Address Translation with
Paging

Case studies for X86, SPARC,
and PowerPC

Overview

* Page tables
— What are they? (review)
— What does a page table entry (PTE) contain?
— How are page tables organized?
» Making page table access fast
— Caching entries
— Translation lookaside buffer (TLB)
— TLB management

Generic Page Table

Memory divided into pages
Page table is a collection of PTEs that maps a virtual
page number to a PTE

Organization and content vary with architecture
If no virtual to physical mapping => page fault

Virtual page # % =
[——
pe==————x==1—> PTE (or page fault)

Page Table

Generic PTE

* PTE maps virtual page to physical page
* Includes some page properties
—Valid?, writable?, dirty?, cacheable?

| Virtual Page # ” Physical Page # ” Property bits

Some acronyms used in this lecture:

« PTE = page table entry

« PDE = page directory entry

« VA = virtual address

« PA = physical address

« VPN = virtual page number

« {R,P}PN = {real, physical} page number

Real Page Tables

+ Design requirements

— Minimize memory use (PT are pure overhead)

— Fast (logically accessed on every memory ref)
* Requirements lead to

— Compact data structures

— O(1) access (e.g. indexed lookup, hashtable)
* Examples: X86 and PowerPC

X86-32 Address Translation

» Page tables organized as a two-level tree
« Efficient because address space is sparse

« Each level of the tree indexed using a piece of
the virtual page number for fast lookups

» One set of page tables per process

» Current set of page tables pointed to by CR3
+ CPU walks the page tables to find translations
» Accessed and dirty bits updated by CPU

* 4K or 4M (sometimes 2M) pages

X86-32 PDE and PTE Details

Page Directory Entry (PDE)

20 bit page number of a PTE 12 bit properties

LT

Page Table Entry (PDE)

20 bit page number of a physical memory page 12 bit properties

HHHHHHHHHHHHHHHHHDHHHQ@HHHH

Where is the virtual page number?
If a page is not present, all but bit 0 are available for OS

1A-32 Intel Architecture Software Developer's Manual, Volume 3, pg. 3-24

ﬂ

X86-32 Page Table Lookup

32-bit virtual address

WINN0I00000NNTCONUODNUND - Faneto scaress s s

L | | page directory and return

0-bit page dirindex 10-bit page tbl index 12-bit offset of byte in page a page directory entry that
points to a page table

« Middle 10 bits index the
page table that points to a
physical memory page

« Bottom 12 bits are an

E offset to a single byte in
% the physical page

« Checks made at each
step to ensure desired
page is available in

T memory and that the

process making the

request has sufficient
rights to access the page

Page
Directory

]
il

Page

Tables
Physical
Memory

X86-32 and PAE

* Intel added support for up to 64GB of physical memory
in the Pentium Pro - called Physical Address Extensions
(PAE)

Introduced a new CPU mode and another layer in the
page tables

In PAE mode, 32-bit VAs map to 36-bit PAs
Single-process address space is still 32 bits
4-entry page-directory-pointer-table (PDPT) points to a
page directory and then translation proceeds as normal

» Page directory and page table entries expanded to 64
bits to hold 36 bit physical addresses

» Only 512 entries per 4K page
* 4K or 2M page sizes

What about 64-bit X867

+ X86-64 (AMD64 or EM64T) supports a 64-
bit virtual address (only 48 bits effective)

* Three modes
— Legacy 32-bit (32-bit VA, 32-bit PA)
— Legacy PAE (32-bit VA, up to 52-bit PA)
— Long PAE mode (64-bit VA, 52-bit PA)

* Long mode requires four levels of page
tables to map 48-bit VA to 52-bit PA

AMD64 Architecture Programmer’s Manual Volume 2: System Programming, Ch. 5

PowerPC Address Translation

» 80-bit virtual address obtained via PowerPC
segmentation mechanism

* 62-bit physical (“real”’) address
* PTEs organized in a hash table (HTAB)

« Each HTAB entry is a page table entry group
(PTEG)

« Each PTEG has (8) 16-byte PTEs

+ Hash function on VPN gives the index of two
PTEGs (Primary and secondary PTEGS)

* Resulting 16 PTEs searched for a VPN match
* No match => page fault

PowerPC Segmentation

64-bit “effective” address generated by a program
36-bit ESID | 28 address bits }--._

. + SLBis an “associative memory”
o S « Top 36 bits of a program-

a\@» N generated “effective address
o N used as a tag called the effective
N segment id (ESID)

A « Search for tag value in SLB
\ « If a match exists, property bits
validated for access

\

\ « A failed match causes segment

! fault

| « Associated 52-bit virtual segment

| id (VSID) is concatenated with

] the remaining address bits to

] form an 80-bit virtual address

;’ + Segmentation used to separate

! processes within the large virtual
address space

Segment Lookaside Buffer (SLB)

Property bits (U/S, X, V)

ESID 52-bit VSID

!
i

iing entry /
Matching i

|
| 52-bit VSID 28 address bits_|*
80-bit “virtual” address used for page table lookup

PowerPC Page Table Lookup

80-bit virtual address] « Variable size hash table

Processor register points
to hash table base and
gives table’s size
* Architecture-defined
Secondary hash index] hash function on virtual
address returns two

Hash function

Primary hash index |

/
/

p
A

i/
/

j
J possible hash table

‘,\\ T entries

N Each of the 16 possible
PTEs is checked for a
VA match

If no match then page
fault

Possibility that a
translation exists but that
it can’t fit in the hash
table — OS must handle

\
1 A Primdry PTEG
5

Secondary PTEG
[

_—
Page Fault

Hash Table (HTAB)

=

[16-byte PTE |

PowerPC PTE Details

0 55 60 6
Abbreviated Virtual Page Number SW |/ H‘V

/ ‘/ ‘ Real Page Number) ‘g ‘ﬂi WIMG |N| PP
0 2 51 51565 5 60 61 62 63
K

S\?\LAvai\ab\e for OS use ® 1 6_byte PTE

H=Hash function ID

V=Valid bit » Both VPN and RPN
AC=Address compare bit

R=Referenced bit i

C-Chamasa it * Why only 57 bit VPN?
WIMG=Storage control bits

N=No execute bit

PP=Page protection bits

PowerPC Operating Environment Architecture, Book Iil, Version 2.01, Sections 4.3-4.5

Making Translation Fast

Page table logically accessed on every
instruction

Paging has turned each memory reference
into at least three memory references

Page table access has temporal locality
Use a cache to speed up access
Translation Lookaside Buffer (TLB)

Generic TLB

» Cache of recently used PTEs
« Small — usually about 64 entries
» Huge impact on performance

» Various organizations, search strategies, and
levels of OS involvement possible

Consider X86 and SPARC

Virtual Address |:> TLB |:> Physical Address or
TLB Miss or

Access fault

TLB Organization

[Tag (virtual page number) | Value (page table entry) |

Various ways to organize a 16-entry TLB

A A B A B c D
0 0 0
1 1 1
2 é 2 2
3 < 3 3
‘5‘ ‘f; B | ettt WY Four-way set associative
6 \6 R | /\ Set
7 7
g Two-way set associative
1(1) A B c D E [L M N o P
" O Y S N 1 \ I —
13 Fully associative
14 Lookup
15 +Calculate index (index = tag % num_sets)
Direct mapped « Search for tag within the resulting set

« Why not use upper bits of tag value for index?

Associativity Trade-offs

» Higher associativity
— Better utilization, fewer collisions
— Slower
— More hardware
» Lower associativity
— Fast
— Simple, less hardware
— Greater chance of collisions

» How does page size affect TLB performance?

X86 TLB

* TLB management shared by processor and OS

* CPU fills TLB on demand from page table (the OS is
unaware of TLB misses)

» CPU evicts entries when a new entry must be added and
no free slots exist

» Operating system ensures TLB/page table consistency
by flushing entries as needed when the page tables are
updated or switched (e.g. during a context switch)

» TLB entries can be removed by the OS one at a time
using the INVLPG instruction or the entire TLB can be
flushed at once by writing a new entry into CR3

Example: Pentium-M TLBs

 Four different TLBs
— Instruction TLB for 4K pages
* 128 entries, 4-way set associative
— Instruction TLB for large pages
* 2 entries, fully associative
— Data TLB for 4K pages
* 128 entries, 4-way set associative
— Data TLB for large pages
+ 8 entries, 4-way set associative

» All TLBs use LRU replacement policy

* Why different TLBs for instruction, data, and
page sizes?

SPARC TLB

SPARC is RISC (simpler is better) CPU
Example of a “software-managed” TLB
TLB miss causes a fault, handled by OS
OS explicitly adds entries to TLB

OS is free to organize its page tables in
any way it wants because the CPU does
not use them

E.g. Linux uses a tree like X86, Solaris
uses a hash table

Minimizing Flushes

On SPARC, TLB misses trap to OS (SLOW)
We want to avoid TLB misses

Retain TLB contents across context switch
SPARC TLB entries enhanced with a context id

Context id allows entries with the same VPN to coexist in
the TLB (e.g. entries from different process address
spaces)

When a process is switched back onto a processor,
chances are that some of its TLB state has been
retained from the last time it ran

Some TLB entries shared (OS kernel memory)

— Mark as global

— Context id ignored during matching

Example:UltraSPARC IIl TLBs

Five different TLBs

Instruction TLBs

— 16 entries, fully associative (supports all page sizes)
— 128 entries, 2-way set associative (8K pages only)
Data TLBs

— 16 entries, fully associative (supports all page sizes)

— 2 x 512 entries, 2-way set associative (each supports one page
size per process)

Valid page sizes — 8K (default), 64K, 512K, and 4M

13-bit context id — 8192 different concurrent address
spaces

What happens if you have > 8192 processes?

Speeding Up TLB Miss Handling

In some cases a huge amount of time can be spent handling TLB
misses (2-50% in one study of SuperSPARC and SunOS)

Many architectures that use software managed TLBs have hardware
assisted TLB miss handling

+ SPARC uses a large, virtually-indexed, direct-mapped, physically

contiguous table of recently used TLB entries called the Translation
Storage Buffer (TSB)

* The location of the TSB is loaded into the processor on context

switch (implies one TSB per process)

* On TLB miss, hardware calculates the offset of the matching entry

into the TSB and supplies it to the software TLB miss handler

In most cases, the software TLB miss handler only needs to make a
tag comparison to the TSB entry, load it into the TLB, and return

If an access misses in the TSB then a slow software search of page
tables is required

