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ABSTRACT OF THE DISSERTATION
RANKED SEARCH ON DATA GRAPHS
by
Ramakrishna R. Varadarajan
Florida International University, 2009
Miami, Florida
Professor Vagelis Hristidis, Major Professor
Graph-structured databases are widely prevaledtfteproblem of effective search and
retrieval from such graphs has been receiving naitgntion recently. For example, the
Web can be naturally viewed as a graph. Likewige]ational database can be viewed as
a graph where tuples are modeled as vertices ctathe@ foreign-key relationships.
Keyword search querying has emerged as one of tbhst effective paradigms for
information discovery, especially over HTML docurteem the World Wide Web. One
of the key advantages of keyword search queryintg isimplicity — users do not have to
learn a complex query language, and can issue egugithout any prior knowledge
about the structure of the underlying data.

The purpose of this dissertation was to developriggies for user-friendly, high
quality and efficient searching of graph structudamtabases. Several ranked search
methods on data graphs have been studied in tleatrgears. Given a tdpkeyword
search query on a graph and some ranking cri@tkayword proximity search finds the
topk answers where each answer is a substructure ofrdpEh containing all query
keywords, which illustrates the relationship betwélee keyword present in the graph.

We applied keyword proximity search on the web #rapage graph of web documents



to find topk answers that satisfy user’s information need acdease user satisfaction.
Another effective ranking mechanism applied on dgégphs is the authority flow based
ranking mechanism. Given a tépkeyword search query on a graph, an authority-flow
based search finds the tkmnswers where each answer is a node in the geagied
according to its relevance and importance to theryguWe developed techniques that
improved the authority flow based search on datplygs by creating a framework to
explain and reformulate them taking in to consilerauser preferences and feedback.
We also applied the proposed graph search techsifjuelnformation Discovery over
biological databases. Our algorithms were experialgnevaluated for performance and
quality. The quality of our method was comparecctiorent approaches by using user

surveys.
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1 INTRODUCTION

Graph-structured databases are widely prevaledtfteproblem of effective search and
retrieval from such graphs has been receiving naitgntion recently. For example, the
Web can be naturally viewed as a graph [PBMW98,98]e Likewise, a relational
database can be viewed as a graph where tuplanatteled as vertices connected via
foreign-key relationships [BNH+02], and a XML dassle can be represented as a graph
with XML elements as nodes and containment or IRHF edges as hyperlinks
[GSBS03, CMKSO03]. Keyword search querying has eextiags one of the most effective
paradigms for information discovery, especially oML documents in the World
Wide Web [PBMW98, Kle99, LCVAO1]. One of the keyvaditages of keyword search
qguerying is its simplicity — users do not havedarh a complex query language, and can
issue queries without any prior knowledge about stracture of the underlying data.
Since the keyword search query interface is vesyilfle, queries may not always be
precise and can potentially return a large numbeguery results, especially in large
document collections. Consequently, an importagtirement for keyword search is to
rank the query results so that the most relevantlteappear first. Recently, the problem
of keyword search over relational [HGP03, HP02, ARDBHP04] and XML [GSBSO03,

HPBO03, CMKSO03] databases has received much attentio

The goal of this thesis is to develop techniquesuger-friendly, high quality and
efficient searching of graph structured databaSeseral ranked search methods on data

graphs have been studied in the recent years.&\gtaph is a grapB(V, E), whereV is



a set of vertices, and E is a set of edges bettveemertices. The graph could be either
weighted or un-weighted. Given a tkpkeyword search query on a graph and some
ranking function, &eyword proximity searcfinds the topk answers where each answer
is a substructure of the graph containing all queywords. Conceptually, the problem
may be defined as follows. Given a keyword qu@rgs a set of keywords, a search result
is a treeR which is a sub-graph @& such that every keyword is contained in at least o
vertex ofR, and we cannot remove any node frBrand still have a tree. The scbré R

is defined as the sum of the weights of all edge’. iGiven a graph G(V,E), a keyword
queryQ, and an integek, we are interested in retrieving tkesearch results with the
smallest scores. Whdan= 1, the keyword proximity search problem has b&sown to

be equivalent to the Group Steiner problem [Rei88jich is NP-complete. There have
been efforts to approximate the Group Steiner mexdlem in the theory community
[IhI90,GKRO0O0]. In the database community, past aesle has focused on fast heuristic
solutions for the keyword proximity search problémn general values dk [BNH+02,
GSVM98, LCVAO1]. We apply keyword proximity searoh the web and the page graph
of web documents to find top-k answers that satisir’s information need and increase

user satisfaction.

Another effective ranking mechanism applied oradatphs is the authority flow
based ranking mechanism. Given a kogeyword search query on a graph, an authority-
flow based search finds the t&panswers where each answer is a node in the graph

ranked according to its relevance and importancheoquery. This technique was first

! This (or an equivalent) definition of score hasbeommonly used in earlier works [GSVYM98, LCVAO1,
BNH+02, ACD02, HP02] — informally, this measure das “tighter” trees.



applied on the web [PBMW098] and later over datab§BeiP04] and XML[GSBSO03]. In
the context of the Web, PageRank [PBMW98] is usetbimpute a global ranking of the
pages based on the hyperlink structure. ObjectiRHI04] applies the idea of authority
flow on a data graph, where nodes represent entitie tuples, and edges represent
associations like primary-to-foreign keys. In castrto PageRank, ObjectRank provides
guery-specific ranking by using the query-speaifades as the authority source (called
base set). Another key feature of ObjectRank, ataeed below, is that different edge
types carry different amounts of authority. The Blulf Knowledge project [SIY06]
applies the PageRank algorithm on a query-depersidagraph of the original biological
graph. Raschid et al. [RWL+06] apply PageRank ahpt€@Rank to answer navigational
gueries on biological data. Conceptually, the ragks produced in the following way:
Myriads of random surfers are initially found aetlbjects containing the keyword
“OLAP”, which we call the base set, and then thewvérse the database graph. In
particular, at any time step, a random surfer imtbat a node and either (i) makes a
move to an adjacent node by traversing an edgéi) gumps randomly to an “OLAP”
node without following any of the links. The prolldap that a particular traversal
happens depends on multiple factors, includingtyipe of the edge. These factors are
depicted in an authority transfer schema graphurgi$ illustrates the authority transfer
schema graph used by the ObjectRank project [BHP&g3uming the probability that
the surfer moves back to an “OLAP” node is 15% (pisy factorrandom jump
probability [PBMW98]), the collective probabilitp tmove to a referenced paper is up to
85% [170% (70% is the authority transfer rate of thatei edge as we explain below),

and so on. As is the case with the PageRank aigordas well, as time goes on, the



expected percentage of surfers at each nocienverges to a limit(v). Intuitively, this

limit is the ObjectRank of the node.

We develop techniques to improve the authority fleaged search on data graphs by
creating a framework to explain and reformulatenthiaking in to consideration user
preferences and feedback. Querying large biologieah collections in a flexible and
efficient way is a research problem which we plamxplore. Our goal is to apply those
techniques taking in to consideration the domaiecsggs. The specific goals of this
thesis are as follows:

1. Improve Web Search ResulBropose and demonstrate a technique that given a

keyword query, on-the-fly generates new pagesedatiomposed pages that
satisfy the user’s information needs and improva&s satisfaction. Propose and
demonstrate novel algorithms for query-specific wphge summarization.

Specifically, given a web graph and a keyword queenerate a set of pages,
called composed pages that will satisfy the usaf@mation need. Also, given a
document and a keyword query, generate a queryfgpsammary that best

describes the document content in a concise manner.

2. Improve Authority Flow based Graph Sear@reate a framework and provide

algorithms to explain query results and reformukatéhority flow queries based
on the user’s feedback. Specifically, given a togharity flow query search result
for a data graph, find a best way explain why owtioe top result got its current
score. Also, devise efficient query reformulatidgoaithms to reformulate the

authority flow based keyword query.



3. Provide a Flexible and Efficient Querying and Ragki Framework for

Hyperlinked Database®ropose a flexible and extensible framework foerging

over large hyperlinked data collections. Specificalcreate a flexible and
extensible framework for efficiently querying lariggperlinked data sources.

4. Compare Top-k XML ListsPresent distance measures for computing the distan

between two ranked lists of XML subtrees wheresalitrees from the first list are
mapped to subtrees in the second. Unfortunateguiqgus distance measures are
not suitable for ranked lists of subtrees since the not account for the possible
overlap between the returned subtrees. That isstvatrees differing by a single

node would be considered separate objects.

The rest of the dissertation is organized as falo8ection 2 presents the significance of
the research. Section 3 describes the related v8wé&tion 4 describes framework and
problem definitions. Section 5 presents the alpord. Section 6 describes the

conclusions. Finally, we present the list of refees.

2 RESEARCH SIGNIFICANCE

The significance of this research is as follows:
1. Search engine industry is huge. Smallest improvéroan result in millions of
revenues. The composed pages technique is a nebet@arch technique. There

is a possibility of commercialization of the idea.



2. Explaining and reformulating authority flow keywogderies have the possibility
to adapt the ranking mechanism according to usegédback, which offers new
operational areas for this ranking method. Theegresl ideas improve authority
flow ranking methods and make them usable in ad@oapplication area.

3. An increasing amount of data is stored in biologgraurces, like Entrez Gene,
PubMed, and OMIM. Entities of the sources are sdanected through semantic
links, created manually or automatically (e.g.ngsBLAST). As the complexity
and size of such databases increases, there igdafoe flexible and efficient
methods to discover information. We propose a nexé&nsible query language
for biological databases, which is simple to us, gxpressive enough for most
guery needs.

4. As the use of electronic medical records become® midespread, so does the
need to search and provide effective informatiastalery on them. Information
discovery methods will allow practitioners and otihealthcare stakeholders to
locate relevant pieces of information in the grayvecorpus of available EMRs.
The success of Web search engines has shown thabikd queries are a useful
tool for locating relevant information in an iniwg and effective manner. The
proposed method to apply authority flow rankinghtéques considering the
domain specifics have applications in creating dea&nvironments in hospitals
for various users like researcher, physician, plarst, nurse, respiratory

therapist, physical therapist and so on.



3 RELATED WORK

3.1 Keyword Search on Data Graphs

For both the document summarization as well asable search problem, when
the page graphs are already created and a quevgsarthe system searches the page
graphs (also the web graph) for sub-trees thatatoil (or a subset of) query keywords.
This problem has been studied by the database mph-glgorithms communities. In
particular, recent work [ACDO02, BNH+02, GSVM98, G8B, HGP03, HP02, KPC+05,
KSO06] has addressed the problem of free-form kegivemarch on structured and semi-
structured data. These works follow various techesy to overcome the NP-
completeness of the Group Steiner problem, to wiingh keyword proximity search
problems can be reduced. Li et al. [LCVAOQ1] tacttle problem of proximity search on
the Web, which is viewed as a graph of hyperlinkades. They use of the concept of
information unit, which can be viewed as a logid&b document consisting of multiple

physical pages.

Goldman et al. [GSVM98] use precomputation to mimarthe runtime cost. BANKS
[BNH+02] views the database as a graph and propalgesithms to approximate the
Group Steiner Tree problem. We consider and expettiatly evaluate modifications of
these algorithms in this work. XRANK [GSB+03] wor&a XML trees, which simplifies
the problem. [ACD02, HGP03, HP02] perform keywoshrsh on relational databases

and exploit the schema properties to achieve effioexecution.



Finally, notice that Buneman et al. [BDFSO03] vidve fproblem of adding structure to
unstructured data from a completely different angtav to define a schema to describe a

labeled graph (e.g., an XML document).

3.2 IR Ranking

In creating the document graph and computing théeneeights, we adopt ranking
principles from the Information Retrieval communityarious methods for weighting
terms have been developed [Sin01]. The most widebd are the Okapi (Equation 1)

and the pivoted normalization weighting, which based on thd-idf principle.

Z N -df +05 (ky +Dtf (kg +1)qtf 1)
o df + 05 (k 1-b) +bi) +if ketatf
avdl

tf is the term’s frequency in document,

gtfis the term’s frequency in query,

N is the total number of documents in the collection
df is the number of documents that contain the term,
dl is the document length (in words),

avdlis the average document length and

k1 (between 1.0-2.0h (usually 0.75), an&3(between 0-1000) are constants.

For an overview of modern IR techniques we refefSim01]. Any state-of-the-art IR
ranking function is based on the tf-idf principl8if0l1]. The shortcoming of these
semantics is that they miss objects that are melehted to the keywords, although they

do not contain them. The most popular specificigtno in Information Retrieval is the



document length (dl). The relevance informatiohidgden in the link structure of the data

graph which is largely ignored by the traditiorRItechniques.

3.3 Link based Semantics

Savoy [Sav92] was the first to use the link-struetof the Web to discover relevant
pages. This idea became more popular with PagefRBMW9I8], where a global score
is assigned to each Web page. HITS [KIe99] employuadly dependant computation of
two values for each web page: hub value and auwyh&@almin et al. [BHPO04] introduce
the ObjectRank metric. In contrast to PageRanis, @ble to find relevant pages that do
not contain the keyword, if they are directly pethtoy pages that do.

Haveliwala [Hav02] proposes a topic-sensitive Py, where the topic-
specific PageRanks for each page are precomputethanPageRank value of the most
relevant topic is used for each query. Both wogkshyato the Web and do not address the
unique characteristics of structured databasesthéumore, they offer no adjusting
parameters to calibrate the system according tepRkeifics of an application.

Recently, the idea of PageRank has been applistlctured databases [GSB+03,
HXY03]. XRANK [GSB+03] proposes a way to rank XMLeenents using the link
structure of the database. Furthermore, they intteda notion similar to ObjectRank
transfer edge bounds, to distinguish between comiant and IDREF edges. Huang et al.
[HXYO03] propose a way to rank the tuples of a ielsl database using PageRank,
where connections are determined dynamically bygthery workload and not statically

by the schema. However, none of these works esplbié link structure to provide



keyword-specific ranking. Furthermore, they ignoilee schema semantics when

computing the scores.

3.4 Document Summarization & Web Search

A large corpus of work has focused on generatingryindependent summaries
[AP00,BE97,BM00,GKMC99]. The OCELOT system [BMOQjopides the summary of
a web page by selecting and arranging the mostygudependent) “important” words
of the page. Amitay and Paris [APOO] propose a neNy automatic pseudo-
summarization technique for Web pages, where tiobanext of hyperlinked pages is
used to construct summaries. [BE97] uses lexicainshfor text summarization.

The majority of systems participating in the p&sicument Understanding
Conference [DUCO05] (a large scale summarizationuati@n effort sponsored by the
United States government), and the Text Summanizatinallenge [FOO01] are extraction
based. Extraction-based automatic text summarizatystems extract parts of original
documents and output the results as summaries [@K8th69,GKMC99,HLOO0]. Other
systems based on information extraction [RM98] dmstourse analysis [Mar99] also
exist but they are not yet usable for general-dareammarization. However these works
do not exploit the inherent structure of the docommand mostly focus on query-
independent summaries. In this work (as in [VHO@J¢ also show the semantic
connections between the extracted fragments.

White et al. [WRJ02], Tombros and Sanderson [TS&&}l Goldstein et al.
[GKMC99] create query-dependent summaries usingeraesace extraction model in

which the documents (web pages) are broken uptheo component sentences and

10



scored according to factors such as their posithhmumber of the highest-scoring
sentences are then chosen as the summary. [AP®AIESMBO7] select the best
passage of a document as its summary. However thesks ignore possible semantic
connections between the sentences or the posgithilit linking a relevant set of text
fragments will provide a better summary. RadevlefRFZ98] provide a technique for
multi-document summarization used to cluster theults of a web keyword query.
[ERO4,MTO04] provide a technique to rank sentencesell on their similarity with other
sentences across multiple documents and then graidummary with the top ranked
sentences. However, their methods are query-inadigpein contrast to our work.

The idea of splitting a Web page to fragments baen used by Cai et al.
[CHWMO04] and Song et al. [SLWMO04], where they ektrguery-independent rankings
for the fragments, for the purpose of improving pleeformance of web search. Cai et al.
[CHWMO4] partition a web page into blocks using thision-based page segmentation
algorithm. Song et al. [SLWMO04] provide learninggalithms for block importance.
Finally, all major Web search engines generate ygspecific snippets of the returned
results. Although their algorithms are not publdhee observed that they simply extract
some of the query keywords and their surroundingda/oRecently, some of these
companies made available tools to provide the ssaech and snippet functionality on a

user’s desktop [GD0O7,MDQ7].

3.5 Relevance Feedback and Query Reformulation

Salton and Buckley [SB90] introduced the idea ofngsrelevance feedback for

improving search performance. Relevance feedbaclersoa range of techniques
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intended to improve a user’'s query and facilitatieval of information relevant to a
user’s information need. In [BSA94, BSA+95], theyowed that query expansion and
qguery term reweighting are essential to Relevarmedback. For a detailed survey of
relevance feedback methods we refer to [RLO3, HarBBe basic approach of term
selection, term reweighing and query expansion hiEHar88,MSB98,

SVR83,SB95,KF06,XC96,LJ01,HC93] using terms dravemt the relevant documents
works well for traditional IR which is content-baseFor link-based metrics like

ObjectRank [BHPO04] this yields poor results. Henae need link-based (structure-

based) relevance feedback methods.

Nie et al. [NZW+05] and Ararwal et al. [ACAO6] @ment query-independent
techniques to assign popularity propagation fagtues (similar to the authority flow
rates of ObjectRank) to Web objects, given an agtiobject ranking. Our structure-
based reformulation technique, which is query a®tlback-specific, is inspired by these
works. A recent work [VB06] on relevance feedbaskbased on web-graph distance
metrics. The basic idea, which is similar to ountemt-based reformulation technique, is
that relevant pages tend to point to other relesgmages, while irrelevant pages are
pointed to by other irrelevant pages. Another restudy on relevance propagation over
the web [QLZ+05] propose site-based propagationeatsothat out-perform hyperlink-
based models. Another recent work [SZ05] descriotise feedback algorithms that help
to choose documents for relevance feedback sahbagystem can learn most from the

feedback.
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4 FRAMEWORK & PROBLEM DEFINITIONS

4.1 Data Model

4.1.1 Web graph Let D={d;,d,,...,d} be a set of Web pageh,ds,...,dr. Also let
siz€d) be the length ofl in number of words. Term frequentfyd,w) of term (word)w
in a Web pagea is the number of occurrences wfin d. Inverse document frequency

idf(w,D) is the inverse of the number of Web pages comgitermw in them.
The Web graphGw(Vw,Ew) of a set of Web pages,d,,...,d, is defined as follows:

* Anodevi[dVy, is created for each Web padjen D.

* An (undirected) edge(u,v)(Ey is added between nodes/[1Vy if there is a

hyperlink betweem andv.

An example of a web graph is shown in Figure 1.\ldev\the Web graph as undirected

since an association between pages occurs alohglvettions of a hyperlink.

4.1.2 Page graphIn contrast to previous works in Web search [KleR€VAO01,
PBMW98], we go beyond the page granularity. To dovee view each page as a set of

text fragments connected through semantic assocgati

A key component in our work is thgage graphGq(Vy,Eq) of a Web pagel which is

defined as follows:

 dis split into a set of non-overlapping text fragieand each fragment is
represented by a nodélVy. A text fragment corresponding to a noadie denoted

ast(v).
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* An undirected, weighted edggu,v)[IE,4 is added between nodey[1V; if there

is an association (further discussed later) betw@grandt(v) in d.

(v1) Admission Office - Florida International University. (v1) Financial Aid Office.
(v2) ... (v2) International Students.
(v3) Florida International University, a member of the (v3) ...
State University System of Florida, is a fully accredited (v4) ...
comprehensive, multi-campus urban research institution (v5) Graduate Assistance - Graduate students pursuing a master or
located in Miami, Florida ( more ). doctoral degree may qualify for assistantships, fellowships and other
(v4) Open House, Latest Scholarships, The Honors awards offered through individual academic units......... To inquire
College. L |regarding additional graduate information contact the Division of
(V5) o Page 1 Graduate Studies Office.
(v6) ... http://www.fiu.edu/orgs/admiss/index.htm (V6) ...
(V7) oo, (V7) oo
(V8) e A Page 2
(v1) Florida International University: A Brief History. (v9) ..... http://www.fiu.edu/orgs/finaid/programs/programs.htm
(v2) ACHIEVING THE UNIVERSITY'S VISION 1986 TO (v10) .....
THE PRESENT. (v11) Institutional Programs Academic Merit Assistance The University's
(v3) .o commitment to academic excellence........ Additional awards for
(v4) .. outstanding high school seniors include the Presidential Scholars,
(V5) weeens Page 4 Academic Excellence Scholars, Valedictorian and Salutatorian
(v6) ...... http://www.fiu.edu/docs/brief history4.htm Scholarships.........
(7)) o000 (v12) ...
(V8) ... (v13) ...
(v9) In early 1996, in order to secure resources for faculty
endowed chairs, scholarships and facilities, the University (v1) Florida International University: Miami's Public Research
launched its first major capital campaign, the $65 million University.
Campaign for FIU....... This goal that was achieved in early (V2) ...
2001, more than one year ahead ahead of schedule. (v3) ADMISSIONS: GRADUATE - ARTS & CULTURE - ATHLETICS -
(v10) ... BISCAYNE BAY CAMPUS- .........- PHONEBOOK -REGISTRATION -
(vi1) ... L STUDENT GOVERNMENT - UNIVERSITY GRADUATE SCHOOL -
(v12) Some 30 years after opening its doors, FIU is within VALUES STATEMENT - WEB MAIL- SEARCH FIU - ADVANCED
reach of attaining its foremost goal - to become one of the SEARCH.
nation's top, urban, public research universities.......... (vd) ...
(v13) ..... (V5) e Page3
(V6) ... http://www.fiu.edu/index.html
LEGEND [ ]Node in Web Graph (Web Page)
—_— Hyperlinks

Figure 1: Sample Web pages from www.fiu.edu.

Figure 2 shows the page graph of Page 1 in Figurehe process of building
page graphs is explained later. The page graphus/a@ent to the document graph in
[VHO6]. Notice that there are many ways to detime page graph for a Web page. In this
work we exploit the HTML tags to split the pageoiméxt fragments, and edges are added
when the text fragments are associated through @om{or related) words. The semantic

association between the nodes is used to competedfe weights (query-independent)
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while the relevance of a node to the query is usedefine the node weight (query-

dependent). Note that the Web graph now becomeaph @f page graphs.

— —0.078
0.1 | 0.066
! Q
09) Q Q/

LEGEND < O Node in Page Graph (text fragment)
— — — Semantic links

Figure 2: A page graph of Page 1 in Figure 1.
4.1.3 Data graph We view a database as a labeled graph, which iodehthat
captures both relational and XML databases. @hta graph ©Vp,Ep) is a labeled
directed graph where every noddas a label(v) and a set of keywords. For example,
the node “ICDE 1997” of Figure 3 has label “Yearidathe set of keywords {“ICDE”,
“1997”, “Birmingham’}. Each node represents awbjectof the database and may have
a sub-structure. Without loss of generality, Obfastk assumes that each node has a
tuple of attribute name/attribute value pairs. Ewample, the “Year” nodes of Figure 3
have name, year and location attributes. Notice tha keywords appearing in the
attribute values comprise the set of keywords aasmtwith the node. One may assume
richer semantics by including the metadata of srindhe set of keywords. For example,
the metadata “Forum”, “Year”, “Location” could beciuded in the keywords of a node.

A subset of a biological data graph is shown irufeg.

Each noders has a rolé\(v). For instance, the ICDE conference node in Figure
has role “conference”. Each edgérom u to v is labeled with its role(e) (we overload

A) and represents a relationship betwaendv. For example, every “paper” to “paper”
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edge of Figure 3 has the label “cites”. When tHe i®evident and uniquely defined from
the labels ofi andv, we omit the edge label. For simplicity we wilkasne that there are
no parallel edges and we will often denote an esl§®em u to v as ‘U—V’. The data

graph can represent relational [ACD02, HP02] and.{MPB03, GSB03] databases, as
well as the Web [PBMW98], although we repeat that Web is out of the scope of this

work.

Paper Authors="H. Gupta, V.
Harinarayan, A. Rajaraman, J.
Ullman” 7itle="Index Selection
for OLAP.” Year="ICDE 1997

Paper Authors="J. Gray, A.
Bosworth, A. Layman, H.
Pirahesh” Title="Data Cube: A
Relational Aggregation Operator

- Generalizing Group-By, Cross-
!:las?ance contamsT cites Tab, and Sub-Total.” Year=
onference Year Name=“ICDE”, “ICDE 1996”
Name="ICDE Locatior=Birmingham contains F:ltes

Paper Authore=*R. Agrawal, A.
Gupta, S. Sarawagi”
Title="Modeling Multidimensional
Databases.” Year=“ICDE 1997

Paper Authors=“C. Ho, R. Agrawal,
N. Megiddo, R. Srikant”
Title="Range Queries in OLAP Data
Cubes.” Year=“SIGMOD 1997”

‘ Author Name=*R. Agrawal” ‘

Figure 3: A subset of the DBLP graph.

m:n

Ocites
has

i contains,
Conference HMS1NC yegqr Paper |- Author

[3)
1:n 1:n m:n

Figure 4: The DBLP schema graph.

0.7 cites
03 03 02
Conference Year Paper Author
n
03 01— 02
0 cited

Figure 5: DBLP authority transfer schema graph.

4.1.4 Schema graph The schema graphG(Vs,Es) (Figures dblp_schema and

bio_schema) is a directed graph that describesstitueture ofD. Every node has an
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associated label. Each edge is labeled with a vaéch may be omitted, as discussed
above for data graph edge labels. We say that & glaiphD(Vp,Ep) conformsto a
schema grapls(Vs,Eg) if there is a unique assignmenbf data-graph nodes to schema-
graph nodes and a consistent assignment of edgéstisat: (1) for every node O Vp
there is a node(v) O0Vg such that(v) = AMu(Vv)); (2) for every edge O Ep from nodeu

to nodev there is an edgge) O Eg that goes fromx(u) to x(v) andi(e) = Au(e)).

EntrezProtein 7 7
GN-| — g PP OMIM /D = 142590
ID="179339", Definition = ~ELITEL - )
EntrezGene /D= “7916", "HLA-B-associated tDescr lpt/:)g - H'-hA B-Associated
Name="HLA-B-Associated transcript 2", ralrkscrlp h y CI romosome |
transcript 2”, Organism= Organism=" HomoSapnens walking with overlapping.......
“HomoSapiens’, , Features="region.. VL OM-PM
genee TNE - Human. "' GN-PM  PRPM Publied PWID = 2756268,
GN-PR Authors="J. Banerji, A. J. Sands,
EntrezGene /D= “7920”, J.L. Strominger, T. Spies” Title="A
Name="HLA-B-Associated EntrezProtein %ert\e e fr?_ml_'ﬁthe —hr‘:]mla“ ajol
transcript 5", Organism= ID="4337110", Definition = iStocornpatibi Ity complex:.. »
“HomoSapiens’, "BAT2" Orgahism - Descr/ptlon: A large number of ...
Description = “A cluster of "HomoSapiens’, PR-F%V
genes, BAT1- ) Features="source..region...” M-PM
BATS.... TNF... human PubMed PMID = “14656967"
GN—NU¢ OMIM OMID = “142580 7, Authors="T. Xie, L. Rowen B.
EntrezNucleotide /D= Description = “HLA-B- Aquado, M.E. Ahearn..’
“4337095". Defintion Associated transcript 2. From y Title="Analysis of the gene-dense
=*Homo sépiens MSH55 CDNA clones, determined the major histocompatibility
gene..”, Organism= complete seq.. complex...” Description="In
"HomoSapiens” mammals, the Major
Description = “Major NU-PM Histocompatibility....”

Figure 6: A subset of the Biological data graph.

4.1.5 Authority Transfer Schema Graph From the schema graph(Vg,Eg), we
create the authority transfer schema grapfVs,E) to reflect the authority flow through

the edges of the graph. In particular, for eacheestg (uU—V) of Eg, two authority

transfer edgeseé = (u—v) and e = (v—u) are created. The two edges carry the label of

the schema graph edge and, in addition, each orennstated with a (potentially

different) authority transfer rate ae) anda(d) respectively. We say that a data

graphconformsto an authority transfer schema graph if it com®to the corresponding
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Entrez contains (m:n) [ Entrez
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— | | Nucleotide . _ Gene

c E cites (m:n) 1 =
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Figure 7: Subset of Schema Graph for a Biological &laset.
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" [ o] PubMed
Ll
*| Entrez |—02— | | L—0.2—

Protein |« -02--< L--0.2-

0.2

Q la--20----
S

Figure 8: Authority Transfer Schema Graph for Biological Database.

schema graph. (Notice that the authority transfBemsa graph has all the information of

the original schema graph.) In Balmin at el. [BHP®# authority transfer rates for each

edge type was assigned manually by a domain egpettrial and error basis. In contrast,
our techniques allow this task to be done autorallyibased on the user’s feedback as

we explain in later sections.

Figure 5 shows the authority transfer schema gridgalt corresponds to the
schema graph of Figure 4 (the edge labels are emhjtiwhile Figure 8 shows the
authority transfer schema graph that correspondbdcschema graph of Figure 7 (the

edge labels are omitted). The motivation for definiwo edges for each edge of the
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schema graph is that authority potentially flowsbiwth directions and not only in the
direction that appears in the schema. For exangleaper passes its authority to its
authors and vice versa. Notice however, that thleasity flow in each direction (defined

by the authority transfer rate) may not be the sdfoe example, a paper that is cited by

important papers is clearly important but citingportant papers does not make a paper

important.

Paper Authors="H. Gupta, V.
Harinarayan, A. Rajaraman, J.
Ullman” 7itle=“Index Selection
for OLAP.” Year=“ICDE 1997”

Paper Authors=“J. Gray, A.
Bosworth, A. Layman, H.
Pirahesh” Title="Data Cube: A
Relational Aggregation

Operator Generalizing Group-

0.3 014 T 015 0.35 By, Cross-Tab, and Sub-Total.”
Conference -] Year Name=“ICDE”, Year= “ICDE 1996”
Name="“|CDE”

Year=1997,
0.3| Locatior=Birmingham

Paper Authors=*C. Ho, R. Agrawal,
N. Megiddo, R. Srikant” 7itle="Range
Queries in OLAP Data Cubes.”
Year=“SIGMOD 1997”

077t

Paper Authors=“R. Agrawal,
A. Gupta, S. Sarawagi”
Title="Modeling
Multidimensional Databases.”
Year="ICDE 1997”

Figure 9: The DBLP Authority transfer data graph.

EntrezProtein
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EntrezGene 0.2 0.2 — =~ 014 "0.2
ID="79187 'ﬁ — — _ _ Y PubMed

$ 02 o1 5 02 02 ID="2156268"
= < _| EntrezProtein 2T
EntrezGene ~ BB (0] PubN
= 1 N ID = “14656967”
0.2 02 0.2 =
. X . . - /
M s 02//01
EntrezNucleotide 0.2 l
ID="4337095"

\Mm:“mzsso , \

Figure 10: Authority transfer data graph for Biological database.

4.1.6 Authority Transfer Data Graph: Given a data grapB(Vp,Ep) that conforms

to an authority transfer schema grapt(Ve,E"), we can derive an authority transfer data

graphD”(Vp, E4) as follows. For every edge= (u—v) O Ep the authority transfer data
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graph has two edges = (U—V) and ¢® = (v—U). The edges' ande” are annotated with

authority transfer rateg(e’) andg(e). Assuming thae' is of typeg!, then

a(eg)
fy= f
ale’) OutDeg (u,eg)
0,ifOutDeg (u,el) =0

,ifoutDeg (u,el) >0 )

whereOutDequ.el) is the number of outgoing edges framof type el - The authority

transfer rateq(e?) is defined similarly. Figure 9 illustrates the lawrity transfer data

graph that corresponds to the data graph of Fi§uaed the authority transfer schema
graph of Figure 5.

Each edge is annotated with its authority transfes. Note that the edge between
“Range Queries in OLAP” paper and author “Agrawal’labeled 0.05 as the paper has
three other authors not shown in Figure 9. Notia the sum of authority transfer rates
of the outgoing edges of a nodef typeu(u) in the authority transfer data graph may be
less than the sum of authority transfer rates efaihitgoing edges @i(u) in the authority
transfer schema graph ufdoes not have all types of outgoing edges. FigQrdlustrates
the authority transfer data graph that correspdgodbe data graph of Figure 6 and the

authority transfer schema graph of Figure 8.

Figure 11: The Minimal Total Web Spanning Trees oWeb graph in Figure 1 for

guery - Graduate Research Scholarships.
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4.2 Problem definitions

A keyword queryQ is a set of keyword®={w,...,Wy}. Before defining the result of a

keyword query we need a few more definitions.

4.2.1 Definition 1 (Minimal Total Web Spanning Treg. Given a Web graph

Gw(Vw,Ew), @ minimal total Web spanning tree ofy®ith respect to a keyword query

Q={w1,...,Wy} is a sub-tree T of ¢gthat is both:
» Total: every keyword ®Q is contained in at least one node (page) of T.
* Minimal: we cannot remove any node from T and B#lle a total sub-treél

Figure 11 shows the minimal total spanning treestie query “Graduate Research
Scholarships” on the web graph of Figure 1. A restila keyword query at the page
granularity is a minimal total Web spanning tfEeWe go one step further in order to
improve the user’s experience and locate the dpgmfts of each Web pageTithat are

relevant to Q. For that, we need the followingimigbn.

4.2.2 Definition 2 (Minimal Total Page Spanning Tre). Given a page graph

Gu(Vg,Eq) for a Web page d and a set of keywordsf® (Q=Q for query-specific
summarization), a minimal total page spanning fpeef G is a sub-tree of gthat is

both:
» Total: every keyword wQ; is contained in at least one node of p.

* Minimal: we cannot remove any node from p and B&ite a total sub-treé!
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Figure 12 shows two minimal page spanning tree®&ges 2 and 4 respectively for
the query “Graduate Research Scholarships”. In ba#es/2 is a Steiner node, i.e., it
does not contain any query keyword in it, but i$phe in forming a minimal total
spanning tree for the pages as it has semantis linkthe nodes that contain the
keywords.

There is a subtle difference in the page spanniag tomputation for our two
different applications - searching using composedges and query-specific
summarization. For query-specific summarizatioraoveb page we compute the page
spanning tree that contains all the keywordQinFor the composed pages application,
for single-page results we compute the page spgrnnge forQ, while for multi-page
results we compute them for subsetQofsee Definition 3). Note that for Steiner nodes,
Qi is empty. In this caseis an empty tree, which we represent by just digph thetitle

of the page in our system.

X o
Q.QQ /@ \OOQ) N _QQ}@OA\OO )
@Pagez GiD Page4 (V12>

Figure 12: The Minimal Total Page Spanning TreesfdPages 2 and 4 in Figure 1 for

guery - Graduate Research Scholarships.

A minimal total Web spanning trek is “refined” by finding a minimal total page
spanning treg for each of the Web pagelIT as formally explained in Definition 3.
Henceforth we omit the words “minimal total” fordwity if it is clear from the context
when referring to minimal total Web spanning treepage spanning trees. The size of a

Web or page spanning tree is the number of edgesiains.
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4.2.3 Definition 3 (Search Result)Given a Web graph &Vw,Ew), page graphs for
each Web page inz and keyword query Q={w..., Wy}, a search result R is a minimal
total Web spanning tree T with nodes (pages),d, along with a minimal total page
spanning tree for each; avith respect to a subset, Qf Q. Each pageids assigned a
subset Qof Q (d must contain all keywords in; @though it may contain more keywords

of Q than @ such that Q» Q; =// for every &, and Q/..../Q~Q. [

For example, Table 1 shows the Top-3 search redaitshe query “Graduate
Research Scholarships”. The Web spanning tree 3ivels gise to two search results.
Page 3 contains keywords “graduate” and “reseaamol’ Page 1 contains “research” and
“scholarships”, that is, keyword “research” appeardoth pages. One search result is
computed with subset3; = {graduate, research} for Page 3 a@@g= {scholarships} for
Page 1, while the other witkQ; = {graduate} for Page 3 an€), = {research,
scholarships} for Page 1. We only return the besirch result for each Web spanning

tree to the user as shown in Table 1.

We are now ready to formally define the two proldemddressed in this work. The
scoring of search results and summaries treegegepted in later sections. Smaller scores

correspond to higher ranking.

Problem 1 (Top-k Search Results)Given a Web graph & the page graphs for all
pages in @, and a keyword query Q, find the k search redrltgith minimum Score(R).

0
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Problem 2 (Query-Specific Summarization) Given a document/d and its page
graph G;, and a keyword query Q, find the best summary,the minimal total spanning

tree with minimum scoréel

Table 1: Top-3 search results for query - Graduaté&kesearch Scholarships.

Rank Score Search Results
1 2
L 3--GD
3 1
_&3--GD

1 12.50

2 101.60

3 209.89

3 4
| &3--GD — G|

Notice that typically a single summary per pageeiuired and hence Problem 2 is a
top-1 problem. Notice that the totality propertypimes that we useonjunctivequery
semantics (AND). Applying OR semantics to Problens 3traightforward, as we just
replaceQ by Q', whereQ' is the set of query keywords contained in the pagglying
OR semantics to Problem 1 is unintuitive since phenary purpose of the composed

pages approach is to produce complete (total) aisswehe user.

5 OVERVIEW AND ALGORITHMS

In this section we present various algorithms usedur system. In section 5.1, we
present the algorithms to compute query-specifibrearization and composed pages.

Note that the algorithms used in the query-spesifimmarization problem are also used
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as a component of the composed pages problem. rEReomputation requirements are
also the same. In section 5.2, we present algositttmimprove the authority flow-based
graph search by providing a way to explain quesylte and also provide algorithms for

query reformulation.

5.1 Web Search

5.1.1 Building Page Graphs

The page graph Gy(VqEy of a page diOD is constructed as follows
[VHO5,VHO06,VHL06,VHLO08]. First we parsea and split it into text fragments using
parsing delimiters (e.g., <p>, <br> tags). Eactt tmgment becomes a node in the page
graph. A weighted undirected edge is added to #ge graph between two nodes if they
either correspond to adjacent text fragments in tésd or they are semantically

associated. The weight of an edge denotes theiassaaegree of the association.

There are many possible ways to define the assatiakegree between two text
fragments. In this work we consider two fragmentbé associated if they share common
words (excluding stop words) and the degree of@ason is calculated by an adaptation
of traditional IR term weighting formulas [SinOHs described below. We also consider a
thesaurus to enhance the word matching capabilithe system. In future versions of
our system we will consider using WordNet and Lat&smantic Indexing (LSI)
techniques to improve the quality of the edge wisigho avoid dealing with a highly
interconnected graph, which would lead to slowerecexion times and higher

maintenance cost, we only add edges with weighiseb threshold. Also notice that the

25



edge weights are query-independent, so they caprddeomputedQ is only used in

assigning weights to the nodes@f

The following input parameters are required durthg pre-computation stage to
construct the page graph:

1. Threshold for edge weight©nly edges with weights not belothresholdwill be
created in the page graph. The choice of the tbtdsis a tradeoff between
performance and quality, since a zero thresholdldvbuild a dense graph which
would increase the processing time, while a higheeshold would decrease the

quality of results by not including enough edges.

2. Parsing Delimiters Parsing delimiters are used to split the Web page text
fragments. Typical choices are the <p> (paragraf@g (each text fragment
corresponds to a paragraph) or the <br> (eachri@ytnent is a sentence). Other tags
that could be surrounding a possible text fragnaeathe <table> tag, <ul>, <ol> tags
and so on. For all these tags the text betweermpeaing and closing counterparts
constitute a text fragment. In this way we founded of tags that when used as
delimiters lead to paragraphs that are typicallgrsbnd leads to more compact page
graphs. For plain text documents, typical choicesrewline characters (each text
fragment corresponds to a paragraph) or periods$ (et fragment corresponds to a

sentence).

3. Maximum Text Fragment SiZ€his is used in cases where a fragment is too long
which would lead to large nodes (text fragments) hance large summaries. Users

typically desire concise and short summaries.
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After parsing the page and creating the graph nftées fragments), for each pair of
nodesu,v we compute the association degree between thexrhjsththe score (weight)
EScorée) of the edgex(u,v). If EScorge)>threshold thene is added tdey. The score of
edgee(u,v) where nodes, v have text fragmentgu), t(v) respectively is:

3 ((tF (tu), w) + tF (t(v), w)) CIdif (w)))
ESCOI’QG) — WOt (u)Nt(v)) : :
size(t(u)) + sizet(v)) 3)

where tf(d,w) is the number of occurrences wfin d, idf(w,D) is the inverse of the
number of pages containing w, asid€d) is the size of the page (in number of words).
That is, for every worev appearing in both text fragments we add a quaptiportional

to thetflidf score ofw. Notice that stop words are ignored. Furthermaeepse thesaurus
and stemmer (we rely on Oracle interMedia [Ol10@])rtatch words that are related. The
sum is divided by the sum of the lengths of tha feagments in the same way as the

document lengthd() is used in traditional IR formulas.

Edges between adjacent fragmerige consider adjacent fragment edges as a special
case because two adjacent fragments are semantieddited because of their close
proximity. Furthermore, linking the adjacent no@esures the connectivity of the page
graph. We use the following formula, which ensuheg there is always an edge between

nodes with adjacent text fragments:
EScorée)=max(EScorée), threshold (4)

The calculation of the edge weights concludes therygindependent part of the page

graph creation. Next, when a quegy arrives, the nodes Wy are assigned query-
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dependent weights according to their relevand@. tim particular, we assign to each node
v corresponding to a text fragmetft/) node scoreNScorégv) defined by the Okapi
formula [Sin01] (Equation 1). In order to acceterthis step of assigning node scores we
build a full-text index on the sé& of pages. The details of this index are out ofdgt@pe

of this paper.

Ranking of Page Spanning Trees

In this section we present our ranking framewornkgage spanning trees. Recall that the
top page spanning tree is the query-specific sumrfar Problem 2. Given the page
graphGq of paged and a quer, a page spanning treas assigned a scofxordp) by

combining the scores of the nodédp and the edgesp.

1 1
Scor =a +b
<P) edgzeép EScorge) D" NScordv)

nodedp (5)

wherea andb are constants discussed beldwscore(e)is the score of edge using
Equation 4NScorgv) is the score of nodeusing Equation 1.

Intuitively, if p is larger (has more edges) then its score shagddade (increase) since
larger trees denote looser semantic connection®PRCBNH+02,HP02,HPBO03]. This is
the reason we take the sum of the inverse of tige edores in Equation 5. Furthermore,
if more nodes op are relevant t®, the score should be improved (decreased). Hence,
we take the inverse of the sum of the node scores.

Constantsa andb are used to calibrate the importance of the siz@eosummary (in

number of edges) versus the amount of relevantrimdtion contained. In particular,
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higher a values boost the score of smaller and tightly ested summaries, whereas
higherb values benefit summaries with more relevant cdr(ien, containing nodes with
high score with respect to the query). Notice thahdb can also be viewed as adjusting
parameters for the query-independent and depengi@ns of the scoring function
respectively. We usae=1 andb=0.5 in our system, which we have found to produce

high-quality answers.

5.1.2 Query-Specific Document Summarization

This section tackles Problem 2 [VHO05,VHO06,VHLO8]Jvén a queryQ and a page graph
Gq for a paged, the query-specific summary is the page spanmgpt of the G4 with

minimumScoré€p), according to Equation 5.

The extraction of the most relevant pieces ofrmiation from a web page using
the notion of the page spanning tree has anoth#icapon (side product), in addition to
being a component in creating composed pages.rticyar, it is used to performuery-
specific summarizationof web pages. The most popular use of query-gpecif
summarization today is the snippets displayed &mheof the page results of Web search
engines. We show how the query-specific summaraesesponding to page spanning

trees have better quality than current approaches.

Florida International University, a member of th&at& University System o
Florida, is a fully accredited comprehensive, mo#timpus urbanresearch
institution located in Miami, Florida (more)

| Open House, LateSicholarships Honors College

Figure 13: Top summary of web page 1 of Figure 1 fajuery - research

scholarships.
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Example: For the web page 1 of Figure 1 and the keyword yu#&Research

Scholarships”, the top summary v3-v4 is shown guFé 13. The top summary is the top
spanning tree of the page graph of page 1 showhRigure 2. Nodes v3 and v4 are
associated because they are adjacent in the tewh(ger associations are assigned when

the nodes have common words as explained beldve itekt).’

For both Problems 1 or 2, we need to solve a nan&the Group Steiner Tree
problem, which is referred to as keyword proximisgarch problem [BNH+02,
GSVM98] and is defined as follow&iven a weighted data graph G(V, E), a keyword
qguery Q which is a set of keywords, and an intdgdind the k minimum-weight sub-
trees of G such that every keyword in Q is containeat least one vertex of the sub-tree,
and we cannot remove any node from it and stilehawree.

When k = 1, the keyword proximity search problem has bebown to be
equivalent to the Group Steiner problem, which B-¢dmplete. The keyword proximity
search problem is slightly more complex since theugs of nodes are not disjoint, in
contrast to the Group Steiner Problem, which isnéef as follows:

Given an undirected, connected, and weighted gr@piiV, E); and given a family
R={Ry,....R} of disjoint groups of vertices, wherg R a subset of V, find a minimum-
cost tree T that contains at least one vertex feamh group R Since the weights of the

graph are non-negative, the solution is a tree-since.

This section presents two algorithms adapted from

BANKS [BNH+02] to compute the top query-specifimsmary: the enumeration and the
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expanding search algorithms. The algorithms retutap-1 summary for a Web pade
given its page grapBy and a quer®. The reason we employ top-1 summary algorithms
is that typically the user only requests a singl@mary for a document, as in the case of

snippets in Web search engine results.

Top-1 Enumeration Algorithm: This algorithm, which is abbreviated &sp-1-MTPST-
Enumeration(Top-1-Minimal-TotalPageSpanningTree-Enumeratiggshown in Figure
14. First, we find all combinations of nodesGathat are minimal (no node is redundant)

and total (collectively contain all keywords@). Then, for each combination we create

Top- 1- MTPST- Enunerati on (Page Gaph &, Query Q Quality paraneter )
1. Results 0, /*stores summaries*/
2. Find all nodes in G; that contain some keyword of Q /*use full-text
index*/
3. Find all minimal combinations of nodes that coll ectively contain all
keywords in Q
4. For each minimal node combination C do{
5. Create closure graph G that contains only the nodes in (04
6. Find all possible spanning trees Sof G;
7. Calculate the score of each spanning tree in S using Equation 4
by using shortest path weights between any two node S;
8. Pick the spanning tree p with the minimum score;
9. Replace the edges u~v in  p with their pre-computed shortest
paths u~u;~...~y~v; /*i.e., we are adding the Steiner nodes.*/
10. Trim p to make it a minimal total spanning tree;
11. Recalculate the score of p using Equation 5 and add pto Results ;
12. W--;
13. If( »==0) Return the top ranked summary in Results ;}

Figure 14: Top-1 Enumeration Algorithm.

a complete grapt. (calledclosure graph that contains all nodes in the combination and
all-pairs of edges between them with weight eqoalheir pre-computed shortest-path
distance. We then calculate all possible spanniegstinG;, and compute their scores

using Equation 5 and so on (see Figure 14 for rdetails). This algorithm accepts a
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quality parameter. Higher values ofw yield higher quality results. Intuitively this
parameter decides the number of different summénigsare considered before we pick

the best one, given that this is an NP-completelpro.

Top-1 Expanding Search Algorithm The basic idea is that an expanding area isenleat
for each keyword node (node that contains a queywkrd) ofG4 and we start from the
nodes that contain the query keywords and progrelysexpand them according to a
shortest-paths algorithm until we find all minimatal spanning trees. In particular, the
algorithm (Figure 15) finds (using the pre-computeli-text index) all the nodes that
match some keywords in the query and starts expgrilem incrementally. We call the
sub-graph created from each keyword nedexpanding area of At each iteration, we
expand each expanding area in parallel by addingdghcent edges (later we discuss
heuristics of expansion) to the expanding areahaf previous iteration. A result
(summary) is generated when a set of expanding areset at a common point (node)

and form a minimal total page spanning treeGor

We use the precomputed all-pairs shortest patis wa efficiently grow the
expanding area. That is, we only consider the etiygsare contained in a shortest path
from the current node to any other noda that contains additional query keywords than
v. When two or more expanding areas meet we chacfdssible new summaries. If a
summary is found, it is trimmed to become minimad ats score is calculated using

Equation 5.
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Top- 1- MTPST- Expandi ngSear ch( Page graph Gy, Query Q Quality
par anet er o)
1. Results ~0O; /*stores summaries*/
2Find all nodes N={Ny,...,N} that contain the keywords in Qand
create expanding areas for each; /* N has the nodes that contain
W/
3. Repeat until each expanding area spans the en tire graph G {
4. For each node vin Ndo{
5. Add to the expanding area of v the minimum-score adjacent edge
from the (precomputed) shortest paths starting at v and ending
at a node in N not containing the same keywords as v,
6. Check for new results (summaries);/*i.e., tree s that contain
a node from each of Ni,...,Nm*/
7. Trim summaries to make them minimal;
8. Calculate the score of each summary p using Equation 5 and
store in Results
9. W--;
10. If( »==0) Return the top ranked summary in Results ;}}

Figure 15: Top-1 Expanding Search Algorithm.

5.1.3 Search using Composed Pages

This section tackles Problem 1 [VHL06,VHLO8]. Indtsection we explain how a search
result (Definition 3) is ranked and discusses howomposed page is constructed for a

search result.

Ranking search results

Recall that asearch resultR is a Web spanning tre€ where each pagd in T is
represented by its page spanning pe€learly there is no optimal ranking function €nc
it is possible to come up with different rankingnétions for different domains or specific
gueries. In this work we adopt principles well-gueel in previous works on ranking
Web pages [KIe99,LCVAO01,PBMWIS] and trees of data

[ACD02,BNH+02,GSVM98,GSBS03,HP02,VHOGE].
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The first ranking principlewe adopt [LCVAO1] is that search results involviiegver
pages are ranked higher. Intuitively, if a seareult is larger (has more edges) then its
score should degrade (increase) since larger tteeste looser semantic connections.
Hence, search results are primarily ranked by thee(se of the) size of their Web

spanning tree. Recall that by Definition 3, allrsbaresults contain all query keywords.

Within search results with the same size of Wemsipey tree, we rank according to
the scores of the involved page spanning treespuoted by Equation 5. Note that the
first ranking principle also applies in ranking imdual page spanning trees as expressed

in Equation 5, that is, page spanning trees withllemsize are ranked higher.

What is left, is to define how the scores of thastiuting page spanning trees computed
by Equation 5, are combined to compute the overte of a search result. Again, we
do not claim that we have the optimal combiningction, but we rely on previous work
to define the next principle. Theecond ranking principlés that the scores of the page
spanning trees are combined using a monotone camgbinction to compute the score
of the search result. Notice that we already ussather variant of this principle in
Equation 5, where the scores of the nodes and eatgesombined using a monotone

function.

To incorporate the global importance of the pagesiun constructing a search result,

we use their PageRank [PBMW298] values. Equatiommputes the score of a search
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resultR given the scores of its page spanning tgashere we chose summation as our

monotone combining function.

Scorg p) (6)

ScorgR) = Z PR(D)

pOR

wherePR(p) is the PageRank score of pabthat contains the page spanning free

Admission Office - Florida International University | :|Office of Financial Aid - Florida International University
(research scholarships) O (graduate )

* Florida Intenational University, a member of the State ¢ iGraduate Assistance - Graduate students pursuing a master or
University System of Florida, is a fully accredited ﬁ doctoral degree may qualify for assistantships, fellowships and other
comprehensive, multi-campus urban research institution |awards offerad through individual academic units. To apply, contact the
located in Miami, Florida { more |. : i Dean's Office of your college or academic department. To inguire

© Open House, Latest Scholarships, The Honors College. regarding additional graduate infarmation contact the Division of
¢ ilGraduate Studies Office.

Scholarships.

Composed Pages

Our technique has the following key steps: During preprocessing stage, for each
web page we create a labeled, weighted graph,dcHikepage graphby splitting the
page to a set dext fragmentggraph nodes) and computing the semantic assoesti
between them (graph edges). Then, at query timend set of keywords, we first find a
tree, calledveb spanning tre@f hyperlinked pages that collectively containtaé query
keywords. Then we perform keyword proximity seaochthe each page’s page graph to
discover how the keywords contained in the pagasseciated with each other. For each
page in the web spanning tree we extrapage spanning trethat contains a subset of
the query keywords. The page spanning trees opdiges of the web spanning tree are

appropriately combined into a composed page, wisicbturned to the user. As we will
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explain later, smaller web spanning trees are pabfe and hence single-page results, as

created by current Web search engines for AND s&osaare ranked higher.

Example: Figure 1 shows a Web graph extracted from the fiwedu Web site. The
hyperlinks between pages are depicted in the Waphgas edges. The nodes in the graph
represent the Web pages. Figure 2 shows the pagehgof Page 1 in Figure 1. As
denoted in Figure 1, Page 1 is split into 7 texdgiments v1...v7, using the newline
delimiter, and each one is represented by a nodéhénpage graph. The edges denote
semantic associations. Table 1 shows the Top-Zkeasults (composed pages) for the
guery “Graduate Research Scholarships”. We représle@ nodes of a web spanning tree
using rectangles and the nodes of a page spanreegusing circles. Hyperlinks are solid
lines, while the semantic links within in a pagegr are dotted lines. The page spanning

trees represent the most “relevant pieces” of epage.

Note that a key assumption we make in this papdhas hyperlinked pages are
associated to each other. This is a reasonablengsism. Furthermore, each result should
be composed of pages associated to each othewvéoaheohesive meaning. Hence, we

only consider hyperlinked pages in building webrspag tree.

A composed page is a dynamic page created orythayf stitching together
pieces from other pages. Given a quéya composed page is a representation of a
search result, as defined in Definition 3, in a WWelge format. The score of a composed

page is the score of the corresponding searchtrdstihed by Equation 6. The key
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requirements in constructing a composed page aréotlowing: First, display the tree-
structured (more specifically tree of trees) seaesult in a page format. Second, allow
users to easily navigate to the original pages Weat used to construct the composed
page. Figure 16 shows the composed page constrigetéie Search Result #1 of Table
1. A composed page for a search result is constluay displaying links to all pages in
its Web spanning tree along with the text fragmenthe page spanning trees. The page
spanning trees are displayed in an unordereddishdt that depicts their structure. A
sub-bulleted list denotes the parent-child relatiop in the page spanning tree of text

fragments.

Figure 17 describes the preprocessing algorithnforBeany query arrives we pre-
compute and store the following:
 The page graph for each pagk particular, we parse the HTML documents
based on the tags and compute the edge weightspdiaeneters described in
Section 3 are taken as input and page graphs dtadzordingly.
» PageRank valuesf each page by executing the PageRank algoridBi[\W98].
» A full-text indexto efficiently locate the pages and specificallg text fragments
that contain the keywords and calculate their quspgcific score.
* In order to boost the performance of the algorithtine all-pairs shortest paths
between the nodes of the page gr&qlof every pagal. Note that the inverse of
the edge weights is used since larger edge wedgriste tighter association in

our setting.
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Preprocess (Web GraphG,, Parsing DelimitersP, Threshold r, Maximum Fragment sizes2?)

1. For each web page (node) din Gydo{

[* create and store page graph G for d¥

2. Parse d and split it into text fragments with maximum size
sz using the delimiters in P;

3. Create a node for each text fragment and add it to the page
graph, G of d;

4. For every pair of nodes in G find if they are semantically
related by calculating the edge weight using Equati on1land
add it to G if the edge weight > T

5. For every pair of adjacent nodes, build an edge e with
weight equivalent to max( Escore (e), 1) according to Equation
2;/*in close proximity as explained*/

6.  Find All-pairs shortest path using Floyd Wa rshall’'s
algorithm using the inverse of each edge’s weight;}

7. Compute and store the PageRank values of all pa ges (nodes) in

Gy /* compute PageRank values; build full-text inde x*/
8. For each keyword w locate and store all pages
in D that contain w; /*Stemming is used in
this step. Stop words are ignored */

Figure 17: Preprocessing Algorithm.

This algorithm is an adaptation of the Top-1 expagdearch algorithm. It also uses the
Top-1-MTPST-ExpandingSearchethod as a subroutine to compute the page smannin
trees of the pages in a Web spanning tree. We adg@ainding search and not the naive
enumeration algorithm since the former is showpadorm better. The key differences
from the algorithm of Figure 15 are the followingirst, Heuristic-Top-k-Expanding-
Search(Figure 18) operates on Web graphs instead of pegghs, and hence produces
web spanning trees instead of page spanning tEseand, we introduce the following
heuristic based on Equation 6, which is our rankimgction. In particular, we first
expand towards pagéswith highestHeuristicWeightvalue as defined by:

HeuristicWeight(d) = PR(d) * IRScor€d) @)

whered is a Web pagePRits PageRank value, am@Score(d)its Information Retrieval

score forQ. ThePR(d) component of Equation 7 is intuitive since it atgupears in the
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ranking equation (Equation 6). TheScore(d)component is a heuristic estimate of the

Scorép) component of Equation 6, whapes the page spanning tree for page

The intuition is that a page with high IR score @is also expected to have page
spanning trees with high score for We use the full-text indexer to compuiRScore(d)
Finally, notice thatHeuristic-Top-k-Expanding-Searddgorithm has two steps: first it
computes the Web spanning trees, and for each foteeim it computes the top search
results by computing the corresponding page spgnnirees for its pages
(getTopSearchResutiethod). The following are the key steps of thevatgm involved
in computing the tof-search results for a quegy

» Compute a minimal total Web spanning trééSTgiven the web grapks,, and
queryQ.

* Then compute the best search resulMi8T given the page graphs of each page
in WSTand the queryQ by considering all possible combinations of keyavor

assignments to the pagesviST

The above steps are repeated uitilsearch results are computed. The
getTopSearchResuttethod takes as input a web spanning tree anghite graphs of the
constituent pages and returns the best search edted evaluating all possible search
results. It uses th&op-1-MTPST-ExpandingSearchethod to compute the top page

spanning trees corresponding to the query.
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Heuri sti c- Top- k- Expandi ng- Sear ch(\Web graph G, Page graphs PC ={Gy;,G ¢ ...
G}, Keyword query Q={w 4,...Wg})

1. Results < 0; /* result count */
2. Find all keyword nodes KNin  Gyusing the full text index; /*nodes that
match some keyword in Q*/
3. Let Z be the set of nodes of Gy that contain W ;
4. Let L; be the set of expanding areas corresponding to the root nodes in
Zj )
5. Let buffer (i) be an array ordered by score to buffer search res ults
containing i pages;
6. For each node(page) d contained in ZinZyn..0Zydo {/*single-page search
results*/
7 TSR €& getTopSearchResult (d,{ G}, Q;
8. Insert TSRinto buffer(1);/* Insert TSRinto the ordered buffer  of
single page search results */
9. Results ++;}
10. While ( Results <k ){
11. For j inl.. .m do {
12. For each expanding area Lin L do{
13. Expand the expanding area L, with a node v having the maximum
HeuristicWeight ; I* Equation 6*/
14. Join v to all previously expanded nodes u generated by the
expanding areas Ls, S#j;
/* By “join” we mean find all instances of v as an end node in
the already expanded nodes. */
15. For each web spanning tree WSTgenerated by the join {
16. Trim useless leaves to make it minimal;
17. TSR €& getTopSearchResult (WST Gi1, G ¢2... G}, Q);
18. Insert TSRin to buffer(length( TSR); / * length(TSR) equals
number of pages in TSR*/
19. Results ++; If( Results = k){ Output results in buffer and

return; }}}}1}
MODULE: get TopSear chResul t (VWb spanni ng tree WST, Page graphs WPG = { Gy, G ¢

... G} of WST, Keyword query Q={w 4,....wq})

1. SearchResults ~[; /*stores search results*/
2. Find the set of possible partitions PQof Qas per Definition 3;
3. For each partition { Q1,...,Qz} of the keywords in PQdo{
4. For each page di in WSTdo {
5. PSR <q,
6. fQ iz9{
7. PSP ; €& Top-1-MTPST-ExpandingSearch  (G;,Qi, w);}} /*Q isthe
subset of Qassigned to page d;, w isthe quality factor*/
8. Create a search result R with each PSP and WST/*if PSR = owe
use the title of page d; (this corresponds to the Steiner node
which has no keywords in it) */
9. Compute  Score ( R) using Equation 6 and add Rto SearchResults ;}
10. Return the top ranked search result in SearchResults ;

Figure 18: Heuristic Top-k Expanding Search Algorthm.
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5.1.4 Experimental Results

To evaluate the quality of the results of our applofor Problems 1 and 2, we conducted
three surveys, one for Problem 1 and two for Prok®e The subjects of the survey are
twenty students (of all levels and various majas)Florida International University
(FIU), who were not involved in the project. In figesurveys the users were asked to
evaluate the results based on their quality.

Datasets We use two real datasets (Table 2). FIU1 is aeHinyked set of 25,108 Web
pages (nodes) crawled from tfie.edudomain, connected through 137,929 hyperlinks
(edges) used for performance evaluation. FIU2 ssitaset of the web pages available in
fiu.edudomain used for quality evaluation, which offeaster response times and more
focused results that are easier to compare.

Table 2: Real & Synthetic Datasets.

Name #nodes #edges Size
(Web pages)| (Hyperlinks)| (MB)

FlU1 25,108 137,929 4564

FlU2 6,054 45,405 115

We used FIU2 for our user surveys. The participamti®e asked to evaluate the quality of
the search results with respect to ten queries.ciise both long and medium sized
queries. For each query, users were asked tohatedatisfaction for the Top-5 search
results produced from the Heuristic ThpExpanding Search algorithm, and for the
results produced by Google. We chose the firssblte from Google that are included in
the subset of crawled FIU web pages. The Googleyquas constrained to pages using

the “site: fiu.edu” condition. Each participant wasked to assign a score between 1 and
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5 to each alternative query answer, where 5 detimehighest user satisfaction. The
results of the survey prove the superiority of approach, as shown in Table 3.

Table 3: Average Top-5 search result ratings for 1Queries.

Keyword Queries Google Heuristic
Search [ Expanding Search
Undergraduate Housing safety 2.06 3.41
Graduate financial aid regulations 2.41 3.59
Computer Science Internship ojrtunities 2.88 3.65
Campus Safety requirement regulations 2.24 3.35
Biomedical Research fellowship eligibil 1.24 3.35
Undergraduate Summer athletics 2.25 4.5
accomplishments

Physics alumni achievements 3.25 3.00
Electrical transfer student eligibility 2.66 4.66
Freshman internship opportunities 1.66 4.66
Mechanical Graduate admission policies 1.66 4.66
Average Rating 2.44 3.88

To evaluate the quality of our query-specific sumeswe created two user
surveys on a DUC and a Web dataset as explainesvb&he size of a result was also
taken into consideration by the participants —reyéy result carries more information but
is less desirable. Each participant was asked mgpace the summaries and rank them,
assigning a score of 1 to 5, according to theitityutor the corresponding query. A rank

of 5 (1) represents a summary that is most (lekestgriptive.

Comparison with DUC dataset
The dataset used in this survey consists of twdatyiments and four queries taken from
the DUC 2005 dataset [DUCO05] as shown in Tabled@&@rWe compare our summaries

with DUC Peer summaries for quality. DUC peers lareman and automatic summaries
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used in quality evaluation. We compared our sunesaagainst the DUC peers with
highest linguistic quality. Unfortunately, most thie summaries in the DUC datasets are
query-independent and the few query-dependent amnesnulti-document. Hence, in
order to compare our work to that of DUC we useel fillowing method to extract
single-document summaries from query-dependentiHthattument summaries for a set
of twenty documents over four topics. The senterthas have been extracted from a
documend to construct the multi document summary are vieasdls single-document
summary for the query/topic. Notice that the DUG@nsuaries are created by extracting
whole sentences from documents.

Table 4: Average summary ratings for documents.

Keyword Queries

Google Desktop Top-1 Expanding
Summary Summary
Q1)1 Q2| Q3] Q4] Q3 Q1| Q2| Q3] Q4 Q3 Q1 [ Q2] Q3] Q4 [ Q5
D1 [2.33(2.00|3.00[1.67|2.00|2.33(2.00|0.67| 1.67|3.00| 4.87 | 4.33|4.93| 4.67| 4.00
D2 [3.67[3.33|2.67[2.67|1.67|3.673.00|3.00[3.00[1.00| 3.67 | 3.33|4.00| 4.00| 3.67
D3 [1.60[1.60|2.00[1.60|2.00| 1.60( 1.00{1.80[2.20(1.20( 4.00 | 4.204.00| 3.60| 3.40
D4 [1.00{1.33|0.66(1.33|2.33|2.66(2.00|1.33| 1.661.33| 3.66 | 3.66|4.00| 4.00| 3.33
D5 [2.50[3.00|2.50[1.00|3.00| 1.50( 1.50{1.50 2.00(3.50( 4.00 | 3.50[4.00[ 4.00| 3.50
D6 [1.00{1.50|1.50(2.50|1.00|2.00(2.50|1.50| 3.50(2.00| 4.00 | 4.50(4.00[ 2.50| 4.00
D7 [3.00{1.00|3.00[1.00|1.00| 1.50 2.50{1.50| 2.50(2.00| 3.00 | 4.003.00| 4.50| 4.50

Average 1.97 2.00 3.89
Rating

Docs MSN Desktop Summaly

The results of the survey prove the superioritpwf approach, as shown in Table
5 and 6. Our method of combining extracted sentenseg semantic connections in the
form of Steiner trees leads to higher user satisiacthan the traditional sentence
extraction methods. In particular, the Steiner eseces in summaries provide coherency

in the aggregation of the keyword-containing-secésn
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Table 5: Average summary ratings for Queries 1 an@ in DUC topics.

Query 1 [nternational Organized Query 2 Women in Parliamen}s
Crime) DUC Topic ID: d301i DUC Topic ID: d321f
Doc. ID |DUC Pedr _ | °P1 Doc.ID  |DUC Peef _ | °P1
Expanding Expanding
FT941-3237| 2.33 4.66 FT921-7786 4.00 2.50
FT944-8297] 2.50 3.33 FT922-190 2.00 4.00
FT931-3563 2.83 3.00 FT921-937 2.00 4.33
FT943-1647T 4.00 4.17 FT922-13353 2.83 4.17
FT943-16238 3.67 3.67 FT921-74 2.33 3.67
Average 3.06 3.77 Average 2.63 3.73

Table 6: Average summary ratings for Queries 3 and in DUC topics.

Query 3 Drugs Mental lliness Query 4 Gtolen Art RecovergdUC
DUC Topic ID: d383j Topic ID: d422c
Doc. 1D 1 pyc peer| . T%P1 | poc.iD |DUC Peef _ TOP1
Expanding Expanding
FT933-4868 2.00 4.33 |LA051889-0110 4.00 3.00
FT942-16465 1.00 5.00 FT911-5359 2.00 3.00
LA090389-0060 1.66 4.33 |LA070990-0048 2.33 4.33
FT922-715 1.00 4.33 |LA032090-0091 3.00 3.66
LA111290-0137 1.66 4.33 FT923-1946 4.33 3.00
Average 1.46 4.46 Average 3.13 3.40

Comparison with Google and MSN Desktop

The dataset used in this survey consists of seeas Wlocuments taken from the
technology section afnn.com The participants were asked to evaluate the tyuaflithe
summaries of the seven documents with respecvéoqiieries each (35 queries in total).
We chose queries where keywords appear both cloddaa from each other. For each

guery-document pair, three summaries are displage@sponding to (a) the result of the
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Top-1 expanding search algorithm, (b) Google Dgsktssummary, and (c) MSN
Desktop’s summary. Summaries (b) and (c) were edelay indexing the two documents
in our desktop and then submitting the five quettethe Desktop engines.

The summaries are the snippets output for thesendewts. In order to compare
apples to apples, we chose queries for which thgtteof the summaries produced by all
three methods are similar, since clearly it is fadt to compare summaries of different
lengths as some people favor conciseness whilesothe amount of information.

In this survey we set constamto 1 andb to 0.5 in Equation 5, which we found to
produce higher-quality summaries. Notice that lgyreasing the value of constamtwe
favor short results, while by increasing constamie favor longer and more informative
results. Hence, by settilgto 1 andb to 0.5 we favor shorter summaries, which have
similar size to the ones produced by Google and M3#¢ktop. This makes their
comparison fairer.

Table 7: Queries used for documents.

Query # Documerbl DocumentD2
1 Microsoft worm protection IT Research awards
2 Anti-virus protection Algorithms development Resdar
3 Recovering worm deleted files Software projects
4 Worm affected agencies Large research grants
5 Deleted computer software Computer network secpribject

The results of the survey, which show the supeyioof our approach, are
presented in Table 4, while the queries are shawhable 7 (only 8 queries are shown
while the remaining 25 are omitted due to spacestraimts). Notice that Google and

MSN Desktop systems do not always include all kegson the summary when they are
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more than two and have big distances between therontrast, our approach always

finds a meaningful way to connect them.

5.2 Authority Flow-Based Graph Search

In this section we first define a query and descr@bmodified version of ObjectRank
originally presented in [BHPO4], called ObjectRankhe modification to the original
definition is that the nodes of the base set aighted. The weights are computed using
IR techniques for the original query and using guepansion techniques for subsequent

queries [VHO05,VH06,VHL06,VHLO8].

Keyword Query. A keyword quenyQ is defined as a tuptd keywordsQ=[t,...,t]. TO
incorporate weighing in the base set, we definedinery vector as follows. For each
queryQ=[ty,... tm] we define aquery vectorQ=[w;,.. , Wy] wherew; is the weight of the
query keyword;. The initial query vector for a query is [1,...,5jnce we assume that
the query term weights are all 1. These weightaighaluring the query expansion stage.
The answer t@®) is a list of objects with descending ObjectRan&@rss with respect to

Q.

ObjectRank2 is computed as follows on the authotransfer data graph
D*(Vp, EA). A surfer starts from a node (database objgatf the base set &fp and at
each step, he/she follows an edge with probatlity gets bored and jumps to a node in
the base set with probability 1d- The ObjectRank?2 value gfis the probability that at a
given point in time, the surfer is gt The query base s&Q) (from now on referred to
simply as base set when the keyword is impliedhésset of nodes/objects that contain at

least one keyword Q. In contrast to the original ObjectRank [BHP04], tfamdom
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surfer jumps to different nodes of the base seh wdifferent probabilities. This

probability for a node is proportional to the IR scotRScorév,Q) of the node(a node is

also viewed as a documeite overload symbal in this case) given the query vec@r
IRScorgv,Q) = v-Q (8)

where *” denotes the dot product operater[W(v,t1),..., W(V,t)] is the document vector

for v, andW(v,t) is the IR weight of termy for document.. W(v,t) is defined using well

studied traditional IR formulas like BM25 [RW94] Gkapi [Sin01].

We normalize the IR scores of the nodes in the sasto sum to one, since they
represent probabilities. The ObjectRank2 scoregova® = [r%(va),....r%vy,)]" given

guery vectoQ, wheren=|Vp|, is defined as follows:

@ =gar@+ 1~ ¢ 9
|S(Q) ]

whereA is an x n matrix with Aj = g(e) if there is an edge(v; — vj) in g4 and 0
otherwise,d is the damping factor which controls the base isgtortance, and =
[s,, . s .,s] isthe base set vector, whese= IRScorgv;,Q) if vi 0 Q) ands= 0
otherwise. Note that the only difference to ObjextRis the definition of thg’s which

were 0 or 1 in [BHPO4].

5.2.1 Explaining Query Results

In this section we tackle the problem of explainenguery result [VHRO08]. For instance,
as discussed in Section 1, the “Data Cube” papeFigure 3 (see Figure 9 for

corresponding authority transfer data graph) i«kedrhigh for the query “OLAP”. What
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is the best way to explain to the user why thisepapeferred to as th&rget object

received a high rank? This problem is even motealiin complex biological databases.

Paper Authors=“H. Gupta, V. Paper Authors=“J. Gray, A.
v Harinarayan, A. Rajaraman, J. v7| Bosworth, A. Layman, H.

Ullman” 7it/e="Index Selection 0.045 Pirahesh” Title="Data Cube: A
for OLAP.” Year=“ICDE 1997” Relational Aggregation

v2 0.002 0.006, T 0.001 Operator Generalizing Group-

X By, Cross-Tab, and Sub-Total.”
Conference Year Name=“ICDE’,
Name="ICDE” Year=1997,

Year= “ICDE 1996”
0.0006| Locatior=Birmingham g

0.015%
Paper Authors=R. Agrawal,
A. Gupta, S. Sarawagi”
Title="Modeling
Multidimensional Databases.”
Year=“ICDE 1997
0001 v6

Paper Authors=“C. Ho, R. Agrawal,
N. Megiddo, R. Srikant” 7itle="Range
Queries in OLAP Data Cubes.”
Year=“SIGMOD 1997”

v4

Figure 19: The DBLP Authority transfer data graph annotated with authority flows

for query - OLAP.

Intuitively, we want to show to the user the paththe authority transfer data graph
that authority traversed to reach the target ohjestarting from the nodes in the base set

SQ). For that, we create axplaining subgraphs? of D”that contains all edges that
transfer authority te givenQ, and every edge ig? is annotated with the amount of

authority that flows on this edge and eventualbcteesy.

We createg? in two stages:
(i) Construction stageg © contains all nodes and edgesDdfthat are part of a directed
path going from the base s&Q) to v. That is,g? contains all edges that can

potentially carry authority flow te.
(i) Flow adjustment stagéiVe compute thexplaining authority flowon the edges of

G2. The explaining authority floWrlow(e) of an edgee is the amount of authority

flow that is transferred throughand eventually reacheson D*for Q.
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Figure 20: Intuition behind flow adjustment.

The construction stage is straightforward and lsea@d as follows: We first construct
the temporary subgraph,, starting from the target nodeand traversing edges &f*
following the edges in the opposite direction ibraadth first manner (depth first would
also work) until no more edges can be traverse@nThve start from the authority
sources (base set nodes)yfand traverse the edges@f in the forward direction until
no more edges can be traversed. All nodes and edpessed in the forward stage are

added to the explaining sub gragsh

The flow adjustment stage is more challenging beeave have to adjust the “original”
edge authority flows fo@ to subtract the authority flow not reachingvtd~or instance,
in Figure 20 we must subtract from the edge fldwesamount that will eventually “leak”

out of g¢ through v.-v4. By “original” flows we refer to the authority fles at
convergence state D" for ObjectRank2 execution for que€y. The original flow for
edgev; -V is:

Flow(v - v,) =d [r(y, - v;) [1%(v) (10)
wherea(v; - v;) is the authority transfer ratef edgee = (v -V in D* according to

Equation 2.
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Figure 19 illustrates the original authority flowlsr d = 0.85 and query
Q=["OLAP”], on the authority transfer data graph dfigure 5. The computed
ObjectRank?2 scores vectdt= [0.076, 0.002, 0.009, 0.076, 0.017, 0.025, 0.0&8er 5
iterations. It is more intuitive to view the probieas adjusting the edge flows instead of
adjusting the node scores, although the adjustel® soores can be easily computed
given the edge flows in the end. One could thinksiofiply reducing the flow on an
incoming edgev; —V; of g¢ proportionally to the ratio of the outgoing flow @ going
outsidez?. However, this approach will fail if there are & ing?, since adjusting the
flow of an edge can have a ripple effect. Hencateative method is used. In particular,
for every nodeu, with the exception of the target nodge we iteratively reduce its
incoming flows proportionally to the flow going frou towards nodes outside @f. We
do not adjust the incoming flows of the target nedas the purpose of the explaining
subgraph is to explain to the user the total aitthtinat v receives from other nodes in
D”. We assume all edges are bidirectional (arbifranihall flow rates can be assigned to
direction of small importance) to guarantee congeog as proved in the extended

version [VHRO7].

For instance, for the explaining subgraph in FegR® with target node, where
we assumel=1 (i.e., nodes pass all their authority to theighbiors) and all edges are of
the same type, we adjust the original edge flowg ofv, andvs; - v, as follows: Half of
the flow going through these edges goes throughv and half throughv; —vs. Since

V2 - V4 is outsidgs?, we cut the flows ofs - v, andvs -V, to half, i.e., to 0.15 and 0.05
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respectively. This process is repeated iteratif@iyall edges ing? until the computation

converges. Note that the flow on edgesv, i.e., edges that endgtare not adjusted.

Details of adjustment stageThe details of the adjusting algorithm are as fetio For

each nodey in G2, let O(vy) be the summation of all outgoing flows\gfin ¢ andl(v)
be the summation of all incoming flows @f ing2?(we consider all incoming edges in

Geand notD” since Observation 1 below shows that both arelpduis

1) = D Flow; - ) (11a)
(v Vi )OGR
O(vy) = z Flow (v — v;) (11b)
(ViV} )OGY

Observation 1: There is no incoming edge-w; with non-zero authority flow, wherg v

is in g2 but vis outsideg?. If such en edge existed, it would have been deciuoc?

during the construction stage.
As mentioned before, our goal is to compute théofdtvi) by which the incoming flow
I(v) of each nodey must be reduced to be consistent with the redacggoing flow
O(w) of v in Ge. Itis:

Flow(v; - Vi) = h(v,) Flowg (v} - V) 12)
Intuitively, this factorh(v) is computed by the ratio of'(v) andr®(v) which are the
ObjectRank score 0¥ in g¢ (the “original” score) and” respectively. Hence, for a

nodevy

o)

Qs =
) =2

(13)
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Expl ai n- Obj ect Rank( Target bj ect v, Graph D% Base Set
S(Q ={s1,....5n}, Threshold T) {
[*Construction Stage */

1) Create a temporary subgraph D, by executing breadth-
first search on D*with v as the root node,
traversing edges in opposite direction;

2) Create explaining subgraph, G? by executing breadth-
first search on D, with the nodes in base set S(Q) as

root nodes, traversing edges in right direction;
[*Flow Adjustment Stage */

3) For each edge vi->vjin  G2,compute Flow o(V;->v;) using
Equation 10;
4) For each node viin G2 set h(vy)=1;
5) While not converged do
For each node vkin G2 exceptvdo
Compute h(vy) using Equation 15;
6) Update the Flow of each edge in G? using
Equation 12 ;
GQ
7)Return v

Figure 21: Algorithm to Compute Flows in Explaining Subgraph.

o)
M@%%% (14)

Combining Equations 10, 11b, 12, 13 and 14, welgefollowing fixpoint equation for

the computation afi(vi). (For the intermediate steps and more detail$\8d&07].)

3" (h(v,) Flowg (v,.v,))

) Q
h(Vk) — (v )OGy

dE°(v)

We rewrite this equation using Equation 10:

> (hv,) @ @y, - v,)rw)

: Q
h (Vk) — (/) ucy

d*row,)
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which then becomes

diCw) 0 Y () @y, - v,)

h — (Viov; JOGY
) d®(v,)
and finally,
h(v,) = Z(h(vj)ﬂv(vk - Vj)) (15)
(Vk!Vj)DG\?

Observation 2: The “original” ObjectRank2 scores are not used iongputing the

reduction factor fw). [

The iterative computation of Equation 10 on thelaxying subgraph converges [VHRO7].

Paper Authors=‘H. Gupta, V.
Harinarayan, A. Rajaraman, J.
Uliman” Title="Index Selection
for OLAP.” Year="ICDE 1997

v2 9.55¢-7 7-12¢-6_ % 1.59¢-7

vi

Conference  #°"1 Year Name="ICDE", |v3
Name="ICDE" Year=1997, 6.76e-6
7.12e-7 Locatior=Birmingham

v ~~2.37e-6 | Paper Authors="R. Agrawal,
Paper Authors="C. Ho, R. Agrawal, .| A Gupta, S. Sarawag”
N. Megiddo, R. Srikant” 7itle="Range . : B
Queries in OLAP Data Cubes.” (4 Multidimensional Databases.
Year="SIGMOD 1997 N_Year="|CDE 1997

- 001 g 67666 6

Title="Modeling

Figure 22: Explaining Subgraph for Range Queries irOLAP paper in Figure 9.

Example. Figure 22 shows the explaining subgraph for Q=[*ORA and target object
v4 after 5 iterations of Equation 15. Note that tBata Cube” paper(see Figure Dis
not ing?, since there is no path from that paper to v4.tidéothat the incoming flows of
the target object v4 are the same as the origine¢soof Figure 19. The computed
reduction factors after 5 iterations are as followis(vl)=1.59e-4, Iiv2)=4.77e-4,

h(v3)=0.0011, Kv4)=1.0, h(v5)=0.1006 and Kv6)=0.0067. Note that (v4) is 1 as v4 is
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the target object which implies that its incomitay from v5 is not adjusted as shown in

Figure 14.0

The explaining subgrapﬁ:\? can be very large which would make its generation
slow and its display to the user, impossible. Hemeepractice we limit the radius of
GS to L (longer paths are generally unintuitive [CQ69] @adry less authority) and only

keep the paths with high authority flow. We apgigge techniques in our online demo.
We have found that a relatively sméll (e.g.,L=3) value is adequate to effectively
explain a result and produce useful reformulationSigure 21 presents the Flow
adjustment algorithm.

Theorem 1:Iteratively computing Equation 15 on the explaingulpgraph converges.
Proof: The fixpoint computation of Equation 15 is equerdl to the PageRank
computation, if we replace incoming by outgoing eslgnd remove the damping factor.
The PageRank computation has been shown to convfetige graph is aperiodic and
irreducible [MR95]. The former is generally satesfj whereas the latter is satisfied for
connected graphs. The explaining subgraph is coedele to its construction method —
all nodes are connected to the target node. Tagtee convergence, we always consider
a non-zero reverse direction edge type for evegedgpe. Furthermore, there are no

flow sinks [BP98] since there is a path from evieogle to the target node.

5.2.2 Query Reformulation

Query reformulation [VHROS8] using relevance feedbdtas been well studied in

traditional IR [SB90, RLO3, Efth93, BSA+95, Har88Jhere query expansion has been
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the dominant strategy. That is, keywords are addebe original query according to the
user’s feedback. Such techniques are not adequa@bjectRank2, since they ignore the
link-structure of the graph which plays a key risléhe ranking. For instance, if the user
selects the “Range Queries in OLAP” paper in Figuis a relevant object, what is the
best way to reformulate the query using this pdpeferred afeedback objet? The
explaining subgraph described in previous Sectisnai key structure for query
reformulation sinca “vote” of the user for feedback object v can mmed as “vote” of
the user for the explaining subgrajpft of v.

Overview of process:First, the system computes the topbjects with the highest
ObjectRank2 values. The user marks a result objéate extend to multiple objects in
[VHROQ7]) as relevant- user’s click-through could be used to implicithertve such

markings. Then the explaining subgraghof v is computed. Based on the content and
link-structure ofc? we reformulate the initial query. In particulahetContent-based

component of the reformulation is inspired by ttiatial query expansion ideas and leads
to a query expansion; whereas tB&ucture-basedcomponent adjusts the authority

transfer rates of the authority transfer schemalyizased on the edge typeggn The

two reformulation components can be combined.

Content-based Reformulation
According to traditional reformulation techniqueéke terms in the feedback object
(viewed as a document) should be added, approlyriatsghted, to the original query.

However, due to the nature of authority flow ramkime extend this idea to also include
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terms in the objects that transfer high authomty.t These objects are the nodes of the

explaining grapls?. The weight of an expansion temnis proportional to the flow that
the nodes that contairpass tov, that is, the outgoing flow of these nodegin

A term t is weighted according to its distance framand the amount of authority it
transfers tov, as shown in Equation 16. The authority flow a exthnsfers tw is its
outgoing flow in the explaining grapd?.

wit)= > [(Cd)D(Vk'V’ 0 > Flow(v, vj)J (16)

Vi OGQ Ct0v, (Vi,v))OGY
where 0<c, < 1 is thedecay factor(in the spirit of XRANK [GSBO03]) which is

typically set to 0.5, an®(v,V) is the distance (length in number of edges)cdfom v.

Note that ifvg is v, then we usg ZF'OW(VJ' _v,) instead of zFlOW(Vk SV since

(vJ ,vk)DG\? (Vi WV )DG\?
the outgoing flow ofv is not specified ins?. We select the top-termsZ with highest

weight (ignoring stop words) and add them, aftemmadizing them as explained below,
to the original query vectd@o,. The reformulated query vectQ; at iterationi is defined
as

_JQiutc.D wim  i>1
= % (17)

Qy, 1=0

Qi

wheret is the vector of terrh (as in the vector space model [Sin01]), aga (<1 is the

expansion factqrtypically 0.5, used to scale the weights of newns (as well as new
weights of old terms) with respect to the termsspm¢ in current query vector.

Normalization issues are discussed in [VHRO7].

56



Example. Consider the authority transfer data graph of
Figure 9, query Q=[*OLAP”], and feedback object,is the “Range Queries in OLAP”

paper. The explaining subgrapR (Figure 14 is created. Using Equation 16, and

assuming gandC, are 0.5, the top-5 new terms are ), cubeg0.99, rangg0.99,
multidimensiondD.05 and modelin(D.05. Note that the terms in the feedback object

(target object ofc?) generally get a higher weight due to the decayofa€y. The

reformulated query vectolQ computed by Equation 17 ipolap, cubes, range,

multidimensional, modelifjg= [2.0, 0.99, 0.99, 0.05, 0.p5

Structure-based Reformulation
The structure-based reformulation adjusts the aityhaoransfer rates based on the

explaining subgrapks?. Intuitively, if edges of an edge tygmg carry large authority in
G then the user probably believasis an important edge type for the query. We boost
the authority transfer rate of each edge type pteiec? according to the authority it

transfers (to the feedback objegt The reformulated authority transfer ratge;) of

edge typesg is computed by,

a'(e;) =|1+C. O D Flowy, - V;) |[(es) (18)

(Vi V)OGR (% v has type eg
where &c, <1 is theauthority transfer rate adjustment factdypically set to 0.5, used

to scale the authority transfer rates with resgectheir previous values(e,) is the
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previous authority flow rate of edge tyme. Normalization issues are discussed in

[VHRO7].

Example. The authority transfer rates of the original queryare
[PP,PP,PAAP,CY,YC,YP,PY] =[0.7,0.0,0.2,0.2,0.3,0.3(013, Using Equation 18 and
the normalization process, the reformulated auttyoritransfer rates are
[0.67,0.0,0.24,0.16,0.24,0.24,0.24,0.08]. Noticat the transfer rates of PA and AP edge
types are increased and decreased respectivelyegsdarry greater and lesser authority

to the feedback object respectively.

5.2.3 Experimental Results

We experimentally evaluate our algorithms in temfsjuality and performance. This
section is organized as follows: First we briefgsdribe the datasets used for evaluation
and then present the user surveys and the perfeeresperiments respectively.

Datasets: We use two real datasets (Table 8). DBLPcompletk RBLPtop are the
complete DBLP dataset and a databases-related tsidsgeectively. We shredded the
downloaded DBLP file into the relational schema.

Table 8: Real and Synthetic Datasets.

Name #nodes| #edges IMB)
DBLPcomplete| 876,110| 4,166,626/ 3950
DBLPtop 22,653 | 166,960| 136

User Surveys
We used DBLPtop for our user surveys and not DBibfuete since on-the-fly

ObjectRank2 executions on the latter are slow amgey subjects would be irritated. The
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first phase was conducted at Florida Internatiodaiversity (FIU) involving five
professors and PhD students from the databasemad,were not involved with the
project. The goal of this survey was to compareterrbased, structure-based, and
content & structure-based reformulations. The teswias that structure-based
reformulation is superior. The second phase focosestructure-based reformulation and
involved 10 FIU and outside (including IBM TJ Wats@and Almaden) database
researchers, not involved in the project. In bdthges we also measure the capability of

our system to discover the authority transfer ratgdy a domain expert.

Internal Survey. The residual collection method [RLO3, SB90] cansbhenmarized as
follows: All objects seen by the user or markedralevant are removed from the
collection and both the initial and all reformuldtgueries are evaluated using the
residual collection. We use the average precissotin@ evaluation measure. Note that the
recall is the same as the precision in our cassesie limit the output results to We
report the survey results for 4 relevance feedbsaiations and for the following 3
settings: i) Content-Only reformulatiorC0&C=0.2), ii) Content & Structure-based
reformulation C; =0.5& C, =0.2) and iii) Structure-Only reformulatio@«(=0.5& C =0).
(We have found that these valueGpindC, are appropriate for this dataset.) The decay
factor Cy4 is set to 0.5. We usk=3 to limit the size of the explaining subgraph as
explained. We initialize the authority transferestof each edge type to 0.3. Figure 23
shows the survey results. We see that the struonlgereformulation performs the best.
Content-based reformulation is not effective in setting because the users are domain

experts and hence know the right keywords, i.aditional query expansion is not
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effective. Note that in a different domain the teswould vary. Next we evaluate the
effectiveness of structure-based reformulationutomatically train the authority transfer
rates of the DBLP authority transfer schema grapdh @ompare the learned weights to

the ones of [BHPO04], which we view as ground trlthe rates there
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Figure 23: Average Precision for different calibraton parameters.

were assigned manually by domain experts in adndlerror manner. We start by setting
the transfer rates of all edge types to 0.3. Weanaliait the length of paths of the
explaining graph withL=3. Let UserVector[PP,PPPA AP,CY,YC,YP,PY] be the
authority rates vector. It is initialized to [0.3(0.3,0.3,0.3,0.3,0.3,0.3]. The ground truth
ObjVector is [0.7,0.0,0.2,0.2,0.3,0.3,0.3,0.1]. &dch iteration we compute the current
UserVector produced by the reformulation and compthe cosine similarity
cos(ObjVector,UserVector). Figure 24 shows tharmosimilarity training curves for 4
users averaged over 5 queries each for a differ@ne of C; (Ce is always 0). We see
that the cosine similarity initially increases withe number of iterations and then
decreases due to overfitting. Largawvalues lead to faster peak, since the adjustment of

the rates is less smooth.
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Figure 24 : Training of the Authority Transfer Rates.
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Figure 25: Average Precision using structure-only éformulation with Cf=0.5.

ObjectRank2 vs. ObjectRank: We also conducted a survey comparing the quafity o
ObjectRank2 with ObjectRank [BHPO04]. We found tktjectRank2 is only slightly
better by 3%. The reason is the ObjectRank alsse ssmething equivalent to the idf of
our IR function: they weigh the ObjectRank values rhulti-keyword queries according
to the size of the base set. However, we beliea¢ @bjectRank2 will be superior in

datasets with longer text descriptions.
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External Survey. We conducted an external survey operating on DBhRiging only

structure-based reformulation as it was found tthieebest, in the internal survey. Figure
25 shows the average precision curve for 5 itematiaveraged over 20 queries by 10
users (2 queries per user). Figure 26 shows theaty transfer rate training curves for

the external survey which are similar to thoséhminternal survey.
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Figure 26: Training of the Authority Transfer Rates.

Performance Experiments: To evaluate the performance of our algorithms, we
conducted experiments on DBLPcomplete. We usedwa Imachine with Power 4+
1.7GHz processor and 20GB of RAM. The total executime is measured for various
stages: (a) computing the t&mbjects for the initial or reformulated query, @gating
the explaining subgraph, (c) executing the exptginDbjectRank2 on the explaining
subgraph, and (d) creating the reformulated quasyin [BHPO04], for the initial user
query, we initialize every node iB" with their global ObjectRank values, to achieve
faster convergence. Then, for the first reformwajeery we use the ObjectRank values
of the initial query and so on. The intuition isthhe ObjectRank values of the newly

reformulated query are expected to be close t@ties obtained by the previous query.
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Figure 27(a) shows the execution times for theousrcomponents of the process:
execute the query (first bar), and create the nefitated query (last three bars) at each
user feedback and reformulation iteration. We us8 as the radius of the explaining
subgraph, and convergence threshold 0.0001. Fi@n@®) shows the number of
ObjectRank? iterations for the initial and the refalated queries over the whole graph.
Clearly, using the previous scores as initial valwEcelerates the convergence of

ObjectRank2.
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Figure 27: DBLPcomplete Execution.
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The ObjectRank2 execution times for DBLPcompleteclearly too long for
exploratory searching. This can be addressed inobriee following ways: use faster
hardware, precompute ObjectRank2 values as in [BHRO define focused subsets like
DBLPtop. The ObjectRank2 execution times for théatasets are about 2 seconds for
the initial query and less than 1 sec for the sgbset reformulated queries (graphs

omitted due to space constraints).

5.3 Graph Information Discovery (GID)

There has been an explosion of hyperlinked datamany domains, e.g., the biological
Web. Expressive query languages and effective mgnktechniques are required to
convert this data into browsable knowledge. We gpsepthe Graph Information
Discovery (GID) framework [VHR+09] to support sogticated user queries on a rich
web of annotated and hyperlinked data entries, vgaery answers need to be ranked in
terms of some customized ranking criteria, e.ggelRank or ObjectRank. GID has a data
model that includes a schema graph and a data ,gaspohan intuitive query interface.
The GID framework allows users to easily formulgtesries consisting of sequences of
hard filters (selection predicates) and soft fitgranking criteria); it can also be
combined with other specialized graph query langsagp enhance their ranking
capabilities. GID queries have a well-defined setivarand are implemented by a set of
physical operators, each of which produces a ram&sdit graph. We discuss rewriting
opportunities to provide an efficient evaluation @D queries. Soft filters are a key
feature of GID and they are implemented using aitthiow ranking techniques; these

are query dependent rankings and are expensiverpue at runtime. We present
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approximate optimization techniques for GID sdftefi queries based on the properties of
random walks, and using novel path-length-bound graghh-sampling approximation
technigques. We experimentally validate our optimaratechniques on large biological
and bibliographic datasets. Our techniques canym®digh quality (Top K) answers
with a savings of up to an order of magnitude,amparison to the evaluation time for

the exact solution.

Consider a rich web of annotated data entriese@) in Internet accessible
sources with hyperlinks to entries in other sourdésamples include the biological Web,
GIS datasets and their metadata, bibliographic slatiaces, healthcare data, desktop files
and Intranets. Such graphs have significant diffees from the general Web graph.
Each of the data entries or documents contains spreific typed knowledge, e.g.,
information on genes and proteins for the biololgidéeb. Thus, this graph has an
underlying schema graph. Users of siygghed websvant answers to queries that are
meaningful to them and go beyond traditional Infation Retrieval (IR) keyword
gueries. These users have sophisticated informatieeds, which require both
customization and personalization, when rankingyuesults. For example, a biologist
may only want to retrieve protein data entries fiswissProt, or she may be interested in
discovering the associations between a particulag énd a disease by following the

links among publications that are linked to proteamd vice versa.

The challenges to query answering in this rich webntities include supporting

users to retrieve meaningful answers, given the’sig@eferences, rather than just
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retrieving relevant data entries. The Graph InfaromaDiscovery (GID) framework must

support a simple yet flexible query interface whareiser can easily pose a complex
guery. Ranking of answers must reflect the semsrdfcthis rich Web and the user’s
personal perspective. GID queries must be interacind support the exploratory
discovery process. Hence, they must support foseatantics so that queries can be

optimized and evaluated efficiently.

The limitations of many prior solutions are thaéyhtypically converge on the
extremes of query complexity, i.e., plain keyworccomplex queries, with few solutions
in between, or they fail to consider ranking. Welarsh [PBMW98, Hav02, FLW+06,
NDQO6, RPB06] employs excellent ranking technigumatshave limited search capability.
The keyword search paradigm of Web search has lad®m adapted to structured
databases [ACD02, HP02, BNH+02]. On the other htrete are a variety of extensions
of SQL for Web graphs (WebSQL [MMM97], W3QL [KS95}\VebOQL [AA98],
StruQL[FFL+97, FLM98]) and RDF graphs (SPARQL [SARMHowever, none of these
languages provide customized ranking techniques @&pproach in [RGO03] is an
excellent start towards incorporating ranking mustured Web queries. They provide an
underlying algebra and optimization; however, tltgy not support an interface that
allows users (scientists in the case of the sdienieb) to intuitively write useful
complex queries, nor do they support powerful nagkiechniques like authority flow
based ranking. NAGA [KSI+08] implements reasoniagks on RDFS documents, and
supports complex queries and ranking. NAGA tar¢gted graphs of facts and labeled

relationships that may be expensive to create @& kip-to-date. It does not support
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guery-customized ranking. That is, a fixed confickebased ranking function is applied
to the final results. In contrast, GID allows theeuto specify what ranking. mechanism
(if any) should be used for each leg of the quéwyrthermore, NAGA uses expensive
reasoning algorithms, which may not scale to varge datasets like PubMed, whereas
GID relies on a suite of scalable approximation aptimization techniques. We show
that our framework can complement such prior reteand extend it with support for

sophisticated queries and ranking.

This section addresses the challenges of expreasih@nswering sophisticated user
gueries on typed graphs. We focus on a web of atemtdata entries from biological
data sources for our running examples and expetsnétowever, the generic GID
framework is applicable in multiple domains; we usbliographic data as a second
evaluation domain in our experiments. The GID frawmk has the following features
and capabilities:

» Given a typed graph, GID provides a user intertacgpecify a combination of hard
and soft filters; the latter incorporate rankingan intuitive manner. GID emulates
domain graph query languages such as IgQRR [RWL+06] and filter queries in
PubMed [PMO7]. GID can be combined with more gehgraph languages to
support complex queries.

* Filters are implemented by an underlying closecelailg of physical operators. Each
operator produces a ranked graph and GID operedmrde combined. The properties

of the operators are used to determine the releusety rewriting rules.
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» GID soft filters are implemented using authoritgwil based ranking; they are query
dependent and must be computed at runtime. Twol rapgroximation techniques
are studied in order to achieve interactive quesponse times. One is a path-length-
bound technique, where only paths of limited lergth considered. The second is a
graph-sampling approximation technique, where senrgmver a Bayesian network is
used to create sampled graphs and estimate thimgssdores.

* GID queries were evaluated on biological and bdtphic datasets. We show that
our approximation methods achieve execution tinteicBons of up to an order of
magnitude, with negligible degradation of the Tloprswer’s quality (in comparison

to the exact ranking). This allows GID to suppartexploratory framework.

5.3.1 GID Query Language

The intuition of the GID framework is the applicati of a sequence of hard and soft
filters. A filter generally takes as input a rankgéhph and outputs a ranked subgraph of
the input graph. A hard filter is used to eliming®@me nodes in a Boolean manner

whereas a soft filter provides ranking.

GID Query Syntax: Given a data grappG and a schema gra@®G a queryq is a
sequenceq=[r1>...>ry] of filters ri. We use the “>” symbol to denote a total order
between the filters and this represents a pipaimhthe output of one filter as input to
the next. The results of a query, which are usuakye exception below) the nodes of the

graph output by the last filter, are referred tdaaget objects
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A query may also specify the numbeof the requested tdpresults. A filterr={R,N,$
is the following 3-tuple:
(1) The selection conditioR as follows:
* A keywords Boolean (OR, AND, NOT) expressigne.g.,Keywords = “cancer”
AND “breast”.
* An attribute value paiav, e.g. title = “A comparative..”
* AtypeT, e.qg.,Type ={EntrezGeng
* A Path expressioR, e.g.,Path = EntrezGenéPubMedor Path = EntrezGene
[Keywords= “tnf” ] / PubMed[author="Michael”].
(2) A BooleanN; the value=true means thais negated.

(3) A BooleansS; a value=true means thats soft.

GID does not support soft filterS€true), whereR is a path expression, or negated soft
filters (N=true and S=true) since the semantics are unintuitive. Path expred3imay
contain types, unidirectional single step navigaimperators (/), multi-step navigational
operators (//), and type wildcards (*). Notice tH&ath’, “Keyword$ and “Typ€ are
reserved words in GID. GID does not support a coetimn of selection conditions
(keyword expression, attribute value pair, typgath expression) within a single filter,

in order to simplify the implementation and optiatibn process.

Example A biologist’s exploration is as follows: Startifiggm genes in Entrez Gene she

follows links to Entrez Protein and then to PubMbedr target objects are a set of papers
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in PubMed. She wants to rank these papers by thgiortance/relevance to the word
“human”. The following expresses her needs
a: = [{ Path= EntrezGene/EntrezProtein/PubMed, false, false

>{Keywords“*human”, false, trué

>{Type= PubMed, false, fal3g.
The first hard filter creates a subgraph of pathsni genes in Entrez to proteins to
PubMed publications. The second, soft filter pregica “goodness” rankingto be
discussed belopwith respect to the keyword “human”, and the ldsird filter identifies
the “target objects” - publications from PubMed r-the result(]
The most simple and intuitive GID query for noviggers is to specify a set of hard filters
{r1,...,1} and a single soft filters. This can have a default interpretatiomot{r,...,r}
>rsor asq = rs>{ry,...,1} depending on the application semantics. The $jgemidering
of the hard filters {3,...,r{ is not important as long as they do not includehHilters.
Target Objects:As mentioned above, we assume by default thathallobjects of the
resulting subgraph of the query are output to ser.UAlternatively, the $ sign is used to
select a more fine-grained group of target obje€tsr instance,q; = [{Path =
$EntrezGen®/EntrezProtein, false, faljereturns all EntrezGene objects that point to an

EntrezProtein object.

GID Query Semantics: To define the semantics of GID queries, we firdirsdeascore
assignment functigrbcorefor a data grapiG(Vp,Ep) to be a mapping of nodesiVp
to real valuesScordv) in [0,1]. A unit score assignmenBcorgni, assignssScorgni(v)=1

to everyv/Np. The input of a filterr is a pair Gij,,Scorg,) of a data grapl&y, and a
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scores assignmei8core, for Gi,. Similarly, the output is a paiG{y,Scorew), where
Gout is @ subgraph dbi,. Applying the filter is as followsr(Gin,Score,)=(Gou, SCOrgyy).
Given a GID queryg=[ri>r>>...>rn..>ry] on the data grap®G=(Vp,Ep) the result
(Gr,Score) of qis ry(rm-1(...(r2(r1(DG, Scorgnip)))...)).

During query evaluation, filters are applied ire torder indicated in the query.
Note that the unit score assignment is used fofitsefilter r;. Alternative initial scores
are possible, e.g., the global score of a node atedpby a method like PageRank
[PBMW98]. Each filter may change the scores ofdhta graph. This may also eliminate
nodes and edges as explained next. Applying filber graphDG is as follows:

* Eachvin DG is assigned a scoBzordv) in [0.0,1.0].

* When nodev is assignedscordv)=0, then the node and its incident edges are
removed. For example, applying= { Keywords“human”, false, falsé removes
all nodes and incident edges in gra@h that do not contain the keyword
“human” to creat&; .

Given the resultl}Gg,Score) of g, whereDGg=(Vg,Er), GID will display a list of the

nodesv of Vg ranked by decreasirfgcore(v) values.

Hard filters are used to eliminate nodes (and their incidegegdofGi,. The filter is
evaluated as a Boolean and may assign score Orte sodes. The score is unchanged
for the rest of the nodes. Consider the followiittgrf r={R,false,falsp

1. If Ris a keyword expressida (or simply a keyword)Scorgu{(Vv)=0 if v does not

satisfyE, elseScore.(Vv) = Scorg,(v).
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2. If Ris a attribute value paav, thenScorgu{Vv)=0 if nodev does not satisfay,
elseScorg,(Vv) = Scoren(v).
3. If Ris a typeT, thenScore,{(Vv)=0 if v is not of typeT, elseScorg,(v)=Score,(v).
4. If Ris a pathP, thenScore.{(v)=0 for nodes not contained in a path of type
elseScorg,(v)=Scoren(V).
The opposite scores are assignead{fR,true,falsg
Soft filters rank a result subgraph and are inherently fuzapp8seR is a keywordw or
keyword expressioR, then, applying results in the following score:
Scoreu(V)=f(Score,(v),Scorg(v)) where &Scorg(v)<l is the score assigned yoby r.
Scorg(v) shows how “good' is, given the grapi®i,. GID does not specify the exact
semantics or computation of these sc@esre(v) for soft filters. Various approaches are
possible including authority flow, IR scoring [SIHQ path count [Katz53], keyword
proximity [GSVG98, HPBO03], minimum distance frometkeyword nodes and so on.
Note thatScorg(v) must be positive (non-zero) and must not depenthe input
score assignmen$core,(v). This important assumption, th@on-pruning order-free
assumptiorfor soft filters, is needed to obtain useful rdimg axioms. This assumption
is reasonable to implement since a small epsildnevean be assigned to nodes instead
of O if they are completely irrelevant B We use aombining function fe.g., product or
min). In principle, any combining function may bsed. However, a monotone function
is usually more intuitive and also allows pipeligiand fast computation of the top results
[FLNO1]. In order to maintain th&cordv) in [0.0,1.0], we normalize th8cordv) after

application of each filter.
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Figure 28: Sample semantic query evaluation.

Example(cont'd): Figure 28 shows the query evaluation of quergigen the input data
graph DG of Figure 6. We assume initial unit scoessignment Scogg. We also
assume a simple soft filter scoring function wittor&(v)=0.5 if a node does not

contains the term and Scef@=1 otherwise. The combining function f is summation.

5.3.2 Related Research

Meeting target user needsWe interviewed biomedical domain experts and exathin
popular search tools. When asked to describe fkeetsm of target objects (results) that
are documents in PubMed, these users chose privgrdgtering of the objects; see
PubMed filter queries [PMO7]. They also requestiedpie navigational paths. PubMed
supports filters in a limited manner; users caedea set of predefined filters (hard filters
in our terminology), e.g., filter the publicatiortbat cite MEDLINEplus articles. In
[VHRO8], we conducted user experiments that shosviténefits of soft filters for this
domain. We note that the real test of the GID fraomi will be a friendly graphical user

interface and user evaluation studies; this isughetl in our future work.
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A second aspect of user needs is the richnesgeafdata model. The GID model is
much simpler compared to RDF, yet it can capturehmof the knowledge used by a
scientist in the process of literature based disgp(.BD) on the Web. NAGA [KSI+08]
has a similar labeled directed multi-graph data @hodHowever, they may have
significant overhead in determining the confidentécts and relationships of the RDFS
graph.

A third aspect of user needs is personalized rgnkKNAGA does not support
guery-customized ranking. That is, a fixed rankimgction is applied to the final results,
based on confidence-based edge weights that refectestimated accuracy of the
extraction process and trust in the source. InreshtGID allows the user to specify what
ranking mechanism (if any) should be used for edachof the query. GID supports
authority flow based ranking and the authority virsgcan be personalized. This is well
suited to scientists whose value for specific dontaiowledge may vary depending on

the task.

Expressive power:GID is clearly more powerful than the current PuldManguage

which only supports hard filters and has no rankiagability. Research by Raghavan
and Garcia-Molina [RGO03] studies an expressive lg@gebra and query operators. The
GID language can support the “linear” plans of thligebra. The “tree” plans were not
considered since they cannot be supported by desinger language. While users wanted
navigation, they did not express a need for general operations, recursion, etc. as
found in [RGO3]. GID soft filters are more genettan the ranking operators in [RGO03].

GID soft filters are evaluated against the wholguinsubgraph (e.g., ObjectRank) instead
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of just relying on the properties of each individm@de as is done in [RG03]. This

property is the key to intuitive GID user queryeiriace.

Example: This example shows that the GID query languaganallexpressing complex
gueries in an intuitive way; no query language wesgposed in [RG03]. Consider the
following sample query from [RGO3]: “Generate at lisf universities with whom
Stanford researchers working on ‘Mobile networkingpllaborate”. A sequence of
instructions corresponding to this query is preseémh [RGO03]: Let S be a weighted set
consisting of all the pages in the stanford.edu @onthat contain the phrase 'Mobile
networking’. The weight of a page in S is equalh® normalized sum of its PageRank
and text search ranks. Compute R, the set of all“tadu” domains(except stanford.
edy to which pages in S point. For each domain in$8jgn a weight equal to the sum of
the weights of all the pages in S that point td tl@main. List the top-10 domains in R in
descending order of their weigHlRG03]. Creating the algebraic execution plan for this

qguery (Figure 8 of [RG03]) requires significantimiag.

In contrast, the hard and soft filters of GID express this query in the following
sequential and straightforward mannef{ Keywords"" falsetrue}>{ IRFilter("Mobile
Networking), false true} > {PathrWebpagBJRL="stanford.edt AND Keywords=
"Mobile networkin{/$WebpagJRL=".edd AND URL # "stanford.edl$, false

falsg> {URL="stanford.edlj false true}].
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For this query, we first initialize the graph nedeith global PageRank scores
(empty keywords expression in first soft filterporFcomputing the textrank (IRscores),
we need to introduce the IR soft filter. Toembining functionf is summation that adds
textranks and pageranks. Notice that the last fite soft filter that computes the final
scores for each web page and outputs the non-$%taedioipagesin descending score
order. We assume that this attribute-constrainédfifer uses the scores of the nodes in
the input graph as the weights in the base seh&authority flow execution algorithm.
There has been significant work on query langudgeshe Web and search engines
ranging from keywords based languages to queryuages for semi-structured data, to
graph query languages. For users who require gegeeay language features to write
complex queries, the GID operators and ranking séinsacan be incorporated in a
straightforward manner into a language such as $RAR\lternatively, more complex
path expressions or other relational operatorsbeammcorporated into the GID language.
NAGA too can express complex queries and can stuppopowerful inference
mechanism; however, this may not scale well todaygphs and an interactive discovery

process.

5.3.3 Algebra for GID

We present a closed algebra where the algebraicatgjpe have a one-to-one
correspondence to the filters. A bin&gmbineoperator is introduced to combine scores.
Each (unary) operator, with the exceptionGdmbine accepts as input a pair of data
graph and score assignmel@, Scorg and produces the paiDG’, Scoré), where

DG=(VD,ED) andDG'=ND',ED'). Further,VD’ O Vp andED'D Ep.
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Operators

1. HardeExgDG,Score,E — (DG',Scord) where E is a Boolean expression over
keywords, such that/p’ ={v | v/7Vp and satisf(v,E)}, Ep'={e=(u,V) | eJEp and
u,v Vp'}t and the Boolean predicasatisfy.,.) is defined by induction ovef as
follows:

» If Eis atermgsatisfyfv,E)=true if v contains the terrf, falseotherwise.

* If EEE1OpEZ2, satisfyv,E)=satisfy(v,E1) Op satisfyv,E2).

* If E=not E1), satisfyv,E)= not(satisfyv,E1)). The score of each node\Vp’
remains the same, i.eScor&(v)=ScorgVv).

2. HardAttributgDG,Score,ay — (DG’,Scoré) whereav is an attribute value pair,
such thatVp' ={v | v 7 Vp and satisfiv,aV)}, Ep'={e=(u,v) | elJEp and u,v[(]
Vp'} and the Boolean predicagatisfyv,E)=true if v contains the corresponding
value for the attribute specifieflalse otherwise. Notice that we overload the
satisfy predicate.

3. HardTypdDG,Score,T- (DG',Scord) whereT is a set of types (nodes of the
schema graph\p' ={v | vO Vpand /tO T and VI t}, Ep’={e=(u,v) | e Ep
and uyv O Vp't. The score of each node /7 Vp' remains the same, i.e.,
Scoré(v)=ScorgV).

4. HardPatiDG,Score,p- (DG’,Scoré) whereP is a path expressioNp’ = {v | v
[7Vp and satisfyPattv,P)}, Ep'={e=(u,v) | e ZJEp and u,v//Vp', the Boolean

predicatesatisfyPatliv,P) is true if v is part of a pattp that satisfied; false
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otherwise. The score of each node /7 Vp' remains the same, i.e.,
Scoré(v)=ScorgV).

SoftExgDG, Score, E, ScoreFunctipn- (DG’, Scoré) whereE is a Boolean
expression over keywords, aBdoreFunctions a function such that, givéhand
DG, maps each nodeto a scoreScoreFunctio(DG,E,\) in [0.0,1.0] ((0.0,1.0]
given the non-pruning assumption for soft filteilternatives forScoreFunction
include ObjectRank, path count, MinDistance, keydvproximity and so on. The
score for E is computed as follows:

If E=E1 OR EZ2 ScoreFunctio(DG,E,\) = ScoreFunctio(DG,E1,y+
ScoreFunctio(DG,E2,V.

If E=E1 AND EZ2 ScoreFunctio(DG,E,\) = ScoreFunctiofDG,E1,y
ScoreFunctio(DG,E2,V.

If E=not(E1), ScoreFunctio(DG,E,\) = 1 — ScoreFunctiofDG,E1,V.

If E is a termw, ScoreFunctio(DG,E,v) = ScoreFunctio(DG,w,V).

OnceScoreFunctionis executed, the scor&sore(v) of the nodes iIDG are updated as
follows: Scoré(v) = ScoreFunctio(DG,E,\). Note thatScore(v) is theScorg(v), that is,
the score assigned by the soft filter. This scoitethhen be combined with the previous

nodes scoreScore(v)using theCombineoperator below.

6. CombinéDG1,Scorel,DG2,Score?.f. (DG',Scoré) wheref(scorel,scoreRis a

combining function like product. For every nodetre union ofDG1 andDGZ2,

Scordv) = f(Scorelv),Score?v)). Given DG=(Vp1,Ep1) and DG=(Vp2,Epy), the
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graph DG= (Vp' , By') is defined asdllows: Vp' ={v | v /7 Vb1 O Vp, and
Scoré(v)>0.0}, Ep'={e=(u,v) | e 7Ep1 0 Epy and u,v/7Vp'}.

<DGp, Scoreg>
HardType(DG3,
Score3,PubMed)
+-0G3. score3>

Combine(DG1,Score1,
DG2, Score2, SUM)

{L

T <DG2, Score2>
SoftExp(DG1,Score1,
“human”, ObjectRank)

T<DG] , Scorel>
HardPath(DG, Score,
EntrezGene/
EntrezProtein/PubMed)

<DG1, Scorel>]

<DG,Score, >

Figure 29: Execution plan for query gl

Example (contd): Figure 29 shows an execution plan for query gl. V&=
f(.,)=SUM(.,.) as the combining function (other combining funwdicare possible as

explained above) and ObjectRank as the ScoreFunctio

Axioms: In this section we present the rewriting rules ®&D queries, assuming any
implementation for the soft filters, i.e., any dutiion of ScoreFunctionThese rules will
be applied together with the approximations. Cagrsitie following theorems (without
proof):

Theorem 2 Let H, H; be hard filters and ;SS be soft filters. The following properties

hold:
1. Thecommutative property of non-paltlard filtersH; > H; < H; > H.
2. Thecommutative property of soft filters>36§ < §> S.

3. Theidempotence property of hard filters HH; = H; [l
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The proof is straightforward and relies on thedwling: The soft filters are non-pruning
and always assign a non-zero score. The combiningfibnf which combines the scores
of a soft filter with the current scores is comntwia (e.g., product, sum, max).

Theorem 3: The rewritings of Theorem 2 can be applied to arpsequence of a query.
For example, iQ = S>H>H>>S; whereH; and§ are hard and soft filters respectively,

then using the commutative property of hard filt@escan rewrit€ asS>H,>H 1>S,.

5.3.4 GID Soft Filters computed by Authority Flow

GID soft filters will typically be the most expemsi operators since the popular
authority-flow based ranking techniques used bytrso# filters are well known to be
expensive for relatively large data graphs. PagkR@BMW98] and ObjectRank
[BHPO4], rely on pre-computing and indexing glolmal keyword-specific rankings.
Given that the GID framework is meant to be intdvac and exploratory, we
aggressively optimize the evaluation of authoritwf soft filters. We first provide an

overview of some ranking metrics. We then discugsdpproximation techniques.

Layered Graph ObjectRank (IgOR): The class of GID queries with a hard path filter
followed by a soft term filter is very useful andpeessive. [RWL+06] proposed the
IgOR ranking, a variant of ObjectRank, to answethsqgueries. These queries apply
authority flow ranking on an acyclic directémyered graphproduced by the hard path

filter.
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Example Consider the following GID query: [{Path =
EntrezGene/EntrezProtein/$PubMed$, false, false > {Keywords“aging” OR
“cancer”), false, trug]. First, the hard filter creates a layered graph aftips satisfying
the path expression EntrezGene/EntrezProtein /PubfAigure 30. A layered graph is
a DAG comprised of layers; each layer has dataiegtof one or more types, which have
only edges to data entries in the next layer ofgitagh. The data entries in the last layer,
which are returned by the query, are called theyé&drobjects. For simplicity we assume
that each layer is composed of data entries of type. Next, the soft filter executes
ObjectRank on the layered graph for the keywordesgion “aging” OR “cancer”. The

target objectgPubMed objecisare ranked according to their ObjectRank value.

A key point of IgOR is that the authority flows eten objects in the layered graph are
only determined by the scores of the parents o @gect in the previous layer of the
graph, and the incoming authority transfer ratg®R is defined as follows: The ranking
vector R of the target objects in the last layer of theeleg graptRG=(V,y,Eq) of k
layers is defined by a transition matfy and an initial ranking vect®"":

k-1
R=A IR = ([ A R"
9 D 9 19)

The transition matrix ig\g, where,aig(€) is the authority transfer rate of edgéetween

nodesu and v of type U andV, respectively, in adjacent layegs and q. The
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OutDedu,V), the outdegree of node to nodes of the typ¥/, is limited to nodes and

edges in the layered graph as follows:

age, i e=(u - V)UEg

AgltnV]= {O, otherwise (20)

We present two techniques to achieve fast, highitguapproximate rankings.
Each of these two techniques is more effectiveiffergnt settings. Theath-length-
bound technique considers paths with an upper boundhenléngth, in computing
authority flow. The approximation is effective imaduating a single authority-flow soft
filter and can be applied to a sequence of sairél Thegraph-samplingtechnique
probabilistically selects a subset of the pathagisi Bayesian network. It is applied to
approximating IgOR queries (introduced in [RWL+Q6hich are equivalent to a hard
path hard filter followed by an authority-flow softlter. This approximation is
indispensable when the data graph is large. In bethniques, the complexity of
evaluating a query is reduced, by minimizing thenbar of nodes visited during query

execution time.

Layer 1 Layer 2 Layer 3

Entrez Gene Entrez Protein PubMed

Figure 30: Layered Graph.
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Approximate a Soft Filter with Path-Length-Bound Technique: A path-length-bound
technique is applied to approximate the evaluatban authority-flow soft filter. The
key idea is to evaluate ObjectRank on a subgfBEpB'(Vrp',Emp’) of TDG (Vrp,Etp).
TDG' is created by first selecting all nodes,’, O Vrp with distance up to/1 from the
base set (the nodes that contain the keywordseofdit filter), whereM is theradius
constant usually set to a number between 2 and 4 in otarsdés. We add the eddesy’
O Erp that connect nodes Wrp'. Figure 31 shows the detailed steps of this ogation.

In order to guarantee interactive response timesstart with path lengtv=1
and progressively increase it to improve the resgltality, until the user is satisfied with
the current results’ quality. To further accelertite execution, we reuse the ObjectRank
values of the previous iteration. Note that thigoathm is applicable for a sequence of
soft queries, by merging their base sets (nodem®@gyre added if ObjectRank2 [VHRO08]

is used, which has weighted base set).

1l.Let g=[r.] be aquery composed of a single soft filter r
2.Let  whbe the keyword expression of r..
3. Initialize TDG with the set of nodes in TDGsatisfying W.
4. Repeat until user is satisfied with current resu Its '
quality {

Do one step of breadth-first search in TDG and add each

newly accessed node.

Exit loop, if no new nodes are added.

Execute ObjectRank on TDG.

Output top- k objects. }

ONo O

Figure 31: Approximate Single Authority-Flow Soft Rlter.

Approximate IgOR: {Hard Path Filter} > {Soft Filter } with a Graph-Sampling
Technique A graph-sampling technique can be applied to apprate IgOR on a query

comprising a hard path filter followed by a sofiteéi. Given a layered graph
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RG=(Vig,Eg), the problem of approximating IgOR f&G is reduced to estimating a

subgraphRG' of RG so that with high confidence (at lea®t the relativeerror of

computing an approximation of IgOR iRG is €. First, a set RG....RG™ of

independent and identically distributed subgraphsR@ is generated. TherRG' is

computed as the union of the subgraphs. EaclRG is generated using a Direct

Sampling technique over a Bayesian network [RN®3} £ncodes all the navigational

information encoded iRG and in the transition matrif,. Finally, an approximation of

IgOR is computed iRG.

A Bayesian networBN=(Vg,Eg) is built as follows:

« BNandRGare homomorphically equivalent, i.e., there is @piagf: Vg - Vi, such
that, €(u),f(v)) O Egiff (u,v) O Eg.

* Nodes inVg correspond to discrete random variables that sepitaf a node is visited
or not, i.e.Vg = {X | X takes the value 1 (true) if the nodas visited and 0 (false)
otherwise}.

» Each nodeX of Vg has a conditional probability distribution:

Pr( X | Parents (X)) = Zn: (a(f(Y)), £(X)) Iv¥))
i=1 (21)

where,Y; is the value of the random variable that represtdj-th parent of the nodx
in the previous layer of the network, an¢l(Y;),f(X)) corresponds to the authority transfer
rate of edgef(Y;),f(X)) in the layered graph, and is seen as the prbtyatm move from
Y; to nodeX in the network. Thus, the conditional probabiliistribution of a nodeX
represents the collective probability thétis visited by a random surfer, which starts

from the objects in the first layer of the layergichph. Finally, the probability of the
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nodes in the first layer of the network correspotw® score that indicates how good
each object is with respect to the keywords inatiginal query.

Direct Sampling is performed using the Bayesianwdet and the topological
ordering of the layered graph to generate eachraphdRG. Once an iteration of the
Direct Sampling is finalized, the sampled layeredph RG=(V',E|,) is created. The
conditional probability of each node in the lastelaof each subgragRG corresponds to
an approximated value of IgOR. After all the sulppeRG',...,RG" are computed, an
estimateRG is obtained as the union of thesesubgraphs. The approximation of IgOR
in the graphRG’ is computed as the average of the approximated lgé&&es of target
objects in the subgrapfRG',...,RG™. To achieve an estimaRG' so that the confidence
level in the relative errag of computing an approximation of IJOR R(G' is at leas®,
the Chernoff-Hoeffding’s bound yields an upper kbon the number of times the Direct

Sampling process needs to be evaluated, i.e., @erupound on the sizen of
{RG...RG™.
5.3.5 GID Optimizer and Execution

We present an overview of the GID optimizer andcexen engine, to illustrate
how the rewriting rules and the approximation tegbes are applied together to achieve
interactive response times for GID queries. ObjantRis used to implement the soft

filters. The GID system works on top of relatioRBMS, which stores the data graph.

Precomputation: Precomputation is required to achieve exact andelyinguery

answering. (1) We build an ObjectRank index whitbres the ObjectRank score for
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each pair of a keyword and an object. A threshsldsed to avoid storing objects with
very small scores. (2) Full-text indexes are crdbe all text attributes and keyword, as
well as indexes on the primary keys of the relaidfowever, if the query does not allow
the use of pre-computed structures (e.g., the fdtdt follows a hard filter), then the

approximation techniques are employed.

Query time: The GID optimizer accepts an input GID query anodpces an execution

plan. In particular, the following rewritings aregsible:

1. Select a physical implementation for each GID algefperator. Table 9 shows the
available physical operators for the GID algebrarafors. Note that the path-length
approximation is identified as a possible impleragah for SoftExp.

2. Change the order of operators using the rewritmtgmtial of the axioms.

3. Insert theCombineoperator to support ea&oftExpoperator.

4. Replace a subsequence of operators with an eqgniv&aperoperator’. Only one
such superoperator is currently implemented as shavihe last line of Table 9. It
replaces KlardPath> SoftExp)and is implemented using the graph-sampling
approximation.

Note that we only consider linear plans in thissian of GID optimizer. This is a natural

choice given the linear nature of execution of Goperators. We will relax this

restriction as more capabilities are added to th# &gebra.

We use some rules-of-thumb as indicated in the dakimn of Table 9 to determine

which physical operator is preferred by the optenifor each algebraic operator. Again,

fine-tuning will be conducted in future versionsarder to avoid using an index for non-
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selective hard filters. Also note that the GraplmBing algorithm is always used for

HardPath>SoftExpubsequences. When re-ordering hard filters, igedpply the more-

selective filters (if these statistics are known)the future, we plan to integrate our GID

optimizer with the relational cost-based optimiemake better decisions.

Table 9: Physical Implementation of GID Algebra Opeators.

Algebra Physical Operator Requirements/Conditions
Operator for Selecting
HardExp Index Lookup Full-Text Index Available/
Always if available
On-the-fly None
HardPath Index Lookup Path Indexes Available/
(not supported currently) Always if available
On-the-fly None
HardType Table Scan Separate objects table for eac
type/ Always if available
On-the-fly None
HardAttribute Index Lookup B+-tree index on this attribute
available/
Always if available
On-the-fly None
ObjectRank index lookup ObjectRank index availaBleould
SoftExp be First filter of query/Always if
available
Path-Length-Bound Approximation
(Progressively increase path length None
Combine On-the-fly None
HardPath > Graph-Sampling None/Always used for this
SoftExp sequence of operators

h

We illustrate how the optimizer creates a plan floree key template queries

involving the expensive soft filters.

a. If the query begins with a keywo&bftExp the precomputed ObjectRank index is

used to evaluate the filter. For instance, for gugfeywords“TP53", false,

true} > { Path = EntrezGene/PubMed, false, falshe precomputed ObjectRank

index of keyword TP53' is used to evaluate the soft filter.
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b. If the query starts with &lardPathfilter followed by a keyword SoftExp filter,
e.g., {Path = EntrezProtein/PubMed, false, false { Keywords="cancer”, false,
true}, we replace this subsequence with the superopegatdrintroduce the
Combineoperator. Our experiments will show that this soperator and the
graph-sampling approximation are essential wheml#ta graph is large.

c. If a hard filter (excluding ddardPath filter) is followed by a keyword SoftExp
filter, e.g.,{Keywords= “TP53", false, falsé> {Keywords="cancer”, false,
true} - then we apply the path-length-bound technique.stdle with path length

M=1 and progressively increase it to improve theltepiality.

Clearly, it is not always possible to compute aateiresults in interactive time for some
complex queries, e.g., for a long alternating saqeef hard/soft filters. However, such

gueries are typically unintuitive.

5.3.6 Experimental Results

Our experiments focus on the evaluation time peréorce and the quality of producing
approximate answers in the interactive GID framdéwd¥e do not compare with other
systems. The framework of [RGO03] is not targeteddioline computation. They report
on the evaluation times for axactcomputation (in a warehouse environment) and the
execution times that they report are in many huiglref seconds. Other graph query
languages, e.g., SPARQL, do not provide the saphtsd ranking which is the key to

GID framework and so the comparison would not bamiregful.
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Table 10: Datasets

Name #nodes #edges Size (MB
DS7 699,199 3,533,756 2,189
DBLP | 876,110 | 4,166,626 3,950
DS3 | 28,351,615 10,014,869 5,978

Datasets We use three real datasets (Table 10). DS3 andabstwo biological datasets

while DBLP is a bibliographical dataset. The biotad) datasets were created following

an experimental protocol that start from annotatede records in public Web accessible
sources, and follow hyperlinks, to reach publicagicn PubMed. A subset of the schema
of DS3 and DS7 is in Figure 7. DS7 follows lessdmnlipks and visits less sources; hence
it creates a smaller graph. We use the larger g8 to experiment with the graph-

sampling approximation. We shredded the downloddBdP file [DBLP0O9] into the

relational schema shown in Figure 4.

Evaluation Metrics: We evaluate both quality and performance.
(1) The quality of the ranking is with respect to thea& ranking. For the
approximation techniques presented we measureudléyqof the approximation
using a normalized tok-Spearman’s rho with ties [FKM+04, FKM+06, FKS03].
Let 6; ando, be 2 topk lists. The set of results in ties is calleducket The
ranked list of results, then can be viewed as rrikecketsB,, By,.....Bn. The

position of buckeB;, denotecpoqB)) is the average location within buckgt We

assigno(x)=po9qB) wherec(X) is the rank of resulk andB is the bucket ok. p is
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the Spearman’s rho metric, which is a normalizestiagice measure that lies in the

interval [0, 1] defined as follows:

[Z o, (i) —az(if]

i=1

k* (k+1)* (2k +1)/3)"? 22)

p(o,,0,) =
(

where we use+1 as the penalty constant [FKS03]. Note that tleaodhinator of

Equation 22 is used for normalization.

(2) We also report on runtime performance. The experim&ere evaluated on a
Solaris machine with Sparcv9 1281 MHz processor 46G6B of RAM. All
algorithms were implemented in Java (JDK versios.(L.12). Oracle DBMS
(version 10g Enterprise Edition Release 10.2.0\/d} used to store the database
and JDBC was used to connect to the database syMémreport on the

execution time for successive iterations of therapmation algorithm.

Evaluate Path-Length-Bound Technique:We evaluate the effectiveness of the path-
length-bound optimization technique described oarguemplate (c) as followddard
Filter > Keyword Soft FilterWe conducted these experiments on the DS7 and DBLP
datasets. We did not use DS3 because this approemigzchnique was not scalable to
the large DS3 dataset, as the value ofrttBus constant, Mincreased. The entire data
graph is loaded into memory. The database is tlesutted only to find the base set
(with their IR scores using oracle intermedantaing)) of each query. We optimize the
guery execution by avoiding the explicit creatidracsubgraph. To do this, we reuse the

original DBLP or DS7 database graph (already in wmnand mark the nodes in the
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subgraph using a Boolean. For example, we marnkaales that are part of the subgraph
“true” while the rest are markedfdls€¢. Then we execute the path-length-bound
approximation of ObjectRank using only those noded edges that are part of the

subgraph.
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(b): DS7 Execution

The total execution time is measured for the follgyvstages: (i) creating the

subgraph for the keyword hard filter and (ii) ex#og the keyword soft filter

(ObjectRank) on the subgraph. Figures ptlen_p@t{ah_per(b) show the execution time

averaged over 20 queries, for the DBLP and DS7sdtgarespectively, for increasing
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values of the radius constai, and a convergence threshold of 0.0001. To prosaide
baseline, we compare our execution time with thactxsolution - the original
ObjectRank algorithm executed over the data sulbgadier application of the hard filer.
This is equivalent to settinlyl to «o. Note the significant execution time for the exact
solution (over 20 seconds) for DBLP when compaee®$7 dataset is due to its larger

size and high connectivity.

We note that in the GID exploratory framework, wan citeratively provide
answers to users. Thus, fdrvalues of 1 and 2, we can provide answers aftefadively
short delay (in Figure 32 each bar for varyigl, 2, 3, 4 represents the delay time
while M=o represents the total execution time). Figures)3&td 33(b) show the quality
of the results using the tdpSpearman’s rho metric for the DBLP and DS7 dasaset
respectively. Each group of results is for varyiog-kand each bar is for varying. As
the radius constan¥l increases, the performance degrades and the ygumlitroves
(lower value of Spearman’s rho metric) since adargubgraph is used for ObjectRank
execution. There is clearly a trade-off; for lo#mwe have lower delay but also lower
guality. Notice that in both datasets, fd=2, we achieve a good tradeoff of quality and
performance (higher quality for a relatively shodelay time), when compared k=1,

3, or 4. There is a small improvement in qualitynér value of Spearman’s rho metric)
for Top-500 and Top-1000 in both datasets. Thiseisause of the large number of ties

towards the end of these t&pists.
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Evaluate Graph-Sampling Technique: We evaluate the effectiveness of the
approximate IgOR metric using the Bayesian netwamll graph-sampling on the DS3
and DBLP datasets. (DS7 results are similar andted)i We consider 30 queries of the
qguery template (b). The sample queries for DS3 aee follows: {ath =
EntrezGene/*/PubMed, false, fajse Keyword Soft Filter.

A key success factor in sampling is to reachgblelen objectsFor these queries,
we identified thegolden objectsas the objects in PubMed whose normalized scose wa

greater than some threshold. To compute the eg&@iR Imetric for a given query, the

entire layered graph is loaded in memory. The det@ls contacted to construct the
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layered graph and to find the base set of the quBmgn, the IgOR is computed by
traversing the whole layered graph. To computegitagh-sampling for a given query,
the entire layered graph is also loaded into ma@émuory to build the Bayesian network.
Then, the approximated IgOR is computed by follgwihe direct sampling method in
which a node in the network is visited depending tbe conditional probability
distribution of the node. Assuming thglden objectdiave a relatively high probability
of being visited during the sampling, we optimizes tquery execution by avoiding
traversing the whole layered graph and visitinggyambdes that conduce to tigelden
objectsof the query.

Figure 34(a) reports the average execution time 80dopk queries in DS3 and
Figure 34(b) reports time over 30 queries in DBGEPaph-sampling is executed foe 1
to 7 iterations wheré corresponds to the number of sampled layered grggh The
total execution time corresponds to the time oatng the layered graph and the base set
and computing approximate IgOR on the layered gr&jgé first observe that despite
DS3 being a very large dataset, the execution tmhepproximate IgOR range from 1 to
2 seconds and show up to an order of magnitude owepnent over the exact
computation. This improvement suggests that thisptiag method will be the key to
success of the GID exploratory framework. Thesénggvare maintained over additional
iterations, in particular for the large dataset D$Be savings for the smaller DBLP
dataset are also significant after multiple itenasi.

Figure 35 reports the normalized Spearman’s rhotler queries in DS3 and
DBLP. We group the queries into three groups ofceearies according to the number of

golden objectsvhose normalized score is greater or equal thanThe Top-1 group

94



comprised of queries with one golden object; the-Bayroup with three golden objects
and Top-4 group with four golden objects. We repont the average normalized
Spearman’s rho values over 10 queries of each gisipan be seen, the graph-sampling
technique is able to rank the tembjects in the sampled layered graft@ in an order
close to the exact solution. These results indichat the graph-sampling technique
successfully achieves our optimization goal of mizing the number of visited nodes

during query execution time.

5.4 Comparing Topk XML Lists

Systems that produce ranked lists of results armddnt. For instance, Web search
engines return ranked lists of Web pages. To coenpae lists produced by different
systems, Fagin et al. [FKM+04, FKM+06, FKS03] prasedistance measures for top-k
lists that extend the traditional distance measudoespermutations of objects, like

Kendall tau [FKS03] and Spearman’s Footrule [FKS03]

In addition to ranking whole objects (e.g., Web gggthere is an increasing number of
systems, including XRANK [GSBSO03], XSEarch [CMKSG@8]d XKeyword [CMKSO03]
that provide keyword search on XML or other semirxdured data, and produce ranked
lists of XML subtrees. In addition, XML lists distee measures can also be applied to
rank-aware extensions of XPath and XQuery. Furtbesnthese measures are needed for
XML lists aggregation, where the results from saleXML search engines can be

aggregated to find the best tlpist for the given lists. Clearly, there is a ndechave
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measures to compare the results of such systemsgagazh other or against the user’s

ideal list of results.

Unfortunately, previous distance measures are oélde for ranked lists of

subtrees since they do not account for the posei@eap between the returned subtrees.

That is, two subtrees differing by a single nodeuldde considered completely different

objects. Figure 36 shows two top-3 lists of sulstrpeoduced by two imaginary XML

keyword proximity search algorithms. TreEs andTh; only differ by a single node but

this is ignored by object-level distance measures.

List A

1) Ta title
[1002652]
Jeffrey D. Ullman Speaks Out on the
Future of Higher Education, Startups,
Database Theory, and More.

Q@ Ta article
[1003092]

title
[1005997]

Jeffrey D. The Theory of Joins
Ullman in Relational
Databases.
() Ta; dblp [1]

article
[1002622]

article
[1002715]

title
[1008965]

title
[1006721]

Updating Logical

Generalization of
Databases.

the Sethi-Ullman
Algorithm for
Register
Allocation.

List B

(1) Th, title
[1002652]
Jeffrey D. Ullman Speaks Out on the
Future of Higher Education, Startups,
Database Theory, and More.

Database as

Ellen Ullman
a genre of
new media. -
rt
(3) Ths article

[1003092]

journal
[1007926]
Jeffiey D. ACM Trans.
Ullman Database Syst.

Figure 36: Top-3 trees for query - Ullman Database.

We present the first distance measures for rankésl df subtrees. In particular,

the distance measures consist of two componergdrele similarity component and the
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position distance component. The former capturesimmilarity between the structures of
the returned subtrees, while the latter captureslistance of the subtrees in the two lists,

similarly to previous object-level distance measyfKM+06].

Intuitively, our distance measures work in two mgadn the first phase, they find
the optimal (closest) mapping between the twokdipts of subtrees, where the distance
between a pair of subtrees is computed using otigechpproaches proposed in previous
works, including tree edit distance [Bil03], treégament distance [Bil03], Fourier
transform-based similarity, entropy-based sint§yartag similarity, and path shingle
similarity. The cost of the optimal mapping betweba two lists of subtrees represents
the tree similarity component. Next, we compute fbsition distance component given
the optimal mapping, using one of the previouslypmsed techniques on measuring the

distance between tdppermutations [FKM+04, FKM+06, FKSO03].

The goal of this work is to define and compute distance between two lists,
Lb of XML trees,La=Ta;, Ta,... Ta andLb= Thy, Thy,..., Tla, whereTx are XML trees.
Often, as is the case with XML proximity searchtsegss, all Ta;, Th are included
(obtained by a sequence of deletes) in aTred a collectionD=T1,..,Tn However, this

property is not important in our definitions.

Note that for the case of complete lists (pernomna) of subtrees where each

subtree appears in both lists, the problem is redluto the permutations distance
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problem.. However, this case is not practical siibi. search engines return different

XML trees. Hence, we focus on tégists.

A total mappingf from La to Lb is a bijection fromLa to Lb. Hence, tre@ g is
mapped toTb=f(Ta). N is the set of all possible total mappingdtom La to Lb. Let
TST1,T2 be the tree similarity between two tréiéls T2 TScan be the tree edit distance

or another measur&Sis normalized in [0,1].

5.4.1 XML Lists Distance based on Total MappingXLDTM)

We present our first measure for the distance bewevo topk lists of XML
trees. The key intuition is that we extend previdigs distance measures that only
consider exact mappings between the objects ditbdists to also consider approximate
mappings. In particular, we first compute the ckvgeair-wise mappings between the
XML trees from the two lists and then view thesepiags as exact mappings and apply
list permutation distance measures.

Assumingk elements in each XML lisi{LDTM is defined as follows. First we
define the total mapping similarity distanSD'(La,Lb,1) betweeri_a andLb for a total

mappingf as

Y THT4q, f(Ta))
MSD (La, Lb, f) =ik ”

That is,MSD' is a measure of how “tight” the total mappihds. Notice that

MSD'(La,Lb,) takes values in [0,1], sindeSis also in [0,1] and we divide tky
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We next define the minimum total mappifigin’ as the total mapping between
La andLb with minimumMSD'(La,Lb,f). It is,
fmin' = argmin MSD'(La,Lb;f)
that is,argmin is thef that minimizevSD'.
Givenfmin', we define theninimum total mapping similarity distance

MinMSD'(La,Lb) = MSD'(La,Lb,fmin")

Definition: TheXLDTM between XML listda, Lb has two components:

a. The XML similarity componenminMSD'(La,Lb).

b. The total mapping position distance comporebf(La,Lb,fmir), which

is also referred as the position component inghigion.PD" is defined using one

of the well known metrics on permutations as disedsbelowPD" is in [0, 1].

Itis

XLDTM(La,Lb) = aMinMSD'(La,Lb) + bPD'(La,Lb,fmin’)

wherea, bare the XML similarity and position component camts respectively.
a, badjust the relative importance of the two compdsieNotice thalXLDTM(La,Lb) is
in [0,2] sinceMinMSD'(La,Lb) andPD"La,Lb,fmir) are in [0,1] and constangsandb
are in [0,1].]

We choosémin’ to minimize the XML similarity component and nbietwhole
XLDTM, because we believe it is more intuitive to coreptlite distance component
based on the tightest XML similarity mapping ratiiean mixing the two components.
Note that other functions can be used to combiaeettribution of the two components,

as we discuss below.
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Measures for XML Similarity component, MinMSD(La,Lb): The tree similarityTS
which is used to computélinMSD'(La, Lb) can be any of the tree or XML similarity

measures.

Measures for Position componentPD'(La, Lb, fmin"): Note that list permutation
distance metrics (not top-list distance measures) are usedXbDTM. Given the
mappingfmin’, we naturally extend the Spearman’s footrule distaand Kendall tau
distance for permutations with ties [FKM+04, FKM+®KS03] as follows:

Position distanceRD™") based on Spearman’s footrule metric for permoiat; is

given by:
k
PD™(La,Lb,fmn") =’|pos,(Ta) - pos,(fmin’ (Ta,))
i=1

wherepos a(Ta) is the position of tre&g in list La. This formula is extended as
follows to consider ties. A set of trees with tlaeng score is calledltaucket The ranked
list of results can be then viewed as ranked lisiucketsB,, B,,....,.Bn. The position of
bucket B;, denotedpogB;) is the average result location within buclt We assign
posa(Ta) =poYB(Ta)) whereB(Ta) is the bucket oT &,

Position distance RD'X) based on Kendall tau metric for permutations

considering ties, is given by:
PD™(La,Lb,fmn" )= ¥ ; ;e Kij(La,Lb )

where Lb’ is constructed from listb when elementlly is replaced byTa=

(fminT)'l(TQ), that is,Th = fmin'(Ta). That is, we assume that an elerigatin La and
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its corresponding elemefiiy in Lb are the same. Hence, we just hkwkstinct elements
{1, 2, ... K} in both lists, and the problem of computiR® ™ (La, Lb, fmin) of the two
XML lists is same as computing the Kendall Tau metf two permutationsP is the set
of all unordered pairs of tHedistinct elements.

If there are two mapping$minl’ and fmin2' that have equaMSD', i.e.,
MSD'(La,Lb,fmin1") = MSD'(La,Lb,fmin2"), then we comput®D for both and in the
end pick the one that gives the smalfeBt

Hence, there are two variantsXdtDTM:

XLDTM (La,Lb)= aMinMSD'(La,Lb)+bPD' (La,Lb,fmin’)

XLDTM(La,Lb) = aMinMSD'(La,Lb)+b®PD"™(La,Lb,fmin")

Example: Consider the top-3 listsa andLb in Figure 36. We will illustrate the steps
involved in computing{LDTM (La, Lb) andXLDTM"(La, Lb). In this example, we use
tree edit distancelED as the tree similarity measureS We first compute the XML

similarity component by finding all possible totabppingsN= {f1, f,, f3, fs, f5, fe}:

fi(Tag)=Thy, f1(Tap)=Thy, f1(Tae)=Ths
fo(Tag)=Ths, f2(Tap)=Thy, fxTae)=Thy
fa(Tay)=Thy, f3(Ta)=Thy, fs(Tag)=Ths
fa(Tay)=Thy, fa(Tag)=Ths, fa(Tag)=Th;
fs(Tay)=Ths, f5(Ta)=Thy, f5(Tag)=Thy

fo(Tay)=Thy, fs(Tag)=Ths, fo(Tae)=Thy
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The normalized tree edit distance between eachopéiees inLa andLb is given
by the following matrix:
Tb, Tb, Tb,
Ta, [000 078 071

Ta, |071 058 020
Ta, |078 043 058

The total mapping similarity distance of each tetalpping inN is calculated by
as follows:
MSD'(La, Lb, f;) = (0.00+0.58+0.58)/3 = 1.16/3 = 0.38
MSD'(La, Lb, f,) = (0.71+0.58+0.78)/3 = 2.07/3 = 0.69
MSD'(La, Lb, f3) = (0.78+0.71+0.58)/3 = 2.07/3 = 0.69
MSD'(La, Lb, f4) = (0.00+0.20+0.43)/3 = 0.63/3 = 0.21
MSD'(La, Lb, fs) = (0.71+0.71+0.43)/3 = 0.63/3 = 0.62

MSD'(La, Lb, fg) = (0.78+0.20+0.78)/3 = 0.63/3 = 0.59

Hence f; is the mapping with the minimum mapping distarites minMSDO (La,

Lb) =MSD'(La, Lb, f;) = 0.21.

The normalized Spearman’s  footrule position compone is
PD'"(La,Lb,f)=2.0/4.0=0.5. HenceXLDTM (La,Lb) = 0.21+0.5 = 0.71 (assumirag1
and b=1). If the position distance is calculated usingrmalized Kendall tau, then
PD™(La,Lb,f;)=1.0/3.0=0.33 anKLDTM‘(La,Lb) = 0.21+0.33 = 0.54 (assumirayFl
and b=1). The difference in the two scores is due toereht differences between the

Spearman’s footrule and Kendall tau metrics.
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5.4.2 ComputingXLDTM

In this section, we describe efficient algorithmmscomputeXLDTM given two XML top-

Kk lists.

Naive approach XLDTM for any two topk XML lists La andLb is computed as follows.
First, the selN of all possible total mappings froba to Lb is computed. Then, for each
total mapping in N, we compute the total mapping similarity distar§D'(La,Lb,f),
and then find the minimum mappitfigin'. If we find more than one mapping with the
same minimum mapping similarity distance we brdaktie by computing the position
distance,PD'(La,Lb,fmin") for each of them and in the end pick the one tiaés

smallerPD". Then, we computéLDTM(La,Lb).

Compute-XLDTM (XML List La={Tay,Tay,...,Tak}, XML List Lb ={Th;,Thy,

..., T}, constantsa and b):

1.LetSKk, k] be a 2-D array that stores the tree similarityasmees between every
pair of XML trees (one from each List);

2.Foriin 1..kdo {

3. Forjinl..kdo{

4. Computd STa,Th);

5 NormalizeTSTa,Th);

6 gi,j] < T9Ta,Th); }}

7. Letassignmenik,2] be a 2-D array that stores thi¥ fmin" with the minimum
mapping distance;

8. assignmen¢— Ext-Hungarian-AlgorithngS, “min’);

9. For eaclimin’ compute the normalized position distare® (La,Lb,fmin") for
Spearman’s footrule or for Kendall Tau;

10. Selecfmin” with the minimum position distance;

11. ComputeXLDTM;

Figure 37: Algorithm for computing XLDTM
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Overview of our algorithm: Instead of computing the s@& of all possible total
mappings and then selecting the minimum mapgdin@’, we precompute the tree
similarity measure of each tree pair across thelist®, build a bipartite graph, and apply
a minimum cost perfect matching algorithm to corepall minimum mapping$min'.
Figure 37 presents the algorithm.

Algorithm details: The following high-level steps of execution expl#ie algorithm in
detail:

1. Precompute the tree similariy§Ta, Th) between every pair of XML trees, one
from each listLa andLb. There are? such pairs, hence the complexity of this
step is K¥ZQos(TYTa, Th)) where Cos{TSTa, Th)) is the complexity of
computing the tree similarity between the two tréasandTh,.

2. Create a weighted complete bipartite gr&gle, P, W) as follows. The first set of
nodesC = {1, 2....,k} denote the set of elements in XML lisd. The second set
of nodesP = {1, 2....,k} denote the set of elements in XML lisb. The weight
WG, j) =TTa, Th).

3. Execute a minimum cost perfect matching algorithmGg¢C, P, W) to compute
fmin'. We use the Hungarian algorithm. Notice that, imr case we use an
extended version of the Hungarian algorithm thapuis the set of afimin’ with
the same minimum mapping similarity distancenMSD. Then, for eactimin’
we compute the position distan8®'(La,Lb,fmin’) and pick the one with the
leastPD". Finally, XLDTM is computed for Spearman’s footrule and Kendail ta

position component respectively. The complexitytié Extended Hungarian
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algorithm is OK®), which is the same as the original Hungarian ritigm. Total

Complexity of the algorithm is ®.Cos{TYTa, Th))+ k°).

5.4.3 Experimental Results

In this section we experimentally evaluate the mess presented in the previous
sections by comparing three popular XML keywordrslealgorithms. We use tree edit
distance as the XML similarity measure.

Table 11: XML Datasets

NUMBER OF | AVERAGE | MAXIMUM

DATASET
ELEMENTS DEPTH DEPTH
DBLP 7,137,933 1.90 5
NASA 791,923 5.58 8

Datasets We use two real datasets: the DBLP dataset aad\thSA XML dataset
available at [NSDO08]. Table 11 summarizes theirrati@ristics. We implemented the
following XML keyword proximity search systems: XRK [GSBSO03], XSEarch
[CMKSO03] and XKeyword [HPBO03]. These three algomith take as input a corpus of
XML documents and a keyword query, and return apuduan ordered list of XML
fragments that satisfy the query by containingth# keywords. All three algorithms
favor minimal and compact subtrees that satisfy dbery, but use different ranking
functions and pruning rules. In particular, whil&eyword ranks its answers by the size
of the resulting subtree, XRANK and XSEARCH alsdize Information Retrieval (IR)
score functions based ohidf. XSEarch prunes result paths that repeat the sagni

internal nodes, while XRANK prunes results if these more specific result in the same
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element. Also, XRANK returns whole subtrees whil8Barch and XKeyword return

paths.
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Figure 38: XLDTM Experiments on DBLP Dataset.

In our implementation, we used the IR score predily the CONTAINSTABLE
function of Microsoft SQL Server 2000 to compute tR components of both XRANK
and XSEARCH ranking functions. The experiments weeeformed on a PC with an
Intel Pentium Core 2 Duo, 2.00 GHz processor, 2GEVR running Windows Vista

Business. All algorithms were developed in JavaK(Jersion 1.6.0_06), use the
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Document Object Model (DOM) for XML parsing and mgation, and Microsoft
SQLServer 2000 for the persistent storage of insleXbe tree similarity TS measure
we use in our experiments is the dynamic progrargralgorithm by Zhang and Shasha
[34] which computes the tree-edit-distance betweerdered trees [Bil03]
whose  complexity is Cos(TED(Ta,Th)) = O([ral[Th|min(leavegTa),
deptl(Ta))Min(leave¢Th), dept(Th)). We refer to a detailed survey of tree edit
distance algorithms [Bil03]. We report average XMists Distance values over many
experiments on the two datasets.

Figures 38(a) and 38(b) show the total distancel# (ato the two components)
between the result lists produced by the threeckealgorithms on the DBLP dataset
averaged over 50 two-keyword queries, usitdTM™ andXLDTM", respectively. The
queries used include:atftificial intelligence, “xml indexing, “text mining, “image
retrieval’, “OLAP mining. Notice that the distance increaseskaacreases because as
the trees get larger, the results become more rditgpadue to the pruning rules of the
algorithms that go in effect for larger trees. Asmioned before, XKeyword ranks its
answers by the size of the resulting subtree, WRRANK and XSEARCH also utilize
Information Retrieval (IR) score functions basedtbilf. The reason that XKeyword
has large distance to the other two rankings isitltles not have an IR component in its
ranking function. Hence, when multiple trees hakie same size, they are ranked
arbitrarily. XRANK and XSEarch have smaller distanicetween them because their

rankings are more similar given that the resulteaweostly single-node trees.
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Figure 39: XLDTM Experiments on NASA Dataset.

Figure 39 repeats the set of experiments of Fi§8ren the NASA dataset. Some
sample two-keyword queries used in these expersnarg:“arcminutes magnitude”

“astrographic motion”, “equinox culmination’, “photographic wavelengths

oxford
zone”. Some important observations on the results of NAlataset are (a) Distance
between XML lists is generally larger for NASA dseh because of its larger depth. (b)

In contrast to Figure 38, XSEarch and XKeyword hénesmallest distance because both
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algorithms return paths as result. This factor Vess important in Figure 38 because
most results were single-node. In contrast, XRANi§ targe distance to the other two
rankings because it returns whole subtree as ré€sulKRANK is very close to XSEarch
in DBLP, but very far in NASA dataset. The reaserthiat the XRANK and XSEarch
pruning conditions are very rare for very shallavbtsees (DBLP) but more frequent for
deeper subtrees (NASA dataset). The latter alstslemunpredictable fluctuations to the
distances for increasirlg in contrast to the linear increase in the DBLRaglat. In both
datasets, notice that the XML Similarity distanoatcibutes the most to the total distance.
This shows that the main difference of these tltgerithms comes more from how they

define a result and less on how they rank them.

We also present performance results on the deep&ANdataset. Figure 40
shows the average execution time to comp{t®TM for various values ok, over the
same 50 two-keyword queries used in the distanpererents. As expected, the average
execution time increases superlinearhka&screases because there are more results in the
topk lists under comparison. Notice that the executiores are different for the three
pairs of search algorithms. The reason is that XRAdXoduces the largest size of results
as it returns whole XML elements, while XKeywordoguces concise results by
returning paths. XSEarch produces results of inéeliate size by returning paths like
XKeyword but has different pruning rules. Thus, #@eecution times of XRANK vs.

XSEarch are the highest, while XSEarch vs. XKeywsrihe lowest.
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Figure 40: Performance Experiments on NASA dataset

6 CONCLUSIONS

This dissertation presents novel techniques andhadstto provide user-friendly, high
quality and efficient searching of graph structureddatabases. In
[VHO5,VHO06,VHL06,VHLO8] we propose and demonstratetechnique that given a
keyword query, on-the-fly generates new pagesedatbmposed pages that satisfy the
user’'s information needs and improves user satisfacin [VHRO8] we create a
framework and provide algorithms to explain queegults and reformulate authority
flow queries based on the user’s feedback. In antework, we propose a flexible and
extensible framework for querying over large hypéed data collections [VHR+09].

We also devise methods to automatically compard& t§mL lists.
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