scheduler in the presence of long latency operations limit the 
lookahead required to tolerate such latencies. Removing these 
inefficiencies requires the register file and scheduler resources to 
be decoupled from demands of the instruction window. This 
requires a non-blocking design for the scheduler and register file, 
where an instruction does not tie down entries in these structures 
in the event of a long latency miss.  

We discuss key CFP mechanisms for achieving a continual flow 
scheduler (Section 4.1.1), a continual flow register file (Section 
4.1.2), and for re-inserting long latency dependent instructions 
into the pipeline, even after all their scheduler entries and 
registers have been previously reclaimed (Section 4.1.3). Since we 
are concerned with instructions dependent upon a long latency 
operation, we refer to these instructions as the forward slice of the 
long latency operation, or simply the slice instructions. 

4.1.1 Continual flow scheduler 
To achieve a continual flow scheduler, CFP uses a first-in first-out 
(FIFO) buffer to store temporarily the slices corresponding to long 
latency operations in the instruction window. This is similar to the 
WIB except unlike the WIB where the buffer must be the size of 
the target instruction window (i.e., the ROB size itself since the 
WIB targets a ROB-style processor) CFP only buffers the actual 
slice, which is significantly smaller than the instruction window 
(See Section 6). 

Since CFP targets instructions experiencing long latency L2 cache 
misses, such instructions along with their slice immediately leave 
the scheduler, thus freeing scheduler resources for subsequent 
instructions. For this, slice instructions treat their source registers, 
dependent on long latency operations, as ready, even though they 
may not actually be ready. This allows the slice to drain out of the 
scheduler and into another buffer without changing the scheduler 
design. Other instructions not dependent on long latency 
operations (e.g., those that hit the L1 or L2 cache) naturally leave 
the scheduler quickly as they become ready to execute.  

4.1.2 Continual flow register file 
With mechanisms for a continual flow scheduler in place, the next 
step is developing mechanisms for a continual flow register file. 
For ease of discussion, we define two classes of registers:  

Completed source registers: These are registers mapped to 
instructions that have completed execution, and are read by 
instructions in a slice of a long latency operation. Conventional 
register reclamation cannot free these registers until their values 
are read by the dependent slice instructions, which may be 
hundreds of cycles later. Since we assume at most two input 
operands for an instruction, at least one operand of a slice 
instruction must depend upon a long latency operation. An 
instruction in the slice cannot have both source operands 
correspond to completed source registers. 

Dependent destination registers: These are registers assigned to 
the destination operand of slice instructions. These registers will 
not be written at least until the long latency operation completes, 
which may take hundreds of cycles. Conventional reclamation ties 
these registers down unnecessarily for many cycles. 

CFP enables a continual flow register file by providing 
mechanisms for reclaiming the above two register classes. When 
an instruction within the slice of a long-latency instruction leaves 
the scheduler and drains through the pipeline, it reads any of its 
completed source registers, records the value as part of the slice, 
and marks the register as read. Since this instruction has the 
completed source register value available, the register storage 
itself is now available for reclamation once all readers have 
dispatched. The slice instruction also records its physical register 
map as part of the slice. The physical map is used to maintain true 
data dependence order among slice instructions. The slice in the 
buffer is a self-contained subset of the program and can execute 
independently since appropriate ready source values and the data 
dependence order are available. 

With CFP, the ready source values are in the SDB, and any 
destination physical register will be re-acquired (Section 4.1.3) 
when the slice re-executes. This allows release of both classes of 
registers discussed above associated with slice instructions. 
Registers can now be reclaimed at such a rate that whenever an 
instruction requires a physical register, such a register is always 
shortly available—hence achieving the continual flow property. 

We now discuss the conditions under which actual reclamation 
occurs. To recover by using checkpoints, two types of registers 
cannot be released until the checkpoint is no longer required: 
registers belonging to the checkpoint’s architectural state, and 
registers corresponding to the architectural live-outs. These 
however are small in number (∝logical registers) as compared to 
the physical register file. Further, this state does not depend upon 
implementation details such as outstanding misses, target 
instruction window size, etc. 

Other physical registers can be reclaimed when (1) all subsequent 
instructions reading the registers have read them, and (2) the 
physical registers have been subsequently re-mapped, i.e. 
overwritten. CFP guarantees condition 1 because slice 
instructions mark completed source register operands as read 
before they even complete but after they read the value. Condition 
2 is met due to the basic register renaming principle—for L 
logical registers, at the latest the (L+1)th instruction requiring a 
new physical register mapping will overwrite an earlier physical 
register mapping. Thus, for every N instructions (with a 
destination register) leaving the pipeline, N-L physical registers 
will be overwritten and hence will satisfy condition 2.  

111



4.1.3 Re-introducing the slice back into the pipeline 
Slice instructions re-enter the pipeline when the long latency data 
returns. Since destination registers for these instructions have 
been released, these instructions are remapped to new physical 
registers by means of back-end renaming. 

Re-acquiring registers with back-end renaming and without 
deadlocks. Unlike conventional front-end renaming where a 
logical register maps to a physical register, in back-end renaming 
a physical register maps to another physical register. When the 
long latency operation completes, new front-end instructions wait 
until the slice instructions drain into the pipeline. Doing so allows 
these re-entering slice instructions to acquire scheduler entries, 
thus guaranteeing their forward progress and avoiding deadlock. 
These slice instructions also require new physical registers. New 
free registers are guaranteed by: (1) exploiting the earlier 
mentioned basic register renaming principle where registers in the 
slice are reclaimed when they are overwritten and an overwriting 
instruction is guaranteed to appear within a fixed number of 
rename operations, and (2) sizing the register file a priori to 
guarantee the slice remapper eventually finds a free physical 
register even when some physical registers cannot be reclaimed 
because they belong to checkpoints and architectural live-outs. 

We now explain how the a priori sizing is done when physical-to-
physical back-end renaming is used. Assume PFE  is the number of 
physical registers available in the front end for renaming logical to 
physical registers. The slice remapper, used for back-end 
renaming, will thus observe potentially PFE unique physical 
registers while performing the physical to physical remapping. 
One uncommitted checkpoint is guaranteed to exist prior to the 
oldest load miss in the SDB (since we use a checkpoint-based 
CPR baseline). Thus, the physical registers belonging to that 
checkpoint (such registers totaling L in number) cannot be 
released until the checkpoint retires and will not appear as 
destination physical registers among the slice instructions. Hence, 
the slice remapper only sees (PFE – L) unique physical register 
names in the SDB. If the slice remapper has (PFE – L + 1) physical 
registers available for remapping, deadlock is avoided by the 
renaming principle discussed earlier. In an implementation that 
supports C checkpoints, a maximum of (C * L) physical registers 
may be checkpointed in the window and thus may not be available 
to the slice remapper. Live-outs occupy an additional L physical 
registers unavailable to the slice remapper. Thus, to avoid 
deadlocks, the slice remapper needs (PFE – L + 1) physical 
registers, but may actually have only (PFE – [(C + 1)*L]) physical 
registers available to it. Hence, we need to have additional (C*L + 
1) physical registers reserved only for the slice remapper. This 
number is dependent only on the number of checkpoints and the 

architectural registers and not on any other implementation details 
such as miss latency or target instruction window size. 

Synchronizing dependences between slice and new 
instructions. Since new instructions fetched after slice reinsertion 
may have dependences on slice instructions, the slice destination 
registers that are still live (corresponding to the live-outs) at the 
time of slice reinsertion, must not be remapped by the slice 
remapper. This ensures that new instructions will correctly 
synchronize their dependences to the live registers updated by the 
slice instructions. A rename filter is used for this and is discussed 
later. 

In summary, with CFP, instructions dependent upon a long 
latency operation drain from the pipeline along with the long 
latency operation, releasing any register file and scheduler entries. 
These instructions, take along any values read from completed 
source registers, and the data dependence order (via physical 
maps) into a buffer. They retain all information for execution 
without requiring reading of the earlier ready sources again from 
the register file.  

4.2 CFP implementation 
We now discuss implementation of CFP mechanisms. We present 
changes to a baseline CPR processor. Section 4.2.1 describes how 
instructions in the slice of the long latency operation are identified 
and how they release scheduler and register file entries prior to 
completion. Section 4.2.2 presents the Slice Processing Unit 
(SPU). The SPU is responsible for buffering the slice while the 
long latency miss is outstanding, and for processing the slice prior 
to re-introduction into the pipeline. While a concrete area model 
is beyond the scope of the paper, we provide size approximations 
for structures CFP adds. These additions consist largely of dense 
SRAM structures and tables whose sizes need not scale with 
target instruction-window size. 

Although we only consider L2 cache misses as long latency 
operations, other operations such as long-latency floating-point 
operations may also trigger CFP, if necessary. Figure 3 shows a 
block diagram of CFP in a conventional processor.  

4.2.1 Releasing scheduler entries and physical 
registers associated with slice instructions 
Slice instructions are identified dynamically by tracking register 
and memory dependences of long latency operations. A bit, Not a 
Value (NAV bit) initialized to zero, is associated with each 
physical register and store queue entry. On an L2 cache load miss, 
the NAV bit of the load’s destination register is set to one. 
Subsequent instructions reading this register inherit the NAV bit 
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for their destination registers. If the destination is a store queue 
entry, the entry’s NAV bit is also set. Destination registers of 
loads predicted to depend upon an earlier NAV store by the 
memory dependence predictor also have their NAV bits set, thus 
constructing dependence between stores and loads. An instruction 
is in a slice if it reads a source operand register or a store queue 
entry with a NAV bit set. A register with its NAV bit set is 
considered ready. Once both sources are ready (or have the NAV 
bits set), the instruction drains through the pipeline. 

During the draining process, slice instructions mark their source 
registers, whether NAV or completed, as having been read. As in 
CPR, for CFP this involves decrementing the use counter for the 
register. The registers are reclaimed when the reclamation 
conditions discussed in Section 4.1 are met. Although source 
registers of slice instructions are marked as read, slice instructions 
do not decrement the checkpoint instruction counter (used to track 
instruction completion in CPR) since they are not completed. 
Non-slice instructions however execute and decrement the 
checkpoint’s instruction counter to signal their completion. Only 
the slice instructions move into the Slice Processing Unit (SPU). 

4.2.2 The Slice Processing Unit 
The Slice Processing Unit (Figure 3) serves two primary 
functions: 

1. It holds slice instructions, physical maps, and source data 
values for the slice in the Slice Data Buffer (SDB), and  

2. It remaps slice instructions prior to re-introduction into the 
pipeline using the Slice Rename Filter and Slice Remapper.  

Slice Data Buffer. Two actions on slice instructions determine 
the ordering information required in the SDB:  

a) Back-end renaming when registers of slice instructions are 
released and re-acquired. If the slice remapper uses logical 
names for renaming, then the original program order is 
required. This is similar to a conventional front-end renamer. 
However, if physical names are used for renaming, then the 
data dependence order among slice instructions is sufficient.  

b) Branch misprediction recovery. When a branch mispredicts, 
slice instructions after that branch must be identified and 
squashed. If a ROB-based misprediction recovery 
mechanism is used, then the slice buffer needs to maintain 
program order to allow correct identification of all 
instructions after the misprediction. However, if CPR-style 
map table checkpoints are used for misprediction recovery, 
then slice instructions after the mispredicted branch’s 
checkpoint are easily identified and squashed using the 
checkpoint identifiers of the slice instructions. 

As our baseline CPR uses checkpoint-based misprediction 
recovery and the slice remapper uses physical names, the SDB 
stores the slice instructions in data dependence order and not in 
program order. Since the SDB only stores slice instructions in 
data dependence order, it does not require tracking program order 
of the entire window. Thus, the SDB size is significantly smaller 
than the instruction window size. 

Each entry in the FIFO SDB has the following fields shown in 
Figure 4: 1) instruction opcode, 2) one source register’s data field 
to record values from a completed source register, 3) two source 

register mappings, 4) one destination register mapping, and 5) 
some control bits. These control bits manage re-insertion into the 
SDB and squashing of SDB entries in the event of branch 
mispredictions and other exceptions.  

The SDB has sufficient bandwidth to allow writing and reading 
blocks of instructions. A block corresponds to the width of the 
machine. The single read-port and single write-port block 
organization for the SDB array is a simple, high-density, and 
effective implementation. SDB entries are allocated as slice 
instructions leave the scheduler. Blocks of slice instructions enter 
the SDB in scheduler order, and leave it in the same order. 

The SDB can be implemented using a high density SRAM. One 
possible area-efficient design is a long-latency, high-bandwidth 
cache-like array structure with latency and bandwidth 
requirements similar to an L2 cache. Since memory latencies are 
high, operations on the SDB, including reading and writing, are 
not on the critical path. We model a 25 cycle latency for 
processing an instruction through the SPU (including insertion 
into the SDB, removal from the SDB, and processing through the 
remapper and filter), and observe no performance impact, since 
the additional latency is small compared to L2 cache miss 
latencies. An SDB entry corresponds to approximately 16 bytes, 
and our experiments presented in Section 5.2 suggest an SDB of 
few hundred entries is sufficient to achieve high performance. 

Slice Remapper. Slice instructions leaving the SDB may require 
new registers. The slice remapper maps the physical registers in 
the slice to new physical registers. The slice remapper has access 
to the front-end mapper name space and a small number of 
reserved registers (see Section 4.1.3). The slice remapper has as 
many entries as the number of physical registers and records only 
map information. We believe CFP is the first proposal using a 
physical-to-physical remapper for slice instructions thus allowing 
back-end renaming and front-end renaming to coexist seamlessly.  

Slice Rename Filter. Registers corresponding to live-outs must 
retain the original physical map. The Slice Rename Filter is used 
to avoid remapping these registers. The filter has an entry for each 
logical register and records the identifier of the instruction that 
last wrote the logical register. When an instruction is renamed in 
the front-end renamer, the rename filter is updated with the 
instruction identifier. If this instruction enters the SDB, on its 
subsequent reinsertion into the pipeline, the rename filter is 
looked up using the logical destination register of the instruction. 
If the instruction identifier returned by the lookup matches the 
current instruction being re-inserted into the pipeline, the register 
is considered still live as no later instruction has remapped it. The 
original physical mapping for this register must be retained so that 
any new front-end instructions will see the correct physical 
register. These registers do not pass through the slice remapper. If 
the identifier does not match, the register has been remapped and 
the slice instruction must now acquire a new register using the 
slice remapper. Physical registers corresponding to checkpoints 
are also handled similarly. The number of entries in the rename 
filter is (number of logical registers) X (number of checkpoints). 
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SDB and multiple independent loads. The SDB can have more 
than one slice in the event of multiple independent load misses. 
Since these slices are self-contained program slices (and include 
source operand values and dependences), they can be drained in 
any order. The only live-ins are the values of loads that missed. 
Load misses may complete out of order; a slice belonging to a 
later miss in the SDB may be ready prior to an earlier slice in the 
SDB. Three approaches to handle this are: 1) wait until oldest 
slice is ready and drain the SDB in a first-in first-out order, 2) 
drain SDB in a first-in first-out order when any miss in the SDB 
returns, and 3) drain the SDB sequentially from the miss serviced 
(may not be the oldest slice in the SDB). With (3), register 
mappings from an earlier waiting slice that source instructions in a 
later ready-to-execute slice are detected using the slice remapper. 
We use approach 3. Identifying the correct SDB entry 
corresponding to the load miss is easily achieved by using the 
SDB index stored in the outstanding miss cache fill buffer. 

SDB and chains of dependent loads. A slice may have chains of 
dependent loads that may miss in the L2 cache. When a miss 
returns, the load’s slice leaves the SDB and re-enters the pipeline. 
Subsequently, another load in the slice could immediately miss 
the L2 cache. Further, instructions dependent on this miss may be 
part of the slice of the earlier load miss. These instructions re-
enter the SDB, thus preventing a stall in the event of a chained 
dependent load miss. However, these instructions must occupy 
their original position in the SDB along with their original 
physical map to maintain data dependence order of the original 
program. Thus, the release of an SDB entry occurs only if the 
slice instruction associated with it successfully executes and 
completes. Slice instructions re-entering the SDB discard any new 
mapping they obtained in the slice remapper and retain the 
original mapping already stored. They also read any newly 
produced source register values and store them when they re-enter 
the SDB. The head instruction in the slice always completes 
successfully thus guaranteeing forward progress. The SDB re-
insertion may result in empty entries for instructions that 
completed and did not require re-insertion. This may reduce write 
bandwidth into the SDB because now, instead of blocks of entries, 
individual entries are written. We add a write-combining queue in 
front of the SDB to match the single port SDB design with the 
pipeline. Since these re-inserted instructions are needed again 
only after hundreds of cycles (L2 cache miss latency), any 
additional latency of the write-combining queue has no impact on 
performance.  

4.3 CFP and base processor interactions 
The two core CFP principles are: 1) draining out the long-latency-
dependent slice (along with ready source values) while releasing 
scheduler entries and registers, and 2) re-acquiring these resources 
on re-insertion into the pipeline. While this paper has discussed 
these principles and their implementation in the context of a CPR 
processor, they are applicable as well to conventional processors 
such as ROB-based out-of-order and in-order processors. 
Conventional processors, independent of their architectural 
decisions find it increasingly difficult to tolerate very long 
latencies such as L2 cache misses to memory and thus can benefit 
from CFP (out-of-order execution and compiler techniques can 
often assist in tolerating shorter latencies such as L1 miss/L2 hit 
conditions, but not L2 cache misses). 

Since CPR already provides checkpoints to enable coarse-grained 
scalable recovery and to re-generate architectural state whenever 
necessary, support for recovering to a point prior to the load miss 
for CFP (in the event of exceptions and mispredictions in the 
slice) already exists. For ROB-based and in-order processors, a 
form of roll-back support (although at a very coarse-grain) will be 
required in the form of a minimum single checkpoint to support 
CFP. The CPR-based CFP implementation provided in this paper 
is meant as a general solution and simplifications can be 
envisioned in the implementation if more restrictive baseline 
processors such as ROB-based or in-order models are employed. 
In either case, one only ensures the two core principles of CFP 
discussed above are maintained. 

CPR is an attractive base processor model on which to build CFP 
since in addition to having support for coarse-grain checkpoints, 
CPR achieves higher performance than a ROB-based model and 
has benefits in increasing ILP by being efficient in managing 
resources and mechanisms even in the absence of long latency 
misses. CFP improves the resource efficiency of CPR in the 
presence of long latency operations and CPR’s selective 
checkpoint property allows for a high-performance baseline. This 
synergistic interplay between CFP and CPR allows for design of 
truly scalable instruction window processors. 

5. RESULTS AND ANALYSIS 
Section 5.1 compares CFP performance to CPR and ROB 
baselines and Section 5.2 analyzes sources of performance. 
Section 5.3 discusses power implications and Section 5.4 
compares the resource efficiency of CFP, CPR, and ROB 
processors across various configurations. 

5.1 CFP performance 
Figure 5 shows percent speedup of CPR, CFP, and an ideal CPR 
configuration over the baseline 256-entry ROB processor from 
Table 1. Both CFP and CPR configurations match the ROB 
baseline model parameters except for the use of 8 checkpoints 
instead of the 256-entry ROB and a hierarchical store queue 
organization.  

The ideal CPR configuration has unlimited scheduler and register 
file entries. CFP outperforms both the ROB and CPR 
implementations across all benchmark suites. Moreover, CFP 
significantly bridges the gap between the baseline CPR and ideal 
CPR implementation and achieves 75% of the ideal CPR speedup. 
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The remaining gap between CFP and ideal CPR exists because the 
scheduler fills up with chains of multi-cycle latency instructions 
(loads that miss the L1 cache and hit the L2, multi-cycle floating 
point operations etc.) and their dependent instructions. While the 
individual instruction latencies are relatively small, the combined 
latency of an entire such chain may be long. Such chains can 
degrade performance since dependent instructions in the chain 
consume scheduler and register file entries. CFP does not target 
such situations since it aims at tolerating longer L2 cache misses. 
Schemes such as employed by the Pentium 4 for targeting L1 
cache miss latencies, when used in conjunction with CFP, may 
eliminate these scheduler stalls. 

5.2 CFP performance analysis 
Figure 6 shows instruction-window size distribution with CFP. As 
we can see, a CFP processor is able to achieve an instruction 
window in the thousands for a significant fraction of the execution 
time. More than 2048 instructions are in the window for nearly 
40% of the time for the floating-point benchmarks, and more than 
20% of the time for the server, workstation, and internet 
benchmarks. Between 4096 and 8192 instructions are in the 
window 5% to 20% of execution time depending upon the suite. 

CFP performance gains are due to two factors: 1) its ability to 
tolerate long memory latencies and 2) its ability to generate a 
cache miss early thus exposing memory level parallelism. CFP’s 
ability to tolerate long memory latencies can be measured by the 
fraction of independent instructions that complete (and are 

eventually committed i.e., were not on a misspeculated path) in 
the shadow of a long latency miss operation (shown in Table 3). 
As can be seen, a significant portion of the non-speculative 
instruction-window in the shadow of a long latency miss 
comprises miss-independent instructions for all benchmark suites. 
Others [13] have also observed similar results for the SINT2K 
suite. Thus, a significant amount of useful work can be completed 
while a miss is outstanding allowing the processor to tolerate such 
latencies. More importantly, CFP can tolerate even isolated cache 
misses—situations that cannot be handled by other techniques 
such as Runahead execution (discussed later).  

In addition to tolerating cache miss latencies, CFP also increases 
memory level parallelism by getting to a cache miss sooner. 
Figure 7 shows the outstanding L2 cache miss distribution for 
four suites and the CPR, ROB, and CFP architectures. As can be 
seen, for WS and SFP2K, CFP increases the memory level 
parallelism over both CPR and ROB. For SINT2K and SERVER, 
the number of outstanding misses does not increase significantly. 
However, these suites still observe a performance gain from CFP 
(refer Figure 5) primarily because a large amount of independent 
work can be successfully completed (86% for SINT2K and 90% 
of the non-speculative instruction window for SERVER) for these 
suites even in the presence of isolated cache misses. 

CFP can sustain a very large instruction window after a long-
latency load miss because most mispredicted branches after the 
miss are independent of the miss and are therefore resolved 
quickly and in parallel with the miss. Only mispredicted branches 
in the window after the miss that depend upon the miss (and thus 
cannot be resolved until the miss completes) disrupt the 
usefulness of the instruction window. These branches are very 
infrequent (Table 4, Column 5). 

To understand the amount of buffering for slices, we present 
statistics for the SDB. SDB occupancy information is presented in 
Table 4. The average SDB size is measured only during the 
presence of a long latency miss when the SDB is not empty. The 
average SDB size numbers indicate the SDB needs to sustain only 
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Figure 6  Instruction window size distribution. 

Table 3 Latency Tolerance: Percent of independent 
instructions retired in the shadow of a L2 miss 

SFP2K SINT2K WEB PROD MM SERVER WS 

80% 86% 82% 85% 73% 90% 80% 

 

Figure 7 Memory level parallelism: Outstanding L2 miss distributions for CPR, CFP, and ROB. Higher curves do not 
imply more misses because these numbers are normalized to different execution times. Execution time for CFP is lowest. 
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hundreds of instructions on average, to support an instruction 
window in the thousands. Further, only a small fraction of the 
total number of retired instructions (less than 10% on average) 
enter the SDB. Even though these slice instructions are small in 
number, they significantly limit performance in conventional 
ROB processors. SFP2K has a significant fraction (~16%) of 
retired instructions entering the SDB because of a large number of 
L2 cache misses. The small fraction of dependent instructions 
implies a small dense-SRAM SDB structure. 

5.3 Implications on power 
Since CFP executes past long latency operations and performs 
slice processing, power implications arise. If a branch dependent 
upon a long latency load is mispredicted, most of the execution in 
the shadow of the load may be wasted because it was on the 
mispredicted path. As a result the number of instructions executed 
on the wrong path increases with CFP. In the baseline CPR 
processor, 15% of instructions executed were misspeculated while 
with CFP, this number goes up to 30%. While this may not appear 
insignificant, this needs to be viewed keeping in mind the 
performance gains of CFP and the significant area and power 
savings in the cache hierarchy. Slice processing could also 
potentially increase power because of the additional work done in 
the SPU. However, since SPU activity is low (<10% of 
instructions enter the SPU), CFP compares favorably to 
conventional techniques requiring large highly active structures 
(such as scheduler and register file) to sustain a large instruction 
window. 

5.4 Equal cycle-critical resource comparison 
To determine the resource efficiency of CFP, we compare the 
performance of CFP to a conventional ROB and a CPR processor 
using equal cycle-critical resources, over various configurations. 
For each configuration, the register file and scheduling window 
sizes remain the same for ROB, CPR, and CFP configurations. 
Figure 8 shows results for four benchmark suites. The y-axis is 
percent speedup over a 128-entry ROB baseline (the smallest 
ROB configuration in the figure). The x-axis label format w/x/(i-f-
m) corresponds to a design for a w-entry reorder buffer, with x 
integer and x floating point registers, and distributed scheduler (i-
entry Int., f-entry FP, and m-entry Mem.). The w-entry in the x-
axis label is applicable only to the ROB-based machine. The CPR 
and CFP machines do not use a ROB and instead, use 8 map table 
checkpoints to achieve an adaptive instruction window. For space 
reasons, we present only the SINT2K, SFP2K, SERVER and WS 
benchmark suites; other suite results are similar. 

Results show, for equal buffer sizes, a CFP processor outperforms 
both a ROB-based and a CPR processor. More interestingly, the 
96/(32-32-16) CFP configuration significantly outperforms the 
256/192/(64-64-32) ROB configuration for all benchmarks, by 
28% on SFP2K, 20% on Server, 33% on WS and 5% on SINT2K. 

To understand why a small register file is sufficient for CFP to 
outperform a much larger ROB configuration, Table 4 provides 
statistics for average number of registers held at any time by 
checkpoints. Under CFP, registers held by a checkpoint cannot be 
released until the checkpoint retires. The average number of 
physical registers tied down because of checkpoints is 
significantly lesser than total register file size. The total number of 
checkpoint registers tied down on average is smaller than the 
maximum such number (i.e., number of checkpoints X number of 
logical registers) because often, the lifetimes of registers are long, 
and hence the same physical register belongs to multiple 
checkpoints. 

6. CFP, RUNAHEAD, AND WIB 
The inability of conventional processors to hide long memory 
latencies strongly ties in to the linear scaling of resources. This 
must occur to match demands placed by a very large instruction 
window, while maintaining high clock frequency and low design 
complexity. By providing mechanisms to process independent 
instructions continually in the presence of long memory latencies, 

Figure 8 Equal cycle-critical resource comparison. 
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Table 4 CFP/SDB statistics 
Avg. # of 

registers held 
by checkpoints 

Benchmark 
Suite 

Avg. SDB 
size when 
occupied 

% retired 
inst. 

into SDB 

Branch 
misp. per 
1000 uops 

mpbrsdb+ 
per 1000 
shadow 
uops* INT FP 

SFP2K 548 16.4% 0.64 < 0.001 33 28 
SINT2K 190 0.8% 2.51 0.05 30 17 

WEB 802 5.6% 1.66 0.11 30 17 
MM 528 3.4% 2.49 0.02 29 21 

PROD 374 1.1% 2.41 0.19 26 16 
SERVER 339 4.7% 1.13 0.18 38 14 

WS 736 7.1% 1.21 <0.001 24 16 
+mpbrsdb: mispredicted branches in the SDB 
*shadow uops: Total uops in the shadow of a miss  
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CFP can tolerate such latencies. We now compare CFP latency 
tolerance to two other proposals for memory latency tolerance: 
Runahead execution, and the Waiting Instruction Buffer. 

6.1 CFP and Runahead 
Runahead execution [11] in out-of-order processors has been 
proposed to tolerate memory latencies [18]. In runahead 
execution, the processor state is checkpointed at a long latency 
miss operation. Execution continues speculatively past the miss 
and prefetches data and possibly branch outcomes. When the miss 
returns, runahead execution terminates, the checkpoint is restored, 
and execution restarts from point of the load miss. Except for the 
prefetching effect of runahead, all work performed during 
runahead is discarded—all instructions past the load miss have to 
be re-fetched, and re-executed. 

CFP subsumes runahead execution. Since CFP executes past long 
latency operations, it achieves benefits of runahead prefetch. 
Further, unlike runahead, CFP does not discard work. When the 
load data returns, the dependent instructions of the load complete 
execution, and allow the checkpoint to commit. Independent 
instructions past the miss have already completed and are retired 
without re-execution.  

With increasing memory latencies, thousands of instructions 
could execute past a load miss. Not having to re-fetch and re-
examine these instructions for committing them helps 
performance significantly. Further, runahead execution may result 
in cache pollution since sufficient cache capacity is required to 
hold prefetched instructions and data until they are re-examined 
and re-executed. CFP does not suffer from this limitation as re-
examination or re-execution is not necessary.  

Figure 9 shows the performance difference between CFP and CPR 
with runahead execution. The y-axis shows percent speedup over 
the baseline ROB configuration. Three bars are shown for each 
suite—CPR, CPR+runahead execution, and CFP. As can be seen, 
CFP outperforms runahead mode significantly for every 
benchmark suite (and not shown but also for every benchmark in 
the suites). CFP has significantly lower wasted speculative 
execution—only 30% for CFP compared to 70% additional uops 
for runahead execution. 

6.2 CFP and WIB 
The WIB [14] also drains load-miss-dependent instructions into a 
special buffer. However, significant differences exist between the 
WIB and CFP proposal. Two key differences are discussed below. 

WIB requires a very large register file: CFP integrates a 
mechanism to achieve a non-blocking register file, while the WIB 
only provides a non-blocking scheduler. This is a substantial 
improvement over the WIB because it keeps the register file 
small, an important requirement for building memory-tolerant 
processors. Register files are very active, power-hungry cycle-
critical structure and designers do not want these to be beyond a 
few hundreds.  

WIB needs to allocate the entire window in its buffer. To recover 
from branch mispredictions, the WIB requires allocation of all 
instruction in the target window. This allows the WIB to record 
the program order of the slice, even though the WIB only actually 
stores the miss-dependent instructions. CFP does not suffer from 
such a restriction since it recovers by using a checkpoint. 

The WIB proposal’s assumption of very large register files, and a 
waiting buffer as large as the target window, results in it being 
inefficient in using resources. 

7. IMPLICATIONS OF CFP 
By allowing the instruction window to scale without requiring the 
cycle-critical register file and scheduler to scale, Continual Flow 
Pipelines have interesting implications for processor architecture 
directions. We discuss some of these implications below. By 
removing back-end pipeline stalls, CFP exposes branch prediction 
accuracy as the primary performance limiter. Section 7.1 discusses 
the interaction of CFP and branch prediction. High memory 
latency tolerance of CFP presents new opportunities for cache 
hierarchy organizations. Section 7.2 shows CFP with a small L2 
cache outperforms a conventional ROB-based design with much 
larger caches. Multiple on-chip CFP cores can take better 
advantage of a given cache size as compared to multiple on-chip 
ROB-based cores, which would require the cache size to scale up. 
Sizing decisions for cycle-critical structures are simplified and 
discussed in Section 7.3. 

7.1 Branch prediction remaining key limiter 
Figure 10 shows performance potential with perfect branch 
prediction for a large instruction window processor (such as CFP) 
compared to a small instruction window processor (such as 
conventional ROB-based). The y-axis is percent speedup over the 
baseline ROB processor. Table 4 (Column 4) shows branch 
misprediction rates for the benchmarks. The key result is the 
difference in performance of perfect branch prediction for CFP as 
compared to ROB processors. The impact of branch prediction is 
substantially higher for CFP processors. In conventional ROB 
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Figure 9 CFP, CPR and CPR+runahead. 
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Figure 10 Performance trend with perfect branch prediction. 
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based processors, structural stalls in the presence of long latency 
operations hide branch misprediction impact. Thus, for ROB-
based processors, performance gain due to perfect branch 
prediction is not substantial (less than 20% over a baseline ROB). 
However, for CFP, in the absence of such structural stalls, the 
gains are substantial even over a baseline CFP processor. 

Since CFP allows instructions independent of long latency 
operations to execute and complete, any branches on this 
independent path also get resolved in parallel with the load miss. 
However, branches dependent on the long latency load cannot be 
resolved until the load data returns. Our experiments show that a 
very small fraction of mispredicted branches is dependent on a 
long-latency load miss. 

Karkhanis and Smith [13] identified structural, data, and control-
induced stalls as key performance limiters. While branch 
prediction accuracy is known to be an important performance 
issue, CFP processors effectively isolate the accuracy of branch 
prediction as the primary performance limiter, by eliminating 
structural and data stalls. 

7.2 Increased cache efficiency and small dies 
Caches account for a large fraction of the die size. Applications 
such as servers and workstations require very large caches, and for 
chip multiprocessors, pressure on the cache increases. Memory 
tolerance of CFP allows for high performance even with a small 
cache. Figure 11 shows the percent speedup (on the y-axis) over 
the ROB baseline (with a 2 MB L2 cache), as the L2 cache size is 
varied. For each suite, seven bars are shown—first four for a 
ROB-based processor, and the last three for a CFP processor.  

As can be seen, CFP with a 2 MB cache outperforms ROB with 
an 8 MB cache. Further, a 512 KB L2 cache with CFP performs 
worse than a 2 MB L2 cache with a ROB for only two of the 
suites, primarily because a 512 KB cache results in thrashing of 
some benchmarks (e.g., vpr and twolf for SINT2K) in these 
suites. However, CFP with 512 KB L2 cache still outperforms 
ROB processor with a 512 KB L2 cache. We assume all L2 
caches have the latency of the baseline cache configuration. This 
results in a conservative performance estimate when we compare 
CFP configuration with a small L2 cache and a ROB 
configuration with a much larger L2 cache. 

Achieving high performance with small cache sizes matches well 
current processor design goals of multiple cores on a chip. Since 
L2 caches occupy a significant fraction of die area, achieving 
comparable performance using much smaller caches allows 

multiple small cores to be placed on die, providing both high 
throughput and high single-thread performance. CFP thus forms 
an attractive building block core for future chip multiprocessors. 

7.3 Simplified structure sizing 
With CFP, the cycle-critical structures need to be designed only 
for a small active set of instructions. For example, we could start 
with the largest scheduler we could build. The L2 cache then is 
sized such that the scheduler can tolerate the L2 cache hit latency. 
Further, the register file can be sized to accommodate the needs of 
instructions in the scheduling window instead of the instruction 
window. Thus, instead of sizing key processor structures based on 
the target instruction-window size as is done in conventional 
processors, CFP allows these structures to be based on the much 
smaller scheduling window. 

8. RELATED WORK 
Section 3.3 discusses non-blocking schedulers  [12, 14]. Various 
register file organizations have been proposed and include [3, 10]. 
The counter method used in CPR for reclaiming physical registers 
was first proposed [17] for a ROB-based processor. Virtual 
Physical Registers (VPR) [16] delay allocation of physical 
registers until just prior to instruction completion to reduce 
lifetimes of physical registers. They deal with dependent 
destination registers by not allocating destination physical 
registers to long latency operations and their dependent 
instructions until these operations are ready to execute. However, 
they do not reduce the lifetimes of completed source registers. 
Unlike VPR, CFP provides a mechanism to release both of the 
above types of registers. 

In Dynamic Multithreading [1], instructions from the speculative 
thread execute in a multithreaded processor using data 
speculation, leave the pipeline freeing cycle-critical structures and 
wait in a separate buffer as large as the instruction window for 
subsequent validation. CFP does not require a multithreaded 
pipeline, and does not require a waiting buffer as large as the 
instruction window. 

Proposals for resource efficient microarchitectures include Out-of-
order commit processors [8] and Cherry [15]. Out-of-order 
commit processors [8] combine a checkpoint proposal [9] with the 
WIB [14] to address scheduler limitations for a checkpoint 
processor since the WIB focused on a ROB-based processor. 
Similar to the WIB, the paper also assumes a sufficiently sized 
register file. Cherry [15] uses the ROB and recycles physical 
registers and other resources once their associated instructions are 
branch-safe and memory-safe. Early resource reclamation is 
limited to a subset of the ROB. A checkpoint of the architected 
register file is used but only for recovering from exceptions and 
the ROB is used for retiring instructions. 

Balasubramonian et al. [4] dynamically reserve physical registers 
for a future thread spawned when the main thread stalls due to a 
long latency operation. In addition to requiring partial support for 
two hardware contexts, partitioning resources between two 
threads prevents either thread from making full use of the 
machine’s resources. The benefits of cache prefetching and branch 
computation are similar to that of Runahead execution.  

Unlike CFP where execution continues in the presence of blocked 
operations (post-execution), thread-based pre-execution methods 
have been proposed where either auxiliary code [6, 22] or a small 
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Figure 11 CFP vs. ROB for L2 cache sizes. 
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subset of the program (e.g., a backward slice of a cache miss) is 
pre-executed [19, 23] on idle contexts of a multithreaded 
processor prior to encountering the blocked operation. 

In Datascalar architectures [5], multiple processors, each tightly 
coupled with part of the program’s physical memory,  
asynchronously execute the same instructions on the same data, 
and the load results located in a processor’s physical memory are 
broadcast to all other processors. This eliminates off-chip requests 
and reduces memory latency. However, such an approach is 
resource inefficient since multiple processors execute the same 
program. 

Distributed large instruction window processing models have 
been proposed [20, 21]. These processing models significantly 
change the underlying processor and have different constraints 
and trade-offs over our conventional out-of-order processing 
model. CFP maintains a conventional processing model and is 
orthogonal to the above proposals.  

9. CONCLUSIONS 
Continual Flow Pipelines allow a processor core to sustain a very 
large and adaptive instruction window while keeping its scheduler 
and register file small. This exposes high ILP in the presence of 
long memory latencies. The memory latency tolerance results in 
the CFP core with a small L2 cache outperforming large ROB-
based processors with very large caches. This improved cache 
efficiency, and resource decoupling has implications for future 
processor design. Look-ahead ability of CFP allows for high 
single thread performance in presence of long memory latencies, 
and its small resource core allows many of them to be placed on a 
single chip to address throughput-oriented applications. 

Memory latency tolerance of CFP re-focuses the direction 
processor research must take to improve single thread 
performance. A large instruction window processor (such as CFP) 
now exposes branch prediction accuracy as the primary 
performance limiter for single threads. With Continual Flow 
Pipelines, the core pipeline does not stall due to resource 
limitations in the presence of long latency operations and only the 
rate at which the front-end feeds useful instructions to the back-
end determines performance of such a pipeline. With structural 
and data limitations addressed (using the resource efficiency and 
memory latency tolerance of CFP), control flow now dominates 
performance limiting factors. 
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