
1

Address Translation with
Paging

Case studies for X86, SPARC,
and PowerPC

Overview

• Page tables
– What are they? (review)

– What does a page table entry (PTE) contain?

– How are page tables organized?

• Making page table access fast
– Caching entries

– Translation lookaside buffer (TLB)

– TLB management

Generic Page Table

• Memory divided into pages
• Page table is a collection of PTEs that maps a virtual

page number to a PTE
• Organization and content vary with architecture
• If no virtual to physical mapping => page fault

Virtual page #

PTE (or page fault)

?

…

Page Table

Generic PTE

• PTE maps virtual page to physical page

• Includes some page properties
– Valid?, writable?, dirty?, cacheable?

Physical Page # Property bitsVirtual Page #

Some acronyms used in this lecture:
• PTE = page table entry
• PDE = page directory entry
• VA = virtual address
• PA = physical address
• VPN = virtual page number
• {R,P}PN = {real, physical} page number

2

Real Page Tables

• Design requirements
– Minimize memory use (PT are pure overhead)

– Fast (logically accessed on every memory ref)

• Requirements lead to
– Compact data structures

– O(1) access (e.g. indexed lookup, hashtable)

• Examples: X86 and PowerPC

X86-32 Address Translation

• Page tables organized as a two-level tree
• Efficient because address space is sparse
• Each level of the tree indexed using a piece of

the virtual page number for fast lookups
• One set of page tables per process
• Current set of page tables pointed to by CR3
• CPU walks the page tables to find translations
• Accessed and dirty bits updated by CPU
• 4K or 4M (sometimes 2M) pages

 X86-32 PDE and PTE Details

A
va

ila
bl

e
A

va
ila

bl
e

A
va

ila
bl

e
G

lo
ba

l
P

A
T

D
irt

y
A

cc
es

se
d

C
ac

he
 D

is
ab

le
d

W
rit

e-
th

ro
ug

h
U

se
r/

S
up

er
vi

so
r

R
ea

d/
W

rit
e

P
re

se
nt

IA-32 Intel Architecture Software Developer’s Manual, Volume 3, pg. 3-24

20 bit page number of a physical memory page 12 bit properties

Where is the virtual page number?
If a page is not present, all but bit 0 are available for OS

A
va

ila
bl

e
A

va
ila

bl
e

A
va

ila
bl

e
G

lo
ba

l
4K

 o
r

4M
 P

ag
e

R
es

er
ve

d
A

cc
es

se
d

C
ac

he
 D

is
ab

le
d

W
rit

e-
th

ro
ug

h
U

se
r/

S
up

er
vi

so
r

R
ea

d/
W

rit
e

P
re

se
nt

20 bit page number of a PTE 12 bit properties

Page Directory Entry (PDE)

Page Table Entry (PDE)

X86-32 Page Table Lookup
• Top 10 address bits index

page directory and return
a page directory entry that
points to a page table

• Middle 10 bits index the
page table that points to a
physical memory page

• Bottom 12 bits are an
offset to a single byte in
the physical page

• Checks made at each
step to ensure desired
page is available in
memory and that the
process making the
request has sufficient
rights to access the page

0
1
2
.
.
.

1024

0
1
2
.
.
.

1024

0
1
2
.
.
.

1024

0
1
2
.
.
.

1024

P
ag

e
D

ire
ct

or
y

P
ag

e
T

ab
le

s

P
hy

si
ca

l
M

em
or

y

32-bit virtual address

10-bit page dir index 10-bit page tbl index 12-bit offset of byte in page

3

X86-32 and PAE

• Intel added support for up to 64GB of physical memory
in the Pentium Pro - called Physical Address Extensions
(PAE)

• Introduced a new CPU mode and another layer in the
page tables

• In PAE mode, 32-bit VAs map to 36-bit PAs
• Single-process address space is still 32 bits
• 4-entry page-directory-pointer-table (PDPT) points to a

page directory and then translation proceeds as normal
• Page directory and page table entries expanded to 64

bits to hold 36 bit physical addresses
• Only 512 entries per 4K page
• 4K or 2M page sizes

What about 64-bit X86?

• X86-64 (AMD64 or EM64T) supports a 64-
bit virtual address (only 48 bits effective)

• Three modes
– Legacy 32-bit (32-bit VA, 32-bit PA)

– Legacy PAE (32-bit VA, up to 52-bit PA)

– Long PAE mode (64-bit VA, 52-bit PA)

• Long mode requires four levels of page
tables to map 48-bit VA to 52-bit PA

AMD64 Architecture Programmer’s Manual Volume 2: System Programming, Ch. 5

PowerPC Address Translation

• 80-bit virtual address obtained via PowerPC
segmentation mechanism

• 62-bit physical (“real”) address
• PTEs organized in a hash table (HTAB)
• Each HTAB entry is a page table entry group

(PTEG)
• Each PTEG has (8) 16-byte PTEs
• Hash function on VPN gives the index of two

PTEGs (Primary and secondary PTEGs)
• Resulting 16 PTEs searched for a VPN match
• No match => page fault

PowerPC Segmentation
• SLB is an “associative memory”
• Top 36 bits of a program-

generated “effective address
used as a tag called the effective
segment id (ESID)

• Search for tag value in SLB
• If a match exists, property bits

validated for access
• A failed match causes segment

fault
• Associated 52-bit virtual segment

id (VSID) is concatenated with
the remaining address bits to
form an 80-bit virtual address

• Segmentation used to separate
processes within the large virtual
address space

S
eg

m
en

t
Lo

ok
as

id
e

 B
uf

fe
r

(S
LB

)

36-bit ESID 28 address bits

ESID 52-bit VSID P
ro

pe
rt

y
bi

ts
 (

U
/S

, X
, V

)

Asso
cia

tive
 Lookup

52-bit VSID

64-bit “effective” address generated by a program

28 address bits

80-bit “virtual” address used for page table lookup

Matching entry

4

PowerPC Page Table Lookup
• Variable size hash table
• Processor register points

to hash table base and
gives table’s size

• Architecture-defined
hash function on virtual
address returns two
possible hash table
entries

• Each of the 16 possible
PTEs is checked for a
VA match

• If no match then page
fault

• Possibility that a
translation exists but that
it can’t fit in the hash
table – OS must handleHash Table (HTAB)

80-bit virtual address

Primary hash index

Secondary hash index

Hash function

Secondary PTEG

Primary PTEG

16-byte PTE

Match?

No Match?

P
ag

e
F

au
lt

PowerPC PTE Details

• 16-byte PTE

• Both VPN and RPN

• Why only 57 bit VPN?

0 56 6260

0

63

2 51 54 55 56 57 60 61 62 63

Abbreviated Virtual Page Number SW / H V

/ / Real Page Number / /
A
C R C WIMG N PP

Key
SW=Available for OS use
H=Hash function ID
V=Valid bit
AC=Address compare bit
R=Referenced bit
C=Changed bit
WIMG=Storage control bits
N=No execute bit
PP=Page protection bits

PowerPC Operating Environment Architecture, Book III, Version 2.01, Sections 4.3-4.5

Making Translation Fast

• Page table logically accessed on every
instruction

• Paging has turned each memory reference
into at least three memory references

• Page table access has temporal locality

• Use a cache to speed up access

• Translation Lookaside Buffer (TLB)

Generic TLB

• Cache of recently used PTEs
• Small – usually about 64 entries
• Huge impact on performance
• Various organizations, search strategies, and

levels of OS involvement possible
• Consider X86 and SPARC

TLBVirtual Address Physical Address or
TLB Miss or
Access fault

5

TLB Organization

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A

0
1
2
3
4
5
6
7

A B

0
1
2
3

A B C D

A B C D E L M N O P

Direct mapped

Fully associative

Two-way set associative

Four-way set associative

Tag (virtual page number) Value (page table entry)

TLB Entry

Various ways to organize a 16-entry TLB

Lookup
•Calculate index (index = tag % num_sets)
• Search for tag within the resulting set
• Why not use upper bits of tag value for index?

Set

In
de

x

Associativity Trade-offs

• Higher associativity
– Better utilization, fewer collisions

– Slower

– More hardware

• Lower associativity
– Fast

– Simple, less hardware

– Greater chance of collisions

• How does page size affect TLB performance?

X86 TLB

• TLB management shared by processor and OS
• CPU fills TLB on demand from page table (the OS is

unaware of TLB misses)
• CPU evicts entries when a new entry must be added and

no free slots exist
• Operating system ensures TLB/page table consistency

by flushing entries as needed when the page tables are
updated or switched (e.g. during a context switch)

• TLB entries can be removed by the OS one at a time
using the INVLPG instruction or the entire TLB can be
flushed at once by writing a new entry into CR3

Example: Pentium-M TLBs

• Four different TLBs
– Instruction TLB for 4K pages

• 128 entries, 4-way set associative

– Instruction TLB for large pages
• 2 entries, fully associative

– Data TLB for 4K pages
• 128 entries, 4-way set associative

– Data TLB for large pages
• 8 entries, 4-way set associative

• All TLBs use LRU replacement policy
• Why different TLBs for instruction, data, and

page sizes?

6

SPARC TLB

• SPARC is RISC (simpler is better) CPU
• Example of a “software-managed” TLB
• TLB miss causes a fault, handled by OS
• OS explicitly adds entries to TLB
• OS is free to organize its page tables in

any way it wants because the CPU does
not use them

• E.g. Linux uses a tree like X86, Solaris
uses a hash table

Minimizing Flushes

• On SPARC, TLB misses trap to OS (SLOW)
• We want to avoid TLB misses
• Retain TLB contents across context switch
• SPARC TLB entries enhanced with a context id
• Context id allows entries with the same VPN to coexist in

the TLB (e.g. entries from different process address
spaces)

• When a process is switched back onto a processor,
chances are that some of its TLB state has been
retained from the last time it ran

• Some TLB entries shared (OS kernel memory)
– Mark as global
– Context id ignored during matching

Example:UltraSPARC III TLBs

• Five different TLBs
• Instruction TLBs

– 16 entries, fully associative (supports all page sizes)
– 128 entries, 2-way set associative (8K pages only)

• Data TLBs
– 16 entries, fully associative (supports all page sizes)
– 2 x 512 entries, 2-way set associative (each supports one page

size per process)

• Valid page sizes – 8K (default), 64K, 512K, and 4M
• 13-bit context id – 8192 different concurrent address

spaces
• What happens if you have > 8192 processes?

Speeding Up TLB Miss Handling

• In some cases a huge amount of time can be spent handling TLB
misses (2-50% in one study of SuperSPARC and SunOS)

• Many architectures that use software managed TLBs have hardware
assisted TLB miss handling

• SPARC uses a large, virtually-indexed, direct-mapped, physically
contiguous table of recently used TLB entries called the Translation
Storage Buffer (TSB)

• The location of the TSB is loaded into the processor on context
switch (implies one TSB per process)

• On TLB miss, hardware calculates the offset of the matching entry
into the TSB and supplies it to the software TLB miss handler

• In most cases, the software TLB miss handler only needs to make a
tag comparison to the TSB entry, load it into the TLB, and return

• If an access misses in the TSB then a slow software search of page
tables is required

