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ABSTRACT
Despite decades of research in extensible operating system
technology, extensions such as device drivers remain a signif-
icant cause of system failures. In Windows XP, for example,
drivers account for 85% of recently reported failures.

This paper describes Nooks, a reliability subsystem that
seeks to greatly enhance OS reliability by isolating the OS
from driver failures. The Nooks approach is practical: rather
than guaranteeing complete fault tolerance through a new
(and incompatible) OS or driver architecture, our goal is to
prevent the vast majority of driver-caused crashes with little
or no change to existing driver and system code. To achieve
this, Nooks isolates drivers within lightweight protection do-
mains inside the kernel address space, where hardware and
software prevent them from corrupting the kernel. Nooks
also tracks a driver’s use of kernel resources to hasten auto-
matic clean-up during recovery.

To prove the viability of our approach, we implemented
Nooks in the Linux operating system and used it to fault-
isolate several device drivers. Our results show that Nooks
offers a substantial increase in the reliability of operating
systems, catching and quickly recovering from many faults
that would otherwise crash the system. In a series of 2000
fault-injection tests, Nooks recovered automatically from
99% of the faults that caused Linux to crash.

While Nooks was designed for drivers, our techniques gen-
eralize to other kernel extensions, as well. We demonstrate
this by isolating a kernel-mode file system and an in-kernel
Internet service. Overall, because Nooks supports existing
C-language extensions, runs on a commodity operating sys-
tem and hardware, and enables automated recovery, it repre-
sents a substantial step beyond the specialized architectures
and type-safe languages required by previous efforts directed
at safe extensibility.
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1. INTRODUCTION
This paper describes the architecture, implementation, and
performance of Nooks, a new operating system subsystem
that allows existing OS extensions (such as device drivers
and loadable file systems) to execute safely in commodity
kernels. In contemporary systems, any fault in a kernel ex-
tension can corrupt vital kernel data, causing the system
to crash. To reduce the threat of extension failures, Nooks
executes each extension in a lightweight kernel protection do-
main – a privileged kernel-mode environment with restricted
write access to kernel memory. Nooks’ interposition services
track and validate all modifications to kernel data structures
performed by the kernel-mode extension, thereby trapping
bugs as they occur and facilitating subsequent automatic
recovery.

Three factors motivated our research. First, computer
system reliability remains a crucial but unsolved prob-
lem [20, 37]. While the cost of high-performance computing
continues to drop, the cost of failures (e.g., downtime on
a stock exchange or e-commerce server, or the manpower
required to service a help-desk request in an office envi-
ronment) continues to rise. In addition, the growing sec-
tor of “unmanaged” systems, such as digital appliances and
consumer devices based on commodity hardware and soft-
ware [24, 48], amplifies the need for reliability.

Second, OS extensions have become increasingly preva-
lent in commodity systems such as Linux (where they are
called modules [5]) and Windows (where they are called
drivers [11]). Extensions are optional components that re-
side in the kernel address space and typically communicate
with the kernel through published interfaces. In addition
to device drivers, extensions include file systems, virus de-
tectors, and network protocols. Extensions now account for
over 70% of Linux kernel code [10], while over 35,000 dif-
ferent drivers with over 120,000 versions exist on Windows
XP desktops [39]. Many, if not most, of these extensions
are written by programmers significantly less experienced in
kernel organization and programming than those who built
the operating system itself.



Third, extensions are a leading cause of operating system
failure. In Windows XP, for example, drivers cause 85%
of recently reported failures [39]. In Linux, the frequency of
coding errors is seven times higher for device drivers than for
the rest of the kernel [10]. While the core operating system
kernel reaches high levels of reliability due to longevity and
repeated testing, the extended operating system cannot be
tested completely. With tens of thousands of extensions,
operating system vendors cannot even identify them all, let
alone test all possible combinations used in the marketplace.

Improving OS reliability will therefore require systems to
become highly tolerant of failures in drivers and other ex-
tensions. Furthermore, the hundreds of millions of existing
systems executing tens of thousands of extensions demand a
reliability solution that is at once backward compatible and
efficient for common extensions. Backward compatibility
improves the reliability of already deployed systems. Ef-
ficiency avoids the classic tradeoff between robustness and
performance.

Our focus on extensibility and reliability is not new. The
last twenty years have produced a substantial amount of
research on improving extensibility and reliability through
the use of new kernel architectures [15], new driver archi-
tectures [38], user-level extensions [18, 31, 55], new hard-
ware [16, 54], or type-safe languages [3].

While many of the underlying techniques used in Nooks
have been used in previous systems, Nooks differs from ear-
lier efforts in two key ways. First, we target existing exten-
sions for commodity operating systems rather than propose
a new extension architecture. We want today’s extensions
to execute on today’s platforms without change if possible.
Second, we use C, a conventional programming language.
We do not ask developers to change languages, development
environments, or, most importantly, perspective. Overall,
we focus on a single and very serious problem – reducing
the huge number of crashes due to drivers and other exten-
sions. In the end, we hope to see an isolation service such
as Nooks become standard on all non-performance-critical
systems, from desktops to servers to embedded appliances.

We implemented a prototype of Nooks in the Linux op-
erating system and experimented with a variety of kernel
extension types, including several device drivers, a file sys-
tem, and a kernel Web server. Using automatic fault injec-
tion [26], we show that when injecting synthetic bugs into
extensions, Nooks can gracefully recover and restart the ex-
tension in 99% of the cases that cause Linux to crash. In
addition, Nooks recovered from all of the common causes
of kernel crashes that we manually inserted. Extension re-
covery occurs quickly, as compared to a full system reboot,
leaving most applications running. For drivers – the most
common extension type – the impact on performance is low
to moderate. Finally, of the eight kernel extensions we iso-
lated with Nooks, seven required no code changes, while
only 13 lines changed in the eighth. Although our proto-
type is Linux based, we expect that the architecture and
many implementation features would port readily to other
commodity operating systems.

The rest of this paper describes the design, implementa-
tion and performance of Nooks. The next section summa-
rizes reated work in OS extensibility and reliability. Sec-
tion 3 describes the system’s guiding principles and high-
level architecture. Section 4 discusses the system’s imple-
mentation on Linux. We present experiments that evaluate

the reliability of Nooks in Section 5 and its performance in
Section 6. Section 7 summarizes our work and draws con-
clusions.

2. RELATED WORK
Our work differs from the substantial body of research on
extensibility and reliability in many dimensions. Nooks re-
lies on a conventional processor architecture, a conventional
programming language, a conventional operating system ar-
chitecture, and existing extensions. It is designed to be
transparent to the extensions themselves, to support recov-
erability, and to impose only a modest performance penalty.

The major hardware approaches to improve reliability in-
clude capability-based architectures [25, 30, 36] and ring
and segment architectures [27, 40].1 These systems support
fine-grained protection, enabling construction and isolation
of privileged subsystems. The OS is extended by adding
new privileged subsystems that exist in new domains or
segments. Recovery is not specifically addressed in either
architecture. In particular, capabilities support the fine-
grained sharing of data. If one sharing component fails, re-
covery may be difficult for others sharing the same resource.
Segmented architectures have been difficult to program and
plagued by poor performance. In contrast, Nooks isolates
existing code on commodity processors using standard vir-
tual memory and runtime techniques, and it supports recov-
ery through garbage collection of extension-allocated data.

Several projects have isolated kernel components through
new operating system structures. Microkernels [31, 55] and
their derivatives [15, 17, 23] promise another path to reliabil-
ity. These systems isolate extensions into separate address
spaces that interact with the OS through a kernel commu-
nication service, such as messages or remote procedure call
[2]. Therefore, the failure of an extension within an ad-
dress space does not necessarily crash the system. However,
as in capability-based systems, recovery has received little
attention in microkernel systems. In Mach, for example, a
user-level system service can fail without crashing the kernel,
but rebooting is often the only way to restart the service.
Despite much research in fast inter-process communiction
(IPC) [2, 31], the reliance on separate address spaces raises
performance concerns that have prevented adoption in com-
modity systems.

A number of transaction-based systems [41, 43] have ap-
plied recoverable database techniques within the OS to im-
prove reliability. In some cases, such as the file system, the
approach worked well, while in others it proved awkward
and slow [41]. Like the language-based approaches, these
strategies have limited applicability and audience. In con-
trast, Nooks integrates transparently into existing commod-
ity systems without requiring architectural change.

An alternative to operating system-based isolation is the
use of type-safe programming languages and run-time sys-
tems [3] that prevent many faults from occurring. Such sys-
tems can provide performance advantages, since compile-
time checking enables lightweight run-time structures (e.g.,
local procedure calls rather than cross-domain calls). To
date, however, OS suppliers have been unwilling to imple-
ment system code in type-safe, high-level languages. More-
over, the type-safe language approach makes it impossible

1[54] presents a similar approach in a newer context.



to leverage the enormous existing code base. In contrast,
Nooks requires no specialized programming language.

Recent years have seen the development of software tech-
niques that enforce code correctness properties, e.g., soft-
ware fault isolation [51] and self-verifying assembly code [34].
These technologies are attractive and might replace or aug-
ment some of Nooks’ isolation techniques. Nevertheless, in
their proposed form, they deal only with the isolation prob-
lem, leaving unsolved the problems of transparent integra-
tion and recovery. Recently, techniques for verifying the
integrity of extensions in existing operating systems have
proven effective at revealing programming errors [14]. This
static approach obviously complements our own dynamic
one.

In the past, virtual memory techniques have been used
to isolate specific components or data from corruption, e.g.,
in a database [46] or in the file system cache [35]. Nooks
uses similar techniques to protect the operating system from
erroneous extension behavior.

Virtual machine technologies [7, 9, 45, 53] have been pro-
posed as a solution to the reliability problem. They can
reduce the amount of code that can crash the whole ma-
chine. Virtualization techniques typically run several entire
operating systems on top of a virtual machine, so faulty
extensions in one operating system cause only a few appli-
cations to fail. However, if the extension executes in the
virtual machine monitor, such as device drivers for physical
devices, a fault causes all virtual machines and their appli-
cations to fail. While applications can be partitioned among
virtual machines to limit the scope of failure, doing so re-
moves the benefits of sharing within an operating system,
such as fast IPC and intelligent scheduling. The challenge
for reliable extensibility is not in virtualizing the underly-
ing hardware; rather it lies in virtualizing only the interface
between the kernel and extension. In fact, this is a major
feature of the Nooks architecture.

More recently, researchers have begun to focus on recov-
ery as a general technique for dealing with failure in com-
plex systems [37]. In [6], for example, the authors propose
a model of recursive recovery; in the model a complex soft-
ware system is decomposed into a multi-level implementa-
tion where each layer can fail and recover independently.
Nooks is certainly complementary, although our focus to
date has been limited to operating system kernels.

Table 1 shows the changes to hardware architecture, oper-
ating system architecture, or extension architecture required
by other approaches to reliability. Nooks, virtual machines,
and static analysis techniques need no architectural changes.

3. ARCHITECTURE
The Nooks architecture is based on two core principles:

1. Design for fault resistance, not fault tolerance. The
system must prevent and recover from most, but not
necessarily all, extension failures.

2. Design for mistakes, not abuse. Extensions are gener-
ally well-behaved but may fail due to errors in design
or implementation.

From the first principle, we are not seeking a complete
solution for all possible extension errors. However, since
extensions cause the vast majority of system failures, elimi-
nating most of them will substantially improve system relia-

Required Modifications
Approach Hardware OS Extension

Capabilities yes yes yes
Microkernels no yes yes
Languages no yes yes
New Driver no yes yes

Architectures
Transactions no no yes

Virtual Machines no no no
Static Analysis no no no

Nooks no no no

Table 1: Components that require architectural changes

for various approaches to reliability. A “yes” in a cell

indicates that the reliability mechanism on that row re-

quires architectural change to the component listed at

the top of the column.

bility. From the second principle, we have chosen to occupy
the design space between “unprotected” and “safe.” That
is, the extension architecture for conventional operating sys-
tems (such as Linux or Windows) is unprotected: nearly any
bug within the extension can corrupt or crash the rest of the
system. In contrast, safe systems (such as SPIN [3] or the
Java Virtual Machine [21]) strictly limit extension behavior
and thus make no distinction between buggy and malicious
code. We trust kernel extensions not to be malicious, but
we do not trust them not to be buggy.

The practical impact of these principles is substantial,
both positively and negatively. On the positive side, it al-
lows us to define an architecture that directly supports ex-
isting driver code with only moderate performance costs.
On the negative side, our solution does not detect or re-
cover from 100% of all possible failures and can be easily
circumvented by malicious code acting within the kernel.
As examples, consider a malfunctioning driver that contin-
ues to run and does not corrupt kernel data, but returns a
packet that is one byte short, or a malicious driver that ex-
plicitly corrupts the system page table. We do not attempt
to detect or correct such failures.

Among failures that can crash the system, a spectrum
of possible defensive approaches exist. These range from
the Windows approach (i.e., to preemptively crash to avoid
data corruption) to the full virtual machine approach (i.e.,
to virtualize the entire architecture and provide total isola-
tion). Our approach lies in the middle. Like all possible ap-
proaches, it reflects tradeoffs among performance, compat-
ibility, complexity, and completeness. Section 4.6 describes
our current limitations. Some limitations are architectural,
while others are induced by the current hardware or soft-
ware implementation. Despite these limitations, given tens
of thousands of existing drivers, and the millions of failures
they cause, a fault-resistant solution like the one we propose
has practical implications and value.

3.1 Goals
Given the preceding principles, the Nooks architecture seeks
to achieve three major goals:

1. Isolation. The architecture must isolate the kernel
from extension failures. Consequently, it must detect
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failures in the extension before they infect other parts
of the kernel.

2. Recovery. The architecture must support automatic
recovery after failure to permit applications that de-
pend on a failing extension to continue executing.

3. Backward Compatibility. The architecture must apply
to existing systems and existing extensions, with min-
imal changes to either.

Achieving all three goals in an existing operating system
is challenging. In particular, the need for backward com-
patibility rules out certain otherwise appealing technologies,
such as type safety and capability-based hardware. Further-
more, backward compatibility implies that the performance
of a system using Nooks should not be significantly worse
than a system without it.

3.2 Functions
We achieve the preceding goals by creating a new operating
system reliability layer that is inserted between the exten-
sions and the OS kernel. The reliability layer intercepts all
interactions between the extensions and the kernel to facili-
tate isolation and recovery. A crucial property of this layer is
transparency, i.e., to meet our backward compatibility goals,
it must be largely invisible to existing components.

Figure 1 shows this new layer, which we call the Nooks
Isolation Manager (NIM). Above the NIM is the operating
system kernel. The NIM function lines jutting up into the
kernel represent kernel-dependent modifications, if any, the
OS kernel programmer makes to insert Nooks into a par-
ticular OS. These modifications need only be made once.
Underneath the NIM is the set of isolated extensions. The
function lines jutting down below the NIM represent the
changes, if any, the extension writer makes to interface a
specific extension or extension class to Nooks. In general,
no modifications should be required at this level, since our
major objective is transparency for existing extensions.

The NIM provides four major architectural functions, as
shown in Figure 1: Isolation, Interposition, Object Tracking,
and Recovery. We describe each function below.

3.2.1 Isolation
The Nooks isolation mechanisms prevent extension errors
from damaging the kernel (or other isolated extensions). Ev-
ery extension in Nooks executes within its own lightweight
kernel protection domain. This domain is an execution con-
text with the same processor privilege as the kernel but
with write access to a limited portion of the kernel’s address
space.

The major task of the isolation mechanism, then, is
protection-domain management. This involves the creation,
manipulation, and maintenance of lightweight protection do-
mains. The secondary task is inter-domain control transfer.
Isolation services support the control flow in both directions
between extension domains and the kernel domain.

Unlike system calls, which are always initiated by an ap-
plication, the kernel frequently calls into extensions. These
calls may generate callbacks into the kernel, which may then
generate a call into the extension, and so on. This com-
plex communication style is handled by a new kernel service,
called the Extension Procedure Call (XPC) – a control trans-
fer mechanism specifically tailored to isolating extensions
within the kernel. This mechanism resembles Lightweight
Remote Procedure Call (LRPC) [2] and Protected Proce-
dure Call (PPC) in capability systems [12]. However, LRPC
and PPC handle control and data transfer between mutu-
ally distrustful peers. XPC occurs between trusted domains
but is asymmetric (i.e., the kernel has more rights to the
extension’s domain than vice versa).

3.2.2 Interposition
The Nooks interposition mechanisms transparently inte-
grate existing extensions into the Nooks environment. Inter-
position code ensures that: (1) all extension-to-kernel and
kernel-to-extension control flow occurs through the XPC
mechanism, and (2) all data transfer between the kernel and
extension is viewed and managed by Nooks’ object-tracking
code (described below).

The interface between the extension, the NIM, and the
kernel is provided by a set of wrapper stubs that are part of
the interposition mechanism. Wrappers resemble the stubs
in an RPC system [4] that provide transparent control and
data transfer across address space (and machine) bound-
aries. Nooks’ stubs provide transparent control and data
transfer between the kernel domain and extension domains.
Thus, from the extension’s viewpoint, the stubs appear to
be the kernel’s extension API. From the kernel’s point of
view, the stubs appear to be the extension’s function entry
points.

3.2.3 Object Tracking
The NIM’s object-tracking functions oversee all kernel re-
sources used by extensions. In particular, object-tracking
code: (1) maintains a list of kernel data structures that
are manipulated by an extension, (2) controls all modifica-
tions to those structures, and (3) provides object informa-
tion for cleanup when an extension fails. An extension’s
protection domain cannot modify kernel data structures di-
rectly. Therefore, object-tracking code must copy kernel
objects into an extension domain so they can be modified
and copy them back after changes have been applied. When
possible, object-tracking code verifies the type and accessi-
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bility of each parameter that passes between the extension
and kernel. Kernel routines can then avoid scrutinizing pa-
rameters, executing checks only when called from unreliable
extensions.

3.2.4 Recovery
Nooks’ recovery functions detect and recover from a variety
of extension faults. Nooks detects a software fault when an
extension invokes a kernel service improperly (e.g., with in-
valid arguments) or when an extension consumes too many
resources. In this case, recovery policy determines whether
Nooks triggers recovery or returns control to the extension,
with an error code when possible. Nooks detects a hard-
ware fault when the processor raises an exception during
extension execution, e.g., when an extension attempts to
read unmapped memory or to write memory outside of its
protection domain. Hardware faults can be recovered from
only outside the faulting extension, so Nooks always triggers
recovery in this case.

Faulty behavior may also be detected from outside Nooks
by a user or a program. The user or program can then
trigger Nooks recovery explicitly.

Extensions executing in a Nooks domain only access
domain-local memory directly. All extension access to kernel
resources is managed and tracked through wrappers. There-
fore, Nooks can successfully release extension-held kernel
structures, such as memory objects or locks, during the re-
covery process.

4. IMPLEMENTATION
We implemented Nooks inside the Linux 2.4.18 kernel on
the Intel x86 architecture.2 We chose Linux as our platform
because of its popularity and its wide support for kernel ex-
tensions in the form of loadable modules. Our experience

2Updating to newer versions is straightforward, e.g., porting
from version 2.4.10 to 2.4.18 required no changes to Nooks
and only a few minor adjustments where Linux kernel func-
tions had moved between files.

Source Components # Lines

Memory Management 1,882
Object Tracking 1,454
Extension Procedure Call 770
Wrappers 14,396
Recovery 1,136
Linux Kernel Changes 924
Miscellaneous 2,074

Total number of lines of code 22,266

Table 2: The number of non-comment lines of source

code in Nooks.

working inside other operating systems, though, including
Windows NT, DEC OSF/1, VMS, NetBSD, and Mach, sug-
gests that Linux may be a worst-case Nooks target.3 The
Linux kernel provides over 700 functions callable by exten-
sions and more than 650 extension-entry functions callable
by the kernel. Moreover, few data types are abstracted, and
extensions directly access fields in many kernel data struc-
tures. Despite these challenges, one developer brought the
system from concept to function in about 18 months.

The Linux kernel supports standard interfaces for many
extension classes. For example, there is a generic interface
for block and character devices, and another one for file sys-
tems. The interfaces are implemented as C language struc-
tures containing a set of function pointers.

Most interactions between the kernel and extensions take
place through function calls, either from the kernel into ex-
tensions or from extensions into exported kernel routines.
Some global data structures, such as the current task struc-
ture, are directly accessed by extensions. Fortunately, ex-
tensions modify few of these structures, and frequently do
so through preprocessor macros and inline functions. As a
result, Nooks can interpose on most extension/kernel inter-
actions by intercepting the function calls between the exten-
sions and kernel.

Figure 2 shows the Nooks layer inside of Linux. Under
the Nooks Isolation Manager are isolated kernel extensions:
a single device driver, three stacked drivers, and a kernel ser-
vice. These extensions are wrapped by Nooks wrapper stubs,
as indicated by the shaded boxes surrounding them. Each
wrapped box, containing one or more extensions, represents
a single Nooks protection domain. Figure 2 also shows un-
wrapped kernel extensions that continue to interface directly
to the Linux kernel.

The NIM exists as a Linux layer that implements the
functions described in the previous section. To facilitate
portability, we do not use the Intel x86 protection rings or
memory segmentation mechanisms. Instead, extensions ex-
ecute at the same (ring 0) privilege level as the rest of the
kernel. Memory protection is provided through the conven-
tional page table architecture and can be implemented both
with hardware- and software-filled TLBs.

Table 2 shows the size of the Nooks implementation.
Nooks is composed of about 22,000 lines of code. In con-
trast, the kernel itself has 2.4 million lines, and all of the
code that ships as part of the Linux 2.4 distribution kit ac-

3While we developed Nooks on Linux, we expect that the
architecture and design could be ported to other operating
systems, such as Windows XP or Solaris.
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counts for about 30 million [52]. Other commodity systems
are of similar size. For example, various reports relate that
the Microsoft Server 2003 operating system contains over 50
million lines of code [47]. Clearly, relative to a base kernel
and its extensions, Nooks’ reliability layer introduces only a
modest amount of additional system complexity.

The following subsections discuss implementation of
Nooks’ major components: isolation, interposition, wrap-
pers, object tracking, and recovery. We describe wrappers
separately because they make up the bulk of Nooks’ code
and complexity. Finally, we describe limitations to the the
Nooks implementation.

4.1 Isolation
The isolation components of Nooks consist of two parts: (1)
memory management, to implement lightweight protection
domains with virtual memory protection, and (2) Extension
Procedure Call (XPC), to transfer control safely between
extensions and the kernel.

Figure 3 shows the Linux kernel with two lightweight ker-
nel protection domains, each containing a single extension.
All components exist in the kernel’s address space. How-
ever, memory access rights differ for each component: e.g.,
the kernel has read-write access to the entire address space,
while each extension is restricted to read-only kernel access
and read-write access to its local domain. This is similar
to the management of address space in single-address-space
operating systems [8]).

To provide extensions with read access to the kernel,
Nooks’ memory management code maintains a synchro-
nized copy of the kernel page table for each domain. Each
lightweight protection domain has private structures, includ-
ing a domain-local heap, a pool of stacks for use by the ex-
tension, memory-mapped physical I/O regions, and kernel
memory buffers, such as socket buffers or I/O blocks that
are currently in use by the extension.

We noted previously that Nooks protects against bugs but
not against malicious code. Lightweight protection domains
reflect this design. For example, Nooks prevents an exten-
sion from writing kernel memory, but it does not prevent
a malicious extension from explicitly replacing the domain-
local page table by reloading the hardware page table base
register.

Changing protection domains requires a change of page
tables. The Intel x86 architecture flushes the TLB on such
a change, hence, there is a substantial cost to entering a
lightweight protection domain on the x86, both from the
flush and from subsequent TLB misses. This cost could be

mitigated in an architecture with a tagged TLB, such as
the MIPS or Alpha, or with single-address-space protection
support [29], such as the IA-64 or PA-RISC. However, be-
cause Nooks’ lightweight protection domains are kernel tasks
that share kernel address space, they minimize the costs of
scheduling and data copying on a domain change when com-
pared to normal cross-address space or kernel-user RPCs.

Nooks currently does not protect the kernel from DMA by
a device into the kernel address space. Preventing a rogue
DMA requires hardware that is not generally present on x86
computers. However, Nooks tracks the set of pages writeable
by a driver and could easily use this information to restrict
DMA on a machine with the appropriate hardware support.

Nooks uses the XPC mechanism to transfer control be-
tween extension and kernel domains. XPC is transparent to
both the kernel and its extensions, which continue to interact
through their original procedural interfaces. Transparency
is provided by means of the wrapper mechanism, described
in Section 4.3.

Control transfer in XPC is managed by two functions in-
ternal to Nooks: (1) nooks driver call transfers from the
kernel into an extension, and (2) nooks kernel call trans-
fers from extensions into the kernel. These functions take a
function pointer, an argument list, and a protection domain.
They execute the function with its arguments in the speci-
fied domain. The transfer routines save the caller’s context
on the stack, find a stack for the calling domain (which may
be newly allocated or reused when calls are nested), change
page tables to the target domain, and then call the function.
The reverse operations are performed when the call returns.

XPC also supports a deferred call mechanism. Deferred
calls queue function calls for later execution, either at the
entry or exit of a future XPC. For example, we changed the
packet-delivery routine used by the network driver to batch
the transfer of message packets from the driver to the kernel.
When a packet arrives, the extension calls a wrapper to pass
the packet to the kernel. The wrapper queues the packet and
batches it with the next few packets that arrive. Function
calls such as this can be deferred because there are no visible
side effects to the call. Two queues exist for each domain:
an extension-domain queue holds delayed kernel calls, and
a kernel-domain queue holds delayed extension calls.

We made several changes to the Linux kernel to support
isolation. First, to maintain coherency between the ker-
nel and extension page tables, we inserted code wherever
the Linux kernel modifies the kernel page table. Second,
we modified the kernel exception handlers to detect excep-
tions that occur within Nooks’ protection domains. This
new code swaps in the kernel’s stack pointer and page di-
rectory pointer for the task. On return from exception, the
code restores the stack pointer and page table for the exten-
sion. Finally, because Linux co-locates the task structure on
the kernel stack (which changes as a result of isolation), we
had to change its mechanism for locating the current task
structure. We currently use a global variable to hold the
task pointer, which is sufficient for uniprocessor systems.
On a multiprocessor, we intend to use an otherwise unused
x86 segment register, as is done in Windows.

4.2 Interposition
Nooks interposes wrapper stubs between extensions and the
kernel. Wrappers provide transparency by preserving ex-
isting kernel/driver interfaces while enabling the protection
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of all control and data transfers in both directions. Inter-
position required two changes to Linux kernel code. First,
we modified the standard module loader to bind extensions
to wrappers instead of kernel functions when the extensions
are loaded. We also modified the kernel’s module initial-
ization code to explicitly interpose on the initialization call
into an extension, enabling the extension to execute within
its lightweight protection domain. Following initialization,
all function pointers passed from the extension to the kernel
are replaced by wrapper pointers. This causes the kernel to
call wrappers rather than extension procedures directly.

In addition to interposing on control transfers, Nooks
must interpose on some data references. The Linux ker-
nel exports many objects that are only read by extensions
(e.g., the current time). These objects are linked directly
into the extension so they can be freely read. Other ker-
nel objects are directly written by extensions. We changed
macros and inline functions that directly modify kernel ob-
jects into wrapped function calls. For object modifications
that are not performance critical, Nooks converts the object
access into an XPC into the kernel. For performance-critical
data structures, we create a shadow copy of the kernel object
within the extension’s domain. The contents of the kernel
object and the shadow object are synchronized before and
after XPCs into the extension. This technique is used, for
example, for the softnet data structure, which contains a
queue of the packets sent and received by a network device.

Nooks uses deferred XPC to synchronize extension modifi-
cations to objects explicitly passed from the kernel to exten-
sions. In Linux, the kernel often returns a kernel structure
pointer to an extension for structure modification, with no
explicit synchronization of the update. The kernel assumes
that the modification is atomic and that the extension will
update it “in time.” In such cases, the wrapper queues a
deferred function call to copy the modified object back to
the kernel at the extension’s next XPC return to the kernel.

4.3 Wrappers
As noted above, Nooks inserts wrapper stubs between ker-
nel and extension functions. There are two types of wrap-
pers: kernel wrappers are called by extensions to execute
kernel-supplied functions; extension wrappers are called by
the kernel to execute extension-supplied functions. In either
case, a wrapper functions as an XPC stub that appears to

the caller as if it were the target procedure in the called
domain.

Both wrapper types perform the body of their work within
the kernel’s protection domain. Therefore, the domain
change occurs at a different point depending on the direction
of transfer, as shown in Figure 4. When an extension calls a
kernel wrapper, the wrapper performs an XPC on entry so
that the body of the wrapper (i.e., object checking, copying,
etc.) can execute in the kernel’s domain. Once the wrap-
per’s work is done, it calls the target kernel function directly
with a (local) procedure call. In the opposite direction, when
the kernel calls an extension wrapper, the wrapper executes
within the kernel’s domain. When it is done, the wrapper
performs an XPC to transfer to the target function within
the extension.

Wrappers perform three basic tasks. First, they check pa-
rameters for validity by verifying with the object tracker and
memory manager that pointers are valid. Second, object-
tracker code within wrappers implements call-by-value-result
semantics for XPC, by creating a copy of kernel objects on
the local heap or stack within the extension’s protection do-
main. No marshalling or unmarshalling is necessary, because
the extension and kernel share the kernel address space. For
simple objects, the synchronization code is placed directly
in the wrappers. For more complex objects, such as file sys-
tem inodes or directory entries that have many pointers to
other structures, we wrote explicit synchronization routines
to copy objects between the kernel and an extension. Third,
wrappers perform an XPC into the kernel or extension to
execute the desired function, as shown in Figure 4.

Wrappers are relatively straightforward to write and in-
tegrate into the kernel. We developed a tool that auto-
matically generates wrapper entry code and the skeleton of
wrapper bodies from Linux kernel header files. To create
the wrappers for exported kernel functions, the tool takes
a list of kernel function names and generates wrappers that
implement function interposition through XPC. Similarly,
for the kernel-to-extension interface, the tool takes a list of
interfaces (C structures containing function pointers) and
generates wrappers for the kernel to call.

We wrote the main wrapper body functions by hand. This
is a one-time task required to support the kernel-extension
interface for a specific OS. This code verifies that parame-
ters are correct and moves parameters between protection
domains. Once written, wrappers are automatically usable
by all extensions that use the kernel’s interface. Writing
a wrapper requires knowing how parameters are used: Are
they alive across calls? Can they be passed to other threads?
What parameters or fields of parameters may be modified?
We performed this task by hand, but metacompilation [14]
could be used to determine the characteristics of extensions
by analyzing the set of existing drivers.

4.3.1 Wrapper Code Sharing
Table 2 showed that the Nooks implementation includes 14K
lines of wrapper code, over half of the Nooks code base.
We implemented 248 wrappers, which we use to isolate 463
imported and exported functions. That is, wrapper code
is often shared among multiple drivers in a class or across
classes.

Section 5 describes the eight extensions we isolated for our
Nooks experiments: two sound-card drivers (sb and es1371),
four Ethernet drivers (pcnet32, e1000, 3c59x, and 3c90x), a
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extensions.

file system (VFAT), and an in-kernel Web server (kHTTPd).
Figure 5 shows the total number of wrappers (both kernel
and extension wrappers) used by each of these extensions.
Each bar gives a breakdown of the number of wrappers
unique to that extension and the number of wrappers shared
in various ways. For example, of the 44 wrappers used by
the pcnet32 Ethernet driver (31 kernel wrappers and 13 ex-
tension wrappers), 27 are shared among the four network
drivers. Similarly, 39 wrappers are shared between the two
sound-card drivers. Overall, of the 159 wrappers that are
not shared, 114 are in the one-of-a-kind extensions VFAT
and kHTTPd.

4.4 Object Tracking
The Nooks object-tracking mechanism manages the manip-
ulation of kernel objects by extensions. An object is a kernel
data structure accessed through a pointer.

The object tracker records all kernel objects and types
in use by extensions. Our Nooks implementation currently
supports 43 different kernel object types, such as tasklets,
PCI devices, inodes, and memory pages. To determine the
set of objects to track, we inspected the interfaces between
the kernel and our supported extensions and noted every
object that passed through those interfaces. We then wrote
object-tracking procedures for each of the 43 object types
that we saw. For each object type, there is a unique type
identifier and code to release instances of that type during
recovery.

The Nooks object tracker in Nooks performs two tasks.
First, it records the addresses of all objects in use by an
extension. Objects used only for the duration of a single
XPC call are recorded in a table attached to the current
task structure. Objects with long lifetimes are recorded in a
per-protection-domain hash table. Second, for objects that
may be written by an extension, the object tracker records
an association between the kernel and extension versions of
the object. This association is used by wrappers to pass
parameters between the extension’s protection domain and
the kernel’s protection domain.

The object tracker must know the lifetimes of objects to
perform garbage collection, when necessary, or to prevent

extensions from using dangling references. Currently, this
code can be written only by examining the kernel-extension
interface. There are several common paradigms. For exam-
ple, some objects are accessible to the extension only during
the lifetime of a single XPC call from the kernel. In this
case, we add the object to the tracker’s database when the
call begins and remove it on return. Other objects are ex-
plicitly allocated and deallocated by the extension, in which
case we know their lifetimes exactly. In still other cases, we
go by the semantics of the object and its use. For exam-
ple, extensions allocate the timer data structure to suspend
a task. We add this object to the object tracker when an
extension calls add timer and remove it when the timer exe-
cutes, at which point we know that it can no longer be used.
In some cases, it may be necessary to modify the kernel to
notify Nooks when an object is deleted.

Complex objects may be handled in different ways. In
some cases, Nooks copies objects into the application do-
main, following embedded pointers as appropriate. In other
cases, Nooks avoids copying, for example, by mapping net-
work packets and disk blocks into and out of an extension.
A “page tracker” mechanism within the object tracker re-
members the state of these mapped pages and grants and
revokes extension access to the pages.

4.5 Recovery
Recovery in Nooks consists of two parts. After a fault oc-
curs, the recovery manager releases resources in use by the
extension. The user-mode agent coordinates recovery and
determines what course of action to take.

Nooks triggers recovery when it detects a failure through
software checks (e.g., parameter validation or livelock de-
tection), processor exceptions, or explicit external signals.
After a failure, Nooks suspends the running extension and
notifies the recovery manager.

The Nooks recovery manager is tasked with returning
the system, including the extension, to a clean state from
which it can continue. The recovery manager executes in
phases to ensure that resources are not used after they are
released. The first phase of recovery is specific to device
drivers: Nooks disables interrupt processing for the device
controlled by the extension, preventing livelock that could
occur if device interrupts are not properly dismissed. It then
starts the user-mode recovery agent, which controls the sub-
sequent phases of recovery.

The user-mode recovery agent facilitates flexible recovery
by consulting configuration files that set recovery policy for
specific extensions or classes of extensions. The agent can
perform extension-specific recovery actions as well as notify
system managers of the fault. It can also change config-
uration parameters, replace the extension, or even disable
recovery if the extension fails too frequently. The agent re-
quires that many kernel components, such as a file system
and disk driver, function properly.

By default, the recovery agent initiates full recovery of
faulting extensions by unloading the extension, releasing all
of its kernel and physical resources, and then reloading and
restarting the extension. The agent first calls the recovery
manager to release any resources that may be safely reused
by the kernel.

The recovery manager signals tasks that are currently ex-
ecuting within the extension, or have called through the ex-
tension, to unwind. For a task in a non-interruptible state



in either the kernel or another extension, complete recovery
may be impossible if the sleeping task never wakes. However
uninterruptible sleeps are infrequent in the Linux kernel, so
we do not believe this to be a significant limitation. Nooks
then releases any kernel resources the extension is using that
will not be accessed by an external device. For example, a
network device may continue to write to packet buffers in
memory; therefore, those buffers cannot be released until
the device has been reinitialized.

The recovery manager walks the list of objects known to
the object tracker and releases, frees, or unregisters all ob-
jects that will not be accessed by external devices. Nooks
associates each object type in the tracker with a recovery
function. The function releases the object to the kernel and
removes all references from the kernel into the extension. If
new kernel-extension interfaces are added to Nooks, kernel
developers need only add functions to recover new object
types used by those interfaces.

Nooks ensures the correctness of kernel data structures
after recovery both through the object tracker and through
XPC. The use of call-by-value-result ensures that the kernel
data structures are updated atomically. The object tracker
records all references between extension and kernel data
structures and can therefore remove all references to the
extension.

After releasing kernel resources, the agent unloads the ex-
tension. It then consults policy and may choose to automat-
ically reload the extension in a new lightweight protection
domain. The agent then initializes the extension, using the
startup scripts that accompany the extension. For device
drivers, only after the driver has been reloaded does Nooks
finally release all physical resources that could be accessed
by the device, such as interrupt request levels (IRQs) and
physical memory regions.

4.6 Implementation Limitations
Section 3 described the Nooks philosophy of designing for
mistakes and for fault resistance. The Nooks implementa-
tion involves many tradeoffs. As such, it does not provide
complete isolation or fault tolerance for all possible exten-
sion errors. Nooks runs extensions in kernel mode for back-
ward compatibility, so we cannot prevent extensions from
deliberatly executing privileged instructions that corrupt
system state. We do not prevent infinite loops inside of
the extension, but we do detect livelock between the exten-
sion and kernel with timeouts. Finally, we check parameters
passed to the operating system, but we cannot do a complete
job given Linux semantics (or lack thereof).

Our current implementation of recovery is limited to ex-
tensions that can be killed and restarted safely. This is true
for device drivers, which are dynamically loaded when hard-
ware devices are attached to a system. It may not be true
for all extensions.

These limitations are not insignificant, and crashes may
still occur. However, we believe that our Nooks implemen-
tation will prevent the majority of current operating system
crashes. Given the enormous number of crashes caused by
extensions, even a moderate reduction offers an important
contribution.

4.7 Achieving Transparency
As mentioned previously, transparency for extensions is a
critical goal: Nooks must be able to isolate existing exten-

sions that have no knowledge of the Nooks’ structure. The
majority of old extensions must run unchanged in the Nooks
environment and still benefit fully from Nooks’ fault isola-
tion and recovery mechanisms.

Nooks’ code includes two key component types to facili-
tate transparency for the extensions we isolated.

1. Nooks provides wrapper stubs for every function call in
the extension-kernel interface.

2. Nooks provides object-tracking code for every object
type that passes between the extension and the kernel.

When an extension is loaded, the loader automatically in-
terposes Nooks’ wrapper stubs at the extension-kernel inter-
face. Thereafter, any function call made from the extension
to the kernel (or vice versa) transfers instead to a Nooks
wrapper. The wrapper intercepts the call, invoking object-
tracking code to manage every parameter passed between
the caller and callee. Finally, the wrapper transfers control
from the caller’s domain to the callee’s domain using XPC.

Neither the extension nor the kernel is aware of the exis-
tence of the Nooks layer.4 However, the Nooks code isolates
the extension and tracks all resources it uses, allowing Nooks
to catch errant behavior and to clean up during recovery.

5. RELIABILITY
The thesis of our work is that Nooks can significantly im-
prove system reliability by isolating the kernel from exten-
sion failures. This section uses automated experiments to
demonstrate that Nooks can detect and automatically re-
cover from over 99% of extension faults that would otherwise
crash Linux.

5.1 Test Methodology
Our experiments use synthetic fault injection to rapidly in-
sert faults in Linux kernel extensions. We adapted a fault
injector developed at the University of Michigan for use with
the Rio File Cache [35]. The injector automatically changes
single instructions in the extension code to emulate a variety
of common programming errors, such as uninitialized local
variables, bad parameters, and inverted test conditions. The
remainder of this section describes the extensions into which
faults were injected and the context in which the tests were
run.

5.1.1 Types of Extensions Isolated
In the experiments reported below, we used Nooks to isolate
three types of extensions: device drivers, an optional kernel
subsystem (VFAT), and an application-specific kernel exten-
sion (kHTTPd). The device drivers we chose were common
network and sound card drivers, representative of the largest
class of Linux drivers.5 A device driver’s interaction with
the kernel is well matched to the Nooks isolation model for
many reasons. First, drivers invoke the kernel and are in-
voked by the kernel through narrow, well-defined interfaces;
therefore, it is straightforward to design and implement their
wrappers. Second, drivers frequently deal with blocks of

4For the eight extensions we isolated for our experiments
reported in the following sections, seven required no changes
to run under Nooks, while the eighth required changes to
only 13 lines of code.
5Linux has more than 420 sound card drivers and 270 net-
work drivers.



Extension Purpose

sb SoundBlaster 16 driver
es1371 Ensoniq sound driver
e1000 Intel Pro/1000 Gigabit Ethernet driver

pcnet32 AMD PCnet32 10/100 Ethernet driver
3c59x 3COM 3c59x series 10/100 Ethernet driver
3c90x 3COM 3c90x series 10/100 Ethernet driver
VFAT Win95 compatible file system

kHTTPd In-kernel Web server

Table 3: The extensions isolated and the function that

each performs. Measurements are reported for exten-

sions shown in bold.

opaque data, such as network packets or disk blocks, that
do not require validation. Third, drivers often batch their
processing to amortize interrupt overheads. When run with
Nooks, batching also reduces isolation overhead.

In addition to device drivers, we isolated a kernel subsys-
tem. The subsystem we chose was the VFAT optional file
system, which is compatible with the Windows 95 FAT32
file system [32]. The VFAT interface is larger and more
complex than the device drivers’. For example, VFAT has
six distinct interfaces that together export over 35 calls; by
comparison, the sound and network devices each have one
interface with 8 and 13 functions, respectively.

Lastly, we isolated an application-specific kernel exten-
sion – the kHTTPd Web server [50]. kHTTPd resides in
the kernel so that it can access kernel network and file sys-
tem data structures directly, avoiding otherwise expensive
system calls. Building a Web server as a kernel-mode ex-
tension may not be wise from either from a reliability or
a performance point of view. Nevertheless, our experience
with kHTTPd demonstrates that Nooks can isolate even un-
usual and unanticipated kernel extensions.

To date, we have isolated eight extensions under Nooks,
as shown in Table 3. We present reliability and performance
results for five of the extensions representing the three ex-
tension types: sb, e1000, pcnet32, VFAT and kHTTPd. Re-
sults for the remaining three drivers are similar to those
presented.

5.1.2 Test Environment
Our application-level workload consists of four programs
that stress the sound card driver, the network driver, VFAT,
and kHTTPd. The first program plays a short MP3 file. The
second performs a series of ICMP-ping and TCP streaming
tests, while the third untars and compiles a number of files.
The fourth program runs a Web load generator against our
kernel-level Web server.

We ran our reliability experiments in the context of the
VMware Virtual Machine [45]. VMware let us perform thou-
sands of tests remotely while quickly and easily returning the
system to a clean state following each one. We spotchecked
a number of the VMware trials against a base hardware con-
figuration (i.e., no VMware) and discovered no anomalies.
In addition, the e1000 tests were run directly on raw hard-
ware, because VMware does not support the Intel Pro/1000
Gigabit Ethernet card.

To measure reliability, we conducted a series of trials in
which we injected faults into extensions running under two
different Linux configurations. In the first, called “native,”
the Nooks isolation services were present but unused. In the
second, called “Nooks,” the isolation services were enabled
for the extension under test. For each extension, we ran
400 trials on the native configuration. In In each trial, we
injected five random errors into the extension and exercised
the system, observing the results. We then ran those same
400 trials, each with the same five errors, against Nooks. It is
important to note that our native and Nooks configurations
are identical binaries, allowing our automatic fault injector
to introduce identical errors. We next describe the results
of our experiments.

5.2 Test Results
As described above, we ran 400 fault-injection trials for each
of the five measured extensions for native and Nooks config-
urations. Not all fault-injection trials cause faulty behavior,
e.g., bugs inserted on a rarely (or never) executed path will
rarely (or never) produce an error. However, many trials do
cause failures. We now examine different types of failures
that occurred.

5.2.1 System Crashes
Nooks is intended to prevent system crashes caused by faulty
extensions. A system crash is the most extreme and easiest
problem to detect, as the operating system either panics,
becomes unresponsive, or simply reboots. In an ideal world,
every system crash caused by a fault-injection trial under
native Linux would result in a recovery under Nooks. In
practice, however, as previously discussed, Nooks may not
detect or recover from certain failures caused by very bad
programmers or very bad luck.

Figure 6 shows the number of system crashes caused by
our fault-injection experiments for each of the extensions
running on native Linux and Nooks. Of the 317 crashes
observed with native Linux, Nooks eliminated 313, or 99%.
In the remaining four crashes, the system deadlocked. Nooks
is not designed to handle this failure case, as mentioned
earlier.

Figure 6 also illustrates a substantial difference in the
number of system crashes that occur for VFAT and sb
extensions under Linux, compared to e1000, pcnet32 and
kHTTPd. This difference reflects the way in which Linux
responds to kernel failures. The e1000 and pcnet32 exten-
sions are interrupt oriented, i.e., kernel-mode extension code
is run as the result of an interrupt. VFAT and sb extensions
are process oriented, i.e., kernel-mode extension code is run
as the result of a system call from a user process. kHTTPd
is process oriented but it manipulates (and therefore can
corrupt) interrupt-level data structures. Linux treats ex-
ceptions in interrupt-oriented code as fatal and crashes the
system, hence the large number of crashes in e1000, pcnet32,
and kHTTPd. Linux treats exceptions in process-oriented
code as non-fatal, continuing to run the kernel but terminat-
ing the offending process even though the exception occurred
in the kernel. This behavior is unique to Linux. Other oper-
ating systems, such as Microsoft Windows XP, deal with ker-
nel processor exceptions more aggressively by always halting
the operating system.
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5.2.2 Non-Fatal Extension Failures
The preceding subsection makes clear that Nooks is effec-
tive in achieving its goal – preventing system crashes due
to extension failures. While Nooks is designed to protect
the OS from misbehaving extensions, it is not designed to
detect erroneous extension behavior. For example, the net-
work could disappear because the device driver corrupts the
device registers, or a mounted file system might simply be-
come non-responsive due to a bug. Neither of these failures
is fatal to the system in its own right, and Nooks does not de-
tect (nor is it intended to detect) such problems. If Nooks
could detect such problems, however, its recovery services
could safely restart the faulty extensions.

Our fault-injection trials cause a number of non-fatal ex-
tension failures, allowing us to examine Nooks’ effectiveness
in dealing with these cases, as well. Figure 7 shows the
extent to which Nooks reduces non-fatal extension failures
that occurred in native Linux. In reality, these results are
simply a reflection of the Linux handling of process- and
interrupt-oriented extension code, as previously described.
That is, Nooks can trap exceptions in process-oriented ex-
tensions and can recover the extensions to bring them to a
clean state in many cases.

For the two interrupt-oriented Ethernet drivers (e1000
and pcnet32), Nooks already eliminated all system crashes
resulting from extension exceptions. The remaining non-
crash failures are those that leave the device in a non-
functional state, e.g., unable to send or receive packets.
Nooks cannot remove these failures for e1000 and pcnet32,
since it cannot detect them. The one or two extension fail-
ures it eliminated occurred when the device was being ma-
nipulated by process-oriented code.

For VFAT and the sb sound card driver, Nooks did reduce
the number of non-fatal extension failures, because kernel
exceptions in process-oriented code caused Linux to termi-
nate the calling process and leave the extension in an ill-
defined state. Nooks could detect the processor exceptions
and perform an extension recovery, thereby allowing the ap-
plication to continue. The remaining non-fatal extension
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Figure 7: The reduction in non-fatal extension failures

observed using Nooks. In total, there were 512 such

failures in the native configuration and 212 with Nooks.

failures, which occurred under native Linux and Nooks, were
serious enough to leave the extension in a non-functioning
state but not serious enough to generate a processor excep-
tion that could be trapped by Nooks.

kHTTPd is similar to the interrupt-oriented drivers be-
cause it causes corruption that leads to interrupt-level faults.
However, a small number of injected faults caused an excep-
tions within the kHTTPd process-oriented code. These were
caught by Nooks and an extension failure was avoided.

In general, the remaining non-fatal extension failures un-
der Nooks were the result of deadlock or data structure cor-
ruption within the extension itself. Fortunately, such fail-
ures were localized to the extension and could usually be
recovered from once discovered. It is straightforward to de-
velop a “nanny” service that probes for disabled extensions
and invokes Nooks’ recovery procedures, as appropriate. Al-
ternatively, the failure could be detected by the user, who
can then invoke Nooks to initiate a manual recovery.

5.2.3 Recovery Errors
The Nooks recovery procedure is straightforward – a faulting
extension is unloaded, reloaded, and restarted. For network,
sb, and kHTTPd extensions, this process improves reliabil-
ity directly. For VFAT, however, which deals with persistent
state stored on disk, there is some chance that the extension
damaged critical on-disk structures before Nooks detected an
error condition.

In practice, we found that in 90% of the cases, VFAT re-
covery resulted in on-disk corruption (i.e., lost or corrupt
files or directories). Since fault injection occurs after many
files and directories have been created, the abrupt shutdown
and restart of the file system leaves them in a corrupted
state. As an experiment, we caused Nooks to synchronize
the disks with the in-memory disk cache before releasing re-
sources on a VFAT recovery. This reduced the number of
corruption cases from 90% to 10%. While we would not ex-
pect Nooks to do this automatically, it suggests that there
may be straightforward extensions to Nooks that could im-
prove recovery through the use of application-specific recov-
ery services.



5.2.4 Manually Injected Errors
In addition to the automatic fault-injection experiments, we
inserted a small number of bugs by hand. Taking the most
common faults reported on the Linux Kernel Mailing List
and in the paper by Chou et al. [10], we “broke” extensions
by removing checks for NULL pointers, failing to properly
initialize stack and heap variables, dereferencing a user-level
pointer, and freeing a resource multiple times. Nooks auto-
matically detected and recovered from all such failures.

5.2.5 Latent Bugs
Nooks revealed several latent bugs in existing kernel exten-
sions. For example, it discovered a bug in the 3COM 3c90x
Ethernet driver that occurs during its initialization.6 Nooks
also discovered a bug in another extension, kHTTPd [50],
where an already freed object was referenced. Overall, we
found that Nooks was a useful kernel development tool that
provided a “fast restart” whenever an extension under de-
velopment failed.

5.3 Summary of Reliability Experiments
Nooks eliminated 99% of the system crashes that occurred
with native Linux. The remaining failures directly reflect
our best-efforts principle and are the cost, in terms of re-
liability, of an approach that imposes reliability on legacy
extension and operating systems code. We also examined
Nooks’ ability to deal with non-fatal extension failures.
While Nooks cannot detect many kinds of erroneous behav-
ior, it can trap extension exceptions and initiate recovery
in many cases. Overall, Nooks eliminated nearly 60% of
non-fatal extension failures caused by our fault injection tri-
als. Finally, Nooks detected and recovered from all of the
commonly occurring faults that we injected by hand.

6. PERFORMANCE
This section presents benchmark results that evaluate the
performance cost of the Nooks isolation services. Our ex-
periments use existing benchmarks and tools to compare
the performance of a system using Nooks to one that does
not. Our test machine is a Dell 1.7 GHz Pentium 4 PC run-
ning Linux 2.4.18. The machine includes 890 MB of RAM,
a SoundBlaster 16 sound card, an Intel Pro/1000 Gigabit
Ethernet adapter, and a single 7200 RPM, 41 GB IDE hard
disk drive. Our network tests used two similarly equipped
machines.7 Unlike the reliability tests described previously,
all performance tests were run on a bare machine, i.e., one
without the VMware virtualization system.

Table 4 summarizes the benchmarks used to evaluate sys-
tem performance. For each benchmark, we used Nooks to
isolate a single extension, indicated in the second column of
the table. We ran each benchmark on native Linux without
Nooks and then again on a version of Linux with Nooks en-
abled. The table shows the relative change in performance
for Nooks, either in wall clock time or throughput, depend-
ing on the benchmark. We also show CPU utilization mea-
sured during benchmark execution, as well as the rate of

6If the driver fails to detect the card in the system, it im-
mediately frees a large buffer. Later, when the driver is un-
loaded, it zeroes this buffer. Nooks caught this bug because
it write protected the memory when it was freed.
7We do not report performance information for the slower
network adapters to avoid unfairly biasing the results in fa-
vor of Nooks.

XPCs per second that occurred during each test. The table
shows that Nooks imposes a performance penalty between
zero and just over a factor of two for these tests.

As the isolation services are primarily imposed at the
point of the XPC, the rate of XPCs offers a telling perfor-
mance indicator. Thus, the benchmarks fall into three broad
categories characterized by the rate of XPCs: low frequency
(a few hundred XPCs per second), moderate frequency (a
few thousand XPCs per second), and high frequency (tens
of thousands of XPCs per second). We now look at each
benchmark in turn.

6.1 Sound Benchmark
The Play-mp3 benchmark plays an MP3 file at 128 kilobits
per second through the system’s sound card, generating only
150 XPCs per second. At this low rate, the additional XPC
overhead of Nooks is imperceptible, both in terms of execu-
tion time and CPU overhead. For the many low-bandwidth
devices in a system, such as keyboards, mice, Bluetooth de-
vices [22], modems, and sound cards, Nooks offers a clear
benefit by improving driver reliability with almost no per-
formance cost.

6.2 Network Benchmarks
The Receive-stream benchmark is an example of a moder-
ate XPC-frequency test. Receive-stream was measured with
the netperf [28] performance tool, where the receiving node
used an isolated Ethernet driver to receive a stream of 32KB
TCP messages using a 256KB buffer. The Ethernet driver
for the Intel Pro/1000 card batches incoming packets to re-
duce interrupt and, hence, XPC frequency. Nevertheless,
the receiver performs XPCs in the interrupt-handling code,
which is on the critical path for packet delivery. This results
in a throughput reduction of about 10%. The overall CPU
utilization remains unchanged, but the lowered throughput
results in a 12% per-packet utilization increase.

In contrast, Send-stream (also measured using netperf) is
a high XPC-frequency test that isolates the sending node’s
Ethernet driver. Unlike the Receive-stream test, which ben-
efits from the batching of received packets, the OS does not
batch outgoing packets that it sends. Therefore, although
the total amount of data transmitted is the same, Send-
stream executes nearly an order of magnitude more XPCs
per second than Receive-stream. The overall CPU utiliza-
tion on the sender thus increases from about 21% on na-
tive Linux to 39% with Nooks. As with the Receive-stream
benchmark, throughput drops by about 10%. Despite the
higher XPC rate, much of the XPC processing on the sender
is overlapped with the actual sending of packets, mitigating
some of the Nooks overhead. Nevertheless, on slower pro-
cessors or faster networks, it may be worthwhile to batch
outgoing streaming packets as is done, for example, with
network terminal protocols [19].

6.3 Compile Benchmark
As an indication of application-level file system performance,
we measured the time to untar and compile the Linux kernel
on a local VFAT file system. Table 4 shows that the compi-
lation ran about 25% slower when VFAT was isolated with
Nooks. In this case, the CPU was nearly 100% utilized in
the native case, so the additional overhead due to Nooks is
directly reflected in the end-to-end execution time.



Benchmark Extension XPC Nooks Native Nooks
Rate Relative CPU CPU

(per sec) Performance Util. (%) Util. (%)

Play-mp3 sb 150 1 4.8 4.6
Receive-stream e1000 (receiver) 8,923 0.92 15.2 15.5
Send-stream e1000 (sender) 60,352 0.91 21.4 39.3
Compile-local VFAT 22,653 0.78 97.5 96.8

Serve-simple-web-page kHTTPd (server) 61,183 0.44 96.6 96.8
Serve-complex-web-page e1000 (server) 1,960 0.97 90.5 92.6

Table 4: The relative performance of Nooks compared to native Linux for six benchmark tests. CPU utilization is accu-

rate to only a few percent. Relative performance is determined either by comparing latency (Play-mp3, Compile-local)

or throughput (Send-stream, Receive-stream, Serve-simple-web-page, Serve-complex-web-page). The data reflects the

average of three trials with a standard deviation of less than 2%.
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Figure 8: Comparative times spent in kernel mode for

the Compile-local (VFAT) benchmark. During the run

with Nooks, the system performed 10,936,572 XPCs into

the kernel and 4,316,338 XPCs into the extension. Time

in user mode (not shown) was identical for both config-

urations (480 seconds).

This benchmark provides a good opportunity to analyze
the performance impact of our approach. We used statis-
tical profiling of the kernel to compare the execution times
for the VFAT benchmark under the native and Nooks con-
figurations. The results are shown in Figure 8. User time
(not shown) for both configurations was identical, about 480
seconds; however, kernel time is significantly different. For
native Linux, about 29.5 seconds were spent in the kernel as
a whole, of which about 1.5 seconds were spent within the
VFAT code. In contrast, Nooks spent about 165 seconds in
the kernel for the same benchmark.

At a high level, Figure 8 illustrates two points about the
performance of Nooks compared to native Linux: there’s
more code to run, and the code runs more slowly. The first
point is shown by the additional execution components that
appear with Nooks, which reflect isolation and recovery sup-
port. The isolation costs manifest themselves in terms of
XPC overhead and in terms of the subsequent TLB misses
that result from changing protection domains. Nooks’ recov-
ery support is reflected in terms of the time spent tracking
pages and objects. Fundamentally, page and object tracking
occur on every XPC in which a pointer parameter is passed.
They allow the Nooks recovery manager to correctly recover
kernel resources in the event of an extension failure. These

measurements demonstrate that isolation and recovery have
roughly equivalent costs, or, more generally, that Nooks’
support for recovery doubles the cost of its cross-domain
communication mechanism for this workload.

The second point – that code runs more slowly – is demon-
strated by the fact that the “Other kernel” and “VFAT”
components slow down with Nooks. Since the code in both
configurations is the same, we speculated that the difference
was due to the TLB flushes that occurred during each XPC.
Using the Pentium 4 performance counters, we monitored
TLB behavior during runs of the compilation benchmark.
Of the 167 kernel-mode seconds spent in Nooks, 127 are
spent handling TLB misses. By comparison, native Linux
spends just 5.5 seconds in TLB miss handling. The TLB
therefore causes most of the increase in execution time for
the kernel and VFAT and much of the execution time of
Nooks itself.

While other systems have used segmentation to avoid
these additional TLB misses [31, 49], our goal of back-
ward compatibility precluded rewriting drivers for a seg-
mented addressing model. We have done little to optimize
Nooks, but we believe that significant speedup is possible
through software techniques that have been demonstrated
by other researchers, such as selective TLB flushing and
reloading, handcoding critical paths in assembler, and us-
ing more finely tuned data structures [42, 13].

6.4 Web Server Benchmarks
The final two benchmarks illustrate the impact on server
performance of transactional workloads. Serve-simple-web-
page uses a high XPC-frequency extension (kHTTPd) on
the server to deliver static content cached in memory. We
used httperf [33] to generate a workload that repeatedly re-
quested a single kilobyte-sized Web page and measured the
maximum possible request rate. kHTTPd on native Linux
can serve over 15,000 pages per second. With Nooks, it can
serve about 6,000, representing a 60% decrease in through-
put.

Two elements of the benchmark’s behavior conspire to
produce such poor performance. First, the kHTTPd server
processor is the system bottleneck. For example, when
run natively, the server’s CPU utilization is nearly 96%.
Consequently, the high XPC rate slows the server substan-
tially. Second, since the workload is transactional and non-
buffered, the client’s request rate drops as a function of the
server’s slowdown. By comparison, the Send-stream bench-
mark, which exhibits roughly the same rate of XPCs but



without saturating the CPU, degrades by only 10%. In addi-
tion, Send-stream is not transactional, so network buffering
helps to mask the server-side slowdown.

Nevertheless, it is clear that kHTTPd represents a poor
application of Nooks: it is already a bottleneck and per-
forms many XPCs. This service was cast as an extension
so that it could access kernel resources directly, rather than
indirectly through the standard system call interface. Since
Nooks’ isolation facilities impose a penalty on those accesses,
performance suffers. We believe that other types of non-
bottleneck application-specific extensions, such as virus and
intrusion detectors, which are placed in the kernel to access
or protect resources otherwise unavailable from user level,
would make better candidates.

In contrast to kHTTPd, the second Web server
test (Serve-complex-web-page) reflects moderate XPC fre-
quency. Here, we ran the SPECweb99 workload [44] against
the user-mode Apache 2.0 Web Server [1], with and with-
out Nooks isolation of the Ethernet driver. This workload
includes a mix of static and dynamic Web pages. When run-
ning without Nooks, the Web server handled a peak of 114
requests per second. 8 With Nooks installed and the Ether-
net driver isolated on the server, peak throughput dropped
by about 3%, to 110 requests per second.

6.5 Summary
This section used a small set of benchmarks to quantify the
performance cost of the Nooks approach. For the sound
and Ethernet drivers tested, Nooks imposed a performance
penalty of less than 10%. For kHTTPD, an ad-hoc applica-
tion extension, the penalty was nearly 60%. A key factor in
the performance impact is the number of XPCs required, as
XPCs impose a burden, particularly on the x86 TLB in our
current implementation. The performance costs of Nooks’
isolation services depend as well on the CPU utilization im-
posed by the workload. If the CPU is already near satu-
ration, the additional cost is significant; if not, the penalty
may not be important.

Overall, Nooks provides a substantial reliability improve-
ment at costs that depend on the extensions being isolated.
The reliability/performance tradeoff is thus one that can
be made on a case-by-case basis. For many computing en-
vironments, given the performance of modern systems, we
believe that the benefits of Nooks’ isolation and recovery
services are well worth the costs.

7. CONCLUSIONS
Kernel extensions such as device drivers are a major source
of failure in modern operating systems. This paper de-
scribed Nooks, a new reliability layer intended to signifi-
cantly reduce extension-related failures. Nooks uses hard-
ware and software techniques to isolate kernel extensions,
trapping many common faults and permitting extension re-
covery. The Nooks approach focuses on achieving backward
compatibility, that is, it sacrifices complete isolation and
fault tolerance for compatibility and transparency with ex-
isting kernels and extensions. Nevertheless, Nooks demon-
strates that it is possible to realize an extremely high level of
operating system reliability with a performance loss ranging
from zero to just over 60%. Our fault-injection experiments

8The test configuration is throughput limited due to its sin-
gle IDE disk drive.

reveal that Nooks recovered from 99% of the faults that
caused native Linux to crash.

Our experience shows that: (1) implementation of a Nooks
layer is achievable with only modest engineering effort, even
on a monolithic operating system like Linux, (2) extensions
such as device drivers can be isolated without change to ex-
tension code, and (3) isolation and recovery can dramatically
improve the system’s ability to survive extension faults.

Overall, our experiments demonstrate that Nooks defines
a new point in the reliability/performance space beyond sim-
ple kernel mode and user mode. In today’s world, nearly all
extensions run in the kernel and are potential threats to re-
liability. Nooks offers kernel developers a substantial degree
of reliability with a cost ranging from negligible to signifi-
cant. The decision to isolate a kernel extension should be
made in light of that extension’s native reliance on kernel
services, its bottleneck potential, and the environment in
which it will be used.

Clearly, for many device drivers and low XPC-frequency
extensions, the decision is easy. For others, it is a question of
requirements. Where performance matters more than relia-
bility, isolation may not be appropriate. However, given the
impressive performance of current processors and the enor-
mous rate at which performance is increasing, many devices
are in the “easy decision” category today, and more will join
that category with each passing year.
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