
Continual Flow Pipelines

Srikanth T. Srinivasan Ravi Rajwar Haitham Akkary Amit Gandhi Mike Upton
Microarchitecture Research Labs

Intel Corporation

{srikanth.t.srinivasan, ravi.rajwar, haitham.h.akkary, amitx.v.gandhi, mike.upton}@intel.com

ABSTRACT
Increased integration in the form of multiple processor cores on a
single die, relatively constant die sizes, shrinking power
envelopes, and emerging applications create a new challenge for
processor architects. How to build a processor that provides high
single-thread performance and enables multiple of these to be
placed on the same die for high throughput while dynamically
adapting for future applications? Conventional approaches for
high single-thread performance rely on large and complex cores to
sustain a large instruction window for memory tolerance, making
them unsuitable for multi-core chips.

We present Continual Flow Pipelines (CFP) as a new non-
blocking processor pipeline architecture that achieves the
performance of a large instruction window without requiring
cycle-critical structures such as the scheduler and register file to
be large. We show that to achieve benefits of a large instruction
window, inefficiencies in management of both the scheduler and
register file must be addressed, and we propose a unified solution.

The non-blocking property of CFP keeps key processor structures
affecting cycle time and power (scheduler, register file), and die
size (second level cache) small. The memory latency-tolerant CFP
core allows multiple cores on a single die while outperforming
current processor cores for single-thread applications.

Categories and Subject Descriptors
C.1 [Processor Architectures]

General Terms
Algorithms, Performance, Design.

Keywords
Non-blocking, Instruction Window, Latency Tolerance, CFP.

1. INTRODUCTION
In keeping with the natural trend towards integration,
microprocessors are increasingly supporting multiple cores on a
single chip. To keep design effort and costs down and to adapt to
future applications, these multiple core microprocessors
frequently target an entire product range, from mobile laptops to
high-end servers. This presents a difficult trade-off to processor
designers: balancing single-thread performance critical for laptop
and desktop users, with system throughput critical for server

applications. Further, due to the growing gap between processor
cycle time and memory access latencies, the processor pipeline
increasingly stalls waiting for data in the event of a miss to
memory. Achieving high single-thread performance in the
presence of such relatively increasing memory latencies has
traditionally required large and complex cores to sustain a large
number of instructions in flight while waiting for memory.
However, achieving high system throughput requires many such
cores on the same chip. Unfortunately, the mostly constant chip
size and power envelopes result in two contradictory goals: many
large cores cannot be placed on a single chip and small cores
traditionally do not provide high single-thread performance.

This paper bridges the above dichotomy by presenting Continual
Flow Pipelines: a processor core architecture that can sustain a
very large number of in-flight instructions without requiring the
cycle-critical structures to scale up. By keeping these structures
small while being able to tolerate memory latencies, the new core
can achieve high single-thread performance while allowing
multiple such cores on a chip for high throughput. The resulting
large instruction window1 exposes large amounts of instruction
level parallelism (ILP) and achieves memory latency tolerance,
while the small size of cycle-critical resources allows for a high
clock frequency.

Continual Flow Pipelines (CFP) allow the processor to continue
processing instructions even in the presence of a long latency
cache miss to memory by being efficient in managing cycle-
critical resources. In conventional processor designs, a load
operation that misses the cache, and any later instructions that
depend on this load for data continue to occupy cycle-critical
structures such as the register file and scheduler. These blocked
and miss-dependent instructions stall the processor since later
instructions that are not dependent upon the miss (miss-
independent) and can execute are unable to proceed due to a lack
of sufficient register file and scheduler resources.

CFP on the other hand ensures that miss-independent instructions
will successfully acquire register file and scheduler resources by
making these resources non-blocking: the long-latency load
operation and its dependent instructions release these resources
early once they are known to be miss-dependent. This allows later
miss-independent instructions to execute and complete in parallel
with the outstanding memory miss. Prior research has shown a
significant amount of useful work can be done in the shadow of a
memory miss [13]. CFP uses that observation to achieve memory
latency tolerance. By providing mechanisms to obtain non-
blocking structures, the register file and scheduler sizes are now

1 All instructions renamed but not yet retired constitute the instruction

window. In reorder buffer based (ROB) processors, every instruction
that has a reorder buffer entry allocated is considered part of the
instruction window.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASPLOS’04, October 9–13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/0010...$5.00.

107

functions of the number of instructions actively executing in the
processor pipeline and not the total number of in-flight
instructions in the processor. Eliminating structural stalls in the
pipeline implies performance is now limited only by the rate at
which the front-end feeds useful instructions into the pipeline.

With CFP, a load that has missed in the cache and its dependent
instructions (the forward slice of the load) drain out of the
pipeline freeing any scheduler and register file entries they may
have occupied. We call this load and its dependents the slice
instructions. The Slice Processing Unit (SPU) is responsible for
managing these slice instructions while the miss is pending. The
SPU holds the slice instructions and has all information necessary
to execute the slice instructions, including their completed source
register values, and data dependence information. Storing values
corresponding to source registers written by completed
instructions, allows the release of such registers even before a
consuming slice instruction completes. The SPU also ensures
correct execution when slice instructions are re-mapped and re-
introduced into the pipeline. By ensuring schedulers and physical
registers are not tied down by slice instructions, the pipeline
achieves a continual flow property where the processor can look
far ahead for miss-independent instructions to execute. Further,
efficient integration of results from executing miss-independent
instructions in the instruction window is possible by means of a
checkpoint mechanism and without requiring their reexamination.

CFP involves two key actions: draining out the long-latency-
dependent slice (along with ready source values) while releasing
scheduler entries and registers, and re-acquiring these resources
on re-insertion into the pipeline. The CFP concept is applicable to
a broad range of processor architectures (see Section 4.3). In this
paper we use Checkpoint Processing and Recovery (CPR) as the
baseline architecture [2] since it has been shown to outperform
conventional ROB-based architectures. CPR is a reorder-buffer-
free architecture requiring a small number of rename-map table
checkpoints selectively created at low-confidence branches, and
capable of supporting an instruction window of the order of
thousands of instructions. In addition to decoupling the
instruction window from the ROB, CPR provides a scalable
hierarchical solution for store queues. However, long latency
operations expose CPR resource limitations. CFP addresses CPR
limitations in the presence of long latency operations. The
synergistic interplay between CPR and CFP allows for the design
of truly scalable large instruction window memory latency-
tolerant processors.

Paper contributions: CFP is a unified proposal for decoupling
the demands of sustaining a large instruction window from both
the scheduler and register file. The key contributions are:

• Non-blocking register file. CFP presents the first proposal
where instructions waiting for long latency operations do not
block registers. Doing so avoids using large and complex
register files. CFP introduces the notion of a back-end
renamer that assigns new physical registers to previously
renamed slice instructions using physical-to-physical
remapping as opposed to the front-end renamer that performs
logical-to-physical remapping. This allows CFP to store only
slice instructions in data dependence order without requiring
slice storage to scale with instruction window size.

• Unified mechanism for non-blocking register file and
scheduler. By decoupling instruction window demands from
cycle-critical structures (register file, scheduler) in a unified
manner, CFP allows for a high-performance and scalable
processor core that can support a dynamic and adaptive
instruction window (100s to 1000s of instructions).

• CFP outperforms larger ROB and CPR cores. For
example, a CFP core with 8 map table checkpoints and a 96-
entry register file outperforms a 256-entry ROB machine
with a 192-entry register file and a much larger scheduler by
more than 20% for server suites, 33% for workstation suites,
28% for SPECFP2K, and 5% for SPECINT2K.

• CFP effectively tolerates long memory latencies. A CFP
core tolerates long memory latencies and isolates branch
prediction accuracy as the primary performance limiter for
future processors.

• CFP lends to highly efficient cache hierarchies. A CFP
core with a 512 KB L2 cache outperforms ROB-based cores
with 8 MB L2 caches for most benchmarks. For constant die
size, such efficient cache hierarchy allows more cores to be
placed (instead of cache) to achieve high throughput while
still achieving high single thread performance compared to
conventional large cache designs.

Section 2 outlines our simulation methodology and benchmark
suites. Section 3 provides an overview of our baseline CPR core
and quantifies its limitations. Section 4 describes Continual Flow
Pipelines and Section 5 presents a performance analysis of CFP.
Section 6 discusses CFP comparatively with two other techniques
for building latency tolerant processors and Section 7 discusses
implications of CFP on future research. Section 8 presents related
work and we conclude in Section 9.

2. SIMULATION METHODOLOGY
We use a detailed execution-driven timing simulator for
simulating the IA32 instruction set and micro-ops (uops). The
simulator executes user and kernel instructions, models all system
activity such as DMA traffic and system interrupts, and models a
detailed memory system. Table 1 shows parameters of our
baseline ROB-based processor based on the Pentium® 4 [12].

All experiments in the paper use an aggressive hardware data
prefetcher and a perfect trace cache (i.e., no trace cache misses).
Table 2 lists the benchmark suites, the number of unique
benchmarks within each suite, and the L2 cache load miss rates.
Unless specified, all performance numbers in graphs shown are
percent speedups calculated over the ROB-based baseline
processor. The baseline CPR processor replaces the reorder buffer
with 8 checkpoints created at low confidence branches. In
addition, CPR employs larger load and store buffers. The baseline
CPR employs a hierarchical store queue with a 48-entry
conventional L1 store queue (on the critical path) and a large and
slow (L2 cache access latency) 1024-entry L2 store queue (off the
critical path). The large L2 store queue is necessary for some
benchmark suites to achieve high performance. The baseline CPR
uses a store sets predictor [7] to predict load-store memory
dependences and to issue loads ahead of unknown stores.
Completed stores look up a load buffer to roll back execution to
an earlier checkpoint in case of memory dependence

108

Table 1 ROB processor model
Processor frequency 8 GHz
Rename/issue/retire width 4/6/4
Branch mispred. penalty Minimum 20 cycles
Instruction window size 256
Scheduler 64 int., 64 fp., 32 mem.
Register file 192 int., 192 fp.
Load/store buffer size 64/48
Memory dependence pred. Store sets
Functional units Pentium® 4 equivalent
Branch predictor Gshare (64K)-perceptron (256) hybrid
Hardware data prefetcher Stream-based (16 streams)
Trace cache 4-wide, perfect
Level 1 (L1) Data cache 32 KB, 3 cycles (line 64 bytes)
Level 2 (L2) cache 2MB, 8 cycles (line 64 bytes)
Load-to-use latency to
memory

100 ns (includes DRAM latency and
transfer time)

Max. outstanding misses 128

Table 2 Benchmark suite

Suite Num.
Bench Examples

L2$ load
misses

/1000 uops
SPECFP2K (SFP2K) 13 www.spec.org 7
SPECINT2K(SINT2K) 8 www.spec.org < 1
Internet (WEB) 15 SPECJbb, WebMark 1
Multimedia (MM) 18 MPEG, photoshop, speech 2
Productivity (PROD) 8 SYSMark2k, Winstone < 1
Server (SERVER) 7 TPC-C 1
Workstation (WS) 18 CAD, rendering 11

mispredictions. The load buffer has 2048 entries, is set-
associative, and is not in the critical path as it does not store or
forward any data.

3. QUANTIFYING CPR PERFORMANCE
In this section, we analyze the performance of our baseline CPR
processor. We provide an overview of CPR in Section 3.1 and
highlight key differences over ROB-based processors. Section 3.2
presents performance limitations of CPR and Section 3.3
quantitatively analyzes these limitations.

3.1 CPR overview
CPR is a ROB-free proposal for building scalable large
instruction window processors [2]. CPR addresses the scalability
and performance limitations of conventional branch misprediction
recovery mechanisms by using a small number of register rename
map table checkpoints selectively created at low-confidence
branches. CPR employs this checkpoint mechanism to implement
a register reclamation scheme decoupled from the reorder buffer,
and for providing precise interrupts. With CPR, instruction
completion is tracked using checkpoint counters and entire
checkpoints are committed instantaneously thus providing the
appearance of a bulk commit and breaking the serial commit
semantics imposed by a ROB. CPR aims to decouple key
processor mechanisms of misprediction recovery, register
reclamation, and commit operations from the reorder buffer.

To allow for fast and efficient forwarding of data from stores to
subsequent loads while supporting a large number of stores at any
time, CPR uses a hierarchical store queue implementation (see
Section 2). The level one queue holds most recent stores while the
level two holds older stores displaced from the level one.

3.2 Quantifying CPR performance potential
Figure 1 presents the performance gap between a base and an
ideal CPR implementation. We vary scheduler and register file
parameters alone because limiting these structures account for
most pipeline stalls in the baseline processor. The y-axis shows

percent speedup over the baseline ROB processor of Table 1 (for
corresponding baseline frequencies of 3 GHz and 8 GHz). The
figure shows two different frequencies corresponding to current
and future processor frequencies to understand effects of
increasing relative memory latencies. Base CPR uses the register
file and scheduler of Table 1. The scheduler is blocking—a long
latency operation and its dependents stay in the scheduler
occupying entries. The ideal CPR relaxes the register file and
scheduler constraints by assuming infinite entries for each. The
remaining machine parameters for the base CPR and ideal CPR
are the same as Table 1. For a 4-wide 8-GHz processor and a 100
ns load-to-use latency for a miss to memory, a single load miss
requires a peak target window of 3200 (=4X8X100) instructions.
The presence of a second load miss that depends on the first load
miss in the window results in another 100 ns stall right after the
first 100 ns stall completes, thus suggesting up to a 6400-entry
instruction window to tolerate such a miss. Thus, miss-dependent
misses result in greater pressure on the instruction window. We
experimentally observed performance gains for some benchmarks
as we scaled the target window up to 8192 instructions and this
data is presented later. We therefore assume an 8192-entry target
instruction window to tolerate latencies across the large set of
benchmarks. We emphasize this is a conceptual target since CPR
and CFP do not require any hardware structure to scale up to the
total number of in-flight instructions, as we will discuss later.

As can be seen, while base CPR provides high performance over a
ROB-baseline, the performance gap between base CPR and ideal
CPR is substantial for the given register file and scheduler size,
and becomes even larger as relative memory latencies increase.

This performance gap between base and ideal, and the negative
impact of increasing memory latencies serve as quantitative
motivation to investigate new solutions. The next section presents
a quantitative analysis to identify the sources of this gap.

3.3 Understanding CPR limitations
This section analyzes the interaction of the scheduler and register
file. Figure 2 shows percent speedup over the baseline ROB for
five CPR configurations. In the figure, the “perf” prefix indicates
a sufficient size of the corresponding resource for an 8192-entry
instruction window, and the “real” prefix indicates the
corresponding resource size listed in Table 1. The left most bar
(first bar) for each benchmark suite corresponds to a baseline CPR
model discussed in Section 2 and with the register file and
scheduler configuration listed in Table 1. The second bar
corresponds to the baseline CPR combined with a perfect store
queue (unlimited entries, single-cycle access) and perfect memory
dependence predictor (perfSTQ/MD). Since the performance gap

109

between these first two bars is small, we do not study the memory
dependence predictor and store queue any further in this paper.

The third bar from the left corresponds to a configuration with a
perfect register file (unlimited entries, single-cycle access) and the
baseline scheduler; the fourth bar corresponds to a configuration
with a baseline register file and a perfect scheduler (unlimited
entries, single-cycle scheduling); and the fifth bar (right most)
corresponds to both the register file and scheduler being perfect.

Increasing the register file without increasing the scheduler does
not provide performance benefits. Idealizing the scheduler while
keeping the register file finite does help performance but a
substantial performance gap remains between this configuration
and one where both, register file and scheduler, are ideally sized.
The results indicate the importance of increasing the size of both
resources to achieve substantial performance gains. We now
qualitatively analyze this result.

3.3.1 Schedulers
Our baseline CPR model uses a decentralized blocking scheduler.
In blocking schedulers, entries may fill up in the presence of long
latency operations. The Pentium 4 [12] uses a decentralized and
non-blocking scheduler—a long latency operation (an L1 miss for
the Pentium 4) and its dependent instructions do not occupy
scheduler entries while waiting for the miss to return. The
distributed non-blocking design allows for an effectively large
scheduler. The Waiting Instruction Buffer (WIB) [14] employs a
small and fast scheduler backed by a larger buffer for storing
instructions dependent upon long latency operations.

While non-blocking scheduler designs such as the Pentium 4 style
replay mechanism and the WIB allow the release of scheduler
entries occupied by instructions dependent on a long latency
operation, they assume sufficiently large register files. The fourth
bar in Figure 2 corresponds to a CPR processor with a non-
blocking scheduler but with limited register file size—an ideal
scheduler configuration makes a blocking scheduler behave the
same as a non-blocking scheduler because instructions never wait
for a scheduler entry. From Figure 2, we see that while a non-
blocking scheduler can solve scheduler limitations, a substantial
performance gap remains.

3.3.2 Register files
Conventional physical register reclamation algorithms free a
register conservatively by reclaiming a physical register only
when it is no longer part of architectural state. This happens when

the instruction that overwrites the logical register, which maps to
the physical register, commits. While this allows architectural
state restoration on branch mispredictions, interrupts, and
exceptions, physical register lifetime artificially increases because
reclamation is limited by the serial retirement semantics of the
reorder buffer. This limits the supply of free registers and
necessitates larger register files.

Our baseline CPR model uses an aggressive counter-based
register reclamation scheme [17] instead of relying on a ROB-
based reclamation scheme. CPR thus breaks the limitation of
serial register reclamation by guaranteeing architectural state is
never lost, while aggressively reclaiming all physical registers
except those corresponding to a checkpoint (physical registers
mapped to logical registers at the time of checkpoint creation).

While the CPR scheme works well for short latency operations,
long latency operations result in increased register file pressure.
Consider a blocked instruction dependent upon a long latency
operation. In a typical implementation, the physical register
corresponding to its destination operand cannot be freed at least
until the blocked instruction completes. Further, if a source
operand depends on a short latency operation independent of the
long latency operation, the physical register corresponding to that
source operand cannot be freed even if the short latency producer
has completed, until the current blocked instruction executes.
These factors restrict availability of free physical registers, and
thus stall execution and subsequently limit performance. Even
with the aggressive register reclamation techniques of CPR, a
significant performance gap remains (Figure 2).

To bridge this performance gap using conventional schemes,
sufficient physical registers must be made available for the target
window. For example, an instruction window of the order of
thousands of entries needed to tolerate future memory latencies
would typically require thousands of physical registers in
conventional processors. Simply increasing register file size
significantly degrades cycle time. Hierarchical solutions have
been proposed to reduce this cycle time degradation by adding a
small fast level backed by a slower and larger second level. In
both cases, the register file size is still tightly coupled to the
instruction window size and the designs are not resource-efficient
since all physical registers need to be pre-allocated and sufficient
buffering must be available a priori. Further, such multilevel
designs introduce complexity in the pipeline because the core has
to deal with variable access latencies, and these hierarchies need
to be managed carefully to prevent performance degradation.

0%

10%

20%

30%

40%

50%

60%

SFP2K SINT2K WEB MM PROD SERVER WS

%
 S

pe
ed

up
 o

ve
r R

O
B

 b
as

e

CPR
CPR+perfSTQ/MD+realRF+realSCHED
CPR+perfSTQ/MD+perfRF+realSCHED
CPR+perfSTQ/MD+realRF+perfSCHED
CPR ideal

Figure 2 Understanding sources of performance gap.

0%

10%

20%

30%

40%

50%

60%

SFP2K SINT2K WEB MM PROD SERVER WS

%
 S

pe
ed

up
 o

ve
r

re
sp

ec
tiv

e
R

O
B

 b
as

e

CPR-3 GHz
CPR-ideal-3 GHz
CPR-8GHz
CPR-ideal-8GHz

Figure 1 Limit study of CPR processors.

110

4. CONTINUAL FLOW PIPELINES
Continual Flow Pipeline (CFP) comprises a microarchitecture
where cycle-critical structures of a processor, namely the
scheduler and register file, are sized independent of the target
instruction window required for tolerating increasing memory
latencies. Section 4.1 discusses key concepts of CFP for providing
a unified mechanism for a non-blocking scheduler (continual flow
scheduler) and non-blocking register file (continual flow register
file), and Section 4.2 discusses CFP implementation. Because of
the inherent scalability characteristics of CPR, CFP uses CPR as
the base processor. Section 4.3 discusses CFP in the context of
different baseline processors.

4.1 De-linking instruction window from cycle-
critical structures
Inefficiencies in management of the cycle-critical register file and
scheduler in the presence of long latency operations limit the
lookahead required to tolerate such latencies. Removing these
inefficiencies requires the register file and scheduler resources to
be decoupled from demands of the instruction window. This
requires a non-blocking design for the scheduler and register file,
where an instruction does not tie down entries in these structures
in the event of a long latency miss.

We discuss key CFP mechanisms for achieving a continual flow
scheduler (Section 4.1.1), a continual flow register file (Section
4.1.2), and for re-inserting long latency dependent instructions
into the pipeline, even after all their scheduler entries and
registers have been previously reclaimed (Section 4.1.3). Since we
are concerned with instructions dependent upon a long latency
operation, we refer to these instructions as the forward slice of the
long latency operation, or simply the slice instructions.

4.1.1 Continual flow scheduler
To achieve a continual flow scheduler, CFP uses a first-in first-out
(FIFO) buffer to store temporarily the slices corresponding to long
latency operations in the instruction window. This is similar to the
WIB except unlike the WIB where the buffer must be the size of
the target instruction window (i.e., the ROB size itself since the
WIB targets a ROB-style processor) CFP only buffers the actual
slice, which is significantly smaller than the instruction window
(See Section 6).

Since CFP targets instructions experiencing long latency L2 cache
misses, such instructions along with their slice immediately leave
the scheduler, thus freeing scheduler resources for subsequent
instructions. For this, slice instructions treat their source registers,
dependent on long latency operations, as ready, even though they
may not actually be ready. This allows the slice to drain out of the
scheduler and into another buffer without changing the scheduler
design. Other instructions not dependent on long latency
operations (e.g., those that hit the L1 or L2 cache) naturally leave
the scheduler quickly as they become ready to execute.

4.1.2 Continual flow register file
With mechanisms for a continual flow scheduler in place, the next
step is developing mechanisms for a continual flow register file.
For ease of discussion, we define two classes of registers:

Completed source registers: These are registers mapped to
instructions that have completed execution, and are read by
instructions in a slice of a long latency operation. Conventional
register reclamation cannot free these registers until their values
are read by the dependent slice instructions, which may be
hundreds of cycles later. Since we assume at most two input
operands for an instruction, at least one operand of a slice
instruction must depend upon a long latency operation. An
instruction in the slice cannot have both source operands
correspond to completed source registers.

Dependent destination registers: These are registers assigned to
the destination operand of slice instructions. These registers will
not be written at least until the long latency operation completes,
which may take hundreds of cycles. Conventional reclamation ties
these registers down unnecessarily for many cycles.

CFP enables a continual flow register file by providing
mechanisms for reclaiming the above two register classes. When
an instruction within the slice of a long-latency instruction leaves
the scheduler and drains through the pipeline, it reads any of its
completed source registers, records the value as part of the slice,
and marks the register as read. Since this instruction has the
completed source register value available, the register storage
itself is now available for reclamation once all readers have
dispatched. The slice instruction also records its physical register
map as part of the slice. The physical map is used to maintain true
data dependence order among slice instructions. The slice in the
buffer is a self-contained subset of the program and can execute
independently since appropriate ready source values and the data
dependence order are available.

With CFP, the ready source values are in the SDB, and any
destination physical register will be re-acquired (Section 4.1.3)
when the slice re-executes. This allows release of both classes of
registers discussed above associated with slice instructions.
Registers can now be reclaimed at such a rate that whenever an
instruction requires a physical register, such a register is always
shortly available—hence achieving the continual flow property.

We now discuss the conditions under which actual reclamation
occurs. To recover by using checkpoints, two types of registers
cannot be released until the checkpoint is no longer required:
registers belonging to the checkpoint’s architectural state, and
registers corresponding to the architectural live-outs. These
however are small in number (∝logical registers) as compared to
the physical register file. Further, this state does not depend upon
implementation details such as outstanding misses, target
instruction window size, etc.

Other physical registers can be reclaimed when (1) all subsequent
instructions reading the registers have read them, and (2) the
physical registers have been subsequently re-mapped, i.e.
overwritten. CFP guarantees condition 1 because slice
instructions mark completed source register operands as read
before they even complete but after they read the value. Condition
2 is met due to the basic register renaming principle—for L
logical registers, at the latest the (L+1)th instruction requiring a
new physical register mapping will overwrite an earlier physical
register mapping. Thus, for every N instructions (with a
destination register) leaving the pipeline, N-L physical registers
will be overwritten and hence will satisfy condition 2.

111

4.1.3 Re-introducing the slice back into the pipeline
Slice instructions re-enter the pipeline when the long latency data
returns. Since destination registers for these instructions have
been released, these instructions are remapped to new physical
registers by means of back-end renaming.

Re-acquiring registers with back-end renaming and without
deadlocks. Unlike conventional front-end renaming where a
logical register maps to a physical register, in back-end renaming
a physical register maps to another physical register. When the
long latency operation completes, new front-end instructions wait
until the slice instructions drain into the pipeline. Doing so allows
these re-entering slice instructions to acquire scheduler entries,
thus guaranteeing their forward progress and avoiding deadlock.
These slice instructions also require new physical registers. New
free registers are guaranteed by: (1) exploiting the earlier
mentioned basic register renaming principle where registers in the
slice are reclaimed when they are overwritten and an overwriting
instruction is guaranteed to appear within a fixed number of
rename operations, and (2) sizing the register file a priori to
guarantee the slice remapper eventually finds a free physical
register even when some physical registers cannot be reclaimed
because they belong to checkpoints and architectural live-outs.

We now explain how the a priori sizing is done when physical-to-
physical back-end renaming is used. Assume PFE is the number of
physical registers available in the front end for renaming logical to
physical registers. The slice remapper, used for back-end
renaming, will thus observe potentially PFE unique physical
registers while performing the physical to physical remapping.
One uncommitted checkpoint is guaranteed to exist prior to the
oldest load miss in the SDB (since we use a checkpoint-based
CPR baseline). Thus, the physical registers belonging to that
checkpoint (such registers totaling L in number) cannot be
released until the checkpoint retires and will not appear as
destination physical registers among the slice instructions. Hence,
the slice remapper only sees (PFE – L) unique physical register
names in the SDB. If the slice remapper has (PFE – L + 1) physical
registers available for remapping, deadlock is avoided by the
renaming principle discussed earlier. In an implementation that
supports C checkpoints, a maximum of (C * L) physical registers
may be checkpointed in the window and thus may not be available
to the slice remapper. Live-outs occupy an additional L physical
registers unavailable to the slice remapper. Thus, to avoid
deadlocks, the slice remapper needs (PFE – L + 1) physical
registers, but may actually have only (PFE – [(C + 1)*L]) physical
registers available to it. Hence, we need to have additional (C*L +
1) physical registers reserved only for the slice remapper. This
number is dependent only on the number of checkpoints and the

architectural registers and not on any other implementation details
such as miss latency or target instruction window size.

Synchronizing dependences between slice and new
instructions. Since new instructions fetched after slice reinsertion
may have dependences on slice instructions, the slice destination
registers that are still live (corresponding to the live-outs) at the
time of slice reinsertion, must not be remapped by the slice
remapper. This ensures that new instructions will correctly
synchronize their dependences to the live registers updated by the
slice instructions. A rename filter is used for this and is discussed
later.

In summary, with CFP, instructions dependent upon a long
latency operation drain from the pipeline along with the long
latency operation, releasing any register file and scheduler entries.
These instructions, take along any values read from completed
source registers, and the data dependence order (via physical
maps) into a buffer. They retain all information for execution
without requiring reading of the earlier ready sources again from
the register file.

4.2 CFP implementation
We now discuss implementation of CFP mechanisms. We present
changes to a baseline CPR processor. Section 4.2.1 describes how
instructions in the slice of the long latency operation are identified
and how they release scheduler and register file entries prior to
completion. Section 4.2.2 presents the Slice Processing Unit
(SPU). The SPU is responsible for buffering the slice while the
long latency miss is outstanding, and for processing the slice prior
to re-introduction into the pipeline. While a concrete area model
is beyond the scope of the paper, we provide size approximations
for structures CFP adds. These additions consist largely of dense
SRAM structures and tables whose sizes need not scale with
target instruction-window size.

Although we only consider L2 cache misses as long latency
operations, other operations such as long-latency floating-point
operations may also trigger CFP, if necessary. Figure 3 shows a
block diagram of CFP in a conventional processor.

4.2.1 Releasing scheduler entries and physical
registers associated with slice instructions
Slice instructions are identified dynamically by tracking register
and memory dependences of long latency operations. A bit, Not a
Value (NAV bit) initialized to zero, is associated with each
physical register and store queue entry. On an L2 cache load miss,
the NAV bit of the load’s destination register is set to one.
Subsequent instructions reading this register inherit the NAV bit

uOP
Queues

Instruction
Decode

Allocate
and

Register
Rename

Scheduler

Register
File and
Bypass

Data
Cache and
Functional

units

L2
Cache

Memory
Interface

FIFO Slice Data Buffer
Slice Rename

Filter

Slice
Remapper Slice Processing Unit

Figure 3 Block diagram of a CFP processor.

112

for their destination registers. If the destination is a store queue
entry, the entry’s NAV bit is also set. Destination registers of
loads predicted to depend upon an earlier NAV store by the
memory dependence predictor also have their NAV bits set, thus
constructing dependence between stores and loads. An instruction
is in a slice if it reads a source operand register or a store queue
entry with a NAV bit set. A register with its NAV bit set is
considered ready. Once both sources are ready (or have the NAV
bits set), the instruction drains through the pipeline.

During the draining process, slice instructions mark their source
registers, whether NAV or completed, as having been read. As in
CPR, for CFP this involves decrementing the use counter for the
register. The registers are reclaimed when the reclamation
conditions discussed in Section 4.1 are met. Although source
registers of slice instructions are marked as read, slice instructions
do not decrement the checkpoint instruction counter (used to track
instruction completion in CPR) since they are not completed.
Non-slice instructions however execute and decrement the
checkpoint’s instruction counter to signal their completion. Only
the slice instructions move into the Slice Processing Unit (SPU).

4.2.2 The Slice Processing Unit
The Slice Processing Unit (Figure 3) serves two primary
functions:

1. It holds slice instructions, physical maps, and source data
values for the slice in the Slice Data Buffer (SDB), and

2. It remaps slice instructions prior to re-introduction into the
pipeline using the Slice Rename Filter and Slice Remapper.

Slice Data Buffer. Two actions on slice instructions determine
the ordering information required in the SDB:

a) Back-end renaming when registers of slice instructions are
released and re-acquired. If the slice remapper uses logical
names for renaming, then the original program order is
required. This is similar to a conventional front-end renamer.
However, if physical names are used for renaming, then the
data dependence order among slice instructions is sufficient.

b) Branch misprediction recovery. When a branch mispredicts,
slice instructions after that branch must be identified and
squashed. If a ROB-based misprediction recovery
mechanism is used, then the slice buffer needs to maintain
program order to allow correct identification of all
instructions after the misprediction. However, if CPR-style
map table checkpoints are used for misprediction recovery,
then slice instructions after the mispredicted branch’s
checkpoint are easily identified and squashed using the
checkpoint identifiers of the slice instructions.

As our baseline CPR uses checkpoint-based misprediction
recovery and the slice remapper uses physical names, the SDB
stores the slice instructions in data dependence order and not in
program order. Since the SDB only stores slice instructions in
data dependence order, it does not require tracking program order
of the entire window. Thus, the SDB size is significantly smaller
than the instruction window size.

Each entry in the FIFO SDB has the following fields shown in
Figure 4: 1) instruction opcode, 2) one source register’s data field
to record values from a completed source register, 3) two source

register mappings, 4) one destination register mapping, and 5)
some control bits. These control bits manage re-insertion into the
SDB and squashing of SDB entries in the event of branch
mispredictions and other exceptions.

The SDB has sufficient bandwidth to allow writing and reading
blocks of instructions. A block corresponds to the width of the
machine. The single read-port and single write-port block
organization for the SDB array is a simple, high-density, and
effective implementation. SDB entries are allocated as slice
instructions leave the scheduler. Blocks of slice instructions enter
the SDB in scheduler order, and leave it in the same order.

The SDB can be implemented using a high density SRAM. One
possible area-efficient design is a long-latency, high-bandwidth
cache-like array structure with latency and bandwidth
requirements similar to an L2 cache. Since memory latencies are
high, operations on the SDB, including reading and writing, are
not on the critical path. We model a 25 cycle latency for
processing an instruction through the SPU (including insertion
into the SDB, removal from the SDB, and processing through the
remapper and filter), and observe no performance impact, since
the additional latency is small compared to L2 cache miss
latencies. An SDB entry corresponds to approximately 16 bytes,
and our experiments presented in Section 5.2 suggest an SDB of
few hundred entries is sufficient to achieve high performance.

Slice Remapper. Slice instructions leaving the SDB may require
new registers. The slice remapper maps the physical registers in
the slice to new physical registers. The slice remapper has access
to the front-end mapper name space and a small number of
reserved registers (see Section 4.1.3). The slice remapper has as
many entries as the number of physical registers and records only
map information. We believe CFP is the first proposal using a
physical-to-physical remapper for slice instructions thus allowing
back-end renaming and front-end renaming to coexist seamlessly.

Slice Rename Filter. Registers corresponding to live-outs must
retain the original physical map. The Slice Rename Filter is used
to avoid remapping these registers. The filter has an entry for each
logical register and records the identifier of the instruction that
last wrote the logical register. When an instruction is renamed in
the front-end renamer, the rename filter is updated with the
instruction identifier. If this instruction enters the SDB, on its
subsequent reinsertion into the pipeline, the rename filter is
looked up using the logical destination register of the instruction.
If the instruction identifier returned by the lookup matches the
current instruction being re-inserted into the pipeline, the register
is considered still live as no later instruction has remapped it. The
original physical mapping for this register must be retained so that
any new front-end instructions will see the correct physical
register. These registers do not pass through the slice remapper. If
the identifier does not match, the register has been remapped and
the slice instruction must now acquire a new register using the
slice remapper. Physical registers corresponding to checkpoints
are also handled similarly. The number of entries in the rename
filter is (number of logical registers) X (number of checkpoints).

Opcode Ready Source
Data

Src1 Register
Mapping

Control Bits Dest Register
Mapping

Src2 Register
Mapping

Figure 4 SDB entry fields.

113

SDB and multiple independent loads. The SDB can have more
than one slice in the event of multiple independent load misses.
Since these slices are self-contained program slices (and include
source operand values and dependences), they can be drained in
any order. The only live-ins are the values of loads that missed.
Load misses may complete out of order; a slice belonging to a
later miss in the SDB may be ready prior to an earlier slice in the
SDB. Three approaches to handle this are: 1) wait until oldest
slice is ready and drain the SDB in a first-in first-out order, 2)
drain SDB in a first-in first-out order when any miss in the SDB
returns, and 3) drain the SDB sequentially from the miss serviced
(may not be the oldest slice in the SDB). With (3), register
mappings from an earlier waiting slice that source instructions in a
later ready-to-execute slice are detected using the slice remapper.
We use approach 3. Identifying the correct SDB entry
corresponding to the load miss is easily achieved by using the
SDB index stored in the outstanding miss cache fill buffer.

SDB and chains of dependent loads. A slice may have chains of
dependent loads that may miss in the L2 cache. When a miss
returns, the load’s slice leaves the SDB and re-enters the pipeline.
Subsequently, another load in the slice could immediately miss
the L2 cache. Further, instructions dependent on this miss may be
part of the slice of the earlier load miss. These instructions re-
enter the SDB, thus preventing a stall in the event of a chained
dependent load miss. However, these instructions must occupy
their original position in the SDB along with their original
physical map to maintain data dependence order of the original
program. Thus, the release of an SDB entry occurs only if the
slice instruction associated with it successfully executes and
completes. Slice instructions re-entering the SDB discard any new
mapping they obtained in the slice remapper and retain the
original mapping already stored. They also read any newly
produced source register values and store them when they re-enter
the SDB. The head instruction in the slice always completes
successfully thus guaranteeing forward progress. The SDB re-
insertion may result in empty entries for instructions that
completed and did not require re-insertion. This may reduce write
bandwidth into the SDB because now, instead of blocks of entries,
individual entries are written. We add a write-combining queue in
front of the SDB to match the single port SDB design with the
pipeline. Since these re-inserted instructions are needed again
only after hundreds of cycles (L2 cache miss latency), any
additional latency of the write-combining queue has no impact on
performance.

4.3 CFP and base processor interactions
The two core CFP principles are: 1) draining out the long-latency-
dependent slice (along with ready source values) while releasing
scheduler entries and registers, and 2) re-acquiring these resources
on re-insertion into the pipeline. While this paper has discussed
these principles and their implementation in the context of a CPR
processor, they are applicable as well to conventional processors
such as ROB-based out-of-order and in-order processors.
Conventional processors, independent of their architectural
decisions find it increasingly difficult to tolerate very long
latencies such as L2 cache misses to memory and thus can benefit
from CFP (out-of-order execution and compiler techniques can
often assist in tolerating shorter latencies such as L1 miss/L2 hit
conditions, but not L2 cache misses).

Since CPR already provides checkpoints to enable coarse-grained
scalable recovery and to re-generate architectural state whenever
necessary, support for recovering to a point prior to the load miss
for CFP (in the event of exceptions and mispredictions in the
slice) already exists. For ROB-based and in-order processors, a
form of roll-back support (although at a very coarse-grain) will be
required in the form of a minimum single checkpoint to support
CFP. The CPR-based CFP implementation provided in this paper
is meant as a general solution and simplifications can be
envisioned in the implementation if more restrictive baseline
processors such as ROB-based or in-order models are employed.
In either case, one only ensures the two core principles of CFP
discussed above are maintained.

CPR is an attractive base processor model on which to build CFP
since in addition to having support for coarse-grain checkpoints,
CPR achieves higher performance than a ROB-based model and
has benefits in increasing ILP by being efficient in managing
resources and mechanisms even in the absence of long latency
misses. CFP improves the resource efficiency of CPR in the
presence of long latency operations and CPR’s selective
checkpoint property allows for a high-performance baseline. This
synergistic interplay between CFP and CPR allows for design of
truly scalable instruction window processors.

5. RESULTS AND ANALYSIS
Section 5.1 compares CFP performance to CPR and ROB
baselines and Section 5.2 analyzes sources of performance.
Section 5.3 discusses power implications and Section 5.4
compares the resource efficiency of CFP, CPR, and ROB
processors across various configurations.

5.1 CFP performance
Figure 5 shows percent speedup of CPR, CFP, and an ideal CPR
configuration over the baseline 256-entry ROB processor from
Table 1. Both CFP and CPR configurations match the ROB
baseline model parameters except for the use of 8 checkpoints
instead of the 256-entry ROB and a hierarchical store queue
organization.

The ideal CPR configuration has unlimited scheduler and register
file entries. CFP outperforms both the ROB and CPR
implementations across all benchmark suites. Moreover, CFP
significantly bridges the gap between the baseline CPR and ideal
CPR implementation and achieves 75% of the ideal CPR speedup.

0%

10%

20%

30%

40%

50%

60%

SFP2K SINT2K WEB MM PROD SERVER WS

%
 S

pe
ed

u
p

ov
er

 R
O

B
 b

as
e

CPR
CFP
CPR-ideal

Figure 5 Performance comparison of ROB, CPR, and CFP.

114

The remaining gap between CFP and ideal CPR exists because the
scheduler fills up with chains of multi-cycle latency instructions
(loads that miss the L1 cache and hit the L2, multi-cycle floating
point operations etc.) and their dependent instructions. While the
individual instruction latencies are relatively small, the combined
latency of an entire such chain may be long. Such chains can
degrade performance since dependent instructions in the chain
consume scheduler and register file entries. CFP does not target
such situations since it aims at tolerating longer L2 cache misses.
Schemes such as employed by the Pentium 4 for targeting L1
cache miss latencies, when used in conjunction with CFP, may
eliminate these scheduler stalls.

5.2 CFP performance analysis
Figure 6 shows instruction-window size distribution with CFP. As
we can see, a CFP processor is able to achieve an instruction
window in the thousands for a significant fraction of the execution
time. More than 2048 instructions are in the window for nearly
40% of the time for the floating-point benchmarks, and more than
20% of the time for the server, workstation, and internet
benchmarks. Between 4096 and 8192 instructions are in the
window 5% to 20% of execution time depending upon the suite.

CFP performance gains are due to two factors: 1) its ability to
tolerate long memory latencies and 2) its ability to generate a
cache miss early thus exposing memory level parallelism. CFP’s
ability to tolerate long memory latencies can be measured by the
fraction of independent instructions that complete (and are

eventually committed i.e., were not on a misspeculated path) in
the shadow of a long latency miss operation (shown in Table 3).
As can be seen, a significant portion of the non-speculative
instruction-window in the shadow of a long latency miss
comprises miss-independent instructions for all benchmark suites.
Others [13] have also observed similar results for the SINT2K
suite. Thus, a significant amount of useful work can be completed
while a miss is outstanding allowing the processor to tolerate such
latencies. More importantly, CFP can tolerate even isolated cache
misses—situations that cannot be handled by other techniques
such as Runahead execution (discussed later).

In addition to tolerating cache miss latencies, CFP also increases
memory level parallelism by getting to a cache miss sooner.
Figure 7 shows the outstanding L2 cache miss distribution for
four suites and the CPR, ROB, and CFP architectures. As can be
seen, for WS and SFP2K, CFP increases the memory level
parallelism over both CPR and ROB. For SINT2K and SERVER,
the number of outstanding misses does not increase significantly.
However, these suites still observe a performance gain from CFP
(refer Figure 5) primarily because a large amount of independent
work can be successfully completed (86% for SINT2K and 90%
of the non-speculative instruction window for SERVER) for these
suites even in the presence of isolated cache misses.

CFP can sustain a very large instruction window after a long-
latency load miss because most mispredicted branches after the
miss are independent of the miss and are therefore resolved
quickly and in parallel with the miss. Only mispredicted branches
in the window after the miss that depend upon the miss (and thus
cannot be resolved until the miss completes) disrupt the
usefulness of the instruction window. These branches are very
infrequent (Table 4, Column 5).

To understand the amount of buffering for slices, we present
statistics for the SDB. SDB occupancy information is presented in
Table 4. The average SDB size is measured only during the
presence of a long latency miss when the SDB is not empty. The
average SDB size numbers indicate the SDB needs to sustain only

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

>128 >256 >512 >768 >1024 >1280 >1536 >1792 >2048 >4096
Instruction window size bins

P
er

ce
nt

 o
f E

xe
cu

tio
n

tim
e

SFP2K
SERVER
WS
WEB
PROD
MM
SINT2K

Figure 6 Instruction window size distribution.

Table 3 Latency Tolerance: Percent of independent
instructions retired in the shadow of a L2 miss

SFP2K SINT2K WEB PROD MM SERVER WS

80% 86% 82% 85% 73% 90% 80%

Figure 7 Memory level parallelism: Outstanding L2 miss distributions for CPR, CFP, and ROB. Higher curves do not
imply more misses because these numbers are normalized to different execution times. Execution time for CFP is lowest.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of outstanding misses

%
 e

xe
cu

tio
n

tim
e

(c
yc

le
s)

CFP-SFP2K
CPR-SFP2K
ROB-SFP2K
CFP-SINT2K
CPR-SINT2K
ROB-SINT2K

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of outstanding misses

%
 e

xe
cu

tio
n

tim
e

(c
yc

le
s)

CFP-WS
CPR-WS
ROB-WS
CFP-SERVER
CPR-SERVER
ROB-SERVER

115

hundreds of instructions on average, to support an instruction
window in the thousands. Further, only a small fraction of the
total number of retired instructions (less than 10% on average)
enter the SDB. Even though these slice instructions are small in
number, they significantly limit performance in conventional
ROB processors. SFP2K has a significant fraction (~16%) of
retired instructions entering the SDB because of a large number of
L2 cache misses. The small fraction of dependent instructions
implies a small dense-SRAM SDB structure.

5.3 Implications on power
Since CFP executes past long latency operations and performs
slice processing, power implications arise. If a branch dependent
upon a long latency load is mispredicted, most of the execution in
the shadow of the load may be wasted because it was on the
mispredicted path. As a result the number of instructions executed
on the wrong path increases with CFP. In the baseline CPR
processor, 15% of instructions executed were misspeculated while
with CFP, this number goes up to 30%. While this may not appear
insignificant, this needs to be viewed keeping in mind the
performance gains of CFP and the significant area and power
savings in the cache hierarchy. Slice processing could also
potentially increase power because of the additional work done in
the SPU. However, since SPU activity is low (<10% of
instructions enter the SPU), CFP compares favorably to
conventional techniques requiring large highly active structures
(such as scheduler and register file) to sustain a large instruction
window.

5.4 Equal cycle-critical resource comparison
To determine the resource efficiency of CFP, we compare the
performance of CFP to a conventional ROB and a CPR processor
using equal cycle-critical resources, over various configurations.
For each configuration, the register file and scheduling window
sizes remain the same for ROB, CPR, and CFP configurations.
Figure 8 shows results for four benchmark suites. The y-axis is
percent speedup over a 128-entry ROB baseline (the smallest
ROB configuration in the figure). The x-axis label format w/x/(i-f-
m) corresponds to a design for a w-entry reorder buffer, with x
integer and x floating point registers, and distributed scheduler (i-
entry Int., f-entry FP, and m-entry Mem.). The w-entry in the x-
axis label is applicable only to the ROB-based machine. The CPR
and CFP machines do not use a ROB and instead, use 8 map table
checkpoints to achieve an adaptive instruction window. For space
reasons, we present only the SINT2K, SFP2K, SERVER and WS
benchmark suites; other suite results are similar.

Results show, for equal buffer sizes, a CFP processor outperforms
both a ROB-based and a CPR processor. More interestingly, the
96/(32-32-16) CFP configuration significantly outperforms the
256/192/(64-64-32) ROB configuration for all benchmarks, by
28% on SFP2K, 20% on Server, 33% on WS and 5% on SINT2K.

To understand why a small register file is sufficient for CFP to
outperform a much larger ROB configuration, Table 4 provides
statistics for average number of registers held at any time by
checkpoints. Under CFP, registers held by a checkpoint cannot be
released until the checkpoint retires. The average number of
physical registers tied down because of checkpoints is
significantly lesser than total register file size. The total number of
checkpoint registers tied down on average is smaller than the
maximum such number (i.e., number of checkpoints X number of
logical registers) because often, the lifetimes of registers are long,
and hence the same physical register belongs to multiple
checkpoints.

6. CFP, RUNAHEAD, AND WIB
The inability of conventional processors to hide long memory
latencies strongly ties in to the linear scaling of resources. This
must occur to match demands placed by a very large instruction
window, while maintaining high clock frequency and low design
complexity. By providing mechanisms to process independent
instructions continually in the presence of long memory latencies,

Figure 8 Equal cycle-critical resource comparison.

0%

10%

20%

30%

40%

50%

60%

70%

80%

128/96/(32-32-16) 192/144/(48-48-24) 256/192/(64-64-32)

%
 S

pe
ed

up
 o

ve
r R

O
B

 b
as

e
CFP-SFP2K CPR-SFP2K

CFP-SINT2K CPR-SINT2K

ROB-SFP2K ROB-SINT2K

0%

10%

20%

30%

40%

50%

60%

70%

80%

128/96/(32-32-16) 192/144/(48-48-24) 256/192/(64-64-32)

%
 s

pe
ed

up
 o

ve
r R

O
B

 b
as

e

CFP-WS CPR-WS
CFP-SERVER CPR-SERVER
ROB-WS ROB-SERVER

Table 4 CFP/SDB statistics
Avg. # of

registers held
by checkpoints

Benchmark
Suite

Avg. SDB
size when
occupied

% retired
inst.

into SDB

Branch
misp. per
1000 uops

mpbrsdb+
per 1000
shadow
uops* INT FP

SFP2K 548 16.4% 0.64 < 0.001 33 28
SINT2K 190 0.8% 2.51 0.05 30 17

WEB 802 5.6% 1.66 0.11 30 17
MM 528 3.4% 2.49 0.02 29 21

PROD 374 1.1% 2.41 0.19 26 16
SERVER 339 4.7% 1.13 0.18 38 14

WS 736 7.1% 1.21 <0.001 24 16
+mpbrsdb: mispredicted branches in the SDB
*shadow uops: Total uops in the shadow of a miss

116

CFP can tolerate such latencies. We now compare CFP latency
tolerance to two other proposals for memory latency tolerance:
Runahead execution, and the Waiting Instruction Buffer.

6.1 CFP and Runahead
Runahead execution [11] in out-of-order processors has been
proposed to tolerate memory latencies [18]. In runahead
execution, the processor state is checkpointed at a long latency
miss operation. Execution continues speculatively past the miss
and prefetches data and possibly branch outcomes. When the miss
returns, runahead execution terminates, the checkpoint is restored,
and execution restarts from point of the load miss. Except for the
prefetching effect of runahead, all work performed during
runahead is discarded—all instructions past the load miss have to
be re-fetched, and re-executed.

CFP subsumes runahead execution. Since CFP executes past long
latency operations, it achieves benefits of runahead prefetch.
Further, unlike runahead, CFP does not discard work. When the
load data returns, the dependent instructions of the load complete
execution, and allow the checkpoint to commit. Independent
instructions past the miss have already completed and are retired
without re-execution.

With increasing memory latencies, thousands of instructions
could execute past a load miss. Not having to re-fetch and re-
examine these instructions for committing them helps
performance significantly. Further, runahead execution may result
in cache pollution since sufficient cache capacity is required to
hold prefetched instructions and data until they are re-examined
and re-executed. CFP does not suffer from this limitation as re-
examination or re-execution is not necessary.

Figure 9 shows the performance difference between CFP and CPR
with runahead execution. The y-axis shows percent speedup over
the baseline ROB configuration. Three bars are shown for each
suite—CPR, CPR+runahead execution, and CFP. As can be seen,
CFP outperforms runahead mode significantly for every
benchmark suite (and not shown but also for every benchmark in
the suites). CFP has significantly lower wasted speculative
execution—only 30% for CFP compared to 70% additional uops
for runahead execution.

6.2 CFP and WIB
The WIB [14] also drains load-miss-dependent instructions into a
special buffer. However, significant differences exist between the
WIB and CFP proposal. Two key differences are discussed below.

WIB requires a very large register file: CFP integrates a
mechanism to achieve a non-blocking register file, while the WIB
only provides a non-blocking scheduler. This is a substantial
improvement over the WIB because it keeps the register file
small, an important requirement for building memory-tolerant
processors. Register files are very active, power-hungry cycle-
critical structure and designers do not want these to be beyond a
few hundreds.

WIB needs to allocate the entire window in its buffer. To recover
from branch mispredictions, the WIB requires allocation of all
instruction in the target window. This allows the WIB to record
the program order of the slice, even though the WIB only actually
stores the miss-dependent instructions. CFP does not suffer from
such a restriction since it recovers by using a checkpoint.

The WIB proposal’s assumption of very large register files, and a
waiting buffer as large as the target window, results in it being
inefficient in using resources.

7. IMPLICATIONS OF CFP
By allowing the instruction window to scale without requiring the
cycle-critical register file and scheduler to scale, Continual Flow
Pipelines have interesting implications for processor architecture
directions. We discuss some of these implications below. By
removing back-end pipeline stalls, CFP exposes branch prediction
accuracy as the primary performance limiter. Section 7.1 discusses
the interaction of CFP and branch prediction. High memory
latency tolerance of CFP presents new opportunities for cache
hierarchy organizations. Section 7.2 shows CFP with a small L2
cache outperforms a conventional ROB-based design with much
larger caches. Multiple on-chip CFP cores can take better
advantage of a given cache size as compared to multiple on-chip
ROB-based cores, which would require the cache size to scale up.
Sizing decisions for cycle-critical structures are simplified and
discussed in Section 7.3.

7.1 Branch prediction remaining key limiter
Figure 10 shows performance potential with perfect branch
prediction for a large instruction window processor (such as CFP)
compared to a small instruction window processor (such as
conventional ROB-based). The y-axis is percent speedup over the
baseline ROB processor. Table 4 (Column 4) shows branch
misprediction rates for the benchmarks. The key result is the
difference in performance of perfect branch prediction for CFP as
compared to ROB processors. The impact of branch prediction is
substantially higher for CFP processors. In conventional ROB

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

SFP2K SINT2K WEB MM PROD SERVER WS

%
 S

pe
ed

up
 o

ve
r R

O
B

 b
as

e

CPR
CPR+runahead
CFP

Figure 9 CFP, CPR and CPR+runahead.

0%

10%

20%

30%

40%

50%

60%

70%

80%

SFP2K SINT2K WEB MM PROD SERVER WS

%
 S

pe
ed

up
 o

ve
r R

O
B

 b
as

e

ROB+perfect_bpred
CFP
CFP+perfect_bpred

Figure 10 Performance trend with perfect branch prediction.

117

based processors, structural stalls in the presence of long latency
operations hide branch misprediction impact. Thus, for ROB-
based processors, performance gain due to perfect branch
prediction is not substantial (less than 20% over a baseline ROB).
However, for CFP, in the absence of such structural stalls, the
gains are substantial even over a baseline CFP processor.

Since CFP allows instructions independent of long latency
operations to execute and complete, any branches on this
independent path also get resolved in parallel with the load miss.
However, branches dependent on the long latency load cannot be
resolved until the load data returns. Our experiments show that a
very small fraction of mispredicted branches is dependent on a
long-latency load miss.

Karkhanis and Smith [13] identified structural, data, and control-
induced stalls as key performance limiters. While branch
prediction accuracy is known to be an important performance
issue, CFP processors effectively isolate the accuracy of branch
prediction as the primary performance limiter, by eliminating
structural and data stalls.

7.2 Increased cache efficiency and small dies
Caches account for a large fraction of the die size. Applications
such as servers and workstations require very large caches, and for
chip multiprocessors, pressure on the cache increases. Memory
tolerance of CFP allows for high performance even with a small
cache. Figure 11 shows the percent speedup (on the y-axis) over
the ROB baseline (with a 2 MB L2 cache), as the L2 cache size is
varied. For each suite, seven bars are shown—first four for a
ROB-based processor, and the last three for a CFP processor.

As can be seen, CFP with a 2 MB cache outperforms ROB with
an 8 MB cache. Further, a 512 KB L2 cache with CFP performs
worse than a 2 MB L2 cache with a ROB for only two of the
suites, primarily because a 512 KB cache results in thrashing of
some benchmarks (e.g., vpr and twolf for SINT2K) in these
suites. However, CFP with 512 KB L2 cache still outperforms
ROB processor with a 512 KB L2 cache. We assume all L2
caches have the latency of the baseline cache configuration. This
results in a conservative performance estimate when we compare
CFP configuration with a small L2 cache and a ROB
configuration with a much larger L2 cache.

Achieving high performance with small cache sizes matches well
current processor design goals of multiple cores on a chip. Since
L2 caches occupy a significant fraction of die area, achieving
comparable performance using much smaller caches allows

multiple small cores to be placed on die, providing both high
throughput and high single-thread performance. CFP thus forms
an attractive building block core for future chip multiprocessors.

7.3 Simplified structure sizing
With CFP, the cycle-critical structures need to be designed only
for a small active set of instructions. For example, we could start
with the largest scheduler we could build. The L2 cache then is
sized such that the scheduler can tolerate the L2 cache hit latency.
Further, the register file can be sized to accommodate the needs of
instructions in the scheduling window instead of the instruction
window. Thus, instead of sizing key processor structures based on
the target instruction-window size as is done in conventional
processors, CFP allows these structures to be based on the much
smaller scheduling window.

8. RELATED WORK
Section 3.3 discusses non-blocking schedulers [12, 14]. Various
register file organizations have been proposed and include [3, 10].
The counter method used in CPR for reclaiming physical registers
was first proposed [17] for a ROB-based processor. Virtual
Physical Registers (VPR) [16] delay allocation of physical
registers until just prior to instruction completion to reduce
lifetimes of physical registers. They deal with dependent
destination registers by not allocating destination physical
registers to long latency operations and their dependent
instructions until these operations are ready to execute. However,
they do not reduce the lifetimes of completed source registers.
Unlike VPR, CFP provides a mechanism to release both of the
above types of registers.

In Dynamic Multithreading [1], instructions from the speculative
thread execute in a multithreaded processor using data
speculation, leave the pipeline freeing cycle-critical structures and
wait in a separate buffer as large as the instruction window for
subsequent validation. CFP does not require a multithreaded
pipeline, and does not require a waiting buffer as large as the
instruction window.

Proposals for resource efficient microarchitectures include Out-of-
order commit processors [8] and Cherry [15]. Out-of-order
commit processors [8] combine a checkpoint proposal [9] with the
WIB [14] to address scheduler limitations for a checkpoint
processor since the WIB focused on a ROB-based processor.
Similar to the WIB, the paper also assumes a sufficiently sized
register file. Cherry [15] uses the ROB and recycles physical
registers and other resources once their associated instructions are
branch-safe and memory-safe. Early resource reclamation is
limited to a subset of the ROB. A checkpoint of the architected
register file is used but only for recovering from exceptions and
the ROB is used for retiring instructions.

Balasubramonian et al. [4] dynamically reserve physical registers
for a future thread spawned when the main thread stalls due to a
long latency operation. In addition to requiring partial support for
two hardware contexts, partitioning resources between two
threads prevents either thread from making full use of the
machine’s resources. The benefits of cache prefetching and branch
computation are similar to that of Runahead execution.

Unlike CFP where execution continues in the presence of blocked
operations (post-execution), thread-based pre-execution methods
have been proposed where either auxiliary code [6, 22] or a small

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

SFP2K SINT2K WEB MM PROD SERVER WS

%
 S

pe
ed

up
 o

ve
r b

as
el

in
e

R
O

B
 (2

M
B

 L
2)

ROB+L2_512KB ROB+L2_1MB
ROB+L2_4MB ROB+L2_8MB
CFP+L2_512KB CFP+L2_1MB
CFP+L2_2MB

Figure 11 CFP vs. ROB for L2 cache sizes.

118

subset of the program (e.g., a backward slice of a cache miss) is
pre-executed [19, 23] on idle contexts of a multithreaded
processor prior to encountering the blocked operation.

In Datascalar architectures [5], multiple processors, each tightly
coupled with part of the program’s physical memory,
asynchronously execute the same instructions on the same data,
and the load results located in a processor’s physical memory are
broadcast to all other processors. This eliminates off-chip requests
and reduces memory latency. However, such an approach is
resource inefficient since multiple processors execute the same
program.

Distributed large instruction window processing models have
been proposed [20, 21]. These processing models significantly
change the underlying processor and have different constraints
and trade-offs over our conventional out-of-order processing
model. CFP maintains a conventional processing model and is
orthogonal to the above proposals.

9. CONCLUSIONS
Continual Flow Pipelines allow a processor core to sustain a very
large and adaptive instruction window while keeping its scheduler
and register file small. This exposes high ILP in the presence of
long memory latencies. The memory latency tolerance results in
the CFP core with a small L2 cache outperforming large ROB-
based processors with very large caches. This improved cache
efficiency, and resource decoupling has implications for future
processor design. Look-ahead ability of CFP allows for high
single thread performance in presence of long memory latencies,
and its small resource core allows many of them to be placed on a
single chip to address throughput-oriented applications.

Memory latency tolerance of CFP re-focuses the direction
processor research must take to improve single thread
performance. A large instruction window processor (such as CFP)
now exposes branch prediction accuracy as the primary
performance limiter for single threads. With Continual Flow
Pipelines, the core pipeline does not stall due to resource
limitations in the presence of long latency operations and only the
rate at which the front-end feeds useful instructions to the back-
end determines performance of such a pipeline. With structural
and data limitations addressed (using the resource efficiency and
memory latency tolerance of CFP), control flow now dominates
performance limiting factors.

ACKNOWLEDGEMENTS
We thank Konrad Lai, John Shen, Jared Stark, and Chris
Wilkerson for discussions and Saisanthosh Balakrishnan for
comments on a draft of the paper. We also thank the reviewers for
their constructive feedback.

REFERENCES
[1] H. Akkary and M. A. Driscoll. A Dynamic Multithreading
Processor. In Proceedings of the 31st International Symposium on
Microarchitecture, November 1998.
[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing
and Recovery: Towards Scalable Large Instruction Window Processors. In
Proceedings of the 36th International Symposium on Microarchitecture,
December 2003.
[3] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reducing the
complexity of the register file in dynamic superscalar processors. In

Proceedings of the 34th International Symposium on Microarchitecture,
December 2001, pp. 237--249.
[4] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi.
Dynamically allocating processor resources between nearby and distant
ILP. In Proceedings of the 28th Annual International Symposium on
Computer Architecture, June 2001, pp. 26--37.
[5] D. Burger, S. Kaxiras, and J. R. Goodman. DataScalar
Architectures. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, June 1997, pp. 338--349.
[6] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt.
Simultaneous Subordinate Multithreading (SSMT). In Proceedings of the
26th Annual International Symposium on Computer Architecture, May
1999.
[7] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using
store sets. In Proceedings of the 25th Annual International Symposium on
Computer Architecture, June 1998, pp. 142--153.
[8] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-Order Commit
Processors. In Proceedings of the Tenth International Symposium on
High-Performance Computer Architecture, February 2004, pp. 48--59.
[9] A. Cristal, M. Valero, J.-L. Llosa, and A. Gonzalez. Large Virtual
ROBs by Processor Checkpointing. Technical Report UPC-DAC-2002-
39, Universitat Politecnica de Catalunya, July 2002.
[10] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham. Multiple-
banked register file architectures. In Proceedings of the 28th Annual
International Symposium on Computer Architecture, June 200.
[11] J. Dundas and T. Mudge. Improving data cache performance by pre-
executing instructions under a cache miss. In Proceedings of the 1997
International Conference on Supercomputing, 1997, pp. 68--75.
[12] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel. The Microarchitecture of the Pentium 4 Processor. Intel
Technology Journal, February 2001.
[13] T. Karkhanis and J. E. Smith. A Day in the Life of a Data Cache
Miss. In Workshop on Memory Performance Issues, June 2002.
[14] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg.
A large, fast instruction window for tolerating cache misses. In
Proceedings of the 29th Annual International Symposium on Computer
Architecture, May 2002, pp. 59--70.
[15] J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, and J.
Torrellas. Cherry: Checkpointed Early Resource Recycling in Out-of-
order Microprocessors. In Proceedings of the 35th International
Symposium on Microarchitecture, November 2002.
[16] T. Monreal, A. González, M. Valero, J. González, and V. Viñals.
Dynamic Register Renaming Through Virtual-Physical Registers. In
Journal of Instruction Level Parallelism, May 2000.
[17] M. Moudgill, K. Pingali, and S. Vassiliadis. Register Renaming and
Dynamic Speculation: an alternative Approach. In Proceedings of the
26th International Symposium on Microarchitecture, December 1993.
[18] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead
Execution: An Alternative to Very Large Instruction Windows for Out-of-
Order Processors. In Proceedings of the Ninth International Symposium
on High-Performance Computer Architecture, February 2003.
[19] A. Roth and G. S. Sohi. Speculative Data-Driven Multi-Threading.
In Proceedings of the Seventh International Symposium on High-
Performance Computer Architecture, January 2001.
[20] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture. In Proceedings of the 30th Annual
International Symposium on Computer Architecture, June 2003.
[21] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Proceedings of the 22nd Annual International Symposium
on Computer Architecture, June 1995, pp. 414--425.
[22] Y. Song and M. Dubois, Assisted Execution. University of Southern
California, Technical Report #CENG 98-25, Department of EE-Systems,
October 1998.
[23] C. B. Zilles and G. S. Sohi. Execution-based prediction using
speculative slices. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, June 2001, pp. 2--13.

119

