
An introduction to disk drive
modeling

Chris Ruemmler and John Wilkes
Hewlett-Packard Laboratories, Palo Alto, CA

Much research in I/O systems is based on disk drive simulation models, but how
good are they? An accurate simulation model should emphasize the performance-
critical areas.

This paper has been published in IEEE Computer 27(3):17–29, March 1994. It
supersedes HP Labs technical reports HPL–93–68 rev 1 and HPL–OSR–93–29.

Copyright © 1994 IEEE.

Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution must be obtained from the
IEEE. To receive more information on obtaining permission, send a blank email
message to info.pub.permission@ieee.org.

Note: this file was obtained by scanning and performing OCR on the IEEE
published copy. As a result, it may contain typographic or other errors that are not
in the published version. Minor clarifications and updates have been made to the
bibliography.





1

Modern microprocessor technology is advancing at an incredible rate, and speedups of 40 to 60 percent
compounded annually have become the norm. Although disk storage densities are also improving
impressively (60 to 80 percent compounded annually), performance improvements have been occurring at
only about 7 to 10 percent compounded annually over the last decade. As a result, disk system performance
is fast becoming a dominant factor in overall system behavior.

Naturally, researchers want to improve overall I/O performance, of which a large component is the
performance of the disk drive itself. This research often involves using analytical or simulation models to
compare alternative approaches, and the quality of these models determines the quality of the conclusions;
indeed, the wrong modeling assumptions can lead to erroneous conclusions. Nevertheless, little work has
been done to develop or describe accurate disk drive models. This may explain the commonplace use of
simple, relatively inaccurate models.

We believe there is much room for improvement. This article demonstrates and describes a calibrated, high-
quality disk drive model in which the overall error factor is 14 times smaller than that of a simple first-order
model. We describe the various disk drive performance components separately, then show how their
inclusion improves the simulation model. This enables an informed trade-off between effort and accuracy.
In addition, we provide detailed characteristics for two disk drives, as well as a brief description of a
simulation environment that uses the disk drive model.

Characteristics of modern disk drives

To model disk drives, we must understand how they behave. Thus, we begin with an overview of the current
state of the art in nonremovable magnetic disk drives with embeddedSCSI(Small Computer Systems
Interconnect) controllers, since these are widely available.

Disk drives contain a mechanism and a controller. The mechanism is made up of the recording components
(the rotating disks and the heads that access them) and the positioning components (an arm assembly that
moves the heads into the correct position together with a track-following system that keeps it in place). The
disk controller contains a microprocessor, some buffer memory, and an interface to theSCSI bus. The
controller manages the storage and retrieval of data to and from the mechanism and performs mappings
between incoming logical addresses and the physical disk sectors that store the information.

Below, we look more closely at each of these elements, emphasizing features that need to be considered
when creating a disk drive model. It will become clear that not all these features are equally important to a
model’s accuracy.

The recording components. Modern disks range in size from 1.3 to 8 inches in diameter; 2.5, 3.5, and 5.25
inches are the most common sizes today. Smaller disks have less surface area and thus store less data than
their larger counterparts; however, they consume less power, can spin faster, and have smaller seek
distances. Historically, as storage densities have increased to where 2–3 gigabytes can fit on a single disk,
the next-smaller diameter in the series has become the most cost-effective and hence the preferred storage
device.



2

Increased storage density results from two improvements. The first is better linear recording density, which
is determined by the maximum rate of flux changes that can be recorded and read back; current values are
around 50,000 bits per inch and will approximately double by the end of the decade. The second comes from
packing the separate tracks of data more closely together, which is how most of the improvements are
occurring. Current values are about 2,500 tracks per inch, rising to perhaps 20,000 TPI by the end of the
decade. The product of these two factors will probably sustain a growth rate above 60 percent per year to
the end of the decade.

A single disk contains one, two, or as many as a dozen platters, as shown in Figure 1. The stack of platters
rotates in lockstep on a central spindle. Although 3,600 rpm was a de facto standard for many years, spindle
rotation speed has increased recently to as much as 7,200 rpm. The median rotation speed is increasing at a
compound rate of about 12 percent per year. A higher spin speed increases transfer rates and shortens
rotation latencies (the time for data to rotate under the head), but power consumption increases and better
bearings are required for the spindle. The spin speed is typically quoted as accurate within 0.5 to 1 percent;
in practice, the disk speeds vary slowly around the nominal rate. Although this is perfectly reasonable for
the disk’s operation, it makes it nearly impossible to model the disk’s rotational position some 100-200
revolutions after the last known operation. Fortunately, many I/O operations occur in bursts, so the
uncertainty applies only to the first request in the burst.

Each platter surface has an associated disk head responsible for recording (writing) and later sensing
(reading) the magnetic flux variations on the platter’s surface. The disk drive has a single read-write data
channel that can be switched between the heads. This channel is responsible for encoding and decoding the
data stream into or from a series of magnetic phase changes stored on the disk.

 Significant fractions of the encoded data stream are dedicated to error correction. The application of digital
signal processing may soon increase channel speeds above their current 100 megabits per second.
(Multichannel disks can support more than one read/write operation at a time, making higher data transfer
rates possible. However, these disks are relatively costly because of technical difficulties such as controlling
the cross talk between the concurrently active channels and keeping multiple heads aligned on their platters
simultaneously. The latter is becoming more difficult as track densities increase.)

Figure 1 : the mechanical components of a disk drive.

b. top view.a. side view.

arm
assembly

arm head spindle

sector track

arm

head

arm
pivot

platter

cylinder



3

The positioning components. Each data surface is set up to store data in a series of concentric circles, or
tracks. A single stack of tracks at a common distance from the spindle is called a cylinder. Today’s typical
3.5-inch disk has about 2,000 cylinders. As track densities increase, the notion of vertical alignment that is
associated with cylinders becomes less and less relevant because track alignment tolerances are simply too
fine. Essentially, then, we must consider the tracks on each platter independently.

To access the data stored in a track, the disk head must be moved over it. This is done by attaching each
head to a disk arm—a lever that is pivoted near one end on a rotation bearing. All the disk arms are attached
to the same rotation pivot, so that moving one head causes the others to move as well. The rotation pivot is
more immune to linear shocks than the older scheme of mounting the head on a linear slider.

The positioning system’s task is to ensure that the appropriate head gets to the desired track as quickly as
possible and remains there even in the face of external vibration, shocks, and disk flaws (for example,
nonconcentric and noncircular tracks).

Seeking.The speed of head movement, or seeking, is limited by the power available for the pivot motor
(halving the seek time requires quadrupling the power) and by the arm’s stiffness. Accelerations of 30-40g
are required to achieve good seek times, and too flexible an arm can twist and bring the head into contact
with the platter surface. Smaller diameter disks have correspondingly reduced distances for the head to
move. These disks have smaller, lighter arms that are easier to stiffen against flexing—all contributing to
shorter seek times.

A seek is composed of

• aspeedup, where the arm is accelerated until it reaches half of the seek distance or a fixed maximum
velocity,

• acoast for long seeks, where the arm moves at its maximum velocity,

• aslowdown, where the arm is brought to rest close to the desired track, and

• asettle, where the disk controller adjusts the head to access the desired location.

Very short seeks (less than, say, two to four cylinders) are dominated by the settle time (1–3 milliseconds).
In fact, a seek may not even occur; the head may just resettle into position on a new track. Short seeks (less
than 200–400 cylinders) spend almost all of their time in the constant-acceleration phase, and their time is
proportional to the square root of the seek distance plus the settle time. Long seeks spend most of their time
moving at a constant speed, taking time that is proportional to distance plus a constant overhead. As disks
become smaller and track densities increase, the fraction of the total seek time attributed to the settle phase
increases.

“Average” seek times are commonly used as a figure of merit for disk drives, but they can be misleading.
Such averages are calculated in various ways, a situation further complicated by the fact that independent
seeks are rare in practice. Shorter seeks are much more common,l,2 although their overall frequency is very
much a function of the workload and the operating system driving the disk.

If disk requests are completely independent of one another, the average seek distance will be one third of
the full stroke. Thus, some sources quote the one-third-stroke seek time as the “average”. Others simply
quote the full-stroke time divided by three. Another way is to sum the times needed to perform one seek of



4

each size and divide this sum by the number of different seek sizes. Perhaps the best of the commonly used
techniques is to weight the seek time by the number of possible seeks of each size: Thus, there areN – 1
different single-track seeks that can be done on a disk withN cylinders, but only one full-stroke seek. This
emphasizes the shorter seeks, providing a somewhat better approximation to measured seek-distance
profiles. What matters to people building models, however, is the seek-time-versus-distance profile. We
encourage manufacturers to include these in their disk specifications, since the only alternative is to
determine them experimentally.

The information required to determine how much power to apply to the pivot motor and for how long on a
particular seek is encoded in tabular form in the disk controller. Rather than every possible value, a subset
of the total is stored, and interpolation is used for intermediate seek distances. The resulting fine-grained
seek-time profile can look rather like a sawtooth

Thermal expansion, arm pivot-bearing stickiness, and other factors occasionally make it necessary to
recalibrate these tables. This can take 500-800 milliseconds. Recalibrations are triggered by temperature
changes and by timers, so they occur most frequently just after the disk drive is powered up. In steady-state
conditions, recalibration occurs only once every 1530 minutes. Obviously, this can cause difficulties with
real-time or guaranteed-bandwidth systems (such as multimedia file servers), so disk drives are now
appearing with modified controller firmware that either avoids these visible recalibrations completely or
allows the host to schedule their execution.

Track following. Fine-tuning the head position at the end of a seek and keeping the head on the desired track
is the function of the track-following system. This system uses positioning information recorded on the disk
at manufacturing time to determine whether the disk head is correctly aligned. This information can be
embedded in the target surface or recorded on a separate dedicated surface. The former maximizes capacity,
so it is most frequently used in disks with a small number of platters. As track density increases, some form
of embedded positioning data becomes essential for fine-grained control—perhaps combined with a
dedicated surface for coarse positioning data. However, the embedded-data method alone is not good at
coping with shock and vibration because feedback information is only available intermittently between data
sectors.

The track-following system is also used to perform a head switch. When the controller switches its data
channel from one surface to the next in the same cylinder, the new head may need repositioning to
accommodate small differences in the alignment of the tracks on the different surfaces. The time taken for
such a switch (0.5-1.5 ms) is typically one third to one half of the time taken to do a settle at the end of a
seek. Similarly, a track switch (or cylinder switch) occurs when the arm has to be moved from the last track
of a cylinder to the first track of the next. This takes about the same time as the end-of-seek settling process.
Since settling time increases as track density increases, and the tracks on different platters are becoming less
well aligned, head-switching times are approaching those for track switching.

Nowadays, many disk drives use an aggressive, optimistic approach to head settling before a read operation.
This means they will attempt a read as soon as the head is near the right track; after all, if the data are
unreadable because the settle has not quite completed, nothing has been lost. (There is enough error
correction and identification data in a misread sector to ensure that the data are not wrongly interpreted.) On
the other hand, if the data are available, it might just save an entire revolution’s delay. For obvious reasons,



5

this approach is not taken for a settle that immediately precedes a write. The difference in the settle times
for reads and writes can be as much as 0.75 ms.

Data layout. A SCSI disk appears to its client computer as a linear vector of addressable blocks, each
typically 256-1,024 bytes in size. These blocks must be mapped to physical sectors on the disk, which are
the fixed-size data-layout units on the platters. Separating the logical and physical views of the disk in this
way means that the disk can hide bad sectors and do some low-level performance optimizations, but it
complicates the task of higher level software that is trying to second-guess the controller (for example, the
4.2 BSD Unix fast file system).

• Zoning. Tracks are longer at the outside of a platter than at the inside. To maximize storage capacity,
linear density should remain near the maximum that the drive can support; thus, the amount of data
stored on each track should scale with its length. This is accomplished on many disks by a technique
called zoning, where adjacent disk cylinders are grouped into zones. Zones near the outer edge have
more sectors per track than zones on the inside. There are typically 3 to 20 zones, and the number is
likely to double by the end of the decade. Since the data transfer rate is proportional to the rate at
which the media passes under the head, the outer zones have higher data transfer rates. For example,
on a Hewlett-Packard C2240 3.5-inch disk drive, the burst transfer rate (with no intertrack head
switches) varies from 3.1 megabytes per second at the inner zone to 5.3MBps at the outermost zone.3

• Track skewing. Faster sequential access across track and cylinder boundaries is obtained by skewing
logical sector zero on each track by just the amount of time required to cope with the most likely
worst-case head- or track-switch times. This means that data can be read or written at nearly full
media speed. Each zone has its own track and cylinder skew factors.

• Sparing. It is prohibitively expensive to manufacture perfect surfaces, so disks invariably have some
flawed sectors that cannot be used. Flaws are found through extensive testing during manufacturing,
and a list is built and recorded on the disk for the controller’s use.

So that flawed sectors are not used, references to them are remapped to other portions of the disk. This
process, known as sparing, is done at the granularity of single sectors or whole tracks. The simplest
technique is to remap a bad sector or track to an alternate location. Alternatively, slip sparing can be used,
in which the logical block that would map to the bad sector and the ones after it are “slipped” by one sector
or by a whole track. Many combinations of techniques are possible, so disk drive designers must make a
complex trade-off involving performance, expected bad-sector rate, and space utilization. A concrete
example is the HP C2240 disk drive, which uses both forms of track-level sparing: slip-track sparing at disk
format time and single-track remapping for defects discovered during operation.

The disk controller. The disk controller mediates access to the mechanism, runs the track-following
system, transfers data between the disk drive and its client, and, in many cases, manages an embedded
cache. Controllers are built around specially designed microprocessors, which often have digital signal
processing capability and special interfaces that let them control

hardware directly. The trend is toward more powerful controllers for handling increasingly sophisticated
interfaces and for reducing costs by replacing previously dedicated electronic components with firmware.

Interpreting theSCSI requests and performing the appropriate computations takes time. Controller
microprocessor speed is increasing just about fast enough to stay ahead of the additional functions the



6

controller is being asked to perform, so controller over head is slowly declining. It is typically in the range
0.3-1.0 ms.

Bus interface.The most important aspects of a disk drive’s host channel are its topology, its transfer rate,
and its overhead.SCSI is currently defined as a bus, although alternative versions are being discussed, as are
encapsulations of the higher levels of theSCSI protocol across other transmission media, such as Fibre
Channel.

Most disk drives use theSCSI bus operation’s synchronous mode, which can run at the maximum bus speed.
This was 5MBps with earlySCSI buses; differential drivers and the “fastSCSI” specification increased this to
10 MBps a couple of years ago. Disks are now appearing that can drive the bus at 20MBps (“fast, wide”),
and the standard is defined up to 40MBps. The maximum bus transfer rate is negotiated between the host
computerSCSI interface and the disk drive. It appears likely that some serial channel such as Fibre Channel
will become a more popular transmission medium at the higher speeds, partly because it would have fewer
wires and require a smaller connector. BecauseSCSI is a bus, more than one device can be attached to it.SCSI

initially supported up to eight addresses, a figure recently doubled with the use of wideSCSI. As the number
of devices on the bus increases, contention for the bus can occur, leading to delays in executing data
transfers. This matters more if the disk drives are doing large transfers or if their controller overheads are
high. In addition to the time attributed to the transfer rate, theSCSI bus interfaces at the host and disk also
require time to establish connections and decipher commands. OnSCSI, the cost of the low-level protocol for
acquiring control of the bus is on the order of a few microseconds if the bus is idle. TheSCSI protocol also
allows a disk drive to disconnect from the bus and reconnect later once it has data to transfer. This cycle
may take 200µs but allows other devices to access the bus while the disconnected device processes data,
resulting in a higher overall throughput.

In older channel architectures, there was no buffering in the disk drive itself. As a result, if the disk was
ready to transfer data to a host whose interface was not ready, then the disk had to wait an entire revolution
for the same data to come under the head again before it could retry the transfer. InSCSI, the disk drive is
expected to have a speed-matching buffer to avoid this delay, masking the asynchrony between the bus and
the mechanism.

Since mostSCSI drives take data off the media more slowly than they can send it over the bus, the drive
partially fills its buffer before attempting to commence the bus data transfer. The amount of data read into
the buffer before the transfer is initiated is called the fence; its size is a property of the disk controller,
although it can be specified on modernSCSI disk drives by a control command. Write requests can cause the
data transfer to the disk’s buffer to overlap the head repositioning, up to the limit permitted by the buffer’s
size. These interactions are illustrated in Figure 2.

Caching of requests.The functions of the speed-matching buffer in the disk drive can be readily extended
to include some form of caching for both reads and writes. Caches in disk drives tend to be relatively small
(currently 64 kilobytes to 1 megabyte) because of space limitations and the relatively high cost of the dual-
ported static RAM needed to keep up with both the disk mechanism and the bus interface.

• Read-ahead. A read that hits in the cache can be satisfied “immediately,” that is, in just the time
needed for the controller to detect the hit and send the data back across the bus. This is usually much
quicker than seeking to the data and reading it off the disk, so most modernSCSI disks provide some



7

form of read caching. The most common form is read-ahead—actively retrieving and caching data
that the disk expects the host to request momentarily.

As we will show, read caching turns out to be very important when it comes to modeling a disk drive,
but it is one of the least well specified areas of disk system behavior. For example, a read that partially
hits in the cache may be partially serviced by the cache (with only the noncached portion being read
from disk), or it may simply bypass the cache altogether. Very large read requests may always bypass
the cache. Once a block has been read from the cache, some controllers discard it; others keep it in
case a subsequent read is directed to the same block.

Some early disk drives with caches did on-arrival read-ahead to minimize rotation latency for whole-
track transfers; as soon as the head arrived at the relevant track, the drive started reading into its cache.
At the end of one revolution, the full track’s worth of data had been read, and this could then be sent
to the host without waiting for the data after the logical start point to be reread. (This is sometimes—
rather unfortunately—called a “zero-latency read” and is also why disk cache memory is often called
a track buffer.) As tracks get longer but request sizes do not, on-arrival caching brings less benefit;
for example, with 8-Kbyte accesses to a disk with 32-Kbyte tracks, the maximum benefit is only 25
percent of a rotation time.

On-arrival caching has been largely supplanted by simple read-ahead in 0 which the disk continues
to read where the last host request left off. This proves to be optimal for sequential reads and allows
them to proceed at the full disk bandwidth. (Without readahead, two back-to-back reads would be
delayed by almost a full revolution because the disk and host processing time for initiating the second
read request would be larger than the inter-sector gap.) Even here there is a policy choice: Should the
read-ahead be aggressive, crossing track and cylinder boundaries, or should it stop when the end of
the track is reached? Aggressive read-ahead is optimal for sequential access, but it degrades random
accesses because head and track switches typically cannot be aborted once initiated, so an unrelated
request that arrives while the switch is in progress can be delayed.

Figure 2 : overlap of bus phases and mechanism activity. The low-level details of bus arbitration and
selection have been elided for simplicity.

data transfer off
mechanism

head switchseek

host sends
command

controller
disconnects from
bus & starts seek

SCSI bus data
transfers to host status message to host

rotation
latency

controller
decodes it

data transfer to
mechanism

head switchseek

host sends
command

controller
starts seek

SCSI bus data
transfer from host status message to host

rotation
latency

controller
decodes it

Read

Write

SCSI bus

disk mechanism

SCSI bus

disk mechanism



8

A single read-ahead cache can provide effective support for only a single sequential read stream. If
two or more sequential read streams are interleaved, the result is no benefit at all. This can be
remedied by segmenting the cache so that several unrelated data items can be cached. For example,
a 256-Kbyte cache might be split into eight separate 32-Kbyte cache segments by appropriate
configuration commands to the disk controller.

• Write caching In most disk drives, the cache is volatile, losing its contents if power to the drive is lost.
To perform write caching and prevent data loss, this kind of cache must be managed carefully. One
technique is immediate reporting, which the HP-UX file system uses to allow back-to-back writes for
user data. It allows selected writes to the disk to be reported as complete as soon as they are written
into the disk’s cache. Individual writes can be flagged “must not be immediate-reported”; otherwise,
a write is immediately reported if it is the first write since a read or a sequential extension of the last
write. This technique optimizes a particularly common case—large writes that the file system has split
into consecutive blocks. To protect itself from power failures, the file system disables immediate
reporting on writes to metadata describing the disk layout. Combining immediate reporting with read-
ahead means that sequential data can be written and read from adjacent disk blocks at the disk’s full
throughput.

Volatile write-cache problems go away if the disk’s cache memory can be made nonvolatile. One
technique is battery-backed RAM, since a lithium cell can provide 10-year retention. Thus equipped,
the disk drive is free to accept all the write requests that will fit in its buffer and acknowledge them
all immediately. In addition to the reduced latency for write requests, two throughput benefits also
result: (1) Data in a write buffer are often overwritten in place, reducing the amount of data that must
be written to the mechanism, and (2) the large number of stored writes makes it possible for the
controller to schedule them in near-optimal fashion, so that each takes less time to perform. These
issues are discussed in more detail elsewhere.2

As with read caching, there are several possible policies for handling write requests that hit data
previously written into the disk’s cache. Without nonvolatile memory, the safest solution is to delay
such writes until the first copy has been written to disk. Data in the write cache must also be scanned
for read hits; in this case, the buffered copy must be treated as primary, since the disk may not yet
have been written to.

• Command queuing. With SCSI, support for multiple outstanding requests at a time is provided through
a mechanism called command queuing. This allows the host to give the disk controller several
requests and let the controller determine the best execution order—subject to additional constraints
provided by the host, such as “do this one before any of the others you already have.” Letting the disk
drive perform the sequencing gives it the potential to do a better job by using its detailed knowledge
of the disk’s rotation position.4,5

Modeling disk drives

With this understanding of the various disk drive performance factors, we are ready to model the behavior
of the drives we have just described. We describe our models in sufficient detail to quantify the relative
importance of the different components. That way a conscious choice can be made as to how much detail a
disk drive performance model needs for a particular application. By selectively enabling various features,
we arrive at a model that accurately imitates the behavior of a real drive.

Related work. Disk drive models have been used ever since disk drives became available as storage
devices. Because of their nonlinear, state-dependent behavior, disk drives cannot be modeled analytically



9

with any accuracy, so most work in this area uses simulation. Nonetheless, the simplest models merely
assume a fixed time for an I/O, or they select times from a uniform distribution. The more elaborate models
acknowledge that a disk I/O has separate seek, rotation, and transfer times, but most fail to model these
components carefully. Consider, for example, that

• seek times are often modeled as a linear function of seek distance, producing poor results for smaller
seeks, which are the most common;

• uniform distributions are used for the rotational latency, although they are inappropriate for
nonindependent requests, which are frequent;

• media transfer times are ignored or modeled as a fixed constant dependent on transfer size; and

• bus contention is often ignored when multiple devices are connected to the same bus.

Some previously described work2,6–8 used more detailed models that avoided many of the limitations
described above. These models simulated axial and rotational head positions, allowing the seek, rotation,
and transfer times to be computed instead of drawn from a distribution. This article is an extension of
simulation work described earlier.2

The simulator. We built our event based simulator in C++ using a version of the AT&T tasking library9

modified locally to support time as adouble type rather than along type. The tasking library provides a
simple but effective simulation environment. In it, tasks represent independent units of activity; when they
call delay(time), the simulated time advances. A task can also wait for certain low-level events; it is easy to
construct a variety of synchronization mechanisms on top of these primitives. The basic ideas are readily
applicable to other simulation environments. We model a disk drive as two tasks and some additional
control structures (Figure 3). One task models the mechanism, including the head and platter (rotation)
positions. This task accepts requests of the form “read this much from here” and “seek to there” and
executes them one at a time. It also handles the data layout mapping between logical blocks and physical
sectors. A second task, the direct memory access engine (DMA engine), models theSCSI bus interface and
its transfer engine. This task accepts requests of the form “transfer this request between the host and the
disk” and handles them one at a time. A cache object buffers requests between the two tasks and is used in
a classic producer-consumer style to manage the asynchronous interactions between the bus interface and
the disk mechanism tasks.

The disk drive model fits into a larger system that has items for representing theSCSI bus itself (a semaphore,
so that only one device can use the bus at a time), the host interface, synthetic and trace-driven workload
generator tasks, and a range of statistics-gathering and -reporting tools.

The disk-related portions of our simulation system consist of about 5,800 lines of commented C++ code.
There are also around 7,000 lines of other infrastructure. The simulator can process about 2,000 I/Os per
second on an HP9000 Series 800 Model H50 system, which has a 96-MHz PA-RISC 7100 processor. This
allows about 1 million requests to be serviced in approximately 10 minutes.

Traces. For this study, we selected representative week-long samples from a longer trace series of HP-UX
(Unix) computer systems. The systems and the traces have been described in much greater detail
elsewhere.2



10

For each request, the traces included data such as start and finish times with a granularity of 1 microsecond,
disk address and transfer length, flags such as read/write, and whether the request was marked synchronous
or not by the file system. The start time corresponds to the moment when the disk driver gives the request
to the disk, and the finish time corresponds to when the “request completed” interrupt fires. The results we
present here do not include time spent queued in the disk driver.

Table 1 describes the disks we singled out for analysis. Since our purpose is to show how the different
components of a disk drive 7 model contribute to its accuracy, we selected a noncaching disk drive (the HP
C2200A) as our first example so that the cache would not interfere with our analysis of the disk mechanism
itself. Later we use the HP 97560 disk driven to show the effects of adding caching. The HP C2200A has
anHP-IB (IEEE488) bus instead of aSCSIinterface. From a modeling perspective, the only major difference
is that theHP-IB bus is slower than the disk drive mechanism;SCSI buses are usually faster. This tends to
emphasize the importance of bus-related effects, as we will see.

Table 1 . Characteristics of the disk drives analyzed in this article.

Disk type
Formatted
 capacity Cylinders Size

Rotational
speed

Average
8KB access

Host interconnect

type max speed

HP C2200A 335 MB 1449 5.25” 4002 RPM 33.6 ms HP-IB 1.2MB/s

HP 97560 1.3 GB 1935 5.25” 4002 RPM 22.8 ms SCSI-2 10MB/s

Figure 3 : simulation model structure for a single disk.

Disk
mechanism

task

DMAengine
task

Buffer
cache

SCSI bus

disk mechanism:
“get new work”

DMAengine:
“get new work” Disk

controller
data

structures
and code

internally
queued
requests

“state of the disk”
data structures

Disk mechanism task:
• get next request
• perform seek/settle/rotation
• get cache memory (or data)
• do transfer, blocking on buffer full or

data not ready

DMAengine task:
• get next request from controller
• get cache memory (or data)
• do transfer across SCSI bus,

blocking and releasing bus if buffer
full or data not ready

Disk controller code:
• select next request to process
• queue for DMAengine and disk

mechanism
• generate readahead request if no

other requests waiting



11

Evaluation. For comparison, we need a metric to evaluate the models. A simple mean execution time for
a request is of some value in calibrating a model to the real world, though it provides little differentiation
between models. Instead, we plot the time distribution curves for the real drive and the model output and
use the root mean square of the horizontal distance between these two curves as our metric. We call this the
demerit figure of the model and present it in both absolute terms (as a difference in milliseconds) and
relative terms (as a percentage of the mean I/O time). The real trace has a demerit figure of zero—that is, it
matches itself exactly.

We encourage other researchers using disk drive models to publish their demerit figures (and preferably the
calibration curves). It is important to use a test workload similar to the kind of data one wishes to analyze.
For example, a synthetic random I/O load is of little use in calibrating a model that is being used for
workloads with a great many sequential data accesses.

We obtained the parameters for our models from the manufacturer’s specifications, by performing curve
fitting against the traces, and by direct measurement on the disk drives themselves.

No modeling.The simplest possible “model” uses a constant, fixed time for each I/O. Figure 4a plots two
typical values from the literature (20 ms and 30 ms), together with the actual mean I/O time for the week’s
traced data. This model is not good. Even using the mean I/O time rather than a fixed estimate results in a
demerit factor that is 35 percent of the average I/O time.

A simple model.To do better requires remembering state information between requests and modeling the
effect of an I/O’s length. A straightforward model that does this has the following combination of features:

• a seek time that is linear with the distance, using the single-cylinder and full-stroke seek times
published in the disk drive specification (see Figure 5),

• no head-settle effects or head-switching costs,

• a rotational delay drawn from a uniform distribution over the interval [0, rotation time),

• a fixed controller overhead, and

Figure 5 : the graph displays the measured seek-time-versus-distance curve for the C2200A and a linear
interpolation between the manufacturer’s published single-cylinder and full-stroke seek times. The
accompanying table shows the formula we used to model the real curve.

200 400 600 800 1000 1200 1400

seek distance (cylinders)

5

10

15

20

25

30

se
ek

 ti
m

e 
(m

ill
is

ec
on

ds
) linear

real

Table 2

seek distance seek time (ms)

< 616 cylinders 3.45 + 0.597√d

≥ 616 cylinders 10.8 + 0.012 d



12

• a transfer time linear with the length of the request. (There is an asymmetry in transfer rates across
theHP-IB bus: Reads run at 1MBps, writes at 1.2MBps. On the C2200A, the media transfer rate of 1.9
MBps is faster than theHP-IB bus, so bus speed dominates.)

Figure 4b shows how this new model fares. We are now at a demerit of only 15 percent of a mean I/O time.
This is better, but the demerit itself is still two to three times larger than many of the effects that I/O system
designers wish to investigate.

Modeling head-positioning effects.The previous model used a seek time that was a linear function of
distance. However, this is not a particularly good match, as Figure 5 shows. The mean difference between
the linear seek model and the real one is 2.66 ms, which is a 9 percent error by itself. The table in Figure 5

Figure 4 : I/O time distributions for four different models for the C2200A. The real disk has a mean I/O time
of 25.36±0.09ms.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n 
of

 I/
O

s

Time (ms)

real
fixed 20ms
fixed mean
fixed 30ms

a. Trivial model: constant, fixed time for each I/O.

mean demerit

fixed 20ms 20.00ms 10.3ms 41%

fixed 30ms 30.00ms 10.2ms 40%

mean 25.35ms 8.9ms 35%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n 
of

 I/
O

s

Time (ms)

real
model

b. Transfer time proportional to I/O size; seek-time
linear in distance; random rotation time in interval [0,
rotation-time).

mean demerit

simulation 22.08±0.08ms 3.71ms 15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n 
of

 I/
O

s

Time (ms)

real
model

c. Adds measured seek-time profile; includes head-
switch time.

mean demerit

simulation 24.31±0.08ms 1.57ms 6.2%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n 
of

 I/
O

s

Time (ms)

real
model

d. Final model; includes rotational position modelling
and detailed disk data layout.

mean demerit

simulation 25.49±0.09ms 0.66ms 2.6%



13

describes the model we used to approximate the measured seek-time profile for this disk drive. Computing
the better model is trivial—a six-line rather than a single-line calculation.

Since we were improving our positioning calculations, we also took the opportunity to model the costs of
head and track switching. This was achieved by determining which track and cylinder the request started on
and where it ended, and then adding a fixed cost of 2.5 ms for each head and track switch needed to get from
the start of the request to its end. Figure 4c shows that the demerit figure has more than halved to 6.2 percent
of a mean I/O time.

Modeling rotation position.Only two important performance components are left to model on the
C2200A: detailed rotational latency and spare-sector placement. By keeping track of the rotational position
of the disk, we can explicitly calculate the rotational latency rather than just drawing it from a uniform
distribution. This is done by calculating how many times the disk would have revolved since the start of the
simulation, assuming it was spinning at exactly its nominally rated speed. The C2200A uses track and
cylinder skewing and sector-based sparing with one spare sector per track. This needs to be accounted for
in mapping logical blocks to the physical sectors.

Adding all these factors results in the data shown in Figure 4d. This is a good match, with the model fitting
the real disk drive to within 2.6 percent. Table 2 lists all the parameters used in this final model.

Modeling data caching.In the discussion so far we have used the C2200A disk drive because it has no
buffer cache. When a cache is added to a disk drive, however, complications can arise. This is shown in
Figure 6a, where a model incorporating all the features described so far is used to simulate an HP 97560SCSI

disk drive that uses both read-ahead and immediate reporting. The large disparity at small completion times
is due to the caching, since about 50 percent of the requests are completed in 3 ms or less. Clearly, caching
needs to be modeled if we are to get results closely matching the real disk drive. A demerit of 112 percent
is not acceptable!

Figure 6 : models for the HP 97560. The real disk had a mean I/O time of 10.47±0.03 ms.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n 
of

 I/
O

s

Time (ms)

real
model

a. Basic model: includes all of the features in the best
C2200A model.

mean demerit

simulation 17.51±0.02ms 11.7ms 112%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

F
ra

ct
io

n 
of

 I/
O

s

Time (ms)

real
model

b. Adding caching: readahead and immediate
reporting.

mean demerit

simulation 10.92±0.03ms 0.60ms 5.7%



14

We added aggressive read-ahead and immediate reporting to the model, as described in the section “Caching
of requests.” This gave the results shown in Figure 6b. We consider this quite a good match, since the
demerit is now only 5.7 percent of the mean I/O time; and since this mean is only half that of the C2200A,
the absolute value of the error is comparable.

Two major remaining components can be modeled more accurately: (1) the actual bus speeds achieved in a
particular system (these may be less than the drive’s rated speed if the host I/O controller imposes a lower
rate), and (2) the detailed disk drive controller overheads, which are frequently a combination of interactions
between the previous request and the current one; these overheads also depend on the size of the request.
Modeling at this level of detail requires heroic efforts, such as applying logic analyzers toSCSI buses. Bruce
Worthington and Greg Ganger at the University of Michigan took this approach and managed to fine-tune
the controller-overhead and bus-transfer components of a model similar to ours. They achieved demerit
figures of 0.4 to 1.9 percent for an HP C2247 disk drive.l2

Model summary. Table 3 summarizes the different models and how well they did; at the bottom we
include a line for the University of Michigan model also. Clearly, the full model is necessary if a good match
is required. Since it is not particularly onerous to implement, we encourage others to adopt it. Our full model
includes the following details (parameters are provided in Table 2):

• The host I/O device driver: the CPU costs for executing it, and its queuing strategy.

• TheSCSI bus, including bus contention effects.

Table 2 . Final model parameters for the HP C2200A and the HP 97560.

Parameter HP C2200A HP 97560

sector size 256 bytes 512 bytes

cylinders 1449 1962

tracks per cylinder 8 19

data sectors per track 113 72

number of zones 1 1

track skew 34 sectors 8 sectors

cylinder skew 43 sectors 18 sectors

revolution speed 4002 RPM 4002 RPM

controller interface HP-IB SCSI-II

controller
overhead

reads 1.1 ms 2.2 ms

writes 5.1 ms 2.2 ms

seek time

short (ms) 3.45 + 0.597√d 3.24 + 0.400√d

long (ms) 10.8 + 0.012d 8.00 + 0.008d

boundary d = 616 d = 383

track switch time 2.5 ms 1.6 ms

read fence size 8 KB 64 KB

sparing type sectora trackb

disk buffer cache size 32 KB 128 KB

a The HP C2200A also does track sparing, but
the spare regions are at the beginning and
end of the data region so they have no effect
on simulation performance. The HP C2200A
has one spare sector at the end of each track
(giving it 114 sectors per track).

b The HP 97560 does track sparing, and has
dedicated sparing regions embedded in the
data area. The table below shows where the
three data regions are located physically on
the HP 97560 disk, using the format
“cylinder/track” to indicate boundaries in the
physical sector space of the disk. This disk
has 1962 physical cylinders, but only 1936 of
these are used to store data: the rest are
spares.

Region 0 1 2

Start 1/4 654/0 1308/0

End 646/3 1298/18 1952/18



15

• Disk controller effects: fixed controller overhead,SCSI bus disconnects during mechanism delays, and
overlapped bus transfers and mechanism activity.

• Disk buffer cache, including read ahead, write-behind (immediate reporting), and producer-consumer
interlocks between the mechanism and bus transfers.

• Data layout model: reserved sparing areas, including both sector- and track-based models, zoning,
and track and cylinder skew.

• Head movement effects: a seek time curve derived from measurements on the real disks; settle time,
with different values for read and write; head-switch time; and rotation latency.

As with any model, we chose to ignore some things. For example, we do not believe it worthwhile to try to
model soft-error retries and the effects of individual spared sectors or tracks. Likewise, other features (such
as a disk drive’s sparing policy) are not in themselves very important, although an accurate understanding
of the layout effects of sparing is necessary to model rotational positioning effects well.

An accurate model of a disk drive is essential for obtaining good simulation results from I/O studies. Failure
to model disk drive behavior can result in quantitative—and in extreme cases, qualitative—errors in an
analysis. Careful modeling is neither too difficult nor too costly. We have provided data that enables
designers to quantitatively determine the benefits to be gained from investing effort in a disk drive model.

By far the most important feature to model is the data-caching characteristics of the disk (112 percent
relative demerit if this is ignored). The next most important features to get right are the data transfer model,
including overlaps between mechanism activity and the bus transfers (20 percent demerit), and the seek-
time and head-switching costs (9 percent demerit). Although in our evaluation of the C2200A the transfer
model had a greater effect than the positioning model, the relative importance will probably be reversed for
SCSI drives because there the bus is generally faster than the disk mechanism.

Finally, modeling the rotational position and detailed data layout improved model accuracy by a further
factor of nearly two. Modeling rotational position accurately is important for systems that emphasize
sequential transfers, which modern file systems are becoming increasingly adept at doing.

Even a good model needs careful calibration and tuning. For example, some of the values we used to get a
good fit in our models differ from the manufacturer’s published specifications. In addition, we did not have
space here to present the quantitative effects of modeling zoning (although our model handles it). These
features and others may become particularly important when a workload has large data transfers.

Table 3 . Performance figures for the models of three disk drives
show greater accuracy as features are added to the model.

feature demerit disk type

constant mean time 8.9ms 35%

HP C2200A
basic model 3.7ms 15%

add head positioning 1.3ms 6%

add rotation position 0.5ms 3%

no caching 11.7ms 112%
HP 97560

add caching 0.6ms 6%

controller costs ~0.2ms 1% HP C2247



16

We plan to use our refined disk drive simulation model to explore a variety of different I/O designs and
policy choices at host and disk drive levels. We hope to make the source code of our model available to
interested researchers later this year, together with calibrated model parameters for a longer list of disk drive
types than we have space to describe here.

Acknowledgments

Pei Cao contributed greatly to the simulator of which our disk model is a part, and Marvin Keshner provided
information on several of the underlying storage technology trends. Tim Sullivan and Patricia Jacobson
provided helpful feedback on earlier drafts of this article. This work was performed as part of the DataMesh
research project at Hewlett-Packard Laboratories.

References
1. D.A. Patterson and J.L. Hennessy,Computer architecture: a quantitative approach, Morgan Kaufmann,

San Mateo, Calif., 1990.

2. C. Ruemmler and J. Wilkes, “Unix disk access patterns,”Proc. Winter 1993 Usenix Conf., Usenix,
Sunset Beach, Cali£, Jan. 1993, pp. 405-420.

3. Hewlett-Packard Co., Boise, Idaho,HP C2240 series 3.5-lnchSCSI-2 disk drive: technical reference
manual, part number 5960-8346, 2nd ed., Apr. 1992.

4. M. Seltzer, P. Chen, and J. Ousterhout, “Disk scheduling revisited,”Proc. Winter 1990 Usenix Conf.,
Usenix, Sunset Beach, Calif., Jan. 1990, pp. 313-323.

5. D.M. Jacobson and J. Wilkes, “Disk scheduling algorithms based on rotational position,” Tech. Report
HPL–CSP–91–7, Hewlett-Packard Laboratories, Palo Alto, Calif., Feb. 1991.

6. C.A. Thekkath, J. Wilkes, and E.D. Lazowska, “Techniques for file system simulation,” published
simultaneously as Tech. Reports HPL-92-131 (Hewlett-Packard Laboratories, Palo Alto, Calif.) and 92-
0908 (Dept. of Computer Science and Eng., Univ. of Washington, Seattle, Wash.)., Oct. 1992.
[It has since been published in:Software—Practice and Experience24(11):981–999 (Nov. 1994).]

7. C. Ruemmler and J. Wilkes, “Disk shuffling,” Tech. Report HPL-91-156, Hewlett-Packard
Laboratories, Palo Alto, Calif., Oct. 1991.

8. M. Holland and G.A. Gibson, “Parity declustering for continuous operation in redundant disk arrays,”
Proc. Fifth Int’l Conf. Architectural Support for Programming Languages and Operating Systems,
published as a special issue ofComputer Architecture News, Vol. 20, 1992, pp. 23-35.

9. Unix System V AT&T C++ Language System release 2.0, selected readings, AT&T select code 307-144,
1989.

10. Hewlett-Packard Co., Boise, Idaho,HP series 6000 disk storage systems owner’s manual for models
335H, 670H, and 670XP, part number C220090901, Feb. 1990.

11. Hewlett-Packard Co., Boise, Idaho,HP 97556, 97558, and 97560 5.25-lnchSCSIdisk drives: technical
reference manual, part number 5960-0115, June 1991.

12. B. Worthington, G. Ganger, and Y. Patt, “Scheduling algorithms for modern disk drives,”Proc.ACM
SlGMetrics Conf., May 1994, pp. 241–251.



17

Chris Ruemmler is a software engineer at Hewlett-Packard, where he works in the area
of performance analysis. His technical interests include architectural design, system performance, and
operating systems. He graduated with BA and MS degrees in computer science (1991 and 1993,
respectively) from the University of California at Berkeley.

John Wilkes has worked since 1982 as a researcher and project manager at Hewlett-
Packard Laboratories. His current research interest is high-performance, high-availability storage systems.
He is also interested in performance modeling, and interconnects and resource management for scalable
systems. He enjoys interacting with the academic research community. Wilkes graduated from the
University of Cambridge with BA and MA degrees in physics (1978 and 1980, respectively) and a Diploma
and PhD in computer science (1979 and 1984, respectively).

Wilkes can be contacted at Hewlett-Packard Laboratories, MS lU13, 1501 Page Mill Rd., Palo Alto, CA
94304-1126; e-mail, wilkes@hpl.hp.com. Ruemmler’s address is Hewlett-Packard Co., 19111 Pruneridge
Ave. MS 44UG, Cupertino, CA 95014; e-mail, ruemmler@cup.hp.com.


