
2

Introduction to Operating Systems

If you are taking an undergraduate operating systems course, you
should already have some idea of what a computer program does
when it runs. If not, the course is going to be difficult – so you should
probably drop the course, or run to the nearest bookstore and quickly
consume the necessary background material (both Patt/Patel [PP03]
and Bryant/O’Halloran [BOH10] are pretty great books).

So what happens when a program runs?
Well, a running program does one very simple thing: it executes

instructions. Many millions (and these days, even billions) of times
every second, the processor fetches an instruction from memory, de-
codes it (i.e., figures out which instruction this is), and executes it
(i.e., it does the thing that it is supposed to do, like add two numbers
together, access memory, check a condition, and so forth). After it
is done with this instruction, the processor moves on to the next in-

struction, and so on, and so on, until the program finally completes1.
Thus, we have just described the basics of the Von Neumann

model of computing2. Sounds simple, right? But in this class, we

1Of course, modern processors do many bizarre and frightening things underneath
the hood to make programs run faster, e.g., executing multiple instructions at once, and
even issuing and completing them out of order! But that is not our concern here; we are
just concerned with the simple model most programs assume: that instructions seem-
ingly execute one at a time.

2Von Neumann was one of the early pioneers of computing systems. He also did
pioneering work on game theory and atomic bombs, and played in the NBA for six years.
OK, one of those things isn’t true.

1

2 INTRODUCTION TO OPERATING SYSTEMS

THE CRUX OF THE PROBLEM:
HOW DOES THE OS VIRTUALIZE RESOURCES?

The central question we will answer in these notes is quite simple:
how does the operating system virtualize resources? This is the crux
of our problem. Note that why the OS does this is not the main ques-
tion, as the answer should be obvious: it makes the system easier to
use. Thus, we focus on the how: what mechanisms and policies are
implemented by the OS to attain virtualization? How does the OS
do so efficiently? What hardware support is needed?
Note that we will use the “crux of the problem”, in shaded boxes
such as this one, as a way to call out specific problems we are trying
to solve in building an operating system. Thus, within a note on
a particular topic, you may find one or more cruces (yes, this is the
proper plural) which highlight the problem. The details within the
note, of course, present the solution, or at least the basic parameters
of a solution.

will be learning that while a program runs, a lot of other wild things
are going on with the primary goal of making the system easy to use.

There is a body of software, in fact, that is responsible for making
it easy to run programs (even allowing you to seemingly run many at
the same time), allowing programs to share memory, enabling pro-
grams to interact with devices, and other fun stuff like that. That

body of software is called the operating system (OS)3, as it is in
charge of making sure the system operates correctly and efficiently
in an easy-to-use manner.

The primary way the OS does this is through a general technique
that we call virtualization. That is, the OS takes a physical resource
(such as the processor, or memory, or a disk) and transforms it into a
more general, powerful, and easy-to-use virtual form of itself. Thus,
we sometimes refer to the operating system as a virtual machine.

Of course, in order to allow users to tell the OS what to do and
thus make use of the features of the virtual machine (such as run-
ning a program, or allocating memory, or accessing a file), the OS

3Another early name for the OS was the supervisor or even the master control pro-
gram. Apparently, this last name sounded a little overzealous (see the movie Tron for
details) and thus, thankfully, “operating system” caught on instead.

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 3

also provides some interfaces (APIs) that you can call. A typical OS,
in fact, exports a few hundred system calls that are available to appli-
cations. Because the OS provides these calls to run programs, access
memory and devices, and other related actions, we also sometimes
say that the OS provides a standard library to applications.

Finally, because virtualization allows many programs to run (thus
sharing the CPU), and many programs to concurrently access their
own instructions and data (thus sharing memory), and many pro-
grams to access devices (thus sharing disks and so forth), the OS is
sometimes known as a resource manager. Each of the CPU, memory,
and disk is a resource of the system; it is thus the operating system’s
role to manage those resources, doing so efficiently or fairly or in-
deed with many other possible goals in mind.

To understand the role of the OS a little bit better, let’s take a look
at some examples.

2.1 Virtualizing the CPU

Figure 2.1 depicts our first program. It doesn’t do much. In fact,
all it does is call a routine, Spin(), that repeatedly checks the time
and returns once it has run for 1 second. Then, it prints out the string
that the user passed in on the command line, and then it repeats that,
forever.

Let’s say we save this file as cpu.c and decide to compile and run
it on a system with a single processor (or CPU as we will sometimes
call it). Here is what we will see:

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"

A

A

A

A

ˆC

prompt>

Not too interesting. The system begins running the program, which
repeatedly checks the time until a second has elapsed. Once a second
has passed, the code prints the input string passed in by the user (in
this example, the letter “A”), and continues. Note the program will
run forever; only by pressing “Control-c” (which on UNIX-based

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

4 INTRODUCTION TO OPERATING SYSTEMS

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <assert.h>

#include "common.h"

int

main(int argc, char *argv[])

{

if (argc != 2) {

fprintf(stderr, "usage: cpu <string>\n");

exit(1);

}

char *str = argv[1];

while (1) {

Spin(1);

printf("%s\n", str);

}

return 0;

}

Figure 2.1: Simple Example: Code That Loops and Prints

systems will terminate the program running in the foreground) can
we halt the program.

Now, let’s do the same thing, but this time, let’s run many differ-
ent instances of this same program:

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &

[1] 7353

[2] 7354

[3] 7355

[4] 7356

A

B

D

C

A

B

D

C

A

C

B

D

...

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 5

Well, now things are getting a little more interesting. Even though
we have only one processor, somehow all four of these programs

seem to be running at the same time! How does this magic happen?4

It turns out that the operating system, with some help from the
hardware, is in charge of this illusion, i.e., the illusion that the system
has a very large number of virtual CPUs. Turning a single CPU (or
small set of them) into a seemingly infinite number of CPUs and thus
allowing many programs to seemingly run at once is what we call
virtualizing the CPU. It is the focus of Part I of these notes.

Of course, to run programs, and stop them, and otherwise tell the
OS which programs to run, there need to be some interfaces (APIs)
that you can use to communicate your desires to the OS. We’ll talk
about these APIs throughout these notes; indeed, they are the major
way in which most users interact with operating systems.

You might also notice that the ability to run multiple programs at
once raises all sorts of new questions. For example, if two programs
want to run at a particular time, which should run? This question is
answered by a policy of the operating system; policies are used in
many different places within an OS to answer these types of ques-
tions, and thus we will study them as we learn about the basic mech-
anisms that operating systems implement (such as the ability to run
multiple programs at once). Hence the role of the OS as a resource
manager.

2.2 Virtualizing Memory

Now let’s consider memory. The model of physical memory pre-
sented by modern machines is very simple. Memory is just an array
of bytes; to read memory, one must specify an address to be able to
access the data stored there; to write (or update) memory, one must
also specify the data to be written to the given address.

Memory is accessed all the time when a program is running. A
program keeps all of its data structures in memory, and accesses
them through various instructions, like loads and stores or other ex-
plicit memory-accessing operations. And of course, each instruction

4Note how we ran four processes at the same time, by using the & symbol. Doing so
runs a job in the background, which means that the user is able to immediately issue their
next command, which in this case is another program to run. The semi-colon between
commands allows us to specify multiple jobs on the command line.

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

6 INTRODUCTION TO OPERATING SYSTEMS

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include "common.h"

int

main(int argc, char *argv[])

{

int *p = malloc(sizeof(int)); // a1

assert(p != NULL);

printf("(%d) address of p: %08x\n",

getpid(), (unsigned) p); // a2

*p = 0; // a3

while (1) {

Spin(1);

*p = *p + 1;

printf("(%d) p: %d\n", getpid(), *p); // a4

}

return 0;

}

Figure 2.2: A Program that Accesses Memory

of the program is in memory, and thus memory is accessed on each
instruction fetch too.

Let’s take a look at a program (in Figure 2.2) that allocates some
memory by calling malloc(). The output of this program can be
found here:

prompt> ./mem

(2134) memory address of p: 00200000

(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

ˆC

The program does a couple of things. First, it allocates some mem-
ory (line a1). Then, it prints out the address of the memory (a2), and
then puts the number zero into the first slot of the newly allocated
memory (a3). Finally, it loops, delaying for a second and increment-
ing the value stored at the address held in p. With every print state-
ment, it also prints out what is called the process identifier (the PID)
of the running program. This PID is unique per running process.

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 7

Again, this first result is not too interesting. The newly allocated
memory is at address 00200000. As the program runs, it slowly
updates the value and prints out the result.

Now, we again run multiple instances of this same program to see
what happens:

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000

(24114) memory address of p: 00200000

(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

(24113) p: 4

(24114) p: 4

...

We see from the example that each running program has allocated
memory at the same address (00200000), and yet each seems to be
updating the value at 00200000 independently! It is as if each run-
ning program has its own private memory, instead of sharing the
same physical memory with other running programs.

Indeed, that is exactly what is happening here as the OS is vir-
tualizing memory. Each process accesses its own private address
space, which the OS somehow maps onto the physical memory of
the machine. A memory reference within one running program does
not affect the address space of other processes (or the OS itself); as
far as the running program is concerned, it has physical memory all
to itself. Exactly how all of this is accomplished is the subject of Part
II of these notes.

2.3 Concurrency

Another main theme of this book is concurrency. We use this
conceptual term to refer to a host of problems that arise, and must be
addressed, when working on many things at once (i.e., concurrently)
in the same program. The problems of concurrency arose first within
the operating system itself; as you can see in the examples above on
virtualization, the OS is juggling many things at once, first running

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

8 INTRODUCTION TO OPERATING SYSTEMS

#include <stdio.h>

#include <stdlib.h>

#include "common.h"

volatile int counter = 0;

int loops;

void *worker(void *arg) {

int i;

for (i = 0; i < loops; i++) {

counter++;

}

return NULL;

}

int

main(int argc, char *argv[])

{

if (argc != 2) {

fprintf(stderr, "usage: threads <value>\n");

exit(1);

}

loops = atoi(argv[1]);

pthread_t p1, p2;

printf("Initial value : %d\n", counter);

Pthread_create(&p1, NULL, worker, NULL);

Pthread_create(&p2, NULL, worker, NULL);

Pthread_join(p1, NULL);

Pthread_join(p2, NULL);

printf("Final value : %d\n", counter);

return 0;

}

Figure 2.3: A Multithreaded program

one process, then another, and so forth. As it turns out, doing so
leads to some deep and interesting problems.

Unfortunately, the problems of concurrency are no longer limited
just to the OS itself. Indeed, modern multithreaded programs ex-
hibit the same problems. Let us demonstrate with an example of a
multithreaded program (Figure 2.3).

Although you might not understand this example fully at the mo-
ment (and we’ll learn a lot more about it in later chapters, in the sec-
tion of the book on concurrency), the basic idea is simple. The main
program creates two threads; you can think of a thread as a func-

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 9

tion running within the same memory space as other functions, with
more than one of them active at a time. In this example, each thread
starts running in a routine called worker(), in which it simply in-
crements a counter in a loop for loops number of times.

Below is a transcript of what happens when we run this program
with the input value for the variable loops set to 1000. The value
of loops determines how many times each of the two workers will
increment the shared counter in a loop. When the program is run
with the value of loops set to 1000, what do you expect the final
value of counter will be?

prompt> gcc -o thread thread.c -Wall -lpthread

prompt> ./thread 1000

Initial value : 0

Final value : 2000

As you probably guessed, when the two threads are finished, the
final value of the counter is 2000, as each thread incremented the
counter 1000 times. Indeed, when the input value of loops is set to
N , we would expect the final output of the program to be 2N . But
life is not so simple, as it turns out. Let’s run the same program, but
with higher values for loops, and see what happens:

prompt> ./thread 100000

Initial value : 0

Final value : 143012 // huh??

prompt> ./thread 100000

Initial value : 0

Final value : 137298 // what the??

In this run, when we gave an input value of 100,000, instead of
getting a final value of 200,000, we instead first get 143,012. Then,
when we run the program a second time, we not only again get the
wrong value, but also a different value than the last time. In fact, if
you run the program over and over with high values of loops, you
may find that sometimes you even get the right answer! So why is
this happening?

As it turns out, the reason for these odd and unusual outcomes re-
late to how instructions are executed, which is one at a time. Unfor-
tunately, a key part of the program above, where the shared counter
is incremented, takes three instructions: one to load the value of the
counter from memory into a register, one to increment it, and one to

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

10 INTRODUCTION TO OPERATING SYSTEMS

THE CRUX OF THE PROBLEM:
HOW CAN WE BUILD CORRECT CONCURRENT PROGRAMS?

When there are many concurrently executing threads within the
same memory space, how can we build a correctly working pro-
gram? What primitives are needed from the OS? What mechanisms
should be provided by the hardware? How can we use them to solve
the problems of concurrency?

store it back into memory. Because these three instructions do not ex-
ecute atomically (all at once), strange things can happen, as we have
seen. It is this problem of concurrency that we will address in great
detail in the second part of this book.

2.4 Persistence

The third major theme of the course is persistence. In system
memory, data can be easily lost, as devices such as DRAM store
values in a volatile manner; when power goes away or the system
crashes, any data in memory is lost. Thus, we need hardware and
software to be able to store data persistently; such storage is thus
critical to any system as users care a great deal about their data.

The hardware comes in the form of some kind of input/output or
I/O device; in modern systems, a hard drive is a common repository
for long-lived information, although solid-state drives (SSDs) are
making headway in this arena as well.

The software in the operating system that usually manages the
disk is called the file system; it is thus responsible for storing any
files the user creates in a reliable and efficient manner on the disks of
the system.

Unlike the abstractions provided by the OS for the CPU and mem-
ory, the OS does not create a private, virtualized disk for each appli-
cation. Rather, it is assumed that often times, users will want to share
information that is in files. For example, when writing a C program,

you might first use an editor (e.g., Emacs5) to create and edit the

5You should be using Emacs. If you are using vi, there is probably something wrong
with you. If you are using something that is not a real code editor, that is even worse.

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 11

#include <stdio.h>

#include <unistd.h>

#include <assert.h>

#include <fcntl.h>

#include <sys/types.h>

int

main(int argc, char *argv[])

{

int fd = open("/tmp/file",

O_WRONLY | O_CREAT | O_TRUNC,

S_IRWXU);

assert(fd > -1);

int rc = write(fd, "hello world\n", 13);

assert(rc == 13);

close(fd);

return 0;

}

Figure 2.4: A Program That Does I/O

C file (emacs -nw main.c). Once done, you might use the com-
piler to turn the source code into an executable (e.g., gcc -o main

main.c). When you’re finished, you might run the new executable
(e.g., ./main). Thus, you can see how files are shared across differ-
ent processes. First, Emacs creates a file that is input to the compiler;
the compiler uses that to create a new executable file; finally, the new
executable is then run. And thus a new program is born!

To understand this better, let’s once again look at some code. Fig-
ure 2.4 presents code to create a file called /tmp/file that contains
the string “hello world”.

To accomplish this task, the program makes three calls into the
operating system. The first, a call to open(), opens the file and cre-
ates it; the second, write(), writes some data to the file; the third,
close(), simply closes the file thus indicating the program won’t be
writing any more data to it. These system calls are routed to the part
of the operating system called the file system, which then handles
the requests and returns some kind of error code to the user.

You might be wondering what the OS does in order to actually
write to disk. We would show you but you’d have to promise to
close your eyes first; it is that unpleasant. As anyone who has writ-

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

12 INTRODUCTION TO OPERATING SYSTEMS

THE CRUX OF THE PROBLEM:
HOW TO STORE DATA PERSISTENTLY

The file system is the part of the OS in charge of managing persistent
data. What techniques are needed to do so correctly? What mech-
anisms and policies are required to do so with high performance?
How is reliability achieved, in the face of failures in hardware and
software?

ten a device driver6 knows, getting a device to do something on your
behalf is an intricate and detailed process. It requires a deep knowl-
edge of the low-level device interface and its exact semantics. Fortu-
nately, the OS provides a standard and simple way to access devices
through its system calls. Thus, the OS is sometimes seen as a stan-
dard library.

Of course, there are many more details in how devices are ac-
cessed, and how file systems manage data persistently atop said de-
vices. For performance reasons, most file systems first delay such
writes for a while, hoping to batch them into larger groups for per-
formance reasons. To handle the problems of system crashes dur-
ing writes, most file systems incorporate some kind of intricate write
protocol, such as journaling or copy-on-write, carefully ordering
writes to disk to ensure that if a failure occurs during the write se-
quence, the system can recover to reasonable state afterwards. To
make different common operations efficient, file systems employ many
different data structures and access methods, from simple lists to
complex b-trees. If all of this doesn’t make sense yet, good! We’ll
be talking about all of this quite a bit more in the third part of this
book, where we’ll discuss devices and I/O in general, and then disks,
RAIDs, and file systems in great detail.

2.5 Distribution

Finally, the last major conceptual piece of the book centers around
distributed systems. This topic is both so broad and deep as to merit
its own book and course of study; here, we simply introduce some of

6A device driver is some code in the operating system that knows how to deal with
a specific device. We will talk more about devices and device drivers later.

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 13

THE CRUX OF THE PROBLEM:
HOW TO BUILD DISTRIBUTED SYSTEMS DESPITE FAILURES

How to build a working distributed system, despite the reality that
components might fail? Dealing with partial failure, and masking
it from users of a system, is the primary goal of most distributed
systems.

the topics related to distribution, touching on a few of the techniques
and algorithms which lie at the heart of every interesting system you
use on the internet, such as Google, facebook, and Amazon.

Most of our focus centers around the change that occurs when
building large-scale systems out of many components, and that is
what to do when dealing with failure. Specifically, when you use
an internet service such as Google, many of its pieces might not be
working at a given time, as machines crash or disks fail. So how does
Google still seem to work most of the time, despite these failures?

As we delve into distributed systems, beyond dealing with fail-
ures, we will see that other new issues become more important. For
example, networking serves as the basis for communication between
machines, and thus we’ll need to understand a little bit about how
such communication works. The security of a system must be much
more robust when the system is connected to the internet and thus
potentially can be reached by millions of other machines, some of
them perhaps malicious. Thus, we will also present a brief introduc-
tion to a few topics related to security. Both networking and security
are topics worthy of study in their own right; here, we just briefly
introduce some of the main ideas. To learn more, read more on your
own, or take a class on these interesting and important topics some-
time.

2.6 Design Goals

So now you have some idea of what an OS actually does: it takes
physical resources, such as a CPU, memory, or disk, and virtualizes
them. It handles tough and tricky issues related to concurrency. It
stores files persistently, thus making them safe over the long-term.
And it serves as a building block for every large-scale distributed

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

14 INTRODUCTION TO OPERATING SYSTEMS

system we use today. Given that we want to build such a system, we
probably want to have some goals in mind to help focus our design
and implementation and make trade-offs as necessary; finding the
right set of trade-offs is a key to building any system.

One of the most basic goals is to build up some abstractions in or-
der to make the system convenient and easy to use. Abstractions are
fundamental to everything we do in computer science. Abstraction
makes it possible to write a large program by dividing it into small
and understandable pieces, to write such a program in a high-level

language like C7 without thinking about assembly, to write code in
assembly without thinking about logic gates, and to build a proces-
sor out of gates without thinking too much about transistors. Ab-
straction is so fundamental that sometimes we forget its importance,
but we won’t here; thus, in each section, we’ll discuss some of the
major abstractions that have developed over time, giving you a way
to think about pieces of the OS.

One goal in designing and implementing an operating system is
to provide high performance; another way to say this is our goal is
to minimize the overheads of the OS. Virtualization and making the
system easy to use are well worth it, but not at any cost; thus, we
must strive to provide virtualization and other OS features without
excessive overheads. These overheads arise in a number of forms:
extra time (more instructions) and extra space (in memory or on
disk). We’ll seek solutions that minimize one or the other or both,
if possible.

Another goal will be to provide protection between applications,
as well as between the OS and applications. Because we wish to
allow many programs to run at the same time, we want to make sure
that the malicious or accidental bad behavior of one does not harm
others; we certainly don’t want an application to be able to harm the
OS itself (as that would affect all programs running on the system).
Protection is at the heart of one of the main principles underlying an
operating system, which is that of isolation; isolating processes from
one another is the key to protection and thus underlies much of what
an OS must do.

The operating system must also run non-stop; when it fails, all
applications running on the system fail as well. Because of this de-

7Some of you might object to calling C a high-level language. Remember this is an
OS course, though, where we’re happy not to code in assembly all the time!

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 15

pendence, operating systems often strive to provide a high degree
of reliability. As operating systems grow evermore complex (some-
times containing millions of lines of code), building a reliable oper-
ating system is quite a challenge – and indeed, much of the on-going
research in the field (including some of our own work [BS+09,SS+10])
focuses on this exact problem.

Other goals make sense: energy-efficiency is important in our in-
creasingly green world; security (an extension of protection, really)
against malicious applications is critical, especially in these highly-
networked times; mobility is increasingly important as OSes are run
on smaller and smaller devices. Depending in how the system is
used, the OS will have different goals and thus likely be implemented
in at least slightly different ways. However, as we will see, many of
the principles we will present on how to build operating systems are
useful in the range of different devices.

2.7 Some History

Before closing this introduction, let us present a brief history of
how operating systems developed. Like any system built by hu-
mans, good ideas accumulated in operating systems over time, as
engineers learned what was important in their design. Here, we dis-
cuss a few major developments.

Early Operating Systems: Just Libraries

In the beginning, the operating system didn’t do too much. Basically,
it was just a set of libraries of commonly-used functions; for example,
instead of having each programmer of the system write low-level
I/O handling code, the “OS” would provide such APIs, and thus
make life easier for the developer.

Usually, on these old mainframe systems, one program ran at a
time, as controlled by a human operator. Much of what you think
a modern OS would do (e.g., deciding what order to run jobs in)
was performed by this operator. If you were a smart developer, you
would be nice to this operator, so that they might move your job to
the front of the queue.

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

16 INTRODUCTION TO OPERATING SYSTEMS

Beyond Libraries: Protection

In moving beyond being a simple library of commonly-used services,
operating systems took on a more central role in managing machines.
One important aspect of this was the realization that code run on be-
half of the OS was special; it had control of devices and thus should
be treated differently than normal application code. Why is this?
Well, imagine if you allowed any application to read from anywhere
on the disk; the notion of privacy goes out the window, as any pro-
gram could read any file. Thus, implementing a file system (to man-
age your files) as a library makes little sense. Instead, something else
was needed.

Thus, the idea of a system call was invented, pioneered by the At-
las computing system [K+61,L78]. Instead of providing OS routines
as a library (where you just make a procedure call to access them),
the idea here was to add a special pair of hardware instructions and
hardware state to make the transition into the OS a more formal, con-
trolled process.

HARDWARE SUPPORT: PROTECTED TRANSFER OF CONTROL

The hardware assists the OS by providing different modes of ex-
ecution. In user mode, applications do not have full access to hard-
ware resources. In kernel mode, the OS has access to the full re-
sources of the machine. Special instructions to trap into the ker-
nel and return-from-trap back to user-mode programs are also pro-
vided. We will see numerous cases of where a little hardware sup-
port goes a long way in building an efficient, effective operating sys-
tem.

The key difference between a system call and a procedure call is
that a system call transfers control (i.e., jumps) into the OS while
simultaneously raising the hardware privilege level. User appli-
cations run in what is referred to as user mode which means the
hardware restricts what applications can do; for example, an appli-
cation running in user mode can’t typically initiate an I/O request
to the disk, access any physical memory page, or send a packet on
the network. When a system call is initiated (usually through a spe-
cial hardware instruction called a trap), the hardware transfers con-
trol to a pre-specified trap handler (that the OS set up previously)

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 17

and simultaneously raises the privilege level to kernel mode. In ker-
nel mode, the OS has full access to the hardware of the system and
thus can do things like initiate an I/O request or make more memory
available to a program. When the OS is done servicing the request,
it passes control back to the user via a special return-from-trap in-
struction, which reverts to user mode while simultaneously passing
control back to where the application left off.

The Era of Multiprogramming

Where operating systems really took off was in the era of computing
beyond the mainframe, that of the minicomputer. Classic machines
like the PDP family from Digital Equipment made computers hugely
more affordable; thus, instead of having one mainframe per large or-
ganization, now a smaller collection of people within an organization
could likely have their own computer. Not surprisingly, one of the
major impacts of this drop in cost was an increase in developer activ-
ity; more smart people got their hands on computers and thus made
computer systems do more interesting and beautiful things.

In particular, multiprogramming became commonplace as peo-
ple wished to make better use of machine resources. Instead of just
running one job at a time, the OS would load a number of jobs into
memory and switch rapidly between them, thus improving CPU uti-
lization. This switching was particularly important because I/O de-
vices were slow; having a program wait on the CPU while its I/O
was being serviced was a waste of CPU time. Instead, why not
switch to another job and run it for a while?

The desire to support multiprogramming and overlap in the pres-
ence of I/O and interrupts forced innovation in the conceptual devel-
opment of operating systems along a number of directions. Issues
such as memory protection became important; we wouldn’t want
one program to be able to access the memory of another program.
Understanding how to deal with the concurrency issues introduced
by multiprogramming was also critical; making sure the OS was be-
having correctly despite the presence of interrupts is a great chal-
lenge. We will study these issues and related topics later in the notes.

One of the major practical advances of the time was the introduc-
tion of the UNIX operating system, primarily thanks to Ken Thomp-
son (and Dennis Ritchie) at Bell Labs (yes, the phone company). UNIX

took many good ideas from different operating systems (particularly

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

18 INTRODUCTION TO OPERATING SYSTEMS

from Multics [O72]), but made them simpler and easier to use. Soon
this team was shipping tapes containing UNIX source code to peo-
ple around the world, many of whom then got involved and added
to the system themselves. UNIX, quite simply, gave programmers a
terrific playground in which to develop applications and also to de-
velop operating system ideas, and thus much of what we learn really
starts with this one hugely important system. Interestingly, also in-
vented by this same team (and including Brian Kernighan) was the
C programming language; thus, UNIX became one of the first oper-
ating systems to be written (mostly) in a high-level language.

The Modern Era

Beyond the minicomputer came a new type of machine, cheaper,
faster, and for the masses: the personal computer, or PC as we call
it today. Led by Apple’s early machines (e.g., the Apple II) and the
IBM PC, this new breed of machine would soon become the domi-
nant force in computing, as their low-cost enabled one machine per
desktop instead of a shared minicomputer per workgroup.

Unfortunately, for operating systems, the PC at first represented a
great leap backwards, as early systems forgot (or never knew of) the
lessons learned in the era of minicomputers. For example, early op-
erating systems such as DOS (the Disk Operating System, from Mi-
crosoft) didn’t think memory protection was important; thus, a ma-
licious (or poorly-programmed) application could scribble all over
memory. The first generations of the Mac OS (v9 and earlier) took a
cooperative approach to job scheduling; thus, a thread that acciden-
tally got stuck in an infinite loop could take over the entire system,
forcing a reboot. The painful list of OS features missing in this gen-
eration of systems is long, too long for a full discussion here.

Fortunately, after some years of suffering, the old features of mini-
computer operating systems started to find their way onto the desk-
top. For example, Mac OS X has UNIX at its core, including all of the
features one would expect from such a mature system. Windows has
similarly adopted many of the great ideas in computing history, start-
ing in particular with Windows NT, a great leap forward in Microsoft
OS technology. Even today’s cell phones run operating systems that
are much more like what a minicomputer ran in the 1970s than what
a PC ran in the 1980s (thank goodness); it is good to see that the good
ideas developed in the heyday of OS development have found their

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 19

way into the modern world. Even better is that these ideas continue
to develop, providing more features and making modern systems
even better for applications.

2.8 Summary

Thus, we have an introduction to the OS. Today’s operating sys-
tems make systems relatively easy to use, and virtually all operating
systems you use today have been influenced by the developments
we will discuss throughout these notes.

Unfortunately, due to time constraints, there are a number of parts
of the OS we won’t cover in these notes. For example, there is a lot of
networking code in the operating system; we leave it to you to take
the networking class to learn more about that. Similarly, graphics de-
vices are particularly important; take the graphics course to expand
your knowledge in that direction. Finally, some operating system
books talk a great deal about security; we will do so in the sense that
the OS must provide protection between running programs and give
users the ability to protect their files, but we won’t delve into deeper
security issues that one might find in a security course.

However, there are many important topics that we will cover, in-
cluding the basics of virtualization of the CPU, memory, devices, and
the important topic of concurrency. With this foundation, learning
about other aspects of systems should be a relatively straightforward
exercise.

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

20 INTRODUCTION TO OPERATING SYSTEMS

References

[BS+09] “Tolerating File-System Mistakes with EnvyFS”
Lakshmi N. Bairavasundaram, Swaminathan Sundararaman, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau
USENIX ’09, San Diego, CA, June 2009
A fun paper about using multiple file systems at once to tolerate a mistake in any one of them.

[B75] “The Mythical Man-Month”
Fred Brooks
Addison-Wesley, 1975
A classic text on software engineering; well worth the read.

[BOH10] “Computer Systems: A Programmer’s Perspective”
Randal E. Bryant and David R. O’Hallaron
Addison-Wesley, 2010
Another great intro to how computer systems work. Has a little bit of overlap with this book
– so if you’d like, you can skip the last few chapters of that book, or simply read them to get a
different perspective on some of the same material. After all, one good way to build up your own
knowledge is to hear as many other perspectives as possible, and then develop your own opinion
and thoughts on the matter.

[K+61] “One-Level Storage System”
T. Kilburn, D.B.G. Edwards, M.J. Lanigan, F.H. Sumner
IRE Transactions on Electronic Computers, April 1962
The Atlas pioneered much of what you see in modern systems. However, this paper is not the best
read. If you were to only read one, you might try the historical perspective below [L78].

[L78] “The Manchester Mark I and Atlas: A Historical Perspective”
S. H. Lavington
Communications of the ACM archive
Volume 21, Issue 1 (January 1978), pages 4-12
A nice piece of history on the early development of computer systems and the pioneering efforts
of the Atlas. Of course, one could go back and read the Atlas papers themselves, but this paper
provides a great overview and adds some historical perspective.

[O72] “The Multics System: An Examination of its Structure”
Elliott Organick, 1972
A great overview of Multics. So many good ideas, and yet it was an over-designed system,
shooting for too much, and thus never really worked as expected. A classic example of what Fred
Brooks would call the “second-system effect” [B75].

OPERATING

SYSTEMS ARPACI-DUSSEAU

INTRODUCTION TO OPERATING SYSTEMS 21

[PP03] “Introduction to Computing Systems:
From Bits and Gates to C and Beyond”
Yale N. Patt and Sanjay J. Patel
McGraw-Hill, 2003
One of our favorite intro to computing systems books. Starts at transistors and gets you all the
way up to C.

[RT74] “The UNIX Time-Sharing System”
Dennis M. Ritchie and Ken Thompson
CACM, Volume 17, Number 7, July 1974, pages 365-375
A great summary of UNIX written as it was taking over the world of computing, by the people
who wrote it.

[SS+10] “Membrane: Operating System Support for Restartable File Systems”
Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift
FAST ’10, San Jose, CA, February 2010
The great thing about writing your own class notes: you can advertise your own research. But
this paper is actually pretty neat – when a file system hits a bug and crashes, Membrane auto-
magically restarts it, all without applications or the rest of the system being affected.

ARPACI-DUSSEAU

FOUR

EASY

PIECES

(V0.4)

